
JFP 29, e17, 56 pages, 2019. c© The Author(s) 2019. This is an Open Access article, distributed under 1
the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/S0956796819000169

Gradual session types

A T S U S H I I G A R A S H I
Kyoto University, Japan

(e-mail: igarashi@kuis.kyoto-u.ac.jp)

P E T E R T H I E M A N N
University of Freiburg, Germany

(e-mail: thiemann@informatik.uni-freiburg.de)

Y U Y A T S U D A
Kyoto University, Japan

(e-mail: tsuda@fos.kuis.kyoto-u.ac.jp)

V A S C O T . V A S C O N C E L O S
LASIGE, Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal

(e-mail: vv@di.fc.ul.pt)

P H I L I P W A D L E R
University of Edinburgh, Scotland
(e-mail: wadler@inf.ed.ac.uk)

Abstract

Session types are a rich type discipline, based on linear types, that lifts the sort of safety claims
that come with type systems to communications. However, web-based applications and microser-
vices are often written in a mix of languages, with type disciplines in a spectrum between static and
dynamic typing. Gradual session types address this mixed setting by providing a framework which
grants seamless transition between statically typed handling of sessions and any required degree of
dynamic typing. We propose Gradual GV as a gradually typed extension of the functional session
type system GV. Following a standard framework of gradual typing, Gradual GV consists of an
external language, which relaxes the type system of GV using dynamic types; an internal language
with casts, for which operational semantics is given; and a cast-insertion translation from the former
to the latter. We demonstrate type and communication safety as well as blame safety, thus extend-
ing previous results to functional languages with session-based communication. The interplay of
linearity and dynamic types requires a novel approach to specifying the dynamics of the language.

1 Introduction

It was the best of types, it was the worst of types.
A survey of the top-20 programming languages to learn for open source projects1 lists

eight dynamically typed languages (JavaScript, Python, Ruby, R, PHP, Perl, Scheme, and

1 https://www.ubuntupit.com/top-20-most-popular-programming-languages-to-learn-for-
your-open-source-project/ accessed in April 2019.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796819000169
https://orcid.org/0000-0002-5143-9764
mailto:igarashi@kuis.kyoto-u.ac.jp
https://orcid.org/0000-0002-9000-1239
mailto:thiemann@informatik.uni-freiburg.de
https://orcid.org/0000-0002-7420-2575
mailto:tsuda@fos.kuis.kyoto-u.ac.jp
mailto:vv@di.fc.ul.pt
mailto:wadler@inf.ed.ac.uk
https://www.ubuntupit.com/top-20-most-popular-programming-languages-to-learn-for-your-open-source-project/
https://www.ubuntupit.com/top-20-most-popular-programming-languages-to-learn-for-your-open-source-project/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

2 A. Igarashi et al.

Erlang) and states that developers’ salaries for these languages are among the highest in the
industry. The survey also suggests to learn languages with elaborate static type systems like
Rust, Scala, and Haskell, with developers earning even higher salaries. These languages
derive their expressiveness from advanced type system features like linearity, uniqueness,
effects, and dependent types as embodied in research languages like Agda (Norell, 2009),
Coq (The Coq Development Team, 2019), and Idris (Brady, 2013); and session types as
in Links (Lindley & Morris, 2016b). These data indicate two opposing trends in current
industrial practice, one asking for dynamically typed programming and another asking for
expressive statically typed programming.

Gradually typed languages reconcile these two trends. They permit one to assemble
programs with some components written in a statically typed language and some in a
dynamically typed language. Gradually typed languages have been widely explored in
both theory and practice, beginning with contracts in Racket (Findler & Felleisen, 2002)
and their interfacing with TypedRacket (Tobin-Hochstadt & Felleisen, 2008) and then
popularized by Siek and others (Siek & Taha, 2006, 2007; Siek et al., 2015b). They are
geared toward safely interconnecting dynamically typed parts with statically typed parts
of a program by ensuring that type mismatches only occur in the dynamically typed parts
(Wadler & Findler, 2009).

Dynamics in C# (Bierman et al., 2010), Microsoft’s TypeScript2 (Bierman et al., 2014),
Google’s Dart (The Dart Team, 2014; Ernst et al., 2017), and Facebook’s Hack (Verlaguet,
2013) and Flow (Chaudhuri et al., 2017) are industrial systems inspired by gradual typing,
but focusing on enhancing programmer productivity and bug finding rather than contain-
ing type mismatches. Systems such as Racket (Findler & Felleisen, 2002) and Reticulated
Python (Vitousek et al., 2017) rely on contracts or similar constructs to ensure that dynam-
ically typed values adhere to statically typed constraints when values pass from one world
to the other.

At first blush, one might consider gradual types as largely a response to the former
trend: they provide a way for developers using dynamically typed languages to evolve
their code toward statically typed languages that are deemed easier to maintain. But on
second thought, one might consider gradual types as even more helpful in light of the
latter trend. Suitably generalized, gradual typing can mediate between simple type systems
and type systems that feature dependent types, effect types, or session types, for example.
Gradual typing in this sense can help in evolving software development toward languages
with more precise type systems.

Hence, an important line of research is to extend gradual typing so that it not only relates
dynamically typed and statically typed languages, but also relates less-precisely typed and
more-precisely typed languages. There is already some research on doing so for dependent
types (Ou et al., 2004; Flanagan, 2006; Greenberg et al., 2010; Lehmann & Tanter, 2017),
effect types (Bañados Schwerter et al., 2014), typestate (Wolff et al., 2011), and several
others which we review in the section on related work. This paper presents the first system
that extends gradual typing to session types.

Session types were introduced by Honda (1993), drawing on Milner’s π -calculus
(Milner et al., 1992) and Girard’s linear logic (1987), and further developed by many others

2 https://www.typescriptlang.org/ accessed in April 2019.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.typescriptlang.org/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 3

(Honda et al., 1998; Yoshida & Vasconcelos, 2007). Gay and Hole (2005) introduced sub-
typing for session types, and session types were embedded into a functional language with
linear types, similar to the one used in this paper, by Gay and Vasconcelos (2010). Caires,
Pfenning, Toninho, and Wadler introduced propositions-as-types interpretations of session
types in linear logic (Caires & Pfenning, 2010; Wadler, 2012, 2014; Caires et al., 2014).
One important line of research is multiparty session types (Honda et al., 2008, 2016) but
we confine our attention here to dyadic session types.

Session types have been adapted to a variety of languages, either statically or dynam-
ically checked, and using either libraries or additions to the toolchain; implementa-
tions include C, Erlang, Go, Haskell, Java, Python, Rust, and Scala. New languages
incorporating session types include C0 (Willsey et al., 2017), Links (Cooper et al.,
2007), SePi (Franco & Vasconcelos, 2013), SILL (Pfenning & Griffith, 2015), and
Singularity (Fähndrich et al., 2006). Industrial uses of session types include Red Hat’s
support of the Scribble specification language (Yoshida et al., 2014), which has been used
as a common interface for several systems based on session types; Estafet’s use of session
types to manage microservices3; and the Ocean Observatories Initiative’s use of dynami-
cally checked session types in Python (Demangeon et al., 2015). Session types inspired an
entire line of research on what has come to be called behavioral types, the subject of EU
COST action BETTY, a recent Shonan meeting, and a recent Dagstuhl seminar.

Here is a simple session type encoding of a protocol to purchase an online video:

Svideo = !string. ?int. ⊕ {buy : !CC. ?URL. end?, quit : end!}
It describes a channel endpoint along which a client sends the name of a video as a string,
receives its cost as an integer, and then selects either to buy the video, in which case one
sends a credit card number, receives a URL from which the video may be downloaded,
and waits for an indication that the channel has been closed, or selects to quit and closes
the channel. There is a dual session type for server at the other end of the channel, where
! (write) is swapped with ? (read), ⊕ (select from a choice) is swapped with & (offer a
choice), and end! (close a channel) is swapped with end? (wait for a channel to close).

Session types are necessarily linear. Let x be bound to a string and let c be bound to a
channel endpoint of type Svideo. Performing

let d = send x c in . . .

binds d to a channel endpoint of type R, where Svideo = !string.R. To avoid sending a string
to the same channel twice, it is essential that c must be bound to the only reference to
the channel endpoint before the operation, and for similar reasons d must be bound to the
only reference to the channel endpoint after. Such restrictions can easily be enforced in a
statically typed language with an affine type discipline. Linearity is required to guarantee
that channels are not abandoned before they are closed.

But how is one to ensure linearity in a dynamically typed language? Following Tov &
Pucella (2010), we require that each dynamically typed reference to a channel endpoint is
equipped with a lock. That reference is locked after the channel is used once to ensure it
cannot be used again. To ensure that each channel is appropriately terminated, with either a

3 http://estafet.com/scribble/ Accessed in April 2019.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

http://estafet.com/scribble/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

4 A. Igarashi et al.

wait or a close operation, garbage collection flags an error if a dynamically typed reference
to a channel becomes inaccessible.

Our system is the first to integrate static and dynamic session types via gradual typing.
It preserves the safety properties of statically typed sessions, namely progress (for expres-
sions), preservation, and absence of runtime errors. The latter includes session fidelity:
every send is matched with a receive, every select is matched with an offer, and every
wait is matched with close. Many, but not all, systems with session types support recursive
session types, and many, but not all, systems with session types ensure deadlock freedom;
we leave such developments for future work.

Previous systems that perform dynamic monitoring on session types include the work on
Scribble (Yoshida et al., 2014) which applies the ideas developed for distributed monitor-
ing of protocols to multiparty session types (Bocchi et al., 2013, 2017). Gommerstadt and
others (2016) consider dynamic monitoring of higher-order session-typed processes in the
presence of unreliable communication and malicious communication partners. Their focus
is on assigning blame correctly in this setting. The same authors (Gommerstadt et al., 2018)
develop a theory of contracts that translate into processes that serve as proxies between the
original communication partners. Proxies ensure adherence to the session protocol with
dynamic tests. A similar proxy-based monitoring scheme was also proposed by one of the
authors (Thiemann, 2014) where gradual typing was restricted to the transmitted values.
Melgratti & Padovani (2017) propose a contract system that mediates between (simply
typed) sessions and contract-refined sessions. Enforcement is done with an inline monitor.

