Formlets

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

The Adventure of the
Absent Abstraction

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

Three Tiers

Browser
(HTML, XML,
JavaScript)

request

¢

>

response

Server
(Java, Perl, PHP,
Python, Ruby)

query

result

Database
(SQL, XQuery)

Links: Web Programrmng without Tiers

) ==—F o AR LS % SS—
”’M % =

Links, before formlets

let request : Xml =
<form l:action="{
let start = make_date(string_to_int (
string_to_int (
let finish = make_date(string_to_int (
string_to_int (

response (start, finish)

}r>

Start: month <input
day <input

:name="{sm}"/>
:name="{sd}"/>
Finish: month <input 1l:name="{fm}"/>
day <input l:name="{fd}"/>
<input type="submit" value="Submit"/>
</form>

e

m) ,
d)) 1
m) ,
d)) 1

1Data

1Data For The World Wide Web

Programming Interconnected Web Forms

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, Netherlands

counterIData :: IDatald Int — IDataFun Int

counterIData iDatald i = mkIData iDatald i ibm

where ibm = { toView = An v — use0ldView (n,down,up) v
, updView = A_ v — updCounter v
, fromView = A_ (n,_,_) —n

resetView = Nothing }
(up,down) = (LBut‘ton (defpixel / 6) "+" LButton (defpixel / 6) "-")

updCounter :: Counter — Counter

updCounter (n,Pressed,_) = (n - 1,down,up)
updCounter (n,_,Pressed) = (n + 1,down,up)
updCounter noPresses = noPresses

use0ldView new (Just old)= old
useUldView new Nothing = new

Formlets

The Essence of Form Abstraction™

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

School of Informatics, University of Edinburgh

module type FORMLET = sig

module type Idiom = sig include Idiom

type a t

val pure : a — a i

val (®) (¢ = B)t —at — gt
end

val xml : zml — wunal 1

val text : string — wunit 1

val tag : tag — attrs — ot — a i

val input : string

val run @ a t — zml x (env — «a)
end

Fig. 4. The idiom and formlet interfaces

Links, with formlets, sugared

let date formlet : Formlet Date =
formlet
month {int formlet => month}
day {int_formlet => day}
yields (make_date (month,day))

let dates formlet : Formlet (Date,Date) =
formlet
Start: {date_formlet => start}
Finish: {date_ _formlet => finish}
<input type="submit" value="submit"/>
yields (start, finish)

let request : Xml =
handle (dates_formlet, response)

Links, with formlets, unsugared

let int formlet : Formlet Int =
pure (string_to_int) @ input

let date formlet : Formlet Date =
pure (fun month day => make_date (month,day))
@ text ("month ") @ int_formlet
@ text ("day ") @ int formlet

let dates _formlet : Formlet (Date,Date) =

pure (fun () start () finish () => (start,finish))
@ text ("Start: ") @ date_ formlet
@ text ("Finish: ") @ date_formlet

@ submit ("Submit")

let request : Xml = handle (dates_formlet, response)

Currying
(a,b) = ¢ ~ a— (b— ¢

(fun (x,y) => x+y) (3,4)
3+4

Ll

(fun x v => x+ty) 3 4

((fun x => (fun y => x+y)) 3) 4
(fun y => 3+y) 4

3+4

H H H]

7

Formlets in Links, the API

Formlets API
pure : a —> Formlet a
(@) : Formlet (a -> b) —-> Formlet a -> Formlet b
text : String —> Formlet ()
tag : (Tag, Attrs, Formlet a) —-> Formlet a
input : Formlet String
run : Formlet a —> (Xml, (Env -> a))
XML API

(" 7) : Xml —> Xml —> Xml
textXml : String —> Xml
tagXml : (Tag, Attrs, Xml) -> Xml

Formlets in Links, the implementation

type Formlet a = Int -> (Xml, (Env —> a),

let pure(x) (1) = ([], (fun env => x), 1)
let (£ @ g) (1) =

let (u, d, j) = f£(i) in

let (v, e, k) = g(j) in

(u ~" v, (fun env => d(env) (e(env))), k)
let xml (u) (1) = (u, (fun env => ()), 1)
let text (s) = xml (xmlText (s))
let tag(t,a,f) (i) =

let (u, d, 3J) = f£(i) in

(xmlTag(t,a,u), 4, 7J)
let input (i) =

let w = "i_" ° string of_int (i) in

let u = xmlTag "input" [("name", w)] []

(u, (fun env => lookUp(env,w)), 1i+1)
let run(f) =

let (x, d, j) = £ 0 in

(x, d)

Int)

in

Monads

Notions of Computation and Monads
EuGENIO MoOGGT*

Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, UK

T34 —A , T24 TA—T, T4 M Ty
-
TF‘AJ lﬂﬂ \ l““‘ /
1d 74 idra4
T2 A ,» TA TA

14

ATIrows

Science of
Computer
Programming

ELSEVIER Science of Computer Programming 37 (2000) 67-111

www.elsevier.nl/locate/scico

Generalising monads to arrows

John Hughes
Chalmers Tekniska Hogskola, Institutionen for Datavetenskap, 5-412 96 Goteborg, Sweden

