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Abstract
Several programming languages are beginning to integrate static
and dynamic typing, including Racket (formerly PLT Scheme), Perl
6, and C# 4.0 and the research languages Sage (Gronski, Knowles,
Tomb, Freund, and Flanagan, 2006) and Thorn (Wrigstad, Eug-
ster, Field, Nystrom, and Vitek, 2009). However, an important open
question remains, which is how to add parametric polymorphism
to languages that combine static and dynamic typing. We present a
system that permits a value of dynamic type to be cast to a polymor-
phic type and vice versa, with relational parametricity enforced by
a kind of dynamic sealing along the lines proposed by Matthews
and Ahmed (2008) and Neis, Dreyer, and Rossberg (2009). Our
system includes a notion of blame, which allows us to show that
when casting between a more-precise type and a less-precise type,
any cast failures are due to the less-precisely-typed portion of the
program. We also show that a cast from a subtype to its supertype
cannot fail.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Procedures, functions, and subroutines

General Terms Languages, Theory

Keywords casts, coercions, blame tracking, lambda-calculus

1. Introduction
The long tradition of work that integrates static and dynamic types
includes the partial types of Thatte (1988), the dynamic type of
Abadi et al. (1991), the coercions of Henglein (1994), the contracts
of Findler and Felleisen (2002), the dynamic dependent types of Ou
et al. (2004), the hybrid types of Gronski et al. (2006), the grad-
ual types of Siek and Taha (2006), the migratory types of Tobin-
Hochstadt and Felleisen (2006), the multi-language programming
of Matthews and Findler (2007), and the blame calculus of Wadler
and Findler (2009). Integration of static and dynamic types is a fea-
ture of .NET languages including Visual Basic and C#, is being ex-
plored for Javascript, Perl, Python, and Ruby, and is the subject of
the recent STOP 2009 workshop held in conjunction with ECOOP.
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A unifying theme in this work is to use casts to mediate between
statically and dynamically typed code. Casts may be introduced by
compiling to an intermediate language; the blame calculus may be
regarded as either such an intermediate language or as a source
language. The main innovation of the blame calculus is to assign
positive and negative blame (to either the term contained in the
cast or the context containing the cast), with associated notions of
positive and negative subtype. These support the Blame Theorem,
which ensures that when a program goes wrong, blame lies with
the less-precisely-typed side of a cast (Wadler and Findler, 2009).

In this paper, we extend a fragment of the blame calculus to
incorporate polymorphism, based on a notion of dynamic sealing.
For simplicity, our fragment includes base types, function types,
and the dynamic type, as found in gradual types, but omits subset
types, as found in hybrid types. Our system adds the ability to cast
a value of dynamic type to a polymorphic type and vice versa. We
name this system the polymorphic blame calculus.

A fundamental semantic property of polymorphic types is re-
lational parametricity, as introduced by Reynolds (1983). Our sys-
tem uses dynamic sealing to ensure that values of polymorphic type
satisfy relational parametricity. For instance, every function of type
∀X.X→X must either be the identity function (one which always
returns its argument) or an undefined function (one which never
returns a value), and this property holds true even for values of dy-
namic type cast to a polymorphic type. Relational parametricity un-
derlies some program optimizations, notably shortcut deforestation
as employed by the Glasgow Haskell Compiler (Gill et al., 1993).
Our system may guarantee the validity of such optimizations even
in the presence of dynamic types.

Dynamic sealing to enforce parametricity has a long history.
Sealing for data abstraction goes back at least to Morris (1973).
Cryptographic sealing for parametricity was introduced by Pierce
and Sumii (2000). Extending casts to include seals, while demon-
strating relational parametricity, was first explored in the context
of multi-language programming by Matthews and Ahmed (2008).
A practical implementation for Scheme contracts was described by
Guha et al. (2007). Recently, Neis et al. (2009) used dynamic seal-
ing to restore parametricity in a non-parametric language.

Our development is supported by the use of type bindings to
control the scope of type variables, both statically and dynamically.
Type bindings are closely related to constructs for generating new
type names (Neis et al., 2009; Rossberg, 2003); an important differ-
ence is that our type bindings are immobile, that is, there is no scope
extrusion. Our development also uses static casts to conceal and re-
veal the representations of type variables. Together with type bind-
ings, static casts provide a syntactic means to preserve the type-



hiding nature of type abstractions after they are instantiated. Static
casts play an important role in the static semantics of our system
but a lesser role in the dynamic semantics. As such, static casts are
implicit in our main system (as in Neis et al. (2009)). However, we
use an explicit version of the static casts as a technical device in
our proof of the Subtyping Theorem. The explicit casts are closely
related to the coercions of Rossberg (2003) and are reminiscent of
the syntactic type abstractions of Grossman et al. (2000).

We present three technical results in this paper. The first result
is the Jack-of-All-Trades Principle (Sections 6.3 and 11), which
justifies the way we implement casts that instantiate polymorphic
values. The second result is the Blame Theorem (Section 8), which
states that when casting between a less-precise type and a more-
precise type, any cast failures are due to the less-precisely-typed
portion of the program. The final result is the Subtyping Theorem
(Section 9), which states that a cast from a subtype to a supertype
cannot lead to blame for that cast. We do not present a relational
parametricity result; that result is forthcoming and will be an adap-
tation of the result by Matthews and Ahmed (2008).

The paper comes with a Redex model covering some of the
systems in this paper, available online:
http://plt.eecs.northwestern.edu/blame-for-all/
This paper is an improved version of a paper in STOP 2009.

The current paper is completely rewritten (and has lost one author
and gained another). Among the more significant differences, we
use type bindings as compared to a global store; and we prove the
Subtyping Theorem, a conjecture in the earlier paper.

2. From untyped to typed
The blame calculus provides a framework for integrating typed and
untyped programs. One scenario is that we begin with a program in
an untyped language and we wish to convert it to a typed language.

Here is a simple untyped program.

let pos? = dλx. x > 0e in
let app? = dλf. λx. f xe in
dapp? pos? 1e

It returns dtruee : ?. We indicate untyped code by surrounding
it with ceiling brackets, d·e. Untyped code is really uni-typed (a
slogan due to Harper (2007)); it is a special case of typed code
where every term has the dynamic type, ?. To aid the eye, we
sometimes write variables of type ? with a superscript ?.

Here is the same program, rewritten with types.

let pos = λx : I. x > 0 in
let app = ΛX.ΛY. λf : X→Y. λx : X. f x in
app I B pos 1

This program returns true : B.
As a matter of software engineering, when we add types to our

code we may not want to do so all at once. Of course, it is trivial
to rewrite a three-line program. However, the technique described
here is intended to apply also when each one-line definition is
replaced by a thousand-line module.

We manage the transition between untyped and typed code with
a relatively new construct (Gronski et al., 2006; Siek and Taha,
2006) with an old name, “cast”. Casts can be between any two
compatible types. Roughly speaking, type A is compatible with
type B when a value of type A can be coerced to type B. We are
particularly interested in the case where either the source type is
? (corresponding to importing untyped code into typed code), or
where the target type is ? (corresponding to importing typed code
into untyped code). We introduce an order on types corresponding
to precision, where ? is the least precise type. We introduce a
notion of blame associated with casts, so that we can prove the
following result: if a cast between a less-precise type and a more-

precise type fails, then blame falls on the less-precise side of the
cast. An immediate corollary is that if a cast between untyped and
typed code fails, blame lies with the untyped code—“well-typed
programs can’t be blamed”.

A cast from a more-precise type to a less-precise type is called
widening. Here is the above program rewritten to demonstrate
widening. It is mostly untyped, but contains one typed component
cast for use in an untyped context.

let pos? = dλx. x > 0e in
let app = ΛX.ΛY. λf : X→Y. λx : X. f x in
let app? = app : ∀X. ∀Y. (X→Y )→X→Y ⇒p ? in
dapp? pos? 1e

It returns dtruee : ?.
Every cast is annotated with a blame label, used to ascribe fault

if the cast fails. The cast in the above program has blame label p.
Our notation is chosen for clarity rather than compactness. Writ-

ing the source type of the cast is redundant; the type of the source
can always be inferred. In a practical language, we would expect
the source type to be elided.

Of course, the untyped context may not satisfy the constraints
required by the typed term. If in the above we replace

dapp? pos? 1e by dapp? 1 pos?e

it now returns blame p. Blaming p (rather than p) indicates that the
fault lies with the context containing the cast labelled p (rather than
the term contained in the cast). This is what we expect, because the
context is untyped.

Passing a polymorphically typed value into an untyped context
requires an appropriate instantiation for the type parameters. As
you might guess, in this case the type parameters X and Y are
instantiated to ?. However you might not guess that instantiating to
? always works, regardless of whether the target is ? or something
more precisely typed. One of the contributions of this paper is
to prove the Jack-of-All-Trades Principle: if instantiating a type
parameter to any given type yields an answer then instantiating that
type parameter to ? yields the same answer.

