
Recursive Subtyping Revealed

Functional Pearl

Vladimir Gapeyev Michael Y. Levin Benjamin C. Pierce

Department of Computer and Information Science
University of Pennsylvania

fvgapeyev,milevin,bcpierceg@cis.upenn.edu

ABSTRACT
Algorithms for checking subtyping between recursive types
lie at the core of many programming language implementa-
tions. But the fundamental theory of these algorithms and
how they relate to simpler declarative speci�cations is not
widely understood, due in part to the di�culty of the avail-
able introductions to the area. This tutorial paper o�ers an
\end-to-end" introduction to recursive types and subtyping
algorithms, from basic theory to e�cient implementation,
set in the unifying mathematical framework of coinduction.

1. INTRODUCTION
Recursively de�ned types in programming languages and
lambda-calculi come in two distinct varieties. Consider, for
example, the type X described by the equation

X = Nat!(Nat�X):

An element of X is a function that maps a number to a pair
consisting of a number and a function of the same form. This
type is often written more concisely as �X.Nat!(Nat�X).
A variety of familiar recursive types such as lists and trees
can be de�ned analogously.
In the iso-recursive formulation, the type

�X:Nat!(Nat�X) is considered isomorphic to its one-
step unfolding, Nat!(Nat�(�X.Nat!(Nat�X))). The
term language provides a pair of built-in coercion functions
for each recursive type �X.T,

unfold 2 �X.T ! fX 7! �X.TgT
fold 2 fX 7! �X.TgT ! �X.T

witnessing the isomorphism (as usual, fX 7! SgT denotes the
substitution of S for free occurrences of X in T).
In the equi-recursive formulation, on the other hand,

a recursive type and its one-step unfolding are considered
equivalent|interchangeable for all purposes. In e�ect, the
equi-recursive treatment views a type like �X.Nat!(Nat�X)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP ’00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

as merely an abbreviation for the in�nite tree obtained by
unrolling the recursion \out to in�nity":1

Nat

Nat

!Nat

Nat

!

�

�

.

.

.

The equi-recursive view can make terms easier to write,
since it saves annotating programs with fold and unfold

coercions, but it raises some tricky problems for the com-
piler, which must deal with these in�nite structures and op-
erations on them in terms of appropriate �nite represen-
tations. Moreover, in the presence of these in�nite types,
even the de�nitions of other features such as subtyping
can become hard to understand. For example, suppos-
ing that the type Even is a subtype of Nat, what should
be the relation between the types �X.Nat!(Even�X) and
�X.Even!(Nat�X)?
The simplest way to think through such questions is often

to view them \in the limit." In the present example, the
elements inhabiting both types can be thought of as sim-
ple reactive processes: given a number, they return another
number plus a new process that is ready to receive another
number, and so on. Processes belonging to the �rst type
always yield even numbers and are capable of accepting ar-
bitrary numbers. Those belonging to the second type yield
arbitrary numbers, but expect always to be given even num-
bers. The constraints both on what arguments the function
must accept and on what results it may return are more
demanding for the �rst type, so intuitively we expect the
�rst to be a subtype of the second. We can draw a picture
summarizing our calculations as follows:

1The two di�erent formulations of recursive types have been
around since the beginning, but the pleasantly mnemonic
terms \iso-recursive" and \equi-recursive" are a relatively
new coinage, due to Crary, Harper, and Puri [9].

221

<:

<:<:

<:

Nat

!Nat

!

�

�

.

.

.

Nat

!

Nat

!

�

�

.

.

.

Even

Even

Even

Even

:> <:

<::>

<:

Can such arguments be made precise? Indeed they can.
The basic ideas can be found in several places, going back
to Amadio and Cardelli's comprehensive study [3], which
remains the standard reference in the area. Unfortunately,
the available literature is not as friendly to newcomers as
might be wished. More recent treatments tend to be rather
condensed, assuming that the reader is already familiar with
some of the relevant intuitions. On the other hand, Amadio
and Cardelli's original paper, while complete, is also quite
complex and, in some technical respects, beginning to be
slightly dated. More e�cient subtyping algorithms are now
known (e.g., [15, 6, 14]). Also, it is now widely agreed
that framing de�nitions and proofs in terms of coinduction
(rather than limits of sequences of approximations) substan-
tially simpli�es both intuitions and formalities.
Our purpose in this tutorial is not to announce new re-

sults, but rather to formulate known techniques as lucidly as
possible, beginning from fundamental de�nitions and lead-
ing, by simple steps, to e�cient algorithms for checking sub-
typing. We also try to make clear, at every point, the anal-
ogy between the coinductive structures we de�ne and those
found in the familiar, inductive world of �nite types and
ordinary subtyping.
We begin by reviewing the basic theory of inductive and

coinductive de�nitions and their associated proof principles
(Section 2). Sections 3 and 4 instantiate this general theory
for the case of subtyping, de�ning both the familiar induc-
tive subtyping relation on �nite types and its coinductive
generalization to in�nite types. Section 5 makes a brief de-
tour to consider some issues connected with the rule of tran-
sitivity (a notorious troublemaker in subtyping systems).
Section 6 derives simple algorithms for checking member-
ship in inductively and co-inductively de�ned sets; Section 7
considers more re�ned algorithms. These algorithms are ap-
plied to subtyping for the important special case of \regular"
in�nite trees in Section 8. Section 9 introduces �-types as
a �nite notation for representing regular trees and presents
a theorem that the more complex (but �nitely realizable)
subtyping relation on �-types coincides with the ordinary
coinductive de�nition of subtyping between regular trees.
Section 10 brings together all the preceding material to de-
rive a concrete subtyping algorithm for �-types and proves
its termination. Finally, Section 11 discusses a well-known
simpli�ed version of the algorithm and shows that it has ex-
ponential behaviour. Several sections are accompanied by
exercises for the reader; solutions to these can be found at
the end of the paper.
In the interest of brevity, some of the less interesting

proofs are omitted in this short version.
We deal with a very simple language of types, containing

just arrow types, binary products, and a maximal Top type.
Additional type constructors such as records, variants, etc.,
can be added with no changes to the basic theory. Bind-
ing constructs such as universal and existential quanti�ers
can also be formulated in the same framework [11], but they
are trickier, since they require working with in�nite trees
\modulo renaming of bound variables." Constructs such
as type operators that introduce nontrivial equivalences be-
tween type expressions pose additional problems.
No previous understanding of the metatheory of recur-

sive types or background in the theory of coinduction is re-
quired, though the development will assume a certain degree
of mathematical sophistication and some familiarity with
type systems and subtyping.

2. INDUCTION AND COINDUCTION
Assume we have �xed some universal set U as the domain
of discourse for our inductive and coinductive de�nitions. U
represents the set of \everything in the world"; the role of an
inductive or coinductive de�nition will be to pick out some
subset of U . (Later on, we are going to choose U to be the
set of all pairs of types, so that subsets of U are relations
on types. But for the present discussion, an arbitrary set U
will do.) The powerset of U , i.e., the set of all the subsets
of U , is written P(U).