In contrast to these approaches, our work applies to the mediation between dynamically
typed and statically typed code and it relies on gradual principles that enable a pay-as-you-
go approach: a protocol is checked statically as much as possible, dynamic checks are only
employed if they cannot be avoided. Our work is the first to enable full gradualization that
includes the typing of the communication channel rather than just the values transmitted.
Moreover, we improve the efficiency over prior approaches by avoiding the introduction
of extra proxy processes.

We give our system a compact formulation along the lines of the blame calculus
(Wadler & Findler, 2009), based on the notion of a cast to mediate interactions between
more-precisely typed (e.g., statically typed) and less-precisely typed (e.g., dynamically
typed) components of a program. We define the four subtyping relations exhibited by
the blame calculus, ordinary, positive, negative, and naive, and show the corresponding
results, including a tangram theorem relating the four forms of subtyping and blame safety.
A corollary of our results is that in any interaction between more-precisely typed and less-
precisely typed components of a program, any cast error is due to the less-precisely typed
component.

Our paper makes the following contributions:

• Section 2 provides an overview of the novel techniques in our work, and how we
dynamically enforce linearity and session types.

• Section 3 describes a complete formal calculus, including syntax of both an exter-
nal language, in which programs are written and runtime checking is implicit, and
an internal language, in which programs are executed after runtime checking in the
form of casts is made explicit; typing rules of the two languages; reduction rules
for the internal language; cast-insertion translation from the external to the internal

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 5

language; and embedding of a dynamically typed language with channel-based
communication into our calculus.

• Section 4 presents standard results for our calculus, including progress (for expres-
sions), preservation, session fidelity, the tangram theorem, blame safety, conserva-
tivity of the external language typing over fully static typing, and type preservation
of the cast insertion translation. We also discuss the gradual guarantee prop-
erty for the external language. It turns out that it fails to hold—we will analyze
counterexamples and discuss why.

• Section 5 describes related work and Section 6 concludes.

Compared to the previous paper (Igarashi et al., 2017a), we extend the development with
the external language, the cast-insertion translation, a type-checking algorithm, proofs
of their properties, and analysis of the failure of the gradual guarantee, as well as
more detailed proofs for the earlier results. These extensions make gradual session types
accessible for the programmer, who works in the external language.

2 Motivation

Sy and Rob collaborate on a project whose design is based on microservices. Sy is a strong
advocate of static typing and relies on an implementation language that supports session
types out of the box. Rob, on the other hand, is a strong advocate of dynamically typed
languages. One of the credos of microservice architectures is that the implementation of
a service endpoint is language-agnostic, which means it can be implemented in any pro-
gramming language whatsoever as long as it adheres to its protocol. However, Sy does not
want to compromise the strong guarantees (e.g., type safety, session fidelity) of the stati-
cally typed code by communicating with Rob’s client. Rob is also keen on having strong
guarantees, but does not mind if they are enforced at runtime. Here is the story how they
can collaborate safely using Gradual GV,4 our proposal for a gradually typed functional
language with synchronous binary session types.

2.1 A compute service

The compute service is a simplified version of one of the protocols in Sy and Rob’s project.
The service involves two peers, a server and a client, connected via a communication link.
The server runs a protocol that first offers a choice of two arithmetic operations, negation
or addition, then reads one or two numbers depending on the operation, outputs the result
of applying the selected operation to its operand(s), and finally closes the connection. The
client chooses an operation by sending the server a label, which is either neg or add indicat-
ing the choice of negation or addition, respectively. In session-type notation, the server’s
view of the compute protocol reads as follows:

Compute = &{neg : ?int.!int.end!, add : ?int.?int.!int.end!}
Sy chooses to implement the server in the language GV that is inspired by previous work
(Gay & Vasconcelos, 2010) and that we will describe formally in Section 3.

4 GV is our name for the functional session type calculus of Gay and Vasconcelos (2010), which is the statically
typed baseline for our gradual system.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

6 A. Igarashi et al.

computeServer : Compute → uni t
computeServer c =

case c of {
neg : c . l e t v1 , c = receive c in

l e t c = send (−v1) c in
close c ;

add : c . l e t v1 , c = receive c in
l e t v2 , c = receive c in
l e t c = send (v1+v2) c in
close c

}

The parameter c of type Compute is the server’s endpoint of the communication link to
the client (when unambiguous, we often just say endpoint or channel). The case c of ...
expression receives the client’s choice on channel c in the form of a label neg or add and
branches accordingly. The notation “c. ” in each branch (re-)binds the variable c to the
channel in the state after the transmission has happened. The type of c is updated to the
session type corresponding to the respective branch in the Compute type. The receive c
operation receives a value on channel c and returns a pair of the received value and the
depleted channel with a correspondingly depleted session type. Analogously, the send v c
operation sends value v on channel c and returns the depleted channel. The final close c
disconnects the communication link by closing the channel.

2.2 The view from the client side

A client of the Compute protocol communicates on a channel with the protocol ComputeD
defined in the following. This protocol is dual to Compute: sending and receiving
operations are swapped.

ComputeD = ⊕{neg : !int.?int.end?, add : !int.!int.?int.end?}
A client of the compute service may always select the same operation and then proceed
linearly according the corresponding branch. Such a client can use a simpler supertype
of ComputeD with a unary internal choice. For example, a client that only ever asks for
negation can implement ComputeDneg.

ComputeDneg = ⊕{neg : !int.?int.end?}
Here is Sy’s implementation of a typed client for ComputeDneg.

n e g a t i o nC l i e n t : i n t → ComputeDneg → i n t
n e g a t i o nC l i e n t v c =

l e t c = select neg c in
l e t c = send v c in
l e t y , c = receive c in
l e t _ = wait c in
y

There are two new operations in the client code. The select neg c operation selects the neg
branch in the protocol by sending the neg label to the server. It returns a channel to run the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 7

selected branch of the protocol with type !int.?int.end?. The wait c operation matches the
close operation on the server and disconnects the client.

2.3 A unityped server

To test some new features, Rob also implements the Compute protocol, but does so in the
unityped language Uni GV, which is safe but does not impose a static typing discipline.
Here is Rob’s implementation of the server.

−− un i t yp ed
dynSe r ve r c =

case c of {
neg : c . serveOp 1 (λx.−x) c ;
add : c . serveOp 2 (λx . λy . x+y) c

}

serveOp n op c =
i f n==0 then

close (send op c)
else

l e t v , c = receive c in
serveOp (n−1) (op v) c

The main function dynServer takes a channel c on which it receives the client’s selec-
tion. It delegates to an auxiliary function serveOp that takes the arity of a function, the
function itself, and the channel end on which to receive the arguments and to send the
result. The serveOp function counts down the number of remaining function applications
in the first argument, accumulates partial function applications in the second argument, and
propagates the channel end in the third argument.

It is easy to see that the dynServer function implements the Compute protocol. Rob chose
this style of implementation because it is amenable to experimentation with protocol exten-
sions: the function dynServer is trivially extensible to new operations and types by adding
new lines to the case dispatch.

2.4 The gradual way

How can we embed Rob’s server with other program fragments in the typed language (e.g.,
Sy’s client) while retaining as many typing guarantees as possible?

One answer would be to use a dependently typed system that can describe the type of the
serveOp function adequately. In an extension of a recently proposed system (Toninho &
Yoshida, 2018) with iteration on natural numbers and large elimination, we might write
that code as follows:

Op : nat → Type
Op 0 = i n t
Op (n+1) = i n t → Op n

Ch : nat → Se s s i o n
Ch 0 = ! i n t . end!
Ch (n+1) = ? i n t . Ch n

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

8 A. Igarashi et al.

serveOpDep : (n : nat) (op : Op n) (c : Ch n) → uni t
serveOpDep 0 op c = close (send op c)
serveOpDep (n+1) op c = l e t v , c = receive c in

serveOpDep n (op v) c

However, we are not aware of a fully developed theory of a session-type system that would
be able to process this definition.

An alternative that is immediately available is to resort to gradual typing. For this par-
ticular program, it will insert casts to make the program type check, but all those casts
are semantically guaranteed to succeed because it would have a dependent type. To this
end, we rewrite the function dynServer in a gradually typed external language analogous to
the gradually typed lambda calculus GTLC (Siek et al., 2015b), but extended with GV’s
communication operations.

In our example, the rewrite to the external language boils down to providing suitable
type signatures for dynServer and serveOp:

dynSe r ve r : Compute → uni t
serveOp : i n t → � → �© → uni t

The first argument n of dynServer is consistently handled as an integer, so its type is int. The
second argument op is invoked with values of type int → int → int, int → int, and int:
these types are subsumed to the dynamic type �. Similarly to other gradual type systems, an
expression of type � can be used in any context, e.g., addition, function application, or even
communication, and any value can be passed where � is expected. The third argument c is
invoked with channels of different types: ?int .? int .! int .end!, ?int .! int .end!, and ! int .
end!. These types are subsumed to a type that is novel to this work, the dynamic session
type, �©, a linear type which subsumes all session types. It is important to see that the
channel c is handled linearly in functions dynServer and serveOp. For that reason, the role
and handling of the linear dynamic session type with respect to the set of session types is
analogous to the role and handling of � with respect to general types, as shown in earlier
work (Fennell & Thiemann, 2012; Thiemann, 2014). Aside from the type annotation, the
code remains exactly the same as in the unityped case.

The external language comes with a translation into a blame calculus with explicit casts.
This translation inserts just the casts that are necessary to make typing of the code go
through. Here is the output of this translation (suffix Cast is appended to the names of the
functions to distinguish different versions):

dynSe r v e rCa s t : Compute → uni t
dynSe r v e rCa s t c =

case c of {

neg : c . se rveOpCast 1 ((λx.−x) : i n t → i n t
�1⇒ �)

(c : ? i n t . ! i n t . end!
�2⇒ �©) ;

add : c . se rveOpCast 2 ((λx . λy . x+y) : i n t → i n t → i n t
�3⇒ �)

(c : ? i n t . ? i n t . ! i n t . end!
�4⇒ �©)

}

se rveOpCast : i n t → � → �© → uni t

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 9

se rveOpCast n op c =
i f n==0 then

close ((send op (c : �© �5⇒ ! � . �©)) : �© �6⇒ end!)
else

l e t v , c = receive (c : �© �7⇒ ?� . �©) in

se rveOpCast (n−1) ((op : �
�8⇒ � → �) v) c

Casts of the form e : T1
p⇒ T2—meaning that e of type T1 is cast to T2—are inserted where

values are converted from/to � or �©, similarly to the translation from GTLC. The blame
labels �1, �2, . . . (ranged over by p and q) on the arrow identify casts, when they fail. The
resulting casts in dynServerCast and serveOpCast look fairly involved, but we should keep in
mind that the programmer does not have to write them as they result from the translation. In
practice, blame labels may contain information on program locations to help identify how
a program fails. For example, if Rob made the following mistake in writing his dynServer

neg : c . serveOp 2 (λx.−x) c ;
−− The f i r s t argument to serveOp shou ld be 1 !

then a call to negationClient would fail after the server receives the first integer from the
client. More specifically, the failure would identify the cast labeled �7 failed because a
channel endpoint whose session type is !int.end! had been flown from �2.