A cast from a less-precise type to a more-precise type is called
narrowing. Here is the above program rewritten to demonstrate
narrowing. It is mostly typed, but contains one untyped component
cast for use in a typed context.

let pos = λx : I. x > 0 in
let app? = dλf. λx. f xe in
let app = app? : ?⇒p ∀X. ∀Y. (X→Y )→X→Y in
app I B pos 1

This returns true : B.
Of course, the untyped term may not satisfy the constraints

required by the typed context. If in the above we replace

dλf. λx. f xe by dλf. λx. xe

it now returns blame p. Blaming p (rather than p) indicates that the
fault lies with the term contained in the cast labelled p (rather than
the context containing the cast). This is what we expect, because
the term is untyped.

To check for this error, the implementation must seal each value.
That is, casting from type X to type ? yields a value sealed with
X , and attempting to cast from type ? to type Y fails because the
sealsX and Y are distinct. One of the contributions of this paper is
to work out the details of sealing in a setting with dynamic types.
One consequence of sealing is that typed terms always satisfy
appropriate parametricity properties, even when they are derived
by casting from untyped terms.

We now begin our formal development.

http://plt.eecs.northwestern.edu/blame-for-all/


3. Simply-typed lambda calculus
All the systems in this paper extend a vanilla call-by-value simply-
typed lambda calculus, shown in Figure 1.

We let A, B, and C range over types. A type is either a base
type ι or a function typeA→B. The base types include integers and
Booleans, written I and B respectively. We let s and t range over
terms. Terms include constants, primitive application, variables,
abstractions, and application. The variables v and w range over
values. A value is either a constant or an abstraction.

We write Γ ` t : A if term t has type A in type environment Γ.
A type environment maps variables to types. The function ty maps
constants and primitive operators to their types. The function δ
maps an operator and a tuple of values to a value, and must preserve
types. That is, if ty(op) = ~A→B and · ` ~v : ~A then there is a w
such that δ(op, ~v ) = w and · ` w : B. Suitable choices of δ can
specify arithmetic, conditional, and fixpoint operators.

We write s −→ t to indicate that redex s reduces to t, and write
s 7−→ t to indicate that reducing a redex inside s yields t. We let E
range over evaluation contexts, which are standard.

4. Simply-typed blame calculus
Before proceeding to polymorphism, we review the fundamentals
of the simply-typed blame calculus, shown in Figure 2. The blame
calculus extends the simply-typed lambda-calculus with a dynamic
type, written ?, and with four term forms: dynamic casts, grounded
terms, type tests, and blame.

One can think of the dynamic type ? as the sum of all the base
types plus the function type.

? = I + B + (?→?)

Accordingly, the ground types are the base types together with the
type ?→?. Every value of dynamic type is constructed by a cast
from ground type to dynamic type, written v : G ⇒ ?. These
casts can never fail, so they are not decorated with blame labels.
For example, id? = (λx: ? . x) : ?→?⇒ ? is a value of type ?. A
test sisG returns true if s evaluates to a value grounded onG. For
example, (1 : I⇒ ?) is I returns true.

In general, a cast s : A ⇒p B converts the value of term s
from type A to type B. Casts are decorated with blame labels. We
assume an involutive operation of negation on blame labels: if p is
a blame label then p is its negation, and p is the same as p. We write
s : A⇒p B ⇒q C as shorthand for (s : A⇒p B) : B ⇒q C.

A cast fromA toB is permitted only if the types are compatible,
written A ≺ B. Every type is compatible with itself, the dynamic
type is compatible with every type, and functions are compatible if
their domain and range are compatible; note the contravariance in
the function rule. For now, compatibility is symmetric, but this will
change in Section 6.

Finally, the term blame p indicates a failure, identifying the
relevant label. Blame terms may have any type.

We now briefly review the reduction rules. A cast from one
function type to another reduces to a wrapper function that casts the
argument, applies the original function, then casts the result—note
the reversal in the argument cast, and the corresponding negating
of the blame label (WRAP). A cast from a ground type to itself is
the identity (ID). (The side condition G 6= ?→? avoids overlap
with (WRAP). For now, the only ground type other than ?→? is ι,
but this will change in Section 6.) A cast from type A to ? factors
into a cast from A to the unique ground type G that is compatible
with A followed by a cast from G to ? (GROUND). Here we
see the reason for distinguishing between casts and ground terms:
otherwise whenever the (GROUND) rule is applicable, it would be
applicable infinitely many times. A cast from ? to type A examines
the ground G of the value of type ?. If G is compatible with A, the

two casts collapse to a direct cast fromG toA (COLLAPSE). IfG is
not compatible with A, the offending cast is blamed (CONFLICT).
A test checks the ground of the value of type ?. If it matches the
test returns true, else it returns false (ISTRUE), (ISFALSE). An
occurrence of blamep in an evaluation position causes the program
to abort (ABORT).

For example, say pos = λx : I. x > 0. Then

(pos : I→B⇒p ?→?) (1 : I⇒ ?)
7−→∗ pos (1 : I⇒ ?⇒p I) : B⇒p ?
7−→∗ pos 1 : B⇒p ?
7−→∗ true : B⇒ ?

The function cast factors into a pair of casts. The cast on the ranges
retains the order and the blame label. The cast on the domains
swaps the order and negates the blame label. The swap is required
for types to work out. Negation of the blame label is required
to assign blame appropriately, as can be seen by changing the
argument:

(pos : I→B⇒p ?→?) (false : B⇒ ?)
7−→∗ pos (false : B⇒ ?⇒p I) : B⇒p ?
7−→∗ blame p

The inner cast fails, ascribing blame to the label p on the cast.
Blaming p (rather than p) indicates that the fault in the original
cast lies with the context containing the cast (rather than the term
contained in the cast). That is, we blame the untyped context for
failing to supply an integer rather than blame the typed function for
failing to accept a boolean.

A cast from type dynamic to itself is the identity:

v : ?⇒p ? 7−→ v′

where v′ is observationally equivalent to v. To see this, take v =
w : G⇒ ?. Then

w : G⇒ ?⇒p ?
7−→ w : G⇒p ?
7−→ w : G⇒p G⇒ ?

via (COLLAPSE) and (GROUND). And a cast from a ground type to
itself produces either an equivalent value, via (ID) or (WRAP).

It is straightforward to define an embedding d·e from the un-
typed lambda calculus into the blame calculus.

dce= c : ty(c)⇒ ?

dop( ~M )e= op(d ~Me : ~?⇒~q ~A) : B ⇒r ?, if ty(op) = ~A→B
dxe= x

dλx.Me= (λx: ? . dMe) : ?→?⇒q ?
dM Ne= (dMe : ?⇒q ?→?) dNe

dM isGe= dMe isG
For example, dλx. xe = (λx: ? . x): ?→?⇒ ?.

5. Explicit binding
The traditional way to reduce a type application is by substitution,
(ΛX. t) A −→ t[X:=A]. We begin by explaining why this cannot
work in our case, and then introduce a variant of the polymorphic
lambda calculus with an explicit binding construct.

5.1 The problem
A naive integration of casts and dynamic type with type substitution
cannot ensure relational parametricity.

Say we wish to cast the untyped constant function

K? = dλx. λy. xe
to a polymorphic type. We consider two casts.

K? : ?⇒p ∀X. ∀Y.X→Y→X
K? : ?⇒p ∀X. ∀Y.X→Y→Y



Syntax

Variables x, y
Constants c
Base types ι ::= I | B
Types A,B,C ::= ι | A→B

Terms s, t ::= c | op(~t ) | x | λx:A. t | t s
Environments Γ ::= · | Γ, x : A
Values v, w ::= c | λx:A. t
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E

Type rules

ty(c) = ι

Γ ` c : ι

Γ ` ~t : ~A ty(op) = ~A→B
Γ ` op(~t ) : B

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` t : B

Γ ` λx:A. t : A→B
Γ ` t : A→B Γ ` s : A

Γ ` t s : B

Reduction rules

(λx:A. t) v −→ t[x:=v] (BETA)

op(~v ) −→ δ(op, ~v ) (DELTA)

s −→ t
E[s] 7−→ E[t]

(STEP)

Figure 1. Simply-typed lambda calculus.

Syntax
Blame labels p, q
Types A,B,C ::= ι | A→B | ?
Ground types G,H ::= ι | ?→?
Terms s, t ::= c | op(~t ) | x | λx:A. t | t s | s : A⇒p B | s : G⇒ ? | s isG | blame p
Environments Γ ::= · | Γ, x : A
Values v, w ::= c | λx:A. t | v : G⇒ ?
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E | E isG | E : A⇒p B | E : G⇒ ?