2.1 De�nition: A function F 2 P(U) ! P(U) is mono-
tone if X � Y implies F (X) � F (Y).

In what follows, we will assume that F is some monotone
function on P(U). We refer to F as a generating function.

2.2 De�nition: Let X be a subset of U .

1. X is F-closed if F (X) � X.

2. X is F-consistent if X � F (X).

3. X is a �xed point of F if F (X) = X.

A useful intuition for these de�nitions is to think of the el-
ements of U as some sort of statements or assertions, and of
F as representing a \justi�cation" relation that, given some
set of statements (premises), tells us what new statements
(conclusions) follow from them. An F -closed set, then, is
one that cannot be made any bigger by adding in new el-
ements justi�ed by F|it already contains all conclusions
justi�ed by its members. An F -consistent set is one that
is \self-justifying": every assertion in it is justi�ed by other
assertions that are also in it. A �xed point of F includes
precisely the justi�cations required by its members, the con-
clusions that follow from its members, and nothing else.

2.3 Example: Consider the following generating function
on the three-element universe U = fa; b; cg:

E1(;) = fcg
E1(fag) = fcg
E1(fbg) = fcg
E1(fcg) = fb; cg
E1(fa; bg) = fcg
E1(fa; cg) = fb; cg
E1(fb; cg) = fa; b; cg
E1(fa; b; cg) = fa; b; cg

There is just one E1-closed set|fa; b; cg|and four E1-
consistent sets|;, fcg, fb; cg, fa; b; cg.

222

This function can be represented compactly by a collection
of inference rules:

c

c

b

b c

a

Each inference rule states that if all of the elements above
the bar are in the input set, then the element below is in
the output set. (We often omit the bar when a rule has no
premises.)

2.4 Theorem [Knaster-Tarski [20]]: The intersection of
all F -closed sets is the least �xed point of F . The union of
all F -consistent sets is the greatest �xed point of F .

2.5 De�nition: The least �xed point of F is written �F .
The greatest �xed point of F is written �F .

Note that �F itself is F -closed (hence, it is the smallest
F -closed set) and that �F is F -consistent (hence, it is the
largest F -consistent set).

2.6 Example: For the sample generating function E1

shown above, we have �E1 = �E1 = fa; b; cg:

2.7 Exercise: Suppose a generating function E2 on the
universe fa; b; cg is de�ned by the following inference rules:

a

c

b

a b

c

Write out the set of pairs in the relation E2 explicitly, as we
did for E1 above. List all the E2-closed and E2-consistent
sets. What are �E2 and �E2?

An immediate consequence of the Knaster-Tarski theorem
is the following pair of fundamental reasoning principles:

2.8 Corollary [of 2.4]:

1. Principle of induction: If X is F -closed, then �F �
X.

2. Principle of coinduction: If X is F -consistent, then
X � �F .

The intuition behind these principles comes from thinking
of the set X as a predicate (represented as its characteristic
set, the subset of U for which the property is true). Then
showing that property X is true of an element x is the same
as showing that x is in the set X. Now, the induction prin-
ciple says that, if there is a property whose characteristic
set X is closed under F (i.e., the property is preserved by
F), then the property is true of all the elements of the in-
ductively de�ned set �F . The coinduction principle, on the
other hand, tells us how to prove that an element x is in the
coinductively de�ned set �F . To prove x 2 �F , it su�ces
to �nd a set X such that x 2 X and X is F -consistent.
We will use the principles of induction and coinduction

heavily throughout the paper. (We will not write out ev-
ery inductive argument in terms of generating functions and
predicates; in the interest of brevity, we will sometimes fall
back on familiar abbreviations such as structural induction.)

3. FINITE AND INFINITE TYPES
Having introduced coinduction, our next job will be to in-
stantiate these de�nitions with the speci�cs of subtyping.
Before we can do this, though, we need to de�ne precisely
how to view types as (�nite or in�nite) trees.

For brevity, we deal in this paper with just three type
constructors: !, �, and Top. We de�ne types as (possibly
in�nite) trees with nodes labeled by one of the symbols !,
�, or Top. The de�nition is specialized to our present needs;
for a general treatment of in�nite labeled trees see [8].
We write f1; 2g� for the set of sequences of 1s and 2s. The

empty sequence is written �, and ik stands for k copies of i.
If � and � are sequences, then ��� denotes the concatenation
of � and �.

3.1 De�nition: A tree type (or, simply, a tree) is a
partial function T 2 f1; 2g� * f!;�; Topg satisfying the
following constraints:

� T(�) is de�ned

� if T(� � �) is de�ned then T(�) is de�ned

� if T(�) =! or T(�) = � then T(� � 1) and T(� � 2) are
de�ned

� if T(�) = Top then T(� � 1) and T(� � 2) are unde�ned.

A tree type T is �nite if dom(T) is �nite. The set of all tree
types is denoted T ; its subset, the set of all �nite tree types,
is Tf .

The set of �nite types can be de�ned more compactly by
a grammar:

T ::= Top

T�T
T!T

The force of such a grammar is that the set of types T is
the least �xed point of the evident generating function. The
universe of this generating function is the set of all �nite
and in�nite labeled trees (which can be de�ned along similar
lines to 3.1). The full set of tree types can be derived from
the same generating function by taking the greatest �xed
point instead of the least �xed point.
For notational convenience, we write Top for the tree T

such that T(�) = Top. Similarly, when T1 and T2 are trees,
we write T1�T2 for the tree with (T1�T2)(�) = � and
(T1�T2)(i � �) = Ti(�) and T1!T2 for the tree such that
(T1!T2)(�) =! and (T1!T2)(i � �) = Ti(�) for i = 1; 2.

3.2 Example: The type expression (Top�Top)!Top de-
notes the �nite tree type T de�ned by the function with
T(�) = ! and T(1) = � and T(2) = T(1 � 1) = T(1 �
2) = Top. Precise use of similar notation for non-�nite
types is problematic, since the corresponding linear terms
would be in�nitely long. In examples we informally use
ellipsis for this purpose. For example, the expression
Top!(Top!(Top!...)) corresponds to the type T de�ned
by T(2k) = !, for all k � 0, and T(2k � 1) = Top, for all
k � 0.

4. SUBTYPING
We de�ne subtyping relations on �nite tree types and on
tree types in general as least and greatest �xed points, re-
spectively, of monotone functions on certain universes. For
subtyping on �nite tree types the universe is the set Tf �Tf
of pairs of �nite tree types; our generating functions will
map subsets of this universe|that is, relations on Tf|to
other subsets, and their �xed points will also be relations on
Tf . For subtyping on trees the universe is T � T , pairs of
arbitrary (�nite or in�nite) trees.