2.5 Dynamic linearity

The refined criteria for gradual typing (Siek et al., 2015b) postulate that a gradual type
system should come with a full embedding of a unityped calculus. This embedding (which
we indicate by ceiling brackets �. . . �) extends the embedding given for the simply typed
lambda calculus (Wadler & Findler, 2009) to handle the operations on sessions (see
Figure 13 for its definition).

For example, (the unityped version of) the dynServer as written by Rob is compiled and
embedded into the gradually typed language as a value dynServer : �. To directly incorpo-
rate Rob’s code, the gradual type checker enables Sy to write a function callDynServer that
accepts a channel of type Compute and returns a value of type unit, but internally just calls
dynServer.

c a l lD y nS e r v e r : Compute → uni t
c a l lD y nS e r v e r c =

dynSe r ve r c

The gradual type checker translates the definition of callDynServer by inserting the appro-
priate casts: it casts the embedded dynServer (of type �) to the function type � → �, it casts
the channel argument to this function to �, and it casts the result to unit.

c a l lD y nS e r v e r : Compute → uni t
c a l lD y nS e r v e r c =

((dynSe r ve r : �
�9⇒ � → �) (c : Compute

�10⇒ �)) : �
�11⇒ uni t

The casts inserted in this code make Sy’s expectations completely obvious: dynServer must
be a function and it is expected to use c as a channel of type Compute. Any misuse will
allocate blame to the respective cast in dynServer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

10 A. Igarashi et al.

One kind of misuse that we have not discussed, yet, is compromising linearity: Sy has
no guarantee that Rob’s code does not accidentally duplicate or drop the communication
channel. Both actions can lead to protocol violations, which should be detected at runtime.

Gradual GV takes care of linearity by factoring the cast (c : Compute
�9⇒ �) through the

dynamic session type �©:

((c : Compute
�9⇒ �©) : �© �9⇒ �)

The first part is a cast among linear (session) types and it can be handled as outlined in
Section 2.4. The second part is a cast from a linear type (which could be a session type, a
linear function type, or a linear product) to the unrestricted dynamic type �.

A cast from a linear type to unrestricted � is a novelty of Gradual GV. Operationally, the
cast introduces an indirection through a store: it takes a linear value as an argument, allo-
cates a new cell in the store, moves the linear value along with a representation of its type
into the cell, and returns a handle a to the cell as an unrestricted value of type �. Gradual
GV represents the cell by a process and creates handles by introducing an appropriate
binder so that a process of the form E[v : �© p⇒ �] reduces to (νa)(E[a] | a �→ v : �© p⇒ �).
Here, (νa)P represents the scope of a fresh reference to a linear value and the process a �→
v : �© p⇒ � represents the cell storing v at a. Linear use of this cell is controlled at runtime
using ideas for runtime monitoring of affine types (Tov & Pucella, 2010; Padovani, 2017).

Any access to a cell comes in the guise of a cast a : �
p⇒ T from � to another type applied

to a handle a. If the first access to the cell is a cast from � to a linear type consistent with the
type representation stored in the cell, then the cast returns the linear value and empties the
cell. Any subsequent access to the same cell results in a linearity violation which allocates
blame to the label on the cast from �. If the first cast attempts to convert to an inconsistent
type, then blame is allocated to that cast. In addition, there is a garbage collection rule that
fires when the handle of a full cell is no longer reachable from any process. It allocates
blame to the context of the cast to � because that cast violated the linearity protocol by
dismissing the handle.

2.6 End-to-end dynamicity

The examples so far tacitly assume that channels are created with a fully specified session
type that provides a “ground truth” for the protocol on this channel. Later on, channels
may be cast to �© and on to �, but essentially they adhere to the ground truth established at
their creation.

Unfortunately, this view cannot be upheld in a calculus that is able to embed a unityped
language like Uni GV. When writing new in a unityped program to create a channel, Rob
(hopefully) has some session type in mind, but it is not manifest in the code.

In the typed setting, new returns a linear pair of session endpoints of type S ×lin S where
S is the server session type and S its dual client counterpart (cf. the Compute and ComputeD
types in Sections 2.1 and 2.2). When embedding the unityped new, the session type S is
unknown. Hence, the embedding needs to create a channel without an inherent ground
truth session type. It does so by assigning both channel ends type �© and casting it to � as in
new : �© ×lin �© ⇒ �. To make this work, the dynamic session type �© is considered self-
dual, that is �© = �©. Gradual GV offers no static guarantees for either end of such a
channel.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 11

To see what runtime guarantees Gradual GV can offer for a channel of unknown session
type, let’s consider the embedding of the dynamic send and receive operations that may be
applied to it. The embedded send operation takes two arguments of type �, for the value
and the channel, and returns the updated channel wrapped in type �. The embedded receive
operation takes a wrapped channel of type � and returns a (�-wrapped) pair of the received
value and the updated channel.

�send e f � = (send �e� (�f � : �
p⇒ !�. �©)) : �© ⇒ �

�receive e� = (receive (�e� : �
q⇒ ?�. �©)) : � ×lin �© ⇒ �

(Here, p and q are metavariables ranging over blame labels.) Now consider running the
following unityped program with entry point main.

1 c l i e n t cc =
2 l e t v , cc = receive cc in wait cc
3 s e r v e r c s =
4 l e t cs = send 42 cs in close cs
5 main =
6 l e t cs , cc = new in
7 l e t _ = fork (c l i e n t cc) in
8 s e r v e r c s

After a few computation steps, it reaches a configuration where the client and the server
have reduced to (νcc, cs)(client | server) where

client = 〈E[(receive (cc : �© q⇒ ?�. �©)) : � ×lin �© ⇒ �]〉
server = 〈F[(send (42 : int ⇒ �) (cs : �© p⇒ !�. �©)) : �© ⇒ �]〉

for some contexts E and F. The channel ends cc : �© and cs : �© are the two ends of the
channel created in line 6. Fortunately, the two processes use the channel consistently as
the cast target ?�. �© on one end is dual to the cast target !�. �© at the other end. Hence,
Gradual GV has a reduction that drops the casts at both ends in this situation, and retypes
the ends to cc : ?�. �© and cs : !�. �©, respectively.

〈E[(receive cc) : � ×lin �© ⇒ �]〉 | 〈F[(send (42 : int ⇒ �) cs) : �© ⇒ �]〉
Implementing this reduction requires communication between the two processes to check
the cast targets for consistency. While our formal presentation abstracts over this imple-
mentation issue, we observe that a single asynchronous message exchange is sufficient:
Each cast first sends its target type and then receives the target type of the cast at the other
end. Then both processes check locally whether the target types are duals of one another.
If they are, then both processes continue; otherwise they allocate blame. As both ends
perform the same comparison, the outcome is the same in both processes.

3 GV and gradual GV

3.1 GV

We begin by discussing a language GV with session types but without gradual types. The
language is inspired by both the Gay and Vasconcelos’ (2010) functional session type
calculus and Wadler’s (2012, 2014) ‘good variant’ of the language. A main difference
from the former is the introduction of communication primitives and session types to close

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

12 A. Igarashi et al.

Fig. 1. Types and subtyping in GV.

a session explicitly. Unlike the latter, types are “stratified” into two levels—sessions types
and plain types—and deadlock freedom is not guaranteed.

3.1.1 Types and subtyping

Figure 1 summarizes types of GV. Let m, n range over multiplicities for types whose use
is either unrestricted, un, or must be linear, lin.

Let T , U range over types, which include unit type, unit; unrestricted and linear function
types, T →m U ; unrestricted and linear product types, T ×m U ; and session types. One
might also wish to include Booleans or base types, but we omit these as they can be dealt
with analogously to unit.

Let l range over labels used for selection and case choices. Let S, R range over session
types that describe communication protocols for channel endpoints, which include: send
!T . S, to send a value of type T and then behave as S; receive ?T . S, to receive a value of
type T and then behave as S, select ⊕{li : Si}i∈I , to send one of the labels li and then behave
as Si; case &{li : Si}i∈I to receive any of the labels li and then behave as Si; close end!, to
close a channel endpoint; and wait end?, to wait for the other end of the channel to close.
In ⊕{li : Si}i∈I and &{li : Si}i∈I , the label set must be non-empty. We will call the session
type that describes the behavior after send, receive, select, or case the residual.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 13

We define the usual notion of the dual of a session type S, written as S. Send is dual to
receive, select is dual to case, and close is dual to wait. Duality is an involution, so that

S = S.
Multiplicities are ordered by un <: lin, indicating that an unrestricted value may be used

where a linear value is expected, but not conversely. The unit type is unrestricted, session
types are linear, while function types T →m U and product types T ×m U are unrestricted
or linear depending on the multiplicity m that decorates the type constructor. To ensure that
linear objects are used exactly once our type system imposes the invariant that unrestricted
data structures do not contain linear data structures. As an example, type unit ×un end!

cannot be introduced in any derivation. We also write n:>(T) if m(T) holds for some m
such that m <: n, thus un:>(T) holds only if un(T), while lin:>(T) holds if either lin(T) or
un(T), and hence holds for any type.

We define subtyping as usual for functional-program like systems (Gay & Vasconcelos,
2010). Function types are contravariant in their domain, covariant in their range, and
covariant in their multiplicity, and send types are contravariant in the value sent and
covariant in the residual session type. All other types and session types are covariant in
all components. Width subtyping resembles record subtyping for select, and variant sub-
typing for case. That is, on an endpoint where one may select among labels with an index
in I one may instead select among labels with indexes in J , so long as J ⊆ I , while on
an endpoint where one must be able to receive any label with an index in I one may
instead receive any label with an index in J , so long as I ⊆ J . (Subtyping on endpoints
appears sometimes reversed in process-calculus like systems, such as (Carbone et al., 2007,
2012; Demangeon & Honda, 2011), Wadler’s CP (2012, 2014); Gay (2016) discusses the
situation.)