Untyped terms M,N ::= c | op( ~M ) | x | λx.M |M N |M isG

Type rules

Γ ` s : A A ≺ B
Γ ` (s : A⇒p B) : B

Γ ` s : G
Γ ` (s : G⇒ ?) : ?

Γ ` s : ?
Γ ` s isG : B

Γ ` blame p : A

Compatibility

A ≺ A A ≺ ? ? ≺ B A′ ≺ A B ≺ B′

A→B ≺ A′→B′

Reduction rules

v : A→B ⇒p A′→B′ −→ λx′:A′. (v (x′ : A′ ⇒p A) : B ⇒p B′) (WRAP)

v : G⇒p G −→ v if G 6= ?→ ? (ID)

v : A⇒p ? −→ v : A⇒p G⇒ ? if A ≺ G and A 6= ? (GROUND)

v : G⇒ ?⇒p A −→ v : G⇒p A if G ≺ A (COLLAPSE)

v : G⇒ ?⇒p A −→ blame p if G 6≺ A (CONFLICT)

(v : G⇒ ?) isG −→ true (ISTRUE)

(v : H ⇒ ?) isG −→ false if G 6= H (ISFALSE)

E[blame p] 7−→ blame p if E 6= [·] (ABORT)

Figure 2. Simply-typed blame calculus (extends Figure 1).

We expect the first cast to succeed and the second to fail, the
latter because of parametricity. The parametricity property for the
type ∀X. ∀Y.X→Y→Y guarantees that a value of this type must
be either the flipped constant function (which returns its second
argument) or the undefined function (which never returns a value).
So an attempt to cast the constant function (which returns its first
argument) to this type should fail.

The traditional way to reduce a type application is by substitu-
tion. This cannot work in our case! To see why, consider reducing
each of the above by substituting X:=I, Y :=I.

(K? : ?⇒p ∀X. ∀Y.X→Y→X) I I 2 3
7−→∗ (K? : ?⇒p I→I→I) 2 3
7−→∗ 2

(K? : ?⇒p ∀X. ∀Y.X→Y→Y ) I I 2 3
7−→∗ (K? : ?⇒p I→I→I) 2 3
7−→∗ 2

Note how, in the second line of each reduction, the substitution has
erased the difference between the two programs—the system has
forgotten that the terms were once polymorphic.

Thus, we see that special run-time support is needed to enforce
parametricity. In the literature, such run-time support is called dy-



Syntax
Types A,B,C ::= ι | A→B | X | ∀X.B
Terms s, t ::= c | op(~t ) | x | λx:A. t | t s | ΛX. t | t A | νX:=A. t
Environments Γ ::= · | Γ, x : A | Γ, X | Γ, X:=A

∆ ::= · | Γ, X | Γ, X:=A
Values v, w ::= c | λx:A. t | ΛX. v
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E | ΛX.E | E A | νX:=A.E

Type rules

(TYABS)
Γ, X ` t : B

Γ ` ΛX. t : ∀X.B (TYAPP) Γ ` t : ∀X.B Γ ` A
Γ ` t A : B[X:=A]

(NEW)
Γ, X:=A ` t : B Γ ` A X /∈ ftv(B)

Γ ` νX:=A. t : B

(REVEAL)
Γ ` t : B (X:=A) ∈ Γ

Γ ` t : B[X:=A]
(CONCEAL)

Γ ` t : B[X:=A] (X:=A) ∈ Γ

Γ ` t : B

Reduction rules

(ΛX. v) A −→ νX:=A. v (TYBETA)

νX:=A. c −→ c (NUCONST)

νX:=A. (λy:B. t) −→ λy:B[X:=A]. (νX:=A. t) (NUWRAP)

νX:=A. (ΛY. v) −→ ΛY. (νX:=A. v) if Y 6= X and Y /∈ ftv(A) (NUTYWRAP)

Figure 3. Polymorphic lambda calculus with type bindings (extends Figure 1).

Syntax

Types A,B,C ::= ι | A→B | ? | X | ∀X.B
Ground types G,H ::= ι | ?→? | X
Terms s, t ::= c | op(~t ) | x | λx:A. t | t s | s : A⇒p B | s : G⇒ ? | s isG | blame p | ΛX. t | t A | νX:=A. t
Values v, w ::= c | λx:A. t | v : G⇒ ? | ΛX. v
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E | E isG | E : A⇒p B | E : G⇒ ? | ΛX.E | E A | νX:=A.E

Compatibility

A ≺ B
A ≺ ∀X.B X /∈ ftv(A)

A[X:=?] ≺ B
∀X.A ≺ B

Reduction rules

(v : G⇒ ?) isG −→ true if G 6= X for any X (ISTRUE)

(v : H ⇒ ?) isG −→ false if G 6= H and H 6= X for any X (ISFALSE)

(v : X ⇒ ?) isG −→ blame pis (ISTAMPER)

νX:=A. (v : G⇒ ?) −→ (νX:=A. v) : G⇒ ? if G 6= X (NUGROUND)

νX:=A. (v : X ⇒ ?) −→ blame pν (NUTAMPER)

v : A⇒p (∀X.B) −→ ΛX. (v : A⇒p B) if X /∈ ftvA (GENERALIZE)

v : (∀X.A)⇒p B −→ (v ?) : A[X:=?]⇒p B if B 6= ? and B 6= ∀X ′. B′ for any X ′, B′ (INSTANTIATE)

Figure 4. Polymorphic blame calculus (extends and updates Figures 1, 2 and 3).

namic sealing, which we review in Section 12. In particular, our ap-
proach is inspired by the dynamic sealing of Matthews and Ahmed
(2008), the dynamic type generation of Neis et al. (2009), and
the syntactic type abstraction of Grossman et al. (2000). Based on
these ideas, we introduce an alternate semantics for the polymor-
phic lambda calculus as a step towards defining our polymorphic
blame calculus.

5.2 Polymorphic lambda calculus with explicit binding
We avoid the problems above by introducing a polymorphic lambda
calculus with explicit binding, shown in Figure 3. As usual, types
are augmented by adding type variablesX and universal quantifiers
∀X.B, and terms are augmented by adding type abstractions ΛX. t

and type applications t A. The key new construct is explicit type
binding, νX:=A. t.

Type environments are augmented to include, as usual, type
variables X and, more unusually, type bindings X:=A. As usual,
we assume an implicit side condition when writing Γ, X or
Γ, X:=A that X is not in Γ.

The type rules for type abstraction and application are standard
(TYABS), (TYAPP). The type rule for binding augments the type
environment with the binding, and a side condition ensures that free
type variables do not escape the binding (NEW). Two additional
type rules, which are not syntax directed, permit a type variable to
be replaced by its bound type, or vice versa, within the scope of a
type binding (REVEAL), (CONCEAL).



We now briefly consider the reduction rules. Our rule for type
applications, instead of performing substitution, introduces an ex-
plicit type binding (TYBETA). Three new rules push explicit type
bindings into the three value forms: constants (NUCONST), value
abstractions (NUWRAP), and type abstractions (NUTYWRAP).
(Side conditions on the last rule avoid capture of type variables.)
For example,

(ΛX.λx:X. (λy:X. y) x) I 2
7−→ (νX:=I. λx:X. (λy:X. y) x) 2
7−→ (λx:I. νX:=I. (λy:X. y) x) 2
7−→ νX:=I. (λy:X. y) 2
7−→ νX:=I. 2
7−→ 2

by rules (TYBETA), (NUWRAP), (BETA), (BETA) and (NUCONST),
respectively. Note that for the term νX:=I. (λy:X. y) 2 to be well-
typed that 2 must be regarded as having type X—this is why the
type rules permit both replacing a type variable by its binding and
the converse.

As is well known, allowing type abstraction over terms with ar-
bitrary effects can be problematic. As we will see in Section 6.4,
the same issue arises here, due to raising of blame as a possi-
ble side effect. The usual solution is to restrict type abstraction
to apply only to values, as in the value polymorphism restric-
tion of SML (Wright, 1995). We would like to do the same here,
and restrict our syntax to only include type abstractions of the
form ΛX. v. However, this would not be consistent with the re-
duction (NUTYWRAP), which may push the non-value type bind-
ing construct underneath a type abstraction. (A similar issue arises
with the reduction (GENERALIZE), introduced in Section 6.) In-
stead, therefore, we allow the body of a type abstraction to be any
term (hence, the term form ΛX. t), but only consider a type ab-
straction to be a value if its body is a value (hence, the value form
ΛX. v). This further requires, unusually, that we permit reduction
underneath type abstractions (hence, the context form ΛX.E).

