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c. Contents information

Abstract

The principle of Propositions as Types describes a fundamental connection
between logic and computation which views

propositions as types,
proofs as programs, and

normalisation of proofs as evaluation of programs.

The proposed course is intended to begin at the foundations and introduce
students to a few intermediate or advanced topics. It is suitable for students
in both logic and computing, presuming no previous knowledge of either,
though familiarity with logic and computing will be helpful.

Motivation and description

[Taken from the introduction to Wadler [2015].]
Powerful insights arise from linking two fields of study previously thought

separate. Examples include Descartes’s coordinates, which links geometry
to algebra, Planck’s Quantum Theory, which links particles to waves, and
Shannon’s Information Theory, which links thermodynamics to communica-
tion. Such a synthesis is offered by the principle of Propositions as Types,
which links logic to computation. At first sight it appears to be a sim-
ple coincidence—almost a pun—but it turns out to be remarkably robust,
inspiring the design of theorem provers and programming languages, and
continuing to influence the forefronts of computing.

Propositions as Types is a notion with many names and many origins.
It is closely related to the BHK Interpretation, a view of logic developed
by the intuitionists Brouwer, Heyting, and Kolmogorov in the 1930s. It
is often referred to as the Curry-Howard Isomorphism, referring to a corre-
spondence observed by Curry in 1958 and refined by Howard in 1969 (though
not published until 1980, in a Festschrift dedicated to Curry). Others draw
attention to significant contributions from de Bruijn’s Automath and Martin-
Löf’s Type Theory in the 1970s. Many variant names appear in the litera-
ture, including Formulae as Types, Curry-Howard-de Bruijn Correspondence,
Brouwer’s Dictum, and others.
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Propositions as Types is a notion with depth. It describes a correspon-
dence between a given logic and a given programming language, for instance,
between Gentzen’s intuitionistic natural deduction and Church’s simply-
typed lambda calculus. At the surface, it says that for each proposition
in the logic there is a corresponding type in the programming language—and
vice versa. Thus we have

propositions as types .

But it goes deeper, in that for each proof of a given proposition, there is a
program of the corresponding type—and vice versa. Thus we also have

proofs as programs .

And it goes deeper still, in that for each way to normalise a proof there is a
corresponding way to evaluate a program—and vice versa. Thus we further
have

normalisation of proofs as evaluation of programs .

Hence, we have not merely a shallow bijection between propositions and
types, but a true isomorphism preserving the deep structure of proofs and
programs, normalisation and evaluation.

Propositions as Types is a notion with breadth. It applies to a range
of logics including propositional, predicate, second-order, intuitionistic, clas-
sical, modal, and linear. It underpins the foundations of functional pro-
gramming, explaining features including functions, products, sums, paramet-
ric polymorphism, data abstraction, continuations, linear types, and session
types. It has inspired theorem provers and programming languages including
Agda, Automath, Coq, Epigram, F#, F?, Haskell, LF, ML, NuPRL, Scala,
Singularity, and Trellys. Applications include CompCert, a certified com-
piler for the C programming language verified in Coq, a computer-checked
proof of the four-colour theorem also verified in Coq, parts of the Ensem-
ble distributed system verified in NuPRL, and ten thousand lines of browser
plug-ins verified in F?.

Propositions as Types is a notion with mystery. Why should it be the
case that intuitionistic natural deduction, as developed by Gentzen in the
1930s, and simply-typed lambda calculus, as developed by Church around
the same time for an unrelated purpose, should be discovered forty years
later to be essentially identical? And why should it be the case that the
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same correspondence arises again and again? The logician Girard and the
computer scientist Reynolds independently developed the same calculus, now
dubbed Girard-Reynolds. The logician Hindley and the computer scientist
Milner independently developed the same type system, now dubbed Hindley-
Milner. Curry-Howard is a double-barrelled name that ensures the existence
of other double-barrelled names. Those of us that design and use program-
ming languages may often feel they are arbitrary, but Propositions as Types
assures us some aspects of programming are absolute.

Outline

• Introduction to propositions as types, including the history of the sub-
ject. (Based on Wadler [2015].)

• Detailed description of the correspondence for implication/function,
conjunction/product, truth/unit, disjunction/sum, and false/zero. (Based
on Girard et al. [1989].)

• Application of the correspondence to second order logic and polymor-
phic lambda calculus. (Based on Wadler [2007].)

• Application of the correspondence to classical logic and sequent calcu-
lus. (Based on Wadler [2003].)

• Application of the correspondence to linear logic and session types.
(Based on Wadler [2012, 2014].)

Although texts by myself will be main texts of the course, there is much
related work cited by those texts that we will also review: Gentzen [1935],
Church [1940], Girard [1972], Reynolds [1983], Griffin [1990], Parigot [1992],
Curien and Herbelin [2000], Girard [1987], Caires and Pfenning [2010], to
name but a few.

Expected level and prerequisites

The course is intended to be suitable for those without previous experience,
and so in that sense is foundational, but will touch on further developments
in the area and so in that sense is intermediate or even advanced.
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