Subtyping is reflexive, transitive, and antisymmetric. Duality inverts subtyping, in that
S <: R if and only if R <: S.

3.1.2 Expressions, processes, and typing

Expressions, processes, and typing for GV are summarized in Figure 2. We let x, y range
over variables, c, d range over channel endpoints, and z range over names, which are either
variables or channel endpoints.

We let e, f range over expressions, which include names, unit value, function abstraction
and application, pair creation and destruction, fork a process, create a new pair of chan-
nel endpoints, send, receive, select, case, close, and wait. Function abstraction and pair
creation are labeled with the multiplicity of the value created. We sometimes abbreviate
expressions of the form (λlinx.e)f to let x = e in f , as usual. A GV program is always given
as an expression, but as it executes it may fork new processes.

We let P, Q range over processes, which include expressions, parallel composition, and
a binder that introduces a pair of channel endpoints. The initial process will consist of a
single expression, corresponding to a given GV program.

The bindings in the language are as follows: variable x is bound in subexpression e of
λmx.e, variables x, y are bound in subexpression f of let x, y = e in f , variables xi are bound
in subexpressions ei of case e of {li : xi.ei}i∈I , channel endpoints c, d are bound in subpro-
cess P of (νc, d)P. We assume that c and d in (νc, d)P are different. The notions of free and
bound names/variables as well that substitution are defined accordingly. The set of the free

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

14 A. Igarashi et al.

Fig. 2. Expressions, processes, and typing in GV.

names in P is denoted by fn(P). We follow Barendregt’s variable convention, whereby
all names in binding occurrences in any mathematical context are pairwise distinct and
distinct from the free names (Barendregt, 1984).

We let �, � range over environments, which are used for typing. An environment con-
sists of zero or more associations of names with types. Environment splitting � = �1 ◦ �2

is standard. It breaks an environment � for an expression or process into environments �1

and �2 for its components; a name of unrestricted type may be used in both environments,
while a name of linear type must be used in one environment or the other but not both. We
write m(�) if m(T) holds for each T in �, and similarly for m:>(�).

Write � � e : T if under environment � expression e has type T . The typing rules for
expressions are standard. In the rules for names, unit, and new the remaining environment
must be unrestricted, to enforce the invariant that linear variables are used exactly once.
A function abstraction that is unrestricted must have only unrestricted variables bound
in its closure, and a pair that is unrestricted may only contain components that are unre-
stricted. Thus, it is never possible to construct a pair of type, e.g., S ×un T , which contains

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 15

Fig. 3. Reduction in GV.

a linear type S under the unrestricted pair type constructor ×un, even though such a type
is syntactically allowed for simplicity. The rules for send, receive, select, case, close, and
wait match the corresponding session types. For example, the following type judgment

o : int, c : !int.end! � close (send o c) : unit

can be derived. The typing system supports subsumption: if e has type T and T is a subtype
of U then e also has type U .

Write � � P if under environment � process P is well typed. The typing rules for pro-
cesses are also standard. If expression e has unrestricted type T then process 〈e〉 is well
typed. If processes P and Q are well typed, then so is process P | Q, where the environment
of the latter can be split to yield the environments for the former. And if process P is well-
typed under an environment that includes channel endpoints c and d with session types S
and S, then process (νc, d)P is well typed under the same environment without c and d.

3.1.3 Reduction

Values, evaluation contexts, reduction for expressions, structural congruence, and reduc-
tion for processes for GV are summarized in Figure 3.

Let v, w range over values, which include unit, function abstractions, pairs of values,
and channel endpoints. Let E, F range over evaluation contexts, which are standard.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

16 A. Igarashi et al.

Write e −→ f to indicate that expression e reduces to expression f . Reduction is
standard, consisting of beta reduction for functions and pairs.

Write P ≡ Q for structural congruence of processes. It is standard, with composition
being commutative and associative. A process returning the unit is the identity of parallel
composition, so P | 〈()〉 ≡ P. The order in which the endpoints are written in a ν-binder
is irrelevant. Distinct prefixes commute, and satisfy scope extrusion. The Barendregt con-
vention ensures that c, d are not free in Q in the rule for scope extrusion. Similarly for the
rule to swap prefixes.

Write P −→ Q if process P reduces to process Q. Evaluating fork e returns () and
creates a new process 〈e〉. Evaluating new introduces a new binder (νc, d) and returns
a pair (c, d)lin of channel endpoints. Evaluating send v c on one endpoint of a channel
and receive d on the other, causes the send to return c and the receive to return (v, d)lin.
Similarly for select on one endpoint of a channel and case on the other, or close on one
endpoint of a channel and wait on the other.

Process reduction is a congruence with regard to parallel composition and binding
for channel endpoints, it is closed under structural congruence, and supports expression
reduction under evaluation contexts.

3.2 Gradual GV

We now introduce Gradual GV. Following standard frameworks of gradual typing (Siek &
Taha, 2006; Siek et al., 2015b), Gradual GV consists of two sublanguages: an external
language GGVe, in which source programs are written, and an internal language GGVi, to
which GGVe is elaborated by cast-inserting translation to make necessary runtime checks
explicit. The operational semantics of a program is given as reduction of processes in
GGVi. We first introduce GGVi by outlining its differences to GV (Sections 3.2.1–3.2.3).
Next, we introduce the syntax of GGVe, which has only expressions, because it is the lan-
guage in which source programs are written, its type system, and cast-inserting translation
from GGVe to GGVi (Sections 3.2.4 and 3.2.5). Finally, we discuss how an untyped variant
of GV can be embedded into GGVi (Section 3.2.6).

3.2.1 Types and subtyping

Following the usual approach to gradual types, we extend the grammar of types with a
dynamic type (sometimes also called the unknown type), written �. Similarly, we extend
session types with the dynamic session type, written �©. The extended grammar of types
is given in Figure 4, where types carried over from Figure 1 are typeset in gray.

As before, we let T , U range over types and S, R range over session types. We also
distinguish a subset of types which we call ground types, ranged over by T, U, and a subset
of session types which we call ground session types, ranged over by S, R, consisting of all
the type constructors applied only to arguments which are either the dynamic type or the
dynamic session type, as appropriate.

We define �© to be self-dual: �© = �©. We define the multiplicity of the new types by
setting � to be un and �© to be lin. The remaining definitions of multiplicity of types carries
over unchanged from Figure 1. Type � is labeled unrestricted although (as we will see in the
following) it corresponds to all possible types, both unrestricted and linear, and therefore

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 17

Fig. 4. Types and subtyping in Gradual GV.

we will need to take special care when handling values of type � that correspond to values
of a linear type.

Consistent subtyping is defined over types of Gradual GV also in Figure 4. It is identical
to the definition of subtyping from Figure 1, with each occurrence of <: replaced by �,
and with the addition of four rules for the new types:

�� T T � � �©� S S � �©
For example, we have (a) ⊕{l1 : !�. �©, l2 : ?�. �©}�⊕{l1 : �©} and (b) &{l1 : �©}�&{l1 :
!�. �©, l2 : ?�. �©}. Consistent subtyping is reflexive, but neither symmetric nor transitive.
As with subtyping, we have S � R iff R� S. In Gradual GV, we will be permitted to
attempt to cast a value of type T to a value of type U exactly when T �U . A cast may
fail at runtime: while a cast using (a) will not fail, a cast using (b) may fail because an
expression of type &{l1 : �©} may evaluate to a value of type, say, &{l1 : end!}.

Two types are consistent, written T ∼ U , if T �U and U � T . Consistency is reflexive
and symmetric but not transitive. The standard example of the failure of transitivity is that
for any function type we have T →m U ∼ � and for any product type we have � ∼ T ′ ×n U ′,
but T →m U �∼ T ′ ×n U ′. In the setting of session types one has for example ?T . S ∼ �© and
�© ∼ end!, but ?T . S �∼ end!.

Subtyping T <: U for Gradual GV essentially carries over from GV. Its definition is
exactly as in Figure 1, with the addition of two rules that ensure subtyping is reflexive
for the dynamic type and the dynamic session type. In contrast to consistent subtyping,
subtyping T <: U guarantees that we may always treat a value of the first type as if it
belongs to the second type without casting.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

18 A. Igarashi et al.

Fig. 5. Expressions, processes, and typing in GGVi.

3.2.2 Expressions, processes, and typing of GGVi

Expressions, processes, and type rules of GGVi are summarized in Figure 5. The
expressions of GGVi are those of GV, plus an additional form for casts. A cast is written

e : T
p⇒ U (1)

where e is an expression of type T , and p, q range over blame labels such as �1, �2, For
example, the following term

SOC = λuno.λunc.close ((send o (c : �© �1⇒!�. �©)) : �© �2⇒ end!)

which represents a simplified version of serveOpCast in Section 2, can be given type � →un

�© →un unit.
Blame labels carry a polarity, which is either positive or negative. The complement

operation, p, takes a positive label into a negative one and vice versa; complement is an
involution, so that p = p. By convention, we assume that all blame labels in a source pro-
gram are positive, but negative blame labels may arise during evaluation of casts at a
function type or a send type. A cast raises positive blame if the fault lies with the expres-
sion contained in the cast (for instance, because it returns an integer where a character is
expected), while it raises negative blame if the fault lies with the context containing the
cast (for instance, because it passes an argument or sends a value that is an integer where
a character is expected).

In a valid cast e : T
p⇒ U , the type T must be a consistent subtype of U (T �U), the

type of the entire expression. If a cast in a program fails, it evaluates to blame p q X
or blame p X (which, as we see later, are treated as processes) where the blame label
p and q indicate the root cause of the failure (we will explain X shortly). If the cast
in (1) fails, it means that the value returned by e has type T , but not type U . For exam-
ple, let e = 4711 : int

q⇒ �, T = �, and U = bool. As �� bool, the resulting expression

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 19

(4711 : int
q⇒ �) : �

p⇒ bool is well typed. However, at runtime it raises blame by reducing
to blame q p ∅, which flags the error that int is not a subtype of bool: that is, int �<: bool.