5.3 Relation to standard calculus
We relate the polymorphic lambda calculus with explicit binding to
the standard polymorphic lambda calculus based on type substitu-
tion. We omit the definitions of the latter to save space. We define
the erasure t◦ from the calculus with explicit bindings to the stan-
dard calculus as follows:

c◦= c

(op(~t ))
◦
= op(~t

◦
)

x◦= x
(λx:A. t)◦= λx:A. t◦

(t s)◦= t◦ s◦

(ΛX. t)◦= ΛX. t◦

(t A)◦= t◦ A
(νX:=A. t)◦= t◦[X:=A]

The only clause of interest is that for a binder, which is erased by
performing the type substitution. We also define the application of
an environment to a type Γ(A) and the erasure of environments Γ◦.

(Γ, x:B)(A)= Γ(A)
(Γ, X)(A)= Γ(A)

(Γ, X:=B)(A)= Γ(A[X:=B])

(Γ, x:A)◦= Γ◦, x:Γ(A)
(Γ, X)◦= Γ◦, X

(Γ, X:=A)◦= Γ◦

We can now state that the polymorphic lambda calculus with bind-
ings correctly implements the standard calculus, that is, erasure pre-
serves types and reductions.

Proposition 1 (Erasure). If Γ ` s : A then Γ◦ ` s◦ : Γ(A), and if
s 7−→ s′ then either s◦ = s′

◦ or s◦ 7−→ s′
◦.

5.4 Type safety
It is straightforward to show the usual type safety results for the
calculus with explicit binding. Typically these results are formu-
lated with respect to closed terms and empty environments, but be-
cause we allow reduction under type abstractions and binding our

results are formulated with regard to terms that may contain free
type variables and environments that may contain type variables
and bindings (but not term variables). We let ∆ range over such
environments.

With this caveat, we have the usual results for canonical forms,
progress, and preservation.

Proposition 2 (Canonical forms). If ∆ ` v : C then either

• v = c and C = ι for some c and ι, or
• v = λx:A. t and C = A→B for some x, t, A, and B, or
• v = ΛX.w and C = ∀X.A for some w, X , and A.

Proposition 3 (Progress). If ∆ ` s : A then either s = v for some
value v or s 7−→ s′ for some term s′.

Proposition 4 (Preservation). If ∆ ` s : A and s 7−→ s′ then
∆ ` s′ : A.

5.5 Relation to dynamic type generation
Neis et al. (2009) present a form for generating type names:
newX ≈ A in t. The main difference between our bindings and
new is that new adds its binding to a global list of bindings, σ.

σ; newX≈A in t −→ σ,X≈A; t if X /∈ dom(σ)

Earlier versions of our system also used a global list of bindings,
but two aspects of our system require the change to local bindings.

First, evaluation proceeds under Λ in our system, which makes
it problematic to use the global binding approach. Let

s = (λx:X.λy:Y.x) : X→Y→X

and consider the following program and hypothetical reduction
sequence.

ε; let f = ΛX.(ΛY.s) X in (f I, f B)
7−→ Y≈X; let f = ΛX.s in (f I, f B)
7−→ Y≈X; ((ΛX.s) I, (ΛX.s) B)
7−→ Y≈X,X≈I; (s, (ΛX.s) B)

But the next step in the sequence is problematic. We would like to
α-rename the X in ΛX. s, but that would lose the connection with
Y . Also, Y should really get two different bindings. Local bindings
solve this problem by binding Y :=X locally, inside the ΛX .

Second, bindings play a role in enforcing parametricity, which
we discuss in detail in Section 6.2. An earlier system, the λN -
calculus by Rossberg (2003), uses local type bindings, but λN
performs scope extrusion, that is, the type bindings float upwards.
The type bindings in this paper are immobile because they can
trigger errors and we want those errors to occur at predictable
locations.

6. Polymorphic blame calculus
Now that we have established the machinery of explicit binding,
we consider how to combine dynamic casts with polymorphism.
The polymorphic blame calculus is shown in Figure 4. The syntax
is simply the union of the constructs of the blame calculus and the
polymorphic lambda calculus, and the type rules are the union of
the previous type rules.

Two new cases for quantified types are added to the definition
of type compatibility, one each corresponding to casts to and from
quantified types. Note that these break the symmetry of compat-
ibility enjoyed by the simply-typed blame calculus. We discuss
compatibility in tandem with the corresponding reductions, in Sec-
tions 6.1 and 6.3.

The intuition behind parametric polymorphism is that functions
must behave uniformly with regard to type variables. To maintain
parametricity in the presence of dynamic types, we arrange that



dynamic values corresponding to type variables must be treated
abstractly. Recall that values of dynamic type have the form v :
G ⇒ ?, where G is a ground type. A key difference in moving
to polymorphism is that the ground types, in addition to including
base types ι and the function type ?→?, now also include type
variables X . A value of the form v : X ⇒ ? is called a sealed
value.

We now briefly consider the reduction rules. Tests are updated
so that if the value is sealed then the test indicates blame rather
than returning true or false (ISTRUE), (ISFALSE), (ISTAMPER);
the reason for this change is discussed in Section 6.2. Two rules
are added to push bindings into the one new value form, ground
values (NUGROUND), (NUTAMPER); the motivation for these rules
is also discussed in Section 6.2. Finally, the last two rules extend
casts to the case where the target type or source type is a quantified
type (GENERALIZE), (INSTANTIATE); these rules are discussed in
Sections 6.1 and 6.3. A side condition on (GENERALIZE) avoids
capture of type variables, and a side condition of (INSTANTIATE)
avoids overlap with (GROUND) and (GENERALIZE). The rules
(ISTAMPER) and (NUTAMPER) introduce two global blame labels,
pis and pν , which are presumed not to label any cast.

6.1 Generalization
Perhaps the two rules of greatest interest are those that cast to and
from a quantified type. We begin by discussing casts to a quantified
type, postponing the reverse direction to Section 6.3.

Rule (GENERALIZE) casts a value to a quantified type by ab-
stracting over the type variable and recursively casting the value;
note that the abstracted type variable may appear free in the target
type of the cast. Observe that the corresponding rule for compat-
ibility asserts that if the cast on the left of this rule is compatible
then the cast on the right is also compatible.

We now have enough rules in place to return to our examples
from Section 5.1. Here is the first example1

(K? : ?⇒p ∀X. ∀Y.X→Y→X) I I 2 3
7−→∗ (ΛX.ΛY.K? : ?⇒p X→Y→X) I I 2 3
7−→∗ (νY :=I. νX:=I.K? : ?⇒p X→Y→X) 2 3
7−→∗ νY :=I. νX:=I.

K? (2 : X ⇒p ?) (3 : Y ⇒p ?) : ?⇒p X
7−→∗ νY :=I. νX:=I.

K? (2 : X ⇒ ?) (3 : Y ⇒ ?) : ?⇒p X
7−→∗ νY :=I. νX:=I. (2 : X ⇒ ?) : ?⇒p X
7−→∗ νY :=I. νX:=I. 2
7−→∗ 2

The first step applies (GENERALIZE) twice, while the penultimate
step applies (COLLAPSE) and (ID). This yields 2, as expected.

The second example is similar, save for the last steps.

(K? : ?⇒p ∀X. ∀Y.X→Y→Y ) I I 2 3
7−→∗ νY :=I. νX:=I. (2 : X ⇒ ?) : ?⇒p Y
7−→∗ νY :=I. νX:=I. blame p
7−→∗ blame p

Here the penultimate step applies (CONFLICT). and the final step
applies (ABORT). This yields blame p, as expected.

6.2 Parametricity
We now consider some further examples, with an eye to under-
standing how sealing preserves parametricity.

The parametricity property for the type ∀X.X→X guarantees
that a value of this type must be either the identity function or the

1 Careful readers will spot that some reductions are shown out of order, so
as to group related reductions together.

undefined function. Consider the following three untyped terms.

id? = dλx. xe
inc? = dλx. x+ 1e
test? = dλx. if (x is I) then (x+ 1) else xe

Function id is parametric, because it acts uniformly on values of
all types; while functions inc and test are not, since the former acts
only on integers, while the latter acts on values of any type but
behaves differently on integers than on other arguments. However,
casting all three functions to type ∀X.X→X yields values that
satisfy the corresponding parametricity property. Casting id?, as
one might expect, yields the identity function, while casting inc?

and test?, perhaps surprisingly, both yield the only other parametric
function of this type, the everywhere undefined function.

Here is the first example.

(id? : ?⇒p ∀X.X→X) I 2
7−→∗ νX:=I. id?(2 : X ⇒p ?) : ?⇒p X
7−→∗ νX:=I. 2 : X ⇒ ?⇒p X
7−→∗ 2

The last step is by rules (COLLAPSE) and (ID). No matter which
type and value are supplied, the casts match up, so this behaves as
the identity function.

Here is the second example.