223

4.1 De�nition [Finite subtyping]: Two �nite tree types
S and T are in the subtyping relation (\S is a subtype of T") if
(S; T) 2 �Sf , where the monotone function Sf 2 (Tf�Tf)!
(Tf � Tf) is de�ned by

Sf (R) = f(T; Top) j T 2 Tfg
[f(S1�S2; T1�T2) j (S1; T1); (S2; T2) 2 Rg
[f(S1!S2; T1!T2) j (T1; S1); (S2; T2) 2 Rg:

This generating function precisely captures the e�ect of the
usual de�nition of the subtyping relation by a collection of
inference rules:

T <: Top

S1 <: T1 S2 <: T2

S1�S2 <: T1�T2

T1 <: S1 S2 <: T2

S1!S2 <: T1!T2

In these rules, the pair of types (S; T) is written S <: T. The
statement S <: T above the line in the second and third rules
should be read as \if the pair (S; T) is in the argument to
Sf" and below the line as \then (S; T) is in the result."

4.2 De�nition [In�nite subtyping]: Two tree types S

and T are in the subtyping relation if (S; T) 2 �S, where
S 2 (T � T)! (T � T) is de�ned by:

S(R) = f(T; Top) j T 2 T g
[f(S1�S2; T1�T2) j (S1; T1); (S2; T2) 2 Rg
[f(S1!S2; T1!T2) j (T1; S1); (S2; T2) 2 Rg:

Note that the inference rule presentation of this relation is
precisely the same as for the inductive relation above: all
that changes is that we consider a larger universe of types
and take a greatest instead of a least �xed point.
4.3 Exercise: Check that �S is not the whole of T � T by
exhibiting a pair (S; T) that is not in �S.

4.4 Exercise: Can you �nd a pair of types (S; T) that are
related by �S, but not by �S? What about a pair of types
(S; T) that are related by �Sf , but not by �Sf?

One fundamental fact about the subtype relation|tran-
sitivity|should be checked right away. (If the subtype rela-
tion were not transitive, the crucial property of preservation
of types under reduction would immediately fail. To see
this, suppose that there were types S, T, and U with S<:T

and T<:U but not S<:U. Let s be a value of type S and f

a function of type U!Top. Then the term (�x:T. f x) s

can be typed, using the rule of subsumption once for each
application, but reduces in one step to the ill-typed term
f s.)

4.5 De�nition: The transitive closure of a binary re-
lation R � U � U is the least relation Q containing R and
closed under transitivity: if (S; U) 2 Q and (U; T) 2 Q, then
(S; T) 2 Q. Equivalently, the transitive closure of R is the
least �xed point, �TCR, of the generating function

TCR(X) =
R [f(S; T) j (S; U); (U; T) 2 X for some U 2 Ug:

The transitive closure of R is written R+.

4.6 Lemma: If R � T � T is S-consistent, then so is its
transitive closure R+.

4.7 Corollary: �S is transitive.

Proof: Since �S is S-consistent, its transitive closure, (�S)+,
is S-consistent by Lemma 4.6. Therefore, (�S)+ � �S by
the principle of coinduction. Since �S � (�S)+ by the de�-
nition of transitive closure, we have �S = (�S)+. The latter
relation is obviously transitive.

4.8 Exercise: Show that the subtype relation is also re-

exive.

5. A DIGRESSION ON TRANSITIVITY
Standard formulations of inductively de�ned subtyping rela-
tions generally come in two forms: a declarative presentation
that is optimized for readability and an algorithmic presen-
tation that corresponds more or less directly to an imple-
mentation. In simple systems, the two are generally similar;
in more complex systems, they can be quite di�erent, and
proving that the two presentations de�ne the same relation
on types can sometimes pose a signi�cant challenge.
One of the most distinctive di�erences between declara-

tive and algorithmic presentations is that declarative presen-
tations generally include an explicit rule of transitivity|if
S<:U and U<:T then S<:T|while algorithmic systems never
do. This rule is useless in an algorithm, since applying it in
a goal-directed manner would involve guessing U.
The rule of transitivity plays two useful roles in declar-

ative systems. First, it reassures the reader that the sub-
type relation is, indeed, transitive. In algorithmic presenta-
tions, transitivity is not obvious, but must be proved, as we
did above. Second, transitivity often allows other rules to
be stated in simpler, more primitive forms; in algorithmic
presentations, these simple rules need to be combined into
heavier mega-rules that take into account all possible com-
binations of the simpler ones. For example, in the presence
of transitivity, the rules for \depth subtyping" within record
�elds, \width subtyping" by adding new �elds, and \permu-
tation" of �elds can be stated separately, making them all
easier to understand. Without transitivity, the three rules
must be merged into a single rule taking width, depth, and
permutation into account all at once.
Interestingly, the viability of a declarative presentation

with a rule of transitivity is a consequence of a \trick" that
can be played with inductive, but not coinductive, de�ni-
tions. To see why, observe that transitivity is a closure
property|it demands that the subtype relation be closed
under the transitivity rule. Since the subtype relation itself
is de�ned as the closure of a set of rules, we can achieve
closure under transitivity simply by adding it to the main
subtyping rules. This is a general property of inductive def-
initions and closure properties: given two relations, each
de�ned inductively from sets of inference rules, the union of
the two sets of rules will generate the least relation that is
closed under both sets of rules. This fact can be formulated
more abstractly in terms of generating functions:

5.1 Proposition: Suppose F and G are monotone func-
tions, and let H(X) = F (X) [G(X). Then �H is the
smallest set that is both F -closed and G-closed.

Unfortunately, this trick does not work with coinductive
de�nitions. As the following exercise shows, adding transi-
tivity to the rules generating a coinductively de�ned relation
does not give us the relation we want.

224

5.2 Exercise: Show that the generating function

Str(R) = S(R)
[f(S; T) j (S; U); (U; T) 2 R for some U 2 T g

is degenerate, in the sense that its greatest �xed point is the
total relation T � T .

In the coinductive setting, it appears we are stuck with
algorithmic presentations and mega-rules.

6. MEMBERSHIP CHECKING
We now turn our attention to the question of how to decide,
given a generating function F on some universe U and an
element x 2 U , whether or not x falls in the greatest �xed
point of F .
A given element x 2 U can, in general, be generated by F

in many ways. That is, there can be more than one set X �
U such that x 2 F (X). Call any such set X a \generating
set" for x. Because, due to monotonicity of F , any superset
of a generating set for x is a generating set for x, it makes
sense to restrict attention to minimal generating sets. We go
even further and consider the class of \invertible" functions,
where each x has at most one minimal generating set.

6.1 De�nition: A generating function F is said to be in-
vertible if, for all x 2 U , the collection of sets

Gx = fX � U jx 2 F (X)g

either is empty or contains a unique smallest member. For
an invertible F , the partial function supportF 2 U * P(U)
is de�ned as follows2 :

supportF (x) =�
X if X 2 Gx and 8X 0 2 Gx: X � X 0

" if Gx = ;

The function is lifted to sets as follows:

supportF (X) =� S
x2X supportF (x) if 8x 2 X: supportF (x) #

" otherwise

When F is clear from context, we will often omit the sub-
script in supportF (and other F -based functions de�ned
later).