Blame is indicated by processes of the form

blame p q X or blame p X

where p and q are blame labels, and X is a set of variables of linear type. As we will see,
most instances that yield blame involve two casts, hence the form with two blame labels,
although blame can arise for a single cast, hence the form with one blame label. The set
X records all linear variables in scope when blame is raised, and is used to maintain the
invariant that as a program executes each variable of linear type appears linearly (only
once, or once in each branch of a case). Discarding linear variables when raising blame
would break the invariant. Blame corresponds to raising an exception, and the list of linear
variables corresponds to cleaning up after linear resources when raising an exception (for
instance, closing an open file or channel). In the typing rules, the notation flv(�) refers the
set of free variables of linear type that appear in �. We also write flv(E) and flv(v) for the
free linear variables appearing in an evaluation context E or a value v. In a running pro-
gram, only free linear variables are channel endpoints, so flv(E) and flv(v) can be defined
without type information.

The processes of GGVi are those of GV, plus three additional forms for references to
linear values (as well as blame, described above). Recall that a value of type � may contain
a linear value, in which case dynamic checking must ensure that it is used exactly once. The
mechanism for doing so is to allocate a reference to a linear value. We let a, b range over
references. A reference is of type �, and contains a value w of ground type T, where T is
linear (either � →lin � or � ×lin � or the dynamic session type �©). References are allocated
by the binding form (νa)P, and the value contained in store a is indicated by a process
which is either of the form

a �→ w : T
p⇒ � or a �→ locked p

where w is a value of type T and p is a blame label. Bindings for references initially take
the first form, but change to the second form after the reference has been accessed once;
any subsequent attempt to access the reference a second time will cause an error.

3.2.3 Reduction

Values, evaluation contexts, reductions for expressions, structural congruence, and reduc-
tions for processes for GGVi are summarized in Figures 6 and 7.

The values of GGVi are those of GV, plus five additional forms. Values of dynamic type
have the form either v : T

p⇒ � as in other blame calculi, if T is unrestricted, or a, which is
a reference to a linear value, if the dynamic type wraps a linear value. Additionally, there
are values of dynamic session type which take the form v : S

p⇒ �©.
Following standard practice for blame calculus, we take a cast of a value between func-

tion types to be a value, and for similar reasons a cast from a session type to a session type
is a value unless one end of the cast is the dynamic session type:

v : T →m U
p⇒ T ′ →n U ′ or v : S

p⇒ R

where S, R �= �©.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

20 A. Igarashi et al.

Fig. 6. Reduction in GGVi, expressions.

Fig. 7. Reduction in GGVi, processes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 21

Additional reductions for expressions appear in Figure 6. Typical of blame calculus is
the reduction for a cast between function types, often called the wrap rule:

(v : T →m U
p⇒ T ′ →n U ′) w −→ (v (w : T ′ p⇒ T)) : U

p⇒ U ′

The cast on the function decomposes into two casts, one on the domain and one on the
range. The fact that subtyping (and consistent subtyping) for function types is contravariant
on the domain and covariant on the range is reflected in the fact that the cast on the domain
is from T ′ to T and complements the blame label p, while the cast on the range is form U
to U ′ and leaves the blame label p unchanged. Casts for products follow a similar pattern,
though covariant on all components.

Reductions on session types follow the pattern of the reduction for a cast between send
types:

send v (w : !T . S
p⇒ !T ′. S′) −→ (send (v : T ′ p⇒ T) w) : S

p⇒ S′

The cast on the send decomposes into two casts, one on the value sent and one on the
residual session type. The fact that subtyping (and consistent subtyping) for send types is
contravariant on the value sent and covariant on the residual session type is reflected in
the fact that the cast on the value sent is from T ′ to T and complements the blame label
p, while the cast on the residual session type is from S to S′ and leaves the blame label
p unchanged. The casts for the remaining session types follow a similar pattern, though
covariant on all components.

Also typical of blame calculus, casts to the dynamic type factor through a ground type,

v : T
p⇒ � −→ (v : T

p⇒ T) : T
p⇒ �

when T �= �, T �= T, and T ∼ T. This factoring is unique because for every type T such that
T �= � there is a unique ground type T such that T ∼ T. The additional condition T �= T
ensures that the factoring is nontrivial and that reduction does not enter a loop. Casts from
the dynamic type, and casts to and from the dynamic session type are handled analogously.

Additional structural congruences and reductions for processes appear in Figure 7. Like
bindings for channel endpoints, bindings for references to linear values satisfy scope
extrusion and reduction is a congruence with respect to them.

The first five reduction rules for processes deal with references to linear values, ensuring
that a value cast from a linear type to � is accessed exactly once. As the only values of the
dynamic type are casts from a ground type, expressions of interest take the form

v : T
p⇒ �

where v is a value and T is a linear ground type. The first rule introduces a reference,
represented as a separate process of the form a �→ v : T

p⇒ �. The context restriction
E �= F[[] : �

q⇒ U] ensures that a reference is only introduced if the value is not imme-
diately accessed; without the restriction this rule would apply to a process of the form
〈E[(v : T

p⇒ �) : �
q⇒ U]〉, to which the sixth or seventh rule should be applied. Any attempt

to access the linear reference a must take the form

E[a : �
q⇒ U]

where E is an evaluation context and U is a ground type that may or may not be linear. The
second rule implements the first access to a linear value by copying the value v in place

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

22 A. Igarashi et al.

of the reference a, and updating the reference process to a �→ locked p, indicating that the
linear reference has been accessed once. The third rule implements any subsequent attempt
to access a linear value, which allocates blame to the two casts involved, negative blame
p from locked p, which was a cast v : T

p⇒ � before the first access, and positive blame
q for the cast to access a, indicating that in both cases blame is allocated to the side of
the cast of type �. The blame term also contains flv(E), the set of free linear variables that
appear in the context E, which as mentioned earlier is required to maintain the invariant on
linear variables; all occurrences of blame contain corresponding sets of linear variables,
which we will not mention further. The final two rules indicate what happens when all
processes containing the reference finish execution. If the linear reference is locked then
it was accessed once, and the reference may be deallocated as usual. If the reference is
not locked then it was never accessed, and blame should be allocated to the context of the
original cast, which discarded the value rather than using it linearly. In practice, these rules
would be implemented as part of garbage collection.

The remaining six rules come in three pairs. Typical of blame calculus is the first pair,
often called the collapse and collide rules:

〈E[(v : T
p⇒ �) : �

q⇒ U]〉 −→ 〈E[v]〉 if T <: U

〈E[(v : T
p⇒ �) : �

q⇒ U]〉 −→ blame p q (flv(E) ∪ flv(v)) if T �<: U

If the source type is a subtype of the target type, the casts collapse to the original value.
Types are preserved by subsumption: since v has type T and T <: U then v also has type U.
Conversely, if the source type is not a subtype of the target type, then the casts are in colli-
sion and reduce to blame. Blame is allocated to both of the casts involved, negative blame
p for the inner cast and positive blame q for the outer cast, indicating that in both cases
blame is allocated to the side of the cast of type �. Our choice to allocate blame to both
casts differs from the usual formulation of blame calculus, which only allocates blame to
the outer cast. Allocating blame to only the outer cast is convenient if one wishes to imple-
ment blame calculus by erasure to a dynamically typed language, where injection of a value
to the dynamic type is represented by the value itself, that is, the erasure of v : T

p⇒ � is just
taken to be the erasure of v itself. However, this asymmetric implementation is less appro-
priate in our situation. For session types, a symmetric formulation is more appropriate, as
we will see shortly when we look at the interaction between casts and communication.

The next pair of rules transpose collapse and collide from types to session types. The
final pair of rules adapt collapse and collide to the case of communication between two
channel endpoints. Here is the adapted collapse rule.

(νc, d)(〈E[c : �© p⇒ S]〉 | 〈F[d : �© q⇒ R]〉) −→ (νc, d)(〈E[c]〉 | 〈F[d]〉) if S <: R

The condition on this rule is symmetric, since S <: R if and only if R <: S. On the left-hand
side of this rule c, d both have session type �©, while on the right-hand side of the rule c, d
have session types S, S or R, R. Again, types are preserved by subsumption, since if c, d
have session types S, S and S <: R then c, d also have session types S, R, and similarly if
c, d have session types R, R. Analogously, the last rule adapts collide.

An alternative design might replace the final pair of rules by a structural congruence that
slides a cast from one endpoint of a channel to the other:

(νc, d)(E[c : S
p⇒ R] | F[d]) ≡ (νc, d)(E[c] | F[d : R

p⇒ S]).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 23

Setting S to �© and R to S, this congruence can reduce the third collapse rule (on chan-
nel endpoints) to the second collapse rule (on a nested pair of casts on session types).
However, even with this congruence the two collide rules are not quite equivalent. Our
chosen formulation, though slightly longer, is more symmetric and easier to implement.

Now we show a few examples of reduction, in which we abbreviate a nested cast
(e : T1

p⇒ T2) : T2
q⇒ T3 to e : T1

p⇒ T2
q⇒ T3 and use a sequential composition e1; e2 with

obvious typing and reduction rules. First recall the term

SOC = λuno.λunc.close (send o (c : �© �1⇒!�. �©) : �© �2⇒ end!)

introduced above. Given a channel endpoint d : !int.end!, the term

SOC (42 : int
�3⇒ �) (d : !int.end!

�4⇒ �©)

reduces as follows:

SOC (42 : int
�3⇒ �) (d : !int.end!

�4⇒ �©)

−→(λunc.close ((send (42 : int
�3⇒ �) (c : �© �1⇒!�. �©)) : �© �2⇒ end!)) (d : !int.end!

�4⇒ �©)

−→(λunc.close ((send (42 : int
�3⇒ �) (c : �© �1⇒!�. �©)) : �© �2⇒ end!))

(d : !int.end!
�4⇒!�. �© �4⇒ �©)

−→close ((send (42 : int
�3⇒ �) (d : !int.end!

�4⇒!�. �© �4⇒ �© �1⇒!�. �©)) : �© �2⇒ end!)

−→close ((send (42 : int
�3⇒ �) (d : !int.end!

�4⇒!�. �©)) : �© �2⇒ end!)

−→close ((send (42 : int
�3⇒ �

�4⇒ int) d) : end!
�4⇒ �© �2⇒ end!)

−→close ((send 42 d) : end!
�4⇒ �© �2⇒ end!).

Thus, the process

(νd, e)(〈SOC (42 : int
�3⇒ �) (d : !int.end!

�4⇒ �©)〉 | 〈let x, y = receive e in wait y〉)
reduces as follows:

(νd, e)(〈SOC (42 : int
�3⇒ �) (d : !int.end!