(inc? : ?⇒p ∀X.X→X) I 2
7−→∗ νX:=I. inc?(2 : X ⇒p ?) : ?⇒p X
7−→∗ νX:=I. ((2 : X ⇒ ?⇒q I) + 1) : I⇒q ?⇒p X
7−→∗ blame q

The last step is by rules (CONFLICT) and (ABORT); here q labels
casts in inc? introduced by embedding typed integer addition into
the untyped lambda calculus. Regardless of what type and value
are supplied the casts still don’t match, so this behaves as the
everywhere undefined function.

Here is the third example.

(test? : ?⇒p ∀X.X→X) I 2
7−→∗ νX:=I. test?(2 : X ⇒p ?) : ?⇒p X
7−→∗ νX:=I. if (2 : X ⇒ ?) is I then · · · else · · ·
7−→∗ blame pis

The last step is by rules (ISTAMPER) and (ABORT). Sealed val-
ues should never be examined, so rule (ISTAMPER) ensures that
applying a type test to a sealed value always allocates blame.
Rules (ISTRUE) and (ISFALSE) add side-conditions to ensure they
do not overlap with (ISTAMPER). The use of explicit binding plays
a central role: the test (2 : I ⇒ ?) is I returns true, while the test
(2 : X ⇒ ?) is I allocates blame to pis, even when X is bound
to type I. Regardless of what type and value are supplied, the test
always fails, so this behaves as the everywhere undefined function.

An alternative choice might be for (v : X ⇒ ?) isG to always
return false (on the grounds that a sealed value is distinct from
any ground value). This choice would still retain parametricity,
because under this interpretation the result of casting test? would
be the identity function. However, we would lose another key
property; we want to ensure that casting can lead to blame but
cannot otherwise change a value. In this case, casting converts test?

to the everywhere undefined function, which is acceptable, while
converting it to the identity function would violate our criterion.

Finally, consider the polymorphic type ∀X.X→?. The para-
metricity property for this function states that it must be either a
constant function (ignoring its argument and always returning the
same value) or the everywhere undefined function. Let’s see what



happens when we cast id? to this type.

(id? : ?⇒p ∀X.X→?) I 2
7−→∗ νX:=I. id?(2 : X ⇒p ?) : ?⇒p ?
7−→∗ νX:=I. 2 : X ⇒ ?⇒p ?
7−→∗ νX:=I. 2 : X ⇒ ?
7−→∗ blame pν

Here rule (NUTAMPER) plays a key role, ensuring that the attempt
to pass a value grounded at type X through the binder for X must
fail. In an earlier system we devised that did not have bindings
(Ahmed et al., 2009), this term would in fact reduce to a value
of type ?, violating a strict interpretation of the parametricity re-
quirement. It was only a mild violation, because the value of type ?
was sealed, so any attempt to examine it would fail. Still, from both
a theoretical and practical point of view the current system seems
preferable, because it detects errors earlier, and even if the result of
the offending cast is not examined.

6.3 Instantiation
Having considered casts to a quantified type, we now turn our
attention to the reverse, casts from a quantified type.

Rule (INSTANTIATE) casts a value from a quantified type by
instantiating the quantified type variable to the dynamic type and
recursively casting the result. Observe that the corresponding rule
for compatibility asserts that if the cast on the left of this rule is
compatible then the cast on the right is also compatible.

The rule always instantiates with the dynamic type. Often, we
are casting to the dynamic type, and in that case it seems natural
to instantiate with the dynamic type itself. However, is this still
sensible if we are casting to a type other than the dynamic type?
We show that there is a strong sense in which instantiating to the
dynamic type is always an appropriate choice.

Let’s look at some examples. LetK be a polymorphically typed
constant function.

K = ΛX.λx:X.λy:X.x

Here is an example casting to dynamic type.

(K : ∀X.X→X→X ⇒p ?→ ?→?) d2e d3e
7−→∗ (K ? : ?→ ?→?⇒p ?→ ?→?) d2e d3e
7−→∗ d2e

Unsurprisingly, instantiating polymorphically typed code to ?
works perfectly when casting typed code to untyped code.

Perhaps more surprisingly, it also works well when casting
polymorphically typed code to a different type. Because every
value embeds into the type ?, instantiating to ? yields an answer
if instantiating to any type yields an answer. Here is an example of
casting to static type.

(K : ∀X.X→X→X ⇒p I→ I→ I) 2 3
7−→∗ (K ? : ?→ ?→?⇒p I→I→I) 2 3
7−→∗ 2

This, of course, gives us exactly the same answer as if we had
instantiated K to I instead of ?:

(K I : I→ I→ I⇒p I→ I→ I) 2 3
7−→∗ 2

In this sense, we say that ? is a Jack-of-All-Trades: if instantiating
to any type yields an answer, then so does instantiating to ?.

However, instantiating to ? is something of a laissez faire policy,
in that it may yield an answer when a strict instantiation would fail.
For instance, consider a slight variant on the example above.

(K : ∀X.X→X→X ⇒p I→ ?→ I) 2 dtruee
7−→∗ (K ? : ?→ ?→?⇒p I→ ?→I) 2 dtruee
7−→∗ 2

Here, instantiating to I directly is more strict, yielding blame rather
than a value.

(K I : I→I→I⇒p I→ ?→I) 2 dtruee
7−→∗ blame p

In other words, ?, though a Jack-of-All-Trades, is a master of none.
To formulate the relevant property precisely, we need to capture

what we mean by saying that one term yields an answer if another
does, so we formulate a notion of contextual approximation v.

First, we define convergence and divergence. A term that neither
converges nor diverges must allocate blame.

Definition 5. A closed term s converges, written s ⇓, if s 7−→∗ v
for some value v, and diverges, written s ⇑, if the reduction
sequence beginning with s does not terminate.

Next, we define a variant of contextual approximation, where a
term that allocates blame approximates every term.

Definition 6. Term s approximates term t, written s v t, if for all
evaluation contexts E we have

• E[s] ⇑ implies E[t] ⇑, and
• E[s] ⇓ implies E[t] ⇓.

We can now state the principle.

Theorem 7 (Jack-of-All-Trades Principle). If ∆ ` v : ∀X.A and
A[X:=C] ≺ B (and hence A[X:=?] ≺ B) then

(v C : A[X:=C]⇒p B) v (v ? : A[X:=?]⇒p B).

We defer the proof until Section 11.

6.4 Evaluation under type abstraction
As noted in Section 5.2, an unusual feature of our presentation is
that we evaluate underneath type abstractions. We now provide an
example, promised there, of why such evaluation is necessary.

Parametricity guarantees that a term of type ∀X.X cannot
reduce to a value. One term with this type is ΛX. blame r. In
our calculus, this term is not a value, and it evaluates to blame r.
However, if we did not evaluate under type abstractions then this
term would be a value.

We want it to be the case that v : A⇒p ?⇒q A is equivalent to
v for any value v of typeA. (Among other things, it is easy to show
that this is a consequence of the Jack-of-All-Trades Principle.)
However, if ΛX. blame r is a value, this is not the case.

(ΛX. blame r) : ∀X.X ⇒p ?⇒q ∀X.X
7−→∗ (ΛX. blame r) ? : ?⇒p ?⇒q ∀X.X
7−→∗ (νX:= ? . blame r) : ?⇒p ?⇒q ∀X.X
7−→∗ blame r

This is no good—a cast that should leave a value unchanged has
instead converted it to blame!

The solution to this difficulty, as described in Section 5.2, is to
permit evaluation under type abstractions, and to only regard terms
of the form ΛX. v as values. We conjecture that if we based our
system on call-by-name rather than call-by-value that evaluation
under type abstraction would not be necessary.

6.5 Type safety
The usual type safety properties hold for the polymorphic blame
calculus.

Lemma 8 (Canonical forms). If ∆ ` v : C, then

1. v = c and C = ι for some c and ι, or
2. v = w : G⇒ ? and C = ?, for some w and G, or
3. v = λx:A. t and C = A→B, for some x, t, A, and B, or
4. v = ΛX.w and C = ∀X.A, for some w, X , and A.



Compatibility A ≺ B

A ≺ A A ≺ ? ? ≺ B A′ ≺ A B ≺ B′

A→B ≺ A′→B′
A[X := ?] ≺ B
∀X.A ≺ B

A ≺ B
A ≺ ∀X.B X /∈ ftv(A)

Subtype A <: B

A <: A
A <: G
A <: ?

A′ <: A B <: B′

A→ B <: A′ → B′
A[X:=C] <: B

∀X.A <: B
A <: B

A <: ∀X.B X /∈ ftv(A)

Positive Subtype A <:+ B

A <:+ A A <:+ ?
A′ <:− A B <:+ B′

A→ B <:+ A′ → B′
A[X:=?] <:+ B

∀X.A <:+ B

A <:+ B

A <:+ ∀X.B
X /∈ ftv(A)

Negative Subtype A <:− B

A <:− A
A <:− G

A <:− B
? <:− B

A′ <:+ A B <:− B′

A→ B <:− A′ → B′
A[X:=?] <:− B

∀X.A <:− B

A <:− B

A <:− ∀X.B
X /∈ ftv(A)

Naive Subtype A <:n B

A <:n A A <:n ?
A <:n A

′ B <:n B
′

A→ B <:n A
′ → B′

A[X:=?] <:n B

∀X.A <:n B

A <:n B

A <:n ∀X.B
X /∈ ftv(A)

Figure 5. Subtyping Relations

Proposition 9 (Preservation). If ∆ ` s : A and s 7−→ s′, then
∆ ` s′ : A.