Abstract

Monads have become very popular for structuring functional programs since Wadler introduced
their use in 1990. In particular, libraries of combinators are often based on a monadic type. Such
libraries share (in part) a common interface, from which numerous benefits flow, such as the
possibility to write generic code which works together with any library. But, several interesting
and useful libraries are fundamentally incompatible with the monadic interface. In this paper |
propose a generalisation of monads, which [call arrows, with significantly wider applicability.
The paper shows how many of the techniques of monadic programming generalise to the new
setting, and gives examples to show that the greater generality is useful. In particular, three
non-monadic libraries for efficient parsing, building graphical user interfaces, and programming
active web pages fit naturally into the new framework. () 2000 Elsevier Science B.V. All rights
reserved.

Arrow calculus

THEORETICAL PEARLS

The Arrow Calculus

SAM LINDLEY, PHILIP WADLER, and JEREMY YALLOP
University of Edinburgh

Abstract

We introduce the arrow calculus, a metalanguage for manipulating Hughes's arrows with close
relations both to Moggi's metalanguage for monads and to Paterson’s arrow notation. Arrows are
classically defined by extending lambda calculus with three constructs satisfying nine (somewhat
idiosyncratic) laws; in contrast, the arrow calculus adds four constructs satisfying five laws (which
fit two well-known patterns). The five laws were previously known to be sound; we show that they
are also complete, and hence that the five laws may replace the nine.

Idioms

FUNCTIONAL PEARLS
[ABORTED] A trail told by an idiom

Conor McBride

1 Introduction

Nobody likes their programs to be full of sound and fury, signifying nothing. Ab-
straction is the weapon of choice in the war on wanton waffle. This paper is about
an abstraction which I find rather handy. It’s a weaker variation on the theme of a
monad, but it has a more functional feel. I call it an idiom:

infix] 9 (%)
class Idiom i where
idi X — 1 X
(%)) = i(s—t)—is—it — pronounced ‘apply’

Idioms = Applicative Functors

FUNCTIONAL PEARL
Applicative programming with effects

CONOR MCBRIDE
University of Nottingham

ROSS PATERSON
City University, London

Abstract

In this paper, we introduce Applicative functors—an abstract characterisation of an ap-
plicative style of effectful programming, weaker than Monads and hence more widespread.
Indeed, it is the ubiquity of this programming pattern that drew us to the abstraction.
We retrace our steps in this paper, introducing the applicative pattern by diverse exam-
ples, then abstracting it to define the Applicative type class and introducing a bracket
notation which interprets the normal application syntax in the idiom of an Applicative
functor. Further, we develop the properties of applicative functors and the generic opera-
tions they support. We close by identifying the categorical structure of applicative functors
and examining their relationship both with Monads and with Arrows.

Monads < Arrows < Idioms

Idioms are oblivious, arrows are meticulous,
monads are promiscuous

Sam Lindley, Philip Wadler and Jeremy Yallop

Laboratory for Foundations of Computer Science
e University of Edinburgh

Abstract

We revimit the connection between three notions of computation: Mog% s monads, Hughes's arrows and
McBride and Paterson's idioms (also called applicative funciors). We show that idioms are equivalent to

arrows that satisfy the type isomorphism A-+ B = 1-4 (4 — H) and that monads are equivalent to arrows
tha.t. aatlafy the t}EE momorphism A -~ B = A4 — (1~ B). Further, idioms embed into arrows and arrows

Keywords: applicative functors, idioms, arrows, monads

idioms monads

static arrows higher-order arrows
(— = armows —= 18

(A~B ~1~(A— B)) (A~B=A— (1~ B))

Idioms

pure : a —> Idiom a
(@) : Idiom (a —-> b) —> Idiom a —> Idiom b
pure (fun x => x) @ u
= u
pure (fun f g x => f (g x)) @ u @ v @ w
= u @ (v @ w)

pure f @ pure x

pure (f x)

pure x

pure (fun f => f x) @ u

c
I @ |

Programming the web

The IntelliFactory WebSharper™ Platform

Writing good web applications is not an easy task today. It requires a mastery of numerous languages (JavaScript, HTML,
C55), and an acute awareness of existing standards and browser implementation quirks, Poor debugging tools, and the lack
of compositionality and component reuse in the multi-tiered, multi-language web environment compound the problem even

more.

Seamless ASP.NET
Integration

Flug your
WebSharper™
applications into
existing ASP.NET
sites and deploy via
151

Extensions

Develop applications
that use any
JavaScript-based
technology via
WebSharper™
bindings!

Functional Reactive
Coding

Use powerful F#
asynchronous
constructs and

first-class events with

your client
applications!
Formlets — —
Create interactive o S
forms with validation | — — - o
Lsing .t',-f|:.:e—s§fe - :
code in just lines!
:-lq_-\.r —

Implemented in O’Caml, Haskell, F#, Scheme.

Used by Tupil, Utrecht and IntelliFactory, Budapest

Are functional languages about to go mainstream?

Haskell, O’Caml, Racket
Erlang, Scala, F#