�4⇒ �©)〉 | 〈let x, y = receive e in wait y〉)
−→+(νd, e)(〈close ((send 42 d) : end!

�4⇒ �© �2⇒ end!)〉 | 〈let x, y = receive e in wait y〉)
−→(νd, e)(〈close (d : end!

�4⇒ �© �2⇒ end!)〉 | 〈let x, y = (42, e)lin in wait y〉)
−→+(νd, e)(〈close d〉 | 〈wait e〉)
−→(νd, e)(〈()〉 | 〈()〉)

However, if d is given type !int.!int.end!, then SOC (42 : int
�3⇒ �) (d : !int.!int.end!

�4⇒ �©)
is well typed but reduces to

close ((send 42 d) : !int.end!
�4⇒ �© �2⇒ end!)

Thus, the process

(νd, e)(〈SOC (42 : int
�3⇒ �) (d : !int.!int.end!

�4⇒ �©)〉 | 〈let x, y = receive e in . . .〉)
reduces to

(νd, e)(〈close (d : !int.end!
�4⇒ �© �2⇒ end!)〉 | 〈let x, y = (42, e)lin in . . .〉)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

24 A. Igarashi et al.

and then to

(νd, e)(blame �4 �2 {d} | 〈let x, y = (42, e)lin in . . .〉)
We also show an example of dynamic linearity checking. The following function foo

takes an argument of type �, cast it to end!, and closes it:

foo = λunx.close (x : �
�⇒ end!)

Consider an application of foo to a channel endpoint c of type end!. It reduces as follows:

〈 foo (c : end!
�′⇒ �)〉

−→〈 foo (c : end!
�′⇒ �© �′⇒ �)〉

−→(νa)(〈 foo a〉 | a �→ c : end!
�′⇒ �© �′⇒ �)

−→(νa)(〈close (a : �
�⇒ end!)〉 | a �→ c : end!

�′⇒ �© �′⇒ �)

−→(νa)(〈close (c : end!
�′⇒ �© �′⇒ �

�⇒ end!)〉 | a �→ locked �′)
−→+(νa)(〈close c〉 | a �→ locked �′)
−→〈close c〉

If the channel endpoint is passed to a function that uses the argument more than once,

blame will be raised. Let bar be λunx.close (x : �
�⇒ end!); close (x : �

�⇒ end!) and

observe that bar (c : end!
�′⇒ �) reduces as follows:

〈bar (c : end!
�′⇒ �)〉

−→〈bar (c : end!
�′⇒ �© �′⇒ �)〉

−→(νa)(〈bar a〉 | a �→ c : end!
�′⇒ �© �′⇒ �)

−→(νa)(〈close (a : �
�⇒ end!); close (a : �

�⇒ end!)〉 | a �→ c : end!
�′⇒ �© �′⇒ �)

−→(νa)(〈close (c : end!
�′⇒ �© �′⇒ �

�⇒ end!); close (a : �
�⇒ end!)〉 | a �→ locked �′)

−→+(νa)(〈close c; close (a : �
�⇒ end!)〉 | a �→ locked �′)

Then, parallel composition with a process waiting at the other end d of the endpoint c will
raise blame as follows:

(νc, d)(〈bar (c : end!
�′⇒ �)〉 | 〈wait d〉)

−→+(νc, d)(νa)(〈close c; close (a : �
�⇒ end!)〉 | a �→ locked �′ | 〈wait d〉))

−→(νc, d)(νa)(〈close (a : �
�⇒ end!)〉 | a �→ locked �′ | 〈()〉)

−→(νc, d)(νa)(blame �
′
� ∅ | a �→ locked �′)

3.2.4 External language GGVe

Having defined the internal language, we introduce the external language GGVe, in
which source programs are written. The syntax of expressions of GGVe is presented in
Figure 8. For ease of type checking, variable declarations in functions and channel endpoint

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 25

Fig. 8. Expressions in GGVe.

Fig. 9. Matching.

creations are explicitly typed. There are no processes in GGVe: a program is a well-typed
closed expression and it is translated to a GGVi expression before it runs.

The type system of GGVe adheres to standard practice for gradually typed languages
(Siek et al., 2015b; Cimini & Siek, 2016), but requires a few adaptations to cater for fea-
tures not covered in previous work. We first introduce a few auxiliary definitions used in
typing rules. Figure 9 defines the matching relation T � U (Cimini & Siek, 2016). Roughly
speaking, T � U means that T can be used, after necessary runtime checking, as U . The
second and third columns declare that, if T is � or �©, then it can be used as any type or
session type, respectively. Otherwise, the matching relation extracts substructure, i.e., the
domain type, the codomain type, the first-element type, and so on, from T . So, we have
neither � � unit nor �© � end! or �© � end?.

Matching for the internal and external choice types is slightly involved as it has to cater
for subtyping. Matching for internal choice is invoked in the type rule for an expression
select l e. Thanks to subtyping, the type of e can be any internal choice with a branch
for label l. Hence, matching only asks for the presence of this single label and extracts its
residual.

Dually, matching for external choice is invoked in the rule for a case e of . . . expression.
Again due to subtyping, the case expression can check more labels than provided by the
type of e. Hence, matching allows extra branches to be checked with arbitrary residual
types (lj : Sj in the definition) while extracting the residual types for all branches provided
by e.

Obtaining the result type of a case expression from the types of its branches requires
a join operation T ∨ U that ensures that its result is (in a certain sense) a supertype of
both T and U . Figure 10 contains the definitions of join and its companion meet, which is
needed in contravariant positions of the type. Both operations are partial: join or meet is
undefined for cases other than those listed in Figure 10.

Join of two ⊕-types can be obtained by taking the joins of the types associated with
common labels. Note that labels where the joins Si ∨ Ri do not exist will be dropped. On
the other hand, the label set of the join of two &-types is the union of the two label sets

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

26 A. Igarashi et al.

Fig. 10. Join and meet of types.

from the input. For the common labels in I ∩ J , the joins Sk ∨ Rk must exist. Join or meet
is undefined if the resulting type is ⊕{} or &{} (with the empty set of labels) as they are
ill-formed types.

Without the last four clauses, which deal with � and �©, the definitions of the join and
meet coincide with those for ordinary subtyping. This is motivated by the static embedding
property of the Criteria for Gradual Typing (Siek et al., 2015b), which requires the typabil-
ity of a GGVe term without � (or �© in our case) to be the same as the typability under the
GV typing rules. There are a few choices for the join (and meet) of � and other types and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 27

Fig. 11. Expression typing in GGVe.

we choose � ∨ T to be T for any T because, as we prove later, our join then corresponds to
the least upper bound with respect to negative subtyping (Wadler & Findler, 2009), which
is formally defined later, and we can construct a type-checking algorithm that produces a
minimal type with respect to the negative subtyping. (The least upper bound with respect
to positive subtyping is not a good choice because int ∨ bool = � holds, invalidating the
static embedding property.)

Typing rules are presented in Figure 11. The matching relation is used in elimina-
tion rules. To obtain a syntax-directed inference system, the subsumption is merged into
function application, sending, select, and case. Moreover, subtyping is replaced with con-
sistent subtyping. The type of the whole case expression is obtained by joining the types
of the branches. Finally, the judgment e prog means that e is a Gradual GV program, which
is a closed, well-typed GGVe expression of unrestricted type. Cast insertion discussed in
the following translates a program to a GGVi expression e, which runs as a process 〈e〉. For
example, we can derive

� λuno : �.λunc : �©.close (send o c) : � →un �© →un unit.

We also develop a type-checking algorithm for GGVe by following the stan-
dard approach (Kobayashi et al., 1999; Walker, 2005). We define an algorithm
CHECKEXPR(�, e), which takes a type environment � and an expression e and returns
a type T of e and the set X of linear variables in e. We avoid nondeterminism involved
in environment splitting by introducing X , which is used to check whether subexpressions
do not use the same (linear) variable more than once. We present the algorithm in full and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

28 A. Igarashi et al.

Fig. 12. Cast insertion.

prove its correctness in Appendix 6. In particular, the algorithm is shown to compute, for
given � and e, a minimal type with respect to negative subtyping (if a typing exists).

3.2.5 Cast-inserting translation

A well-typed GGVe expression is translated to a GGVi expression by dropping type anno-
tations and inserting casts. Figure 12 presents cast insertion. The judgment � � e� f : T
means that “under type environment �, a GGVe expression e is translated to a GGVi expres-
sion f at type T .” Most rules are straightforward: casts are inserted where the matching
or consistent subtyping is used. In each rule, blame label p is supposed to be fresh and
positive. The notation f : T

p⇒? U is used to avoid inserting unnecessary casts.

f : T
p⇒? U =

{
f if T <: U

f : T
p⇒ U otherwise

Thanks to this optimization, we can show that a program that does not use � or �© is
translated to a cast-free GGVi expression, whose behavior obviously coincides with GV.

For example, we can derive

� λuno : �.λunc : �©.close (send o c)

� λuno.λunc.close ((send o (c : �© p⇒!�. �©)) : �© q⇒ end!) : � →un �© →un unit

for some p and q.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 29

Fig. 13. Embedding of the unityped calculus.

3.2.6 Embedding

One desideratum for a gradual typing system—if it is equipped with dynamic typing—
is that it is possible to embed an untyped (or rather, unityped) language within it (Siek
et al., 2015b). An embedding of an untyped variant of GV into GGVi is given in Figure 13.
Blame labels are omitted; each cast should receive a unique blame label. The untyped
variant has the same syntax as the expressions of GV, but every expression has type � and
multiplicities are implicitly assumed to be un. The embedding extends that of (Wadler &
Findler, 2009) for the untyped lambda calculus into the blame calculus.

4 Results

We study some of the basic properties (Siek et al., 2015b) of Gradual GV in this section.
They include (1) type safety of GGVi and (2) blame safety of GGVi, (3) conservative typing
of GGVe over GV, and (4) the gradual guarantee for GGVe. Since GGVi do not guarantee
deadlock freedom, type safety is stated as the combination of preservation and absence of
runtime errors, rather than progress. We show that (1)–(3) hold with their proof sketches.
For (4), we show that GGVe does not satisfy the gradual guarantee.