Proposition 10 (Progress). If ∆ ` s : A, then either

• s = v for some value v, or
• s 7−→ s′ for some term s′, or
• s = blame p for some blame label p.

Preservation and progress on their own do not guarantee a great
deal because they do not rule out blame as a result. In sections 8
and 9 we characterize situations in which blame cannot arise.

7. Subtyping relations
Figure 5 presents the compatibility relation and four forms of
subtyping—ordinary, positive, negative, and naive. Compatibility
determines when it is sensible to attempt to cast one type to another
type, and the different forms of subtyping characterize when a cast
cannot give rise to certain kinds of blame. All five relations are
reflexive, and all four subtyping relations are transitive.

Why do we need four different subtyping relations? Each has a
different purpose. We useA <: B to characterize when a cast from
A to B cannot yield blame for that cast. One useful consequence
is that casting from a quantified type ∀X.B to any instance of
that type B[X:=A] never yields blame. However, while subtyping
gives a strong guarantee, it arises relatively rarely in programs that
integrate static and dynamic typing. What we wish to show for such
programs is not that they never fail, but that when they do fail that
blame always lies on the less precisely typed side of the cast, and
this is the purpose of the other three relations. We use A <:+ B
and A <:− B to characterize when a cast from A to B cannot
yield either positive or negative blame, respectively, and we use
A <:n B to characterize when A is a more precise type than B.

The definitions are related, in that A <: B holds if A <:+ B
andA <:− B (but not conversely), andA <:n B holds if and only
if A <:+ B and B <:− A. We tried to massage our definitions so
that the first clause, like the second, would be an equivalence, but
failed to do so.

Compatibility is written A ≺ B. It is reflexive, and the dy-
namic type is compatible with every other type. The remaining
three compatibility rules can be read off directly from the reduc-
tions (WRAP), (INSTANTIATE), and (GENERALIZE): replacing⇒
in the reductions yields the ≺ conditions in the rules. The casts on
the left-hand side of the reductions correspond to the compatibili-
ties in the conclusion of the rules, and the casts on the right-hand
side correspond the hypotheses. Thus, the compatibility rules are
designed to ensure that reducing compatible casts yield compatible
casts.

Function compatibility is contravariant in the domain and co-
variant in the range, corresponding to the swapping in the (WRAP)
rule. A polymorphic type ∀X.A is compatible with type B if
its instance A[X:=?] is compatible with B, corresponding to the
(INSTANTIATE) rule. A type A is compatible with polymorphic
type ∀X.B if type A is compatible with B (assuming X does not
appear free in A so there is no capture of bound variables), corre-
sponding to the (GENERALIZE) rule.

Ordinary subtyping is written A <: B. It characterizes when a
cast cannot give rise to blame. Every subtype of a ground type is a
subtype of ?, because a cast from a ground type to ? never allocates
blame. As with all the relations, function subtyping is contravariant
in the domain and covariant in the range. A polymorphic type
∀X.A is a subtype of a type B if some instance A[X:=C] is
a subtype of B—this is the one way in which subtyping differs
from all the other relations, which instantiate with ? rather than an
arbitrary type C. It is easy to see that A <:+ B and A <:− B
together imply A <: B, but not conversely.

The next two relations are concerned with positive and negative
blame. If reducing a cast with label p allocates blame to p we
say it yields positive blame, and if it allocates blame to p we
say it yields negative blame. The positive and negative subtyping
relations characterize when positive and negative blame can arise.
In the next section, we show that a cast fromA toB withA <:+ B
cannot give rise to positive blame, and with A <:− B cannot give
rise to negative blame.

The two judgments are defined in terms of each other, and
track the negating of blame labels that occurs in the contravariant



s sf p

A <:+ B s sf p

(s : A⇒p B) sf p

A <:− B s sf p

(s : A⇒p B) sf p

q 6= p q 6= p s sf p

(s : A⇒q B) sf p

s sf p

(s : G⇒ ?) sf p

s sf p

(s isG) sf p

q 6= p

(blame q) sf p

c sf p

~t sf p

(op(~t )) sf p x sf p

t sf p

(λx :A. t) sf p

t sf p s sf p

(t s) sf p

t sf p

(ΛX. t) sf p

t sf p

(t A) sf p

t sf p

(νX:=A. t) sf p

Figure 6. Safety for <:+ and <:−

position of function types. We have A <:+ ? and ? <:− B for
every type A and B, because casting to ? can never give rise to
positive blame, and casting from ? can never give rise to negative
blame. We also have A <:− G implies A <:− B, because a cast
from a ground type to ? cannot allocate blame, and a cast from ? to
any type cannot allocate negative blame.

We also define a naive subtyping judgment, A <:n B, which
corresponds to our informal notion of type A being more precise
than type B, and is covariant for both the domain and range of
functions.

8. The Blame Theorem
The Blame Theorem asserts that a cast from a positive subtype
cannot lead to positive blame, and a cast from a negative subtype
cannot lead to negative blame. The structure of the proof is similar
to a type safety proof, depending on progress and preservation
lemmas. However, the invariant we preserve is not well-typing, but
instead a safety relation, t sf p, as defined in Figure 6. A term t is
safe for blame label p with respect to <:+ and <:−, written t sf p,
if every cast with label p has a source that is a positive subtype of
the target, and every cast with label p has a source that is a negative
subtype of the target; we assume that p 6= pis and p 6= pν .

Lemma 11 (Blame progress). If s sf p then s 67−→ blame p.

Lemma 12 (Blame preservation). If s sf p and s 7−→ s′, then
s′ sf p.

Positive and negative subtyping are closely related to naive subtyp-
ing.

Proposition 13 (Factoring). A <:n B iffA <:+ B andB <:− A.

The proof of Proposition 13 requires four observations.

Lemma 14.
If A <:+ B and X 6∈ A, then X 6∈ B.
If A <:− B and X 6∈ B, then X 6∈ A.
Given X 6∈ B, we have A[X:=?] <:+ B iff A <:+ B.
Given X 6∈ A, we have A <:− B[X:=?] iff A <:− B.

We may now characterize how positive, negative, and naive
subtyping relate to positive and negative blame. Note that, typically,
each cast in a source program has a unique blame label.

Corollary 15 (Blame Theorem). Let t be a program with a subterm
s : A⇒p B where the cast is labelled by the only occurrence of p
in t, and p does not appear in t.

s sf<: p

A <: B s sf<: p

(s : A⇒p B) sf<: p

A <: B s sf<: p

(s : A⇒p B) sf<: p

q 6= p q 6= p s sf<: p

(s : A⇒q B) sf<: p

s sf<: p

(s : G⇒ ?) sf<: p

s sf<: p

(s isG) sf<: p

q 6= p q 6= p

(blame q) sf<: p

c sf<: p

~t sf<: p

(op(~t )) sf<: p x sf<: p

t sf<: p

(λx :A. t) sf<: p

t sf<: p s sf<: p

(t s) sf<: p

t sf<: p

(ΛX. t) sf<: p

t sf<: p

(t A) sf<: p

t sf<: p

(νX:=A. t) sf<: p

Figure 7. Safety for <:

• If A <:+ B, then t 67−→∗ blame p.
• If A <:− B, then t 67−→∗ blame p.
• If A <:n B, then t 67−→∗ blame p.
• If B <:n A, then t 67−→∗ blame p.

The first two results are an immediate consequence of blame
progress and preservation (Lemmas 11 and 12) while the second
two results are an immediate consequence of the first two and
factoring (Proposition 13).

Because our notion of more and less precise types is captured by
naive subtyping, the last two clauses show that any failure of a cast
from a more-precisely-typed term to a less-precisely-typed context
must be blamed on the less-precisely-typed context, and any failure
of a cast from a less-precisely-typed term to a more-precisely-typed
context must be blamed on the less-precisely-typed term.

The Blame Theorem and Subtyping Theorem give no guaran-
tees regarding the two global blame labels pis and pν . We are in-
vestigating an alternative design in which the is, Λ, and ν forms
are individually labelled and the safety relations can guarantee the
absence of blame going to those labels under suitable static condi-
tions.