From now on, we focus our attention on invertible gener-
ating functions.

6.2 De�nition: An element x is supported if support (x) is
de�ned; otherwise, x is unsupported. A supported element
is ground if support(x) = ;.

Note that an unsupported element x cannot appear in
F (X) for any X, while a ground x is in every F (X).
An invertible generating function can be visualized as a

\support graph". For example, Figure 1 de�nes a function
E on the universe fa; b; c; d; e; f; g; h; ig by showing which
elements are needed to support a given element of the uni-
verse: for a given x, its support(x) consists of all y for which
there is an arrow from x to y. An unsupported element is
denoted by a slashed circle. In this example, i is the only un-
supported element and g is the only ground element. (Note
that, according to our de�nition, h is supported.)

6.3 Exercise: Write out a set of inference rules correspond-
ing to this function, as we did in Example 2.3. Check that

2We write " throughout the paper to mean \unde�ned," and
f(x) # to mean \f(x) is de�ned."

i

d

b

e

�E

�E

g

c

f

h

a

Figure 1: A sample support function

E(fb; cg) = fg; a; dg, that E(fa; ig) = fg; hg, and that the
sets of elements marked in the �gure as �E and �E are
indeed the least and the greatest �xed points of E.

Looking at the example of Figure 1 might lead us to con-
jecture that an element x is in the greatest �xed point if
and only if no unsupported element is reachable from x.
This suggests an algorithmic strategy for checking whether
x is in �F : enumerate all elements reachable from x via the
support function; return failure if an unsupported element
occurs in the enumeration; otherwise, succeed. Observe,
however, that there can be cycles of reachability between
the elements, and the enumeration procedure should take
some precautions against falling into an in�nite loop.

6.4 De�nition: Suppose F is an invertible function. De�ne
the function gfpF (or just gfp) as follows:

gfp(X) = if support (X) ", then false
else if support (X) � X, then true
else gfp(support(X) [X).

Intuitively, gfp starts from X and uses support to enrich it
until either it becomes consistent or an unsupported element
is found.
The extension of gfp to single elements is given by

gfp(x) = gfp(fxg).

6.5 Exercise: Another observation that is clear from Fig-
ure 1 is that an element x of �F is not a member of �F if
x participates in a cycle in the support graph (or there is a
path from x to an element that participates in a cycle). Is
the converse also true? If x is a member of �F but not �F ,
is it necessarily the case that x leads to a cycle?

The rest of this section is devoted to proving correctness
and termination of gfp. (First-time readers may want to
skip this material and jump to the next section.) We start
by observing a couple of properties of the support function.

6.6 Lemma: X � F (Y) i� support (X) � Y .

6.7 Lemma: Suppose P is a �xed point of F . Then X � P
i� support(X) � P .

Now we can prove partial correctness of gfp.

6.8 Theorem:

1. If gfp(X) = true, then X � �F .

2. If gfp(X) = false, then X 6� �F .

225

Proof: The proof of each clause proceeds by induction on
the recursive structure of a run of the algorithm.

1. From the de�nition of gfp, it is easy to see that
there are two cases where gfp(X) can return true.
If gfp(X) = true because support(X) � X, then,
by Lemma 6.6, we have X � F (X), i.e., X is F -
consistent; thus, X � �F by the coinduction prin-
ciple. On the other hand, if gfp(X) = true because
gfp(support (X) [X) = true, then, by the induction
hypothesis, support (X) [X � �F , and so X � �F .

2. Let gfp(X) = false because support(X) is unde�ned.
Then X 6� �F by Lemma 6.7. Let gfp(X) = false
because gfp(support (X)[X) = false. By the induction
hypothesis, support (X) [X 6� �F . Equivalently, X 6�
�F or support (X) 6� �F . Either way, X 6� �F (using
Lemma 6.7 in the second case).

We are going to specify a su�cient termination condition
for gfp by giving a class of generating functions for which
the algorithm terminates. To describe the class, we need
some additional terminology.

6.9 De�nition: For a generating function F and an ele-
ment x 2 U , the set of predecessors of x is

predF (x) =

�
; if supportF (x) "
supportF (x) if supportF (x) #

and its extension to sets X � U is

predF (X) =
[
x2X

predF (x):

The set of all elements reachable from a set X via the
supportF is de�ned by the following function

reachableF (X) =
[
n�0

prednF (X):

and its extension to single elements x 2 U is

reachableF (x) = reachableF (fxg):

We say that an element y 2 U is F -reachable from an
element x if y 2 reachableF (x).

6.10 De�nition: A generating function F is said to be
�nite state if reachableF (x) is �nite for each x 2 U .

Finite state functions form a class of generating functions
for which gfp terminates:

6.11 Theorem: If reachable(X) is �nite, then gfp(X) is
de�ned. Consequently, if F is �nite state, then gfp(X) ter-
minates for any �nite X � U .

Proof: For each possible recursive call gfp(Y) in the call
graph generated by the original invocation gfp(X), we have
Y � reachable(X). Moreover, Y strictly increases on each
call. Since reachable(X) is �nite, m(Y) = jreachable(X)j �
jY j serves as a termination measure for gfp.

7. MORE EFFICIENT ALGORITHMS
Although the gfp algorithm is correct, it is not very e�cient,
since it has to recompute the support of the whole set X
every time it makes a recursive call. Consider the following

trace of gfp on the function E from Figure 1.

gfp(fag)
= gfp(fa; b; cg)
= gfp(fa; b; c; e; f; gg)
= gfp(fa; b; c; e; f; g; dg)
= true:

Note that the algorithm recomputes support(a) four times.
We can re�ne the algorithm to eliminate this redundant re-
computation by maintaining a set A of assumptions whose
support sets have already been considered and a set X of
goals whose support has not yet been considered.

7.1 De�nition: Suppose F is an invertible function. De-
�ne the function gfpa as follows (the superscript \a" is for
\assumptions"):

gfpa(A;X) =
if support(X) ", then false
else if X = ;, then true
else gfpa(A [X; support(X) n (A [X)).

In order to check x 2 �F , compute gfpa(;; fxg).

This algorithm computes the support of each element at
most once. A trace for the above example looks like this:

gfpa(;; fag)
= gfpa(fag; fb; cg)
= gfpa(fa; b; cg; fe; f; gg)
= gfpa(fa; b; c; e; f; gg; fdg)
= gfpa(fa; b; c; e; f; g; dg; ;)
= true:

The correctness statement for this algorithm is slightly
more elaborate than the ones we saw in the previous section:

7.2 Proposition:

1. If support(A) � A [X and gfpa(A;X) = true, then
A [X � �F .

2. If gfpa(A;X) = false, then X 6� �F .

To make the membership checking algorithm more simi-
lar to the known implemetations of recursive subtyping, we
make more modi�cations. First, the order of computation is
made more explicit by computing support for one element at
a time. Second, we start using newly computed assumptions
as soon as they become available by threading the set of as-
sumptions through recursive calls. (Note that this makes
the algorithm non-tail-recursive.)