4.1 Preservation and absence of runtime errors for GGVi

We show preservation and absence of runtime errors for GGVi. The basic structure of the
proof follows Gay and Vasconcelos (2010). In proofs, we often use inversion properties
for the typing relation, such as “if � � x : T , then � = �′, x : S for some S and �′ such
that S <: T and un(�′),” without even stating. They are easy (but tedious) to state and
prove because the only rule that makes typing rules not syntax-directed is T-SUB (see, for
example, (Pierce, 2002) for details). Similarly, we omit inversion for subtyping, which is
syntax-directed.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

30 A. Igarashi et al.

Lemma 1 (Weakening). If � � e : T and un(U), then �, x : U � e : T.

Proof. By induction on � � e : T . �

Lemma 2 (Strengthening). If �, x : U � e : T and x does not occur free in e, then � � e : T.

Proof. By induction on �, x : U � e : T . �

Lemma 3 (Preservation for ≡). If P ≡ Q, then � � P if and only if � � Q.

Proof. By induction on P ≡ Q. Use Lemmas 1, 2, and basic properties of context
splitting (Vasconcelos, 2012; Walker, 2005) for the scope extrusion rules. �

Lemma 4. If � = �1 ◦ �2 and un(�1), then � = �2.

Proof. By induction on � = �1 ◦ �2. �

Lemma 5. If � � v : T and un(T), then un(�).

Proof. By case analysis on the last rule used to derive � � v : T . �

Lemma 6 (Substitution). If �1 � v : U and �2, x : U � e : T and � = �1 ◦ �2, then � �
e[v/x] : T.

Proof. By induction on �2, x : U � e : T with case analysis on the last derivation rule used.
We show main cases as follows:

Case (variables): If e = x and T = U and un(�2), then we have, by Lemma 4, � = �1,
finishing the case. If e = y �= x, then Lemma 2 finishes the case.
Case (applications): We have e = e1 e2 and �11 � e1 : T2 →m T and �12 � e2 : T2 and �, x :
U = �11 ◦ �12. We have two subcases depending on whether un(U) or not.

Subcase un(U): We have �11 = �′
11, x : U and �12 = �′

12, x : U and � = �′
11 ◦ �′

12.
The induction hypothesis give us �′

11 ◦ �2 � e1[v/x] : T2 →m T and �′
12 ◦ �2 �

e2[v/x] : T2. By Lemma 5, we have un(�2). The typing rule for applications shows
(�′

11 ◦ �2) ◦ (�′
12 ◦ �2) � (e1 e2)[v/x] : T . Lemma 4 finishes the subcase.

Subcase lin(U): either (1) �11 = �′
11 and �12 = �′

12, x : U and � = �′
11 ◦ �′

12, in
which case we have �′

12 � e2[v/x] : T1 by the induction hypothesis and also e1[v/x] =
e1 and the typing rule for applications finishes; or (2) �11 = �′

11, x : U and �12 = �′
12

and � = �′
11 ◦ �′

12, in which case the conclusion is similarly proved. �

The following two lemmas are adapted from earlier work (Gay & Vasconcelos, 2010).

Lemma 7 (Sub-derivation introduction). If D is a derivation of � � E[e] : T, then there
exist �1, �2 and U such that � = �1 ◦ �2 and D has a sub-derivation D ′ concluding
�2 � e : U and the position of D ′ in D corresponds to the position of the hole in E.

Proof. By induction on E. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 31

Lemma 8 (Sub-derivation elimination). � � E[f] : T holds, if

• D is a derivation of �1 ◦ �2 � E[e] : T,
• D ′ is a sub-derivation of D concluding �2 � e : U,
• the position of D ′ in D corresponds to the position of the hole in E,
• �3 � f : U, and
• � = �1 ◦ �3.

Proof. By induction on E. �

Lemma 9. If � � e : T, then flv(�) = flv(e).

Proof. Easy induction on � � e : T . �

Theorem 1 (Preservation for expressions). If e −→ f and � � e : T, then � � f : T.

Proof. By rule induction on the first hypothesis. For β-reduction and let we use the
substitution lemma (Lemma 6) and inversion of the typing relation. �

Theorem 2 (Preservation for processes). If P −→ Q and � � P, then � � Q.

Proof. By rule induction on the first hypothesis, using basic properties of context split-
ting (Walker, 2005; Vasconcelos, 2012) and weakening (Lemma 1). Rules that make use of
context use sub-derivation introduction (Lemma 7) to build the derivation for the hypoth-
esis, and sub-derivation elimination (Lemma 8) to build the derivation for the conclusion.
Rules for reduction to blame use Lemma 9. Reduction underneath parallel composition
and scope restriction follow by induction. The rule for ≡ uses Lemma 3. Closure under
evaluation contexts uses Theorem 1. �

Lemma 10 (Ground types, subtyping, and consistent subtyping).

1. If T �= �, there is a unique ground type T such that T ∼ T.
2. If S �= �©, there is a unique ground session type S such that S ∼ S.
3. T�U iff T <: U.
4. S�R iff S <: R.

Proof.

1. By case analysis on T .
2. By case analysis on S.
3. By case analysis on T and U.
4. By case analysis on S and R. �

Lemma 11 (Canonical forms). Suppose that � � v : T where � contains session types and
�, only.

1. If T = �, then either v = w : T
p⇒ � with un(T) or v = a.

2. If T = S, then either v = c or v = w : S
p⇒ �© and S = �© or v = w : R1

p⇒ R2 with
R2 <: S.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

32 A. Igarashi et al.

3. If T = unit, then v = ().
4. If T = U1 →m U2, then either v = λnx.e with n <: m or v = w : T1 →n1 T2

p⇒
U ′

1 →n2 U ′
2 with n2 <: m and U1 <: U ′

1 and U ′
2 <: U2.

5. If T = T1 ×m T2, then v = (w1, w2)n with n <: m.

Proof. By induction on the derivation on � � v : T . �

Theorem 3 (Progress for expressions). Suppose that � � e : T and that � only contains
channel endpoints and references. Then exactly one of the following cases holds:

1. e is a value,
2. e −→ f (as an expression),
3. e = E[f] and f is one of the GV operations: fork f ′, new, send v c, receive c,

select l c, case c of{li : xi.ei}, close c, or wait c,
4. e = E[f] and f is a Gradual GV operation:

• w : T
p⇒ �, with lin(T),

• a : �
p⇒ U,

• (v : T
p⇒ �) : �

q⇒ U, with un(T),
• (v : S

p⇒ �©) : �© q⇒ R, or
• c : �© p⇒ S.

Proof. By induction on expressions, using Canonical forms (Lemma 11). �

The notion of runtime errors helps us state our type safety result. The subject of an
expression e, denoted by subj(e), is c when e falls into one of the following cases and
undefined in all other cases.

send f c receive c select l c case c of {li : xi.fi}i∈I close c wait c

Two expressions e and f agree on a channel with ends in set {c, d} where c �= d, denoted
agree{c,d}{e, f }, a relation on two two-element sets, in the following cases:

1. agree{c,d}{send v c, receive d};
2. agree{c,d}{select lj c, case d of {li : xi.fi}i∈I} and j ∈ I ;
3. agree{c,d}{close c, wait d}.

A process is an error if it is structurally congruent to some process that contains a
subprocess of one of the following forms:

1. 〈E[ve]〉 and v is not an abstraction;
2. 〈E[let a, b = v in e]〉 and v is not a pair;
3. 〈E[e]〉 | 〈F[f]〉 and subj(e) = subj(f);
4. (νc, d)(〈E[e]〉 | 〈F[f]〉) and subj(e) = c and subj(f) = d and not agree{c,d}{e, f }.

The first two cases are typical of functional languages. The third case ensures no two
threads hold references to the same channel endpoint. The fourth case ensures channel
endpoints agree at all times: if one process is ready to send then the other is ready to
receive, and similarly for select and case, close and wait.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 33

For processes, rather than a progress result, we present a type safety result as our type
system does not rule out deadlocks, which are formed by a series of processes each waiting
for the next in a circular arrangement; these are exactly the deadlocked processes of GV.
Our result holds both for GV and Gradual GV alike. The condition on � in the statement
is to exclude processes getting stuck due to a free variable in an application (xe) or a pair
destruction (let a, b = x in e).

Theorem 4 (Absence of runtime errors). Let � � P where � does not contain function or
pair types, and let P −→∗ Q. Then Q is not an error.

Proof. By induction on the length of reduction steps P −→∗ Q. For the base case, where
P = Q, we show P is not an error by showing all error processes cannot be well typed.

All cases use Lemma 7 and inversion of the typing relation. The cases for application
and let follow from the fact that � does not contain function or pair types. The third case
follows from the fact that c, being the subject of expressions, is of a linear type, hence
cannot occur in two distinct processes. The fourth case follows from the fact that typability
implies that c and d are of dual types, which in turn implies agree{c,d}(e, f). �

4.2 Blame safety

Following Wadler & Findler (2009), we introduce three new subtyping relations: <:+,
<:−, and �, called positive, negative, and naive subtyping (also known as precision),
respectively, in Figure 14, in addition to the ordinary subtyping <: defined in Figure 4.

A cast from T to U with label p may either return a value or may raise blame labeled
p (called positive blame) or p (called negative blame). The original subtyping relation
T <: U of GGVi characterizes when a cast from T to U never yields blame; relations
T <:+ U and T <:− U characterize when a cast from T to U cannot yield positive or nega-
tive blame, respectively; and relation T � U characterizes when type T is more precise (in
the sense of being less dynamic) than type U . All four relations are reflexive and transitive,
and subtyping, positive subtyping, and naive subtyping are antisymmetric.

Wadler & Findler (2009) have an additional rule that makes any subtype of a ground
type a subtype of �, i.e., T <: � if T <: T. This rule is not sound in Gradual GV because
our collide rule blames both casts:

〈E[(v : T
p⇒ �) : �

q⇒ U]〉 −→ blame p q (flv(E) ∪ flv(v)) if T �<: U

The four subtyping relations are closely related. In previous work (Wadler & Findler,
2009; Siek et al., 2015a) one has that proper subtyping decomposes into positive and neg-
ative subtyping, which—after reversing the order on negative subtyping—recompose into
naive subtyping. Here we have three-quarters of the previous result.

Theorem 5 (3/4 Tangram).

1. T <: U implies T <:+ U and T <:− U.
2. S <: R implies S <:+ R and S <:− R
3. T � U if and only if T <:+ U and U <:− T.
4. S � R if and only if S <:+ R and R <:− S

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

34 A. Igarashi et al.

Fig. 14. Subtyping and blame safety.