9. The Subtyping Theorem
The Subtyping Theorem asserts that a cast from a subtype to a
supertype cannot lead to any blame whatsoever. As with the Blame
Theorem, the structure of the proof is similar to that of a type safety
proof, depending on progress and preservation lemmas. Again, we
use a safety relation, s sf<: p, as defined in Figure 7. A term t is
safe for blame label p with respect to <:, written s sf<: p, if every
cast with label p or p has a source that is a subtype of the target; we
assume that p 6= pis and p 6= pν .

Lemma 16 (Subtyping progress). If s sf p then s 67−→ blame p.

The preservation result is a little more complex than that for the
Blame Theorem, because it involves approximation as introduced
in Section 6.3.

Lemma 17 (Subtyping preservation). If s sf<: p and s 7−→ s′,
then either s′ sf<: p or there exists s′′ such that s′′ v s′ and
s′′ sf<: p.

The proof is by case analysis on s −→ s′ and s 7−→ s′, where the
case for (INSTANTIATE) depends on the Jack-of-All-Trades Princi-
ple. We may now characterize how subtyping relates to blame.



Syntax

Binding reference P,Q ::= X | X
Terms s, t ::= c | op(~t ) | x | λx:A. t | t s | ΛX. v | t A | νX:=A. t | s : A⇒P B

Values v, w ::= c | λx:A. t | ΛX. v | v : A⇒X X
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E | E A | νX:=A.E | E : A⇒P B

Type rules

(REVEAL)
Γ ` t : B (X:=A) ∈ Γ

Γ ` (t : B ⇒X B[X:=A]) : B[X:=A]
(CONCEAL)

Γ ` t : B[X:=A] (X:=A) ∈ Γ

Γ ` (t : B[X:=A]⇒X B) : B

Reduction rules

(ΛX. v) A −→ νX:=A. (v : B ⇒X B[X:=A]) if ΛX. v : ∀X.B (TYBETA)

νX:=A. (v : B ⇒Y Y ) −→ (νX:=A. v) : B ⇒Y Y (NUSC)

v : ι⇒P ι −→ v (SCBASE)

(λx : A. t) : A→B ⇒P A′→B′ −→ λx:A′. (t[x:=(x : A′ ⇒P A)] : B ⇒P B′) (SCWRAP)

(ΛX. v) : ∀X.B ⇒P ∀X.B′ −→ ΛX. (v : B ⇒P B′) if X 6= P and X 6= P (SCTYWRAP)

v : X ⇒P X −→ v if X 6= P and X 6= P (SCSEAL)

v : A⇒X X ⇒X A −→ v (SCCANCEL)

Figure 8. Polymorphic lambda calculus with static casts (extends and updates Figures 1 and 3).

Syntax

Terms s, t ::= c | op(~t ) | x | λx:A. t | t s | s:A⇒pB | s:G⇒? | s isG | blame p | ΛX. t | t A | νX:=A. t | s:A⇒P B

Values v, w ::= c | λx:A. t | v : G⇒ ? | ΛX. v | v : A⇒X X
Contexts E ::= [·] | op(~v,E,~t ) | E s | v E | E isG | E:A⇒pB | E:G⇒? | ΛX.E | E A | νX:=A.E | E:A⇒P B

Reduction rules

v : ?⇒P ? −→ v (SCDYN)

Figure 9. Polymorphic blame calculus with static casts (extends and updates Figures 1, 2, 3, 4, and 8).

Corollary 18 (Subtyping Theorem). Let t be a program with a
subterm s : A ⇒p B where the cast is labelled by the only
occurrence of p in t, and p does not appear in t.

• If A <: B, then t 67−→∗ blame p and t 67−→∗ blame p.

The result is an immediate consequence of subtyping progress and
preservation.

10. Static casts
The polymorphic lambda calculus with explicit bindings (Figure 3)
includes two type rules that are not syntax directed, (REVEAL) and
(CONCEAL). In this section, we introduce the polymorphic lambda
calculus with static casts, which extends the earlier calculus by
adding two new constructs so that the two type rules in question
become syntax directed. The result is a calculus which syntactically
records exactly where type abstraction occurs, similar in some
respects to that of Grossman et al. (2000). The more refined type
information provided by the new calculus will be of use in the proof
of the Jack-of-all-Trades Principle provided in the next section.

10.1 Polymorphic lambda calculus with static casts
We introduce the polymorphic lambda calculus with static casts
in Figure 8. It proves convenient for the new constructs to use a
notation similar to that for dynamic casts, and hence we call them
static casts. Dynamic casts may fail and are decorated with a blame

label. Static casts may not fail, and are decorated with a binding
reference.

Static casts come in two forms, corresponding to the rules (RE-
VEAL) and (CONCEAL) in the polymorphic lambda calculus with
explicit binding. Assume binding X:=A appears in the environ-
ment Γ. We reveal the binding of a type variable with the construct

s : B ⇒X B[X:=A]

and we conceal the binding with the construct

s : B[X:=A]⇒X B.

For convenience in the reduction rules, we use the syntax

s : A⇒P B

to range over both forms, where P is a binding reference that is
either X or X . We write P for the involution that adds an overbar
when one is missing, or removes the overbar when one is present.

With the addition of static casts, we have a new value form. It is
now the case that a value of type X always has the form

v : A⇒X X

where v has type A and X is bound to A in the environment.
The rule for type application is modified to also insert a suitable

static cast (TYBETA). The static cast depends upon the type of
the type abstraction; it is easy to annotate terms to preserve this
information.



We introduce a reduction rule to push explicit bindings through
the one new value form (NUSC). Surprisingly, the (NUSC) re-
duction rule requires no side conditions; the type system already
ensures thatX 6= Y andX /∈ ftv(B). We also introduce reduction
rules to perform static casts for each type constructor: base types
(SCBASE), functions (SCWRAP), quantified types (SCTYWRAP),
and type variables (SCSEAL). The rules to push a static cast
through a base type (SCBASE) or a type variable (SCSEAL) both
resemble the rule for dynamic casts (ID).

The rule to apply a static cast to a function (SCWRAP) re-
sembles the corresponding rule for dynamic casts (WRAP). Just as
WRAP flips the cast on the arguments and negates the blame label,
SCWRAP also flips the static cast on the arguments and negates the
binding reference. One notable difference between (SCWRAP) and
(WRAP) is that (SCWRAP) does not introduce a new wrapper func-
tion to apply the cast, but instead performs substitution directly in
the body of the lambda abstraction. This greatly simplifies the sim-
ulation relation used in the proof of the Jack-of-All-Trades Prin-
ciple. The substitution-based approach is not viable for (WRAP)
because a dynamic cast can fail, but works here because a static
cast cannot fail.

The rule to apply a static cast to a quantified type (SCTYWRAP)
is simpler than the corresponding rules for applying a dynamic cast.
For dynamic casts we require separate rules for universal quanti-
fiers in the source (INSTANTIATE) and in the target (GENERALIZE);
while for static casts it suffices to use a single rule to handle a uni-
versal quantifier in both the source and target (SCTYWRAP), since
one will be a substitution instance of the other.

Finally, if a static cast meets its negation, the two casts cancel
(SCCANCEL).

10.2 Relation to explicit binding
We relate the polymorphic lambda calculus with static casts to the
polymorphic lambda calculus with explicit binding. We define the
erasure t• from the calculus with static casts to the calculus with
explicit binding as follows:

c•= c

(op(~t))
•
= op(~t•)

x•= x
(λx:A. t)•= λx:A. t•

(t s)•= t• s•

(ΛX. t)•= ΛX. t•

(t A)•= t• A
(νX:=A. t)•= νX:=A. t•

(t : A⇒P B)
•
= t•

Proposition 19 (Erasure). If Γ ` s : A then Γ ` s• : A, and if
s 7−→ s′ then either s• = s′

• or s• 7−→ s′
•.

10.3 Type safety
It is straightforward to show the usual type safety results for the
polymorphic lambda calculus with static casts. Notably, there is
now one additional canonical form, for a term whose type is a type
variable.

Proposition 20 (Canonical forms). If ∆ ` v : C then either

• v = c and C = ι for some c and ι, or
• v = λx:A. t and C = A→B for some x, t, A, and B, or
• v = ΛX.w and C = ∀X.A for some w, X , and A.
• v = w : A⇒X X and C = X for some w, X , and A.

Proposition 21 (Progress). If ∆ ` s : A then either s = v for
some value v or s 7−→ s′ for some term s′.

Proposition 22 (Preservation). If ∆ ` s : A and s 7−→ s′ then
∆ ` s′ : A.

10.4 Polymorphic blame calculus with static casts
Given the above development, it is straightforward to augment
the polymorphic blame calculus to include static casts, as shown

in Figure 9. The syntax is just the union of the syntaxes of the
previous calculi. Only one additional reduction rule is required, to
apply a static cast to the dynamic type (SCDYN). Analogues of
the previous results to relate the calculus with static casts to the
one without are straightforward, as are analogues of the type safety
results, and we omit the details.