7.3 De�nition: Given an invertible function F , de�ne the
function gfpt as follows (\t" stands for \threading")3:

gfpt(A; x) =
if x 2 A, then A
else if support (x) ", then "
else
let x1; : : : ; xn = support(x) in
let A0 = A [fxg in
let A1 = gfpt(A0; x1) in

: : :
let An = gfpt(An�1; xn) in
An.

3We use the following convention for unde�nedness: if an
expression B is unde�ned, then \let A = B in C" is also
taken to be unde�ned. This avoids the need to write explicit
\exception handling" clauses for every recursive invocation
of gfpt.

226

To check x 2 �F , compute gfpt(;; x): if the result is a set
of assumptions then x 2 �F ; if the result is unde�ned, then
x 62 �F .

The correctness statement must again be re�ned, taking
into account the non-tail-recursive nature of this formulation
by positing a \stack" X of elements whose supports must
still be checked.

7.4 Proposition:

1. If gfpt(A;x) = A0, then A [fxg � A0.

2. For all X, if support (A) � A[X[fxg and gfpt(A;x) =
A0, then support (A0) � A0 [X.

3. If gfpt(A;x) ", then x =2 �F .

7.5 Corollary: If gfpt(;; x) = A0, then x 2 �F .

Proof: By the �rst part of the proposition, x 2 A0. Instan-
tiating the second statement of the proposition with X = ;,
we obtain support(A0) � A0|that is, A0 is F -consistent, and
so A0 � �F by coinduction.
Since all of the algorithms in this section examine the

reachable set in one way or another, the termination condi-
tion for all of them is the same as that of the original gfp
algorithm: they terminate on all inputs when F is �nite
state.

8. REGULAR TREES
At this point, we have developed generic algorithms for
checking membership in a greatest �xed point, and sepa-
rately shown how to de�ne subtyping between in�nite trees
as the greatest �xed point of a particular generating func-
tion S. The obvious next step is to instantiate one of the
algorithms with S. Of course, this concrete algorithm will
not terminate on all inputs, since in general the set of states
reachable from a given pair of in�nite types can be in�nite.
But, as we shall see in this section, if we restrict ourselves to
in�nite types of a certain well-behaved form, called regular
types, then the sets of reachable states are guaranteed to
remain �nite and the subtype checking algorithm will always
terminate.

8.1 De�nition: A tree type S is a subtree of a tree type
T if S can be presented in the form S = ��: T(� ��) for some
�.We write subtrees(T) for the set of all subtrees of T.

8.2 De�nition: A tree type T 2 T is regular if subtrees (T)
is �nite, i.e., T has only �nitely many distinct subtrees. The
set of regular tree types is denoted by Tr.

8.3 Examples:

1. Any �nite tree type is regular, since the number of
subtrees is bounded by the number of nodes.

2. The number of distinct subtrees of a type can be
strictly less than the number of nodes. For example,
T = Top!(Top�Top) has �ve nodes but only three
distinct subtrees.

3. Some in�nite trees are regular. For example, the tree

T = Top � (Top � (Top � ...))

has just two distinct subtrees (T itself and Top).

4. The type

T = B�(A�(B�(A�(A�(B�(A�(A�(A�(B�...)

where pairs of consecutive Bs are separated by increas-
ingly many As, is not regular. Note that, because T

is irregular, the set reachable(T; T) containing all the
subtyping pairs needed to justify the statement T<:T
is in�nite.

8.4 Observation: The restriction Sr of S to regular tree
types is �nite state.

This means that we can obtain a decision procedure for
the subtype relation by instantiating one of the membership
algorithms with S. Of course, in order to implement such
a decision procedure we would need to be able to decide
when two regular trees are equal (to calculate the unions, set
equality and membership, etc. used by the algorithms). The
�-notation in the next section can be used for this purpose,
but we will go a step further, showing directly how to build
a subtyping algorithm for �-types.

9. �-TYPES
We now formalize the �nite �-notation for regular types.

9.1 De�nition: Let X range over a �xed countable set
fX1; X2; : : : g of type variables. The set T

raw

m of raw �-types
is the set of expressions de�ned by the following grammar:

T ::= X

Top

T�T
T!T

�X.T

The syntactic operator � is a binder, and gives rise, in the
standard way, to notions of bound and free variables, closed
raw �-types, and equivalence of raw �-types up to renaming
of bound variables. FV(T) denotes the set of free variables of
a raw �-type T. The capture-avoiding substitution fX 7! SgT
of a raw �-type S for free occurrences of X in a raw �-type
T is de�ned in the usual way.

Raw �-types have to be restricted a little to achieve a
tight correspondence with regular trees: we want to be able
to \read o�" a tree type as the in�nite unfolding of a given
�-type, but there are raw �-types that cannot be reasonably
interpreted as representations of tree types. These types
have the form �X.�X1...�Xn.X, where the X1 through Xn are
distinct from X. For example, consider T = �X.X. Unfolding
of T gives T again, so we cannot read o� any tree by unfolding
T. This leads us to the following restriction.

9.2 De�nition: A raw �-type T is contractive if, for any
subexpression of T of the form �X.�X1...�Xn.S, the body S

is not X. Alternatively, a raw �-type is contractive if every
occurrence of a �-bound variable in it is separated from its
binder by at least one ! or �.
A raw �-type is called simply a �-type if it is contractive.

The set of �-types is written Tm.
When T is a �-type, we write �-height(T) for the number

of �-bindings at the front of T.

The common understanding of �-types as �nite notation
for in�nite regular tree types is formalized by the following
function treeof .

227

9.3 De�nition: De�ne the function treeof mapping closed
�-types to tree types inductively as follows:

treeof (Top)(�) = Top

treeof (T1!T2)(�) = !
treeof (T1!T2)(i � �) = treeof (Ti)(�)

treeof (T1�T2)(�) = �
treeof (T1�T2)(i � �) = treeof (Ti)(�)

treeof (�X.T)(�) = treeof (fX 7! �X.TgT)(�)

The mapping is lifted to the pairs of types in the standard
way: treeof (S; T) = (treeof (S); treeof (T)).
To verify that this de�nition is proper (i.e., exhaustive

and terminating), note the following:

1. Every \recursive call" on the right-hand side reduces
the lexicographic size of the pair (j�j; �-height(T)): the
cases for S!T and S�T reduce j�j and the case for �X.T
preserves j�j, but reduces �-height(T).

2. All recursive calls preserve contractiveness and closure
of the argument types. In particular, the type �X.T is
contractive and closed i� its unfolding fX 7! �X.TgT
is. This justi�es the reference to unfolding in the de�-
nition of treeof (�X.T).