11. The Jack-of-All-Trades Principle
We now provide the proof of Theorem 7, the Jack-of-All-Trades
Principle. To prove the theorem we introduce a relation s @∼ t that
is contained in v and prove that @∼ is a simulation. Examining the
theorem gives our starting point for the relation.

v C : A[X:=C]⇒p B @∼ v ? : A[X:=?]⇒p B.

As these terms reduce, this cast can break into many casts, but they
will all have the general form

s : A⇒p B @∼ t : A′ ⇒p B

or the form

s : B ⇒p A @∼ t : B ⇒p A′

where s @∼ t, and A and A′ are the same, except some types in A
are replaced by ? in A′. To make the latter specific, we introduce a
few definitions.

Definition 23. If Σ is a map from type variables to types, its erasure
Σ? is the map that takes each X in the domain of Σ to ?.

Definition 24. We say that type A simulates type A′, written A @∼
A′, if there exists a type A′′ and a map Σ such that A = Σ(A′′)
and A′ = Σ?(A′′).

For example, if A = (X→X)→B and A′ = ?→? we have
A @∼ A′ by taking A′′ = Y→Z and Σ = Y :=X→X,Z:=B
(and hence Σ? = Y :=?, Z:=?). As a second example, consider
what type A may simulate a type variable X , A @∼ X? The answer
is that X is the only type that simulates X , so A = X .

The full definition of the relation @∼ is given in Figure 10.
The rules on the right-hand side make @∼ a congruence and the
remaining rules help us keep terms related as they reduce. We add
the following side condition to the rule (LEFTSC): the type variable
in the binding reference does not appear anywhere in the program
on the right-hand side of @∼ ; this is because (LEFTSC) arises from
(LEFTTYABS), in which there is a type abstraction on the left that
does not appear on the right.

Note that the simulation rules say nothing about types. But
when the terms on each side of the conclusion are well typed then
the terms in the hypothesis are as well. Furthermore, we have the
following lemma.

Lemma 25. If s @∼ t, Γ ` s : A, and Γ′ ` t : A′, then A @∼ A
′.

The proof is a straightforward induction on s @∼ t.
An important property of @∼ is that it relates values to terms

that reduce to values.

Lemma 26 (Value on the left of @∼). If v @∼ t, then t 7−→∗ w and
v @∼ w for some value w.

In the proof that @∼ is a simulation, the case for (BETA) requires
the following lemma regarding substitution.

Lemma 27 (Substitution preserves @∼ ). If t @∼ t′ and v @∼ v′,
then t[x:=v] @∼ t′[x:=v′].

The result is a consequence of the fact that @∼ is a congruence.
We now show that @∼ simulates both the reduction relation−→

and the step relation 7−→, beginning with the former.



s @∼ t A @∼ A
′

s : A⇒p B @∼ t : A′ ⇒p B
(POSCAST)

s @∼ t A @∼ A
′

s : B ⇒p̄ A @∼ t : B ⇒p̄ A′
(NEGCAST)

blame q @∼ t (BLAME)

s @∼ t

ΛY. s @∼ t
(LEFTTYABS)

s @∼ t

s : A⇒P B @∼ t
(LEFTSC)

s @∼ t

νX:=A. s @∼ t
(LEFTNU)

v @∼ w

v @∼ w : G⇒ ?
(RIGHTGROUND)

v @∼ w

(ΛX. v) ? @∼ w
(LEFTTYAPP)

c @∼ c (CONGCONST)

x @∼ x (CONGVAR)

s @∼ t A @∼ A
′

λx:A. s @∼ λx:A′. t
(CONGABS)

s1
@∼ t1 s2

@∼ t2

s1 s2
@∼ t1 t2

(CONGAPP)

s @∼ t A @∼ A
′

ΛY. s @∼ ΛY. t
(CONGTYPEABS)

s @∼ t

s A @∼ t A
(CONGTYPEAPP)

s @∼ t

s isG @∼ t isG
(CONGIS)

s @∼ t

s : A⇒p B @∼ t : A⇒q B
(CONGCAST)

v @∼ w

v : G⇒ ? @∼ w : G⇒ ?
(CONGGROUND)

s @∼ t A @∼ A
′ B @∼ B

′

s : A⇒P B @∼ t : A′ ⇒P B′
(CONGSC)

t @∼ t′ A @∼ A
′

νX:=A. t @∼ νX:=A′. t′
(CONGNU)

Figure 10. Simulation relation @∼

Lemma 28. (@∼
p simulates −→) Suppose ∆ ` s : A and ∆′ ` t :

B. If s @∼ t and s −→ s′, then t 7−→∗ t′ and s′ @∼ t′ for some t′.

The proof relies on the presence of bindings and static casts to pre-
serve type information, especially the presence of type variables.

Lemma 29. (@∼
p simulates 7−→) Suppose ∆ ` s : A and ∆′ ` t :

B. If s @∼ t and s 7−→ s′, then t 7−→∗ t′ and s′ @∼ t′ for some t′.

We then prove that @∼ is contained in v.

Lemma 30. If s @∼ t, then s v t.

Proof. The proof is by case analysis on the reduction of s.
Suppose E[s] ⇑. Then E[t] ⇑ by Lemma 29.
Suppose E[s] ⇓. Then E[t] ⇓ by Lemmas 29 and 26.

The proof of the main theorem follows from this lemma.

Proof of the Jack-of-All-Trades principle. We have

(v C : A[X:=C]⇒p B) @∼ (v ? : A[X:=?]⇒p B)

and we conclude by applying Lemma 30.

12. Related Work
Run-time sealing Matthews and Ahmed (2008) present seman-
tics for a multi-language system (Scheme and ML) that enforces the
parametricity of ML values with polymorphic type (with embedded
Scheme values). Their system places boundaries between the two
languages. Their boundaries roughly correspond to a combination
of a static and dynamic cast in our system. The contributions of our

work with respect to the work of Matthews and Ahmed (2008) is
that 1) we tease apart the notion of dynamic casting and sealing,
associating sealing with type abstraction instead of the interface
between languages, and 2) we establish the blame and subtyping
theorems and the Jack-of-All-Trades principle.

Syntactic type abstraction Grossman et al. (2000) develop a gen-
eral theory of syntactic type abstraction in which multiple agents
interact and have varying degrees of knowledge regarding the types
at the interfaces between agents. Their general theory can be used
to express the type abstraction in the polymorphic lambda calcu-
lus, as well as many other kinds of syntactic abstractions. They
present two systems, a simple two-agent system and a multi-agent
system. The two-agent system can handle a program with one type
abstraction whereas the multi-agent system is needed for arbitrary
programs, using one agent per type abstraction. However, the multi-
agent system adds considerable complexity for generality that is
unnecessary in our setting. The advantage of our system is that it
scales up to handle arbitrary number of type abstractions while re-
taining much of the simplicity of the two-agent system.

Sulzmann et al. (2007) develop an extension of System F with
type equality coercions. Their coercions closely resemble the static
casts of this paper, including the reduction rules. Their system
does not have an analogue of our type bindings and instead uses
substitution to perform type application.

Integrating static and dynamic Tobin-Hochstadt and Felleisen
(2006) formalize the interaction between static and dynamic typing
at the granularity of modules and develop a precursor to the Blame
Theorem. Wadler and Findler (2009) design the blame calculus



drawing on the blame tracking of higher-order contracts (Findler
and Felleisen, 2002), and prove the Blame Theorem.

Gronski et al. (2006) explore the interaction of type Dynamic
with refinement types and first-class types, that is, allowing types
to be passed to and returned from functions. This provides a form
of polymorphism, but not relational parametricity.

In the language Thorn, Wrigstad et al. (2010) show how to
integrate typed and untyped code, using like types to bridge the
gap in a way that better enables compiler optimizations in statically
typed regions of code. Their formal development includes classes
and objects but not polymorphism.

13. Conclusion
We have extended the blame calculus with support for first-class
parametric polymorphism, using explicit type binding to maintain
relational parametricity for values of polymorphic type. Our cal-
culus supports casts between the dynamic type and polymorphic
types. When casting from a polymorphic type, our system instanti-
ates the type variable with the dynamic type, a choice justified by
the Jack-of-All-Trades Principle: if instantiating a type parameter
to any given type yields an answer then instantiating that type pa-
rameter to the dynamic type yields the same answer. We proved this
principle via a simulation argument that depended on the presence
of type bindings and static casts. We have also proved the Blame
Theorem, so in the new polymorphic blame calculus, “well-typed
programs can’t be blamed”. Further, as a corollary of the Jack-
of-All-Trades Principle, we have proved the Subtyping Theorem,
showing that a traditional notion of subtyping is sound with respect
to our operational semantics.

Looking forward, there are interesting questions regarding how
to extend this work to subset and dependent types. Ultimately
we hope to obtain a language with a full spectrum type system,
supporting dynamic typing all the way to total correctness.
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