The subtyping relation for tree types was de�ned in Sec-
tion 4 as the greatest �xed point of generating function S.
We are going to de�ne subtyping for �-types similarly, us-
ing a generating function that, together with subtyping rules
used in S, incorporates the rules for �-types,

S <: fX 7! �X.TgT

S <: �X.T
and

fX 7! �X.SgS <: T

�X.S <: T

Below is the full de�nition.

9.4 De�nition: Two �-types S and T are in the subtyping
relation if (S; T) 2 �Sm, where the monotone function Sm 2
P(Tm � Tm)! P(Tm � Tm) is de�ned by:

Sm(R) = f(S; Top) j S 2 Tmg
[f(S1�S2; T1�T2) j (S1; T1); (S2; T2) 2 Rg
[f(S1!S2; T1!T2) j (T1; S1); (S2; T2) 2 Rg
[f(S; �X.T) j (S; fX 7! �X.TgT) 2 Rg
[f(�X.S; T) j (fX 7! �X.SgS; T) 2 R;

T 6= Top; and T 6= �Y.T1g:

(Note the asymmetry between the �nal and penultimate
clauses of Sm, needed to make Sm invertible. Otherwise, the
clauses would overlap.) The support function corresponding
to Sm is:

supportSm(S; T) =8>>>>>>>>>>><
>>>>>>>>>>>:

; if T = Top

f(S1; T1); (S2; T2)g if S = S1�S2
and T = T1�T2

f(T1; S1); (S2; T2)g if S = S1!S2
and T = T1!T2

f(S; fX 7! �X.T1gT1)g if T = �X.T1
f(fX 7! �X.S1gS1; T)g if S = �X.S1 and

T 6= �X.T1, T 6= Top

" otherwise.

The two notions of subtyping, one for tree types and the
other for �-types, tightly correspond to each other, as the
following theorem shows.

9.5 Theorem: Let (S; T) 2 Tm�Tm. Then (S; T) 2 �Sm i�
treeof (S; T) 2 �S.

10. COUNTING SUBEXPRESSIONS
Instantiating the generic algorithm gfpt (7.3) with the spe-
ci�c support function supportSm corresponding to the sub-
type relation on �-types (9.4) yields the subtyping algorithm
shown in Figure 2. Section 7 shows that the termination of

subtype(A; S; T) =
if (S; T) 2 A, then
A

else let A0 = A [(S; T) in
if T = Top, then
A0

else if S = S1�S2 and T = T1�T2, then
let A1 = subtype(A0; S1; T1) in
subtype(A1; S2; T2)

else if S = S1!S2 and T = T1!T2, then
let A1 = subtype(A0; T1; S1) in
subtype(A1; S2; T2)

else if S = �X.S1, then
subtype(A0; fX 7! �X.S1gS1; T)

else if T = �X.T1, then
subtype(A0; S; fX 7! �X.T1gT1)

else
"

Figure 2: The concrete subtyping algorithm

this algorithm will be guaranteed if reachableSm(S; T) is �-
nite for any pair of �-types (S; T). The current section is de-
voted to proving that this is the case (cf. Proposition 10.11).
At �rst glance, this property seems plausible, but prov-

ing it rigorously requires a bit of work. In fact, there are
two possible ways of de�ning the set of \closed subexpres-
sions" of a �-type: one (which we call top-down subexpres-
sions) directly corresponding to the subexpressions gener-
ated by supportSm , and another (bottom-up subexpressions)
for which it is easy to show that the set of closed subexpres-
sions of every closed �-type is �nite. The termination proof
proceeds by de�ning both of these sets and showing that the
former is a subset of the latter. Our development is based
on Brandt and Henglein [6].

10.1 De�nition: A �-type S is a top-down subexpres-
sion of a �-type T, written S v T, if the pair (S; T) is in the
least �xed point of the following generating function:

Td(R) = f(T; T) j T 2 Tmg
[f(S; T1�T2) j (S; T1) 2 Rg
[f(S; T1�T2) j (S; T2) 2 Rg
[f(S; T1!T2) j (S; T1) 2 Rg
[f(S; T1!T2) j (S; T2) 2 Rg
[f(S; �X.T) j (S; fX 7! �X.TgT) 2 Rg

10.2 Exercise: Give an equivalent de�nition of the relation
S v T as a set of inference rules.

From the de�nition of supportSm it is easy to see that, for
any �-types S and T, the pairs contained in supportSm(S; T)
are formed from top-down subexpressions of S and T:

10.3 Lemma: If (S0; T0) 2 supportSm(S; T), then either S
0 v

S or S0 v T, and either T0 v S or T0 v T.

228

The top-down subexpression relation is transitive:

10.4 Lemma: If S v U and U v T, then S v T.

Combining the two previous lemmas gives the proposition
which motivated the introduction of top-down subexpres-
sions.

10.5 Proposition: If (S0; T0) 2 reachableSm(S; T), then S0 v
S or S0 v T, and T0 v S or T0 v T.

The �niteness of reachable(S; T) follows from the above
proposition and the fact that any �-type U has only a �nite
number of top-down subexpressions. Unfortunately, the lat-
ter fact is not obvious from the de�nition of v. Attempt-
ing to prove it by structural induction on U using de�ning
clauses of Td does not work because the last clause of Td
would break the induction: to construct subexpressions of
U = �X.T it refers to a larger expression fX 7! �X.TgT. The
alternative notion of bottom-up subexpressions avoids this
problem by performing the substitution of �-types for recur-
sion variables after calculating the subexpressions instead of
before. This leads to a simple proof of �niteness.

10.6 De�nition: A �-type S is a bottom-up subexpres-
sion of a �-type T, written S � T, if the pair (S; T) is in the
least �xed point of the following generating function:

Bu(R) = f(T; T) j T 2 Tmg
[f(S; T1�T2) j (S; T1) 2 Rg
[f(S; T1�T2) j (S; T2) 2 Rg
[f(S; T1!T2) j (S; T1) 2 Rg
[f(S; T1!T2) j (S; T2) 2 Rg
[f(fX 7! �X.TgS; �X.T) j (S; T) 2 Rg

The new notion of subexpressions di�ers from the one
given earlier only in the clause for a type starting with a
� binder. To obtain the top-down subexpressions of such
a type, we unfolded it �rst and then collected the subex-
pressions of the unfolding. To obtain the bottom-up subex-
pressions, we �rst collect the (not necessarily closed) subex-
pressions of the body, and then close them by applying the
unfolding substitution.

10.7 Exercise: Give an equivalent de�nition of the relation
S � T as a set of inference rules.

The fact that an expression has only �nitely many
bottom-up subexpressions is easily proved.

10.8 Lemma: fS j S � Tg is �nite.

The next substitution lemma will be needed in the proof
of the proposition that follows it.

10.9 Lemma: If S � fX 7! QgT, then either S � Q or else
S = fX 7! QgS0 for some S0 with S0 � T.

The �nal piece of the proof establishes that all top-
down subexpressions of a �-type occur among its bottom-up
subexpressions.

10.10 Proposition: If S v T, then S � T.

Proof: We want to show that �Td � �Bu. By the principle
of induction, this follows from the fact that �Bu is Td-closed,
that is Td(�Bu) � �Bu. To obtain the latter, we just have
to consider the e�ect of each clause of Td on �Bu. Since Td
and Bu are de�ned similarly, the cases of all the clauses are
trivial, except the last one, where we apply Lemma 10.9.
Combining Proposition 10.5, Proposition 10.10 and

Lemma 10.8 gives the �nal result:

10.11 Proposition: For any �-types S and T, the set
reachableSm(S; T) is �nite.

11. DIGRESSION: AN EXPONENTIAL AL-
GORITHM

The subtyping algorithm presented at the beginning of Sec-
tion 10 can be simpli�ed a bit more by making it return just
a boolean value rather than a new set of assumptions (see
Figure 3). The resulting procedure corresponds to Amadio

subtypeac(A; S; T) =
if (S; T) 2 A, then
true

else let A0 = A [(S; T) in
if T = Top, then
true

else if S = S1�S2 and T = T1�T2, then
subtypeac(A0; S1; T1) and
subtypeac(A0; S2; T2)

else if S = S1!S2 and T = T1!T2, then
subtypeac(A0; T1; S1) and
subtypeac(A0; S2; T2)

else if S = �X.S1, then
subtypeac(A0; fX 7! �X.S1gS1; T)

else if T = �X.T1, then
subtypeac(A0; S; fX 7! �X.T1gT1)

else
false.

Figure 3: Amadio and Cardelli's subtyping algo-
rithm

and Cardelli's algorithm for checking subtyping [3]. It com-
putes the same relation as the one computed by subtype,
but much less e�ciently because it does not remember pairs
of types in the subtype relation across the recursive calls
it makes in the ! and � cases. This seemingly innocent
change results in a blowup of the number of recursive calls
the algorithm makes. Whereas the number of recursive calls
made by subtype is proportional to the product of the sizes
of the two argument types, in the case of subtypeac it is
exponential.
The exponential behavior of the Amadio and Cardelli's al-

gorithm can be seen clearly in the following example. De�ne
families of types Sn and Tn inductively as follows:

S0 = �X.Top�X

T0 = �X.Top�(Top�X)

Sn+1 = �X.X!Sn
Tn+1 = �X.X!Tn:

Since both Sn and Tn have just one occurrence of Sn�1 and
Tn�1 correspondingly, their size will be linear in n after un-
folding the abbreviations. Checking Sn < Tn is going to
generate an exponential derivation, however. This can be

229

seen by the following sequence of recursive calls

subtypeac(;; Sn; Tn)
= subtypeac(A1; Sn!Sn�1; Tn)
= subtypeac(A2; Sn!Sn�1; Tn!Tn�1)
= subtypeac(A3; Tn; Sn) and subtypeac(A3; Sn�1; Tn�1)

= subtypeac(A3; Tn; Sn) and ...
= subtypeac(A4; Tn!Tn�1; Sn) and ...
= subtypeac(A5; Tn!Tn�1; Sn!Sn�1) and ...
= subtypeac(A6; Sn; Tn) and subtypeac(A6; Tn�1; Sn�1)

and ...
= etc.,

where

A1 = f(Sn; Tn)g
A2 = A1 [f(Sn!Sn�1; Tn)g
A3 = A2 [f(Sn!Sn�1; Tn!Tn�1)g
A4 = A3 [f(Tn; Sn)g
A5 = A4 [f(Tn!Tn�1; Sn)g
A6 = A5 [f(Tn!Tn�1; Sn!Sn�1)g:

Notice that the initial call subtypeac(;; Sn; Tn) results in the
two underlined recursive calls of the same form involving
Sn�1 and Tn�1. These, in turn, will each give rise to two
recursive calls involving Sn�2 and Tn�2, and so on. The
total number of recursive calls will clearly be proportional
to 2n.

12. FURTHER READING
For background on coinduction, readers are referred to Bar-
wise and Moss' Vicious Circles [5], Gordon's tutorial on
coinduction and functional programming [12], and Milner
and Tofte's expository article on the use of coinduction in
programming language semantics [17]. Basic information
on monotone functions and �xed points can be found in [1]
and [10].
The use of coinductive proof methods in computer sci-

ence dates from the 1970s, for example in the work of Mil-
ner [16] and Park [19] on concurrency (also cf. Arbib and
Manes's categorical discussion of duality in automata the-
ory [4]). But the use of induction in its dual \co-" form was
familiar to mathematicians considerably earlier and is devel-
oped explicitly, for example, in universal algebra and cate-
gory theory. Aczel's seminal book [2] on non well-founded
sets includes a brief historical survey.
Recursive types in computer science go back to (at least)

Morris [18]. Basic syntactic and semantic properties (with-
out subtyping) are collected in Cardone and Coppo [7].
Properties of in�nite and regular trees are surveyed by Cour-
celle [8].
Amadio and Cardelli [3] gave the �rst subtyping algorithm

for recursive types. Their paper de�nes three relations: an
inclusion relation between in�nite trees, an algorithm that
checks subtyping between �-types, and a reference subtyp-
ing relation between �-types de�ned as the least �xed point
of a set of declarative inference rules; these relations are
proved to be equivalent, and connected to a PER model
construction. Coinduction is not used. Instead, to reason
about in�nite trees, a notion of �nite approximations of an
in�nite tree is introduced. This notion plays a key role in
many of the proofs.
Brandt and Henglein [6] lay bare the underlying coinduc-

tive nature of Amadio and Cardelli's system. They give a
new inductive axiomatization of the subtyping relation that

is sound and complete with respect to that of Amadio and
Cardelli. The so-called Arrow/Fix rule of the axiomati-
zation embodies the coinductiveness of the system. The
paper describes a general method for deriving an inductive
axiomatization for relations that are naturally de�ned by
coinduction and presents a detailed proof of termination for
a subtyping algorithm. Section 10 of the present paper is
essentially a sketch of the latter proof. Brand and Henglein
establish that the complexity of their algorithm is O(n2).
Kozen, Palsberg, and Schwartzbach [15] describe an el-

egant quadratic subtyping algorithm for recursive types.
They observe that a regular recursive type corresponds to an
automaton with labeled states. Then, they de�ne a form of
product of two automata that yields a conventional word au-
tomaton accepting a word i� the types corresponding to the
original automata are not in the subtype relation. A linear-
time emptyness test now solves the subtyping problem. This
fact, plus the quadratic complexity of product construction
and linear-time conversion from types to automata, gives an
overall quadratic complexity for the subtyping algorithm.
Hosoya, Vouillon, and Pierce [13] use a related automata-

theoretic approach, associating recursive types (with unions)
to tree automata in a subtyping algorithm tuned to XML
processing applications.
Jim and Palsberg [14] address type inference for languages

with subtyping and recursive types. Like us, they adopt a
coinductive view of the subtype relation over in�nite trees
and motivate a subtype checking algorithm as a procedure
building the minimal simulation (i.e., consistent set, in our
terminology) from a given pair of types. They de�ne the no-
tions of consistency and P1-closure of a relation over types,
which correspond to our consistency and reachable sets.

Acknowledgments
We are grateful for insights and encouragement from Robert
Harper, Haruo Hosoya, Perdita Stevens, J�erôme Vouil-
lon, and Philip Wadler, and for careful readings of the
manuscript by Penny Anderson, Alan Schmitt, and the
ICFP reviewers. This work was supported by the University
of Pennsylvania and by NSF Career grant CCR-9701826,
Principled Foundations for Programming with Objects.

13. REFERENCES
[1] P. Aczel. An introduction to inductive de�nitions. In

J. Barwise, editor, Handbook of Mathematical Logic,
number 90 in Studies in Logic and the Foundations of
Mathematics, pages 739{782. North Holland, 1977.

[2] P. Aczel. Non-Well-Founded Sets. Stanford Center for
the Study of Language and Information, 1988. CSLI
Lecture Notes number 14.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive
types. ACM Transactions on Programming Languages
and Systems, 15(4):575{631, 1993. Preliminary version
in POPL '91 (pp. 104{118); also DEC Systems
Research Center Research Report number 62, August
1990.

[4] M. Arbib and E. Manes. Arrows, Structures, and
Functors: The Categorical Imperative. Academic
Press, 1975.

[5] J. Barwise and L. Moss. Vicious Circles: On the
Mathematics of Non-wellfounded Phenomena.

230

Cambridge University Press, 1996. Originally
appeared as CSLI Lecture Notes 60.

[6] M. Brandt and F. Henglein. Coinductive
axiomatization of recursive type equality and
subtyping. In R. Hindley, editor, Proc. 3d Int'l Conf.
on Typed Lambda Calculi and Applications (TLCA),
Nancy, France, April 2-4, 1997, volume 1210 of
Lecture Notes in Computer Science (LNCS), pages
63{81. Springer-Verlag, Apr. 1997. Full version in
Fundamenta Informaticae, Vol. 33, pp. 309-338, 1998.

[7] F. Cardone and M. Coppo. Type inference with
recursive types: Syntax and semantics. Information
and Computation, 92(1):48{80, 1991.

[8] B. Courcelle. Fundamental properties of in�nite trees.
Theoretical Computer Science, 25:95{169, 1983.

[9] K. Crary, R. Harper, and S. Puri. What is a recursive
module? In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 50{63, May 1999.

[10] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press, 1990.

[11] G. Ghelli. Recursive types are not conservative over
F�. In M. Bezen and J. Groote, editors, Proceedings
of thethe International Conference on Typed Lambda
Calculi and Applications (TLCA), Utrecht, The
Netherlands, number 664 in Lecture Notes in
Computer Science, pages 146{162, Berlin, March 1993.
Springer Verlag.

[12] A. Gordon. A tutorial on co-induction and functional
programming. In Functional Programming, Glasgow
1994, pages 78{95. Springer Workshops in Computing,
1995.

[13] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. In Proceedings of the
International Conference on Functional Programming
(ICFP), 2000.

[14] T. Jim and J. Palsberg. Type inference in systems of
recursive types with subtyping. Manuscript, 1999.

[15] D. Kozen, J. Palsberg, and M. I. Schwartzbach.
E�cient recursive subtyping. In ACM Symposium on
Principles of Programming Languages (POPL), pages
419{428, 1993.

[16] R. Milner. A Calculus of Communicating Systems,
volume 92 of Lecture Notes in Computer Science.
Springer Verlag, 1980.

[17] R. Milner and M. Tofte. Co-induction in relational
semantics. Theoretical Computer Science, 87:209{220,
1991.

[18] J. H. Morris. Lambda calculus models of programming
languages. Technical Report
MIT-LCS//MIT/LCS/TR-57, Massachusetts Institute
of Technology, Laboratory for Computer Science, Dec.
1968.

[19] D. Park. Concurrency and automata on in�nite
sequences. In P. Deussen, editor, Proceedings of the
5th GI-Conference on Theoretical Computer Science,
volume 104 of Lecture Notes in Computer Science,
pages 167{183. Springer-Verlag, Berlin, 1981.

[20] A. Tarski. A lattice-theoretical �xpoint theorem and
its applications. Paci�c Journal of Mathematics,
5:285{309, 1955.

Solutions to Selected Exercises

Solution to 2.7:

E2(fg) = fag
E2(fag) = fag
E2(fbg) = fag
E2(fcg) = fa; bg
E2(fa; bg) = fa; cg
E2(fa; cg) = fa; bg
E2(fb; cg) = fa; bg
E2(fa; b; cg) = fa; b; cg

The E2-closed sets are: fag, fa; b; cg. The E2-consistent
sets are: ;, fag, fa; b; cg. The least �xed point of E2 is fag.
The greatest �xed point is fa; b; cg.

Solution to 4.3: The pair (Top; Top�Top) is not in �S.
To see this, just observe from the de�nition of S that this
pair is not in S(X) for any X. So there is no S-consistent
set containing this pair, and in particular �S (which is S-
consistent) does not contain it.

Solution to 4.4: For the �rst part, any pair of in�nite types
will do. For the second, there are no such types: the least
and greatest �xed points of Sf coincide.

Solution to 4.8: Begin by de�ning the identity relation
on tree types: I = f(T; T) j T 2 T g. Observe (straightfor-
wardly) that I is S-consistent. From this and the coinduc-
tion principle, I � �S, that is, �S is re
exive.

Solution to 5.2: By the coinduction principle, it is enough

to show that T �T is Str-consistent, i.e., T �T � Str(T �
T). Suppose (S; T) 2 T � T . Pick any U 2 T . Then

(S; U); (U; T) 2 T � T , and so, by the de�nition of Str, also

(S; T) 2 Str(T � T).

Solution to 6.3:

i a

h

b c

a

b

d

d

e

e

b

f g

c

g

f g

Solution to 10.2:

T v T

S v T1

S v T1�T2

S v T2

S v T1�T2

S v T1

S v T1!T2

S v T2

S v T1!T2

S v fX 7! �X.TgT
S v �X.T

The Td generating function di�ers from the generating func-
tions we have considered throughout this paper: it is not
invertible. It could be seen by considering the assertion
B v A�B!B�C; it is supported by the two assertion sets
fB v A�Bg and fB v B�Cg, but neither of them is a subset
of the other.

Solution to 10.7: All the rules for Bu are the same as the
rules for Td given in the solution of Exercise 10.2, except
the rule for �-type:

S � T

fX 7! �X.TgS � �X.T

231