Proof. By induction on types. �

Here the first and second items are an implication, rather than an equivalence as in the
third and fourth items and previous work. In order to get an equivalence, we would need
to alter subtyping such that T <: � for all T and S <: �© for all S, which would interfere
with our Canonical Forms lemma (Lemma 11). However, implication in all four items is
sufficient to ensure the most important result, Corollary 1.

The definitions of negative subtyping and naive subtyping have been changed since the
conference version of the paper. Now, negative subtyping supports width subtyping and
naive does not. This change is motivated by the type system for the external language, in
particular the join operation. (See the discussion on the join in Section 3.2.4.)

The following technical result is used in the proof of Theorem 6.

Lemma 12.

1. If T �= � and T ∼ T, then T <:+ T.
2. If S �= �© and S ∼ S, then S <:+ S.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 35

Proof. (1) A case analysis on T . Lemma 10 tells us that T is unique. We show the case
for functions. Let T be the type U →m V ; we know that T is � →m �, that � <:− U , and
V <:+ �. Conclude with the positive subtyping rule for functions. (2) Similar. �

We say that a process P is safe for blame label p, if all occurrences of casts involving
p or p correspond to subsumptions in the (positive or negative) blame subtyping relation.
Figure 14 defines judgments e safe for p and P safe for p, extended homomorphically
to all other forms of expressions and processes. The safe for predicate on well-typed
programs is preserved by reduction.

Theorem 6 (Preservation of safe terms). If � � P with P safe for p and P −→ Q, then
Q safe for p.

Proof. It is sufficient to examine all reductions whose contractum involves coercions. We
start with the reductions in Figure 6. The four rules starting from the one with reductum
v : T

p⇒ � follow from Lemma 12. Then, the standard function cast is analogous to previous
work (Wadler & Findler, 2009), and the case for pairs is similar. The casts for session types
(send, receive, select, case, close, and wait) are new; we concentrate on send.

send v (w : !T .S
p⇒ !T ′.S′) −→ (send (v : T ′ p⇒ T) w) : S

p⇒ S′

By assumption (w : !T .S
p⇒ !T ′.S′) safe for p. Inversion of the safe for relation yields

T ′ <:∓ T and S <:± S′. Hence (v : T ′ p⇒ T) safe for p and (. . .) : S
p⇒ S′ safe for p.

Finally, all rules in Figure 7 preserve casts. �

A process P blames label p if P ≡
(Q | R) where Q is blame p q X , blame q p X ,
or blame p X , for some q and X , and prefix
 of bindings for channel endpoints and
references.

Theorem 7 (Progress of safe terms). If � � P and P safe for p, then P �−→ Q where Q
blames p.

Proof. We analyze all reduction rules whose contractum includes blame. From Figure 6
take the rule with reductum (v : T

p⇒ �) : �
q⇒ U. It may blame p and q, if T �<: U. However,

if it is safe for p then T <:− �, which cannot hold (because only � <:− � and T cannot be �),
and similar reasoning applies for q and U. The remaining rules are similar. �

We are finally in a position to state the main result of this section.

Corollary 1 (Well-typed programs cannot be blamed). Let P be a well-typed process with
a subterm of the form e : T

p⇒ U containing the only occurrence of p and p in P. Then the
following cases holds::

• If T <:+ U then P �−→∗ Q where Q blames p.
• If T <:− U then P �−→∗ Q where Q blames p.
• If T <: U then P �−→∗ Q where Q blames p or p.

For example, the redex (v : T
p⇒ �) : �

q⇒ U may fail and blame p and q if T �<: U. And
indeed we have that T �<:− � and � �<:+ U, so it is not safe for p or q. However, T <:+ � and
� <:− U, and the redex will not blame p or q.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

36 A. Igarashi et al.

Wadler and Findler (2009) explain how casting between terms related by naive sub-
typing always places the blame (if any) on the less-precisely typed term or context, as
appropriate.

4.3 Properties of GGVe

Now we turn our attention to GGVe and prove that cast insertion succeeds for well-typed
GGVe expressions and preserves typing and that the GGVe typing conservatively extends
the GV typing. As we need to relate the judgments of different systems, let �e denote the
GGVe typing, �i denote the GGVi typing, and �GV denote the GV typing.

Proposition 1 goes back to an observation by Siek and Taha (2007).

Proposition 1 (Consistent Subtyping).

1. T1 � T2 if and only if T1 ∼ T ′
1 and T ′

1 <: T2 for some T ′
1.

2. T1 � T2 if and only if T1 <: T ′
2 and T ′

2 ∼ T2 for some T ′
2.

Proof. The left-to-right direction is proved by induction on T1 � T2 and the right-to-left is
by induction on subtyping with case analysis on T1, T ′

2, and T2. �

The next lemma clarifies the relation between subtyping, positive and negative subtyp-
ing, and consistent subtyping.

Lemma 13 (Subtyping Hierarchy).

1. <: ⊆ <:+ ⊆ � .
2. <: ⊆ <:− ⊆ � .

Proof. <: ⊆ <:+ and <: ⊆ <:− follow from Theorem 5. <:+ ⊆ � and <:− ⊆ � are
by induction on T1 <:+ T2 and T1 <:− T2, respectively. �

Lemma 14 (Upper bound and lower bound).

1. If T1 ∨ T2 = U, then T1 <:− U and T2 <:− U.
2. If T1 ∧ T2 = U, then U <:+ T1 and U <:+ T2.

Proof. By simultaneous induction on T1 ∨ T2 = U (for the first item) and T1 ∧ T2 = U (for
the second item). �

Lemma 15 (Least upper bound and greatest lower bound).

1. If T1 <:− U and T2 <:− U, then there exists some U ′ such that T1 ∨ T2 = U ′ and
U ′ <:− U.

2. If U <:+ T1 and U <:+ T2, then there exists some U ′ such that T1 ∧ T2 = U ′ and
U <:+ U ′.

Proof. The two items are simultaneously proved by induction on T1 <:− U and U <:+ T1.
�

Theorem 8 states that cast insertion succeeds for well-typed external language and
preserves typing. A few lemmas are required in preparation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 37

Lemma 16. If T1 ∨ T2 = U, then T1 �U and T2 �U.

Proof. Immediate from Lemmas 13 (1) and 14 (1). �

Lemma 17. If T � U, then T �U.

Proof. By case analysis on T � U . �

Theorem 8 (Cast insertion succeeds and preserves typing). If � �e e : T, then there exists
some f such that � � e� f : T and � �i f : T.

Proof. By rules induction on the derivation of � �e e : T . We show main cases as follows.

Case application rule: We are given

� = �1 ◦ �2 e = e1 e2 T = T12

�1 � e1 : T1 �2 � e2 : T2 T1 � T11 →m T12 T2 � T11

By �1 � e1 : T1 and the IH, �1 � e1� f1 : T1 and �1 � f1 : T1 for some f1. By �2 � e2 : T2

and the IH, �2 � e2� f2 : T2 and �2 � f2 : T2 for some f2. Let

f = (f1 : T1
p⇒? T11 →m T12) (f2 : T2

p⇒? T11)

By the application rule, � � e� f : T .
Let us assume f1 : T1

p⇒? T11 →m T12 equals f1 : T1
p⇒ T11 →m T12. (If f1 : T1

p⇒? T11 →m

T12 equals f1, we could replace the cast rule with the subsumption rule in what follows.)
We also take similar assumptions in other cases.
By T1 � T11 →m T12 and Lemma 17, T1 � T11 →m T12. By �1 � f1 : T1 and the cast rule,

�1 � (f1 : T1
p⇒ T11 →m T12) : T11 →m T12

By �2 � f2 : T2 and T2 � T11 and the cast rule,

�2 � (f2 : T2
p⇒ T11) : T11

Thus, by the application rule, � � f : T .

Case case rule: We are given

� = �′ ◦ � e = case e′ of {lj : xj. ej}j∈J T = U

�′ � e′ : T ′ T ′ � &{lj : Rj}j∈J (�, xj : Rj � ej : Uj)j∈J U =
∨

{Uj}j∈J

By �′ � e′ : T ′ and the IH, �′ � e′� f : T ′ and �′ � f ′ : T ′ for some f ′. We take some j ∈
J . By �, xj : Rj � ej : Uj and the IH, we have �, xj : Rj � ej� fj : Uj and �, xj : Rj � fj : Uj

for some fj. Let

f = case (f ′ : T
p⇒? &{lj : Rj}j∈J) of {lj : xj. fj : Uj

p⇒? U}j∈J

By the case rule, � � e� f : T .
Next, by T ′ � &{lj : Rj}j∈J and Lemma 17, T ′ �&{lj : Rj}j∈J . By �′ � f ′ : T ′ and the cast
rule,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

38 A. Igarashi et al.

�′ � (f ′ : T ′ p⇒ &{lj : Rj}j∈J) : &{lj : Rj}j∈J

We take some j ∈ J . By U = ∨{Uj}j∈J and Lemma 16, Uj �U . By �, xj : Rj � fj : Uj and
the cast rule,

�, xj : Rj � (fj : Uj
p⇒ U) : U

Thus, by the case rule, � � f : T . �

We say that a type, a type environment, or an expression is static in the following sense:

• A type T is static if T does not contain any dynamic types: i.e., � or �©.
• A type environment � is static if � contains only static types.
• An expression e of GGVe is static if all types declared in e are static.

Lemma 18.

1. Suppose T , U are static. If T �U, then T <: U.
2. Suppose T � U and T �= �, �©.

a. If U is neither &-type nor ⊕-type, then T = U.
b. If U is either &-type or ⊕-type, then T <: U.
c. If T is static and U is not &-type, then U is static.

3. Suppose T1, T2 are static. If T1 ∨ T2 = U, then

a. U is static,
b. T1 <: U and T2 <: U,
c. U <: U ′ for any static U ′ such that T1 <: U ′ and T2 <: U ′.

4. Suppose T1, T2, U ′ are static. If T1 <: U ′ and T2 <: U ′, then there exists some static
U such that U = T1 ∨ T2.

Proof. The first item is by induction on T �U . The second item is by case analysis on
T � U . Here, we can prove

if T , U are static and T <:− U , then T <: U

by induction on T <:− U . By Lemma 13, <: ⊆ <:−. Thus, we have

if T , U are static, then T <: U if and only if T <:− U .

With this fact, the third and fourth items can be proved by Lemmas 14 and 15, respectively.
�

We define the type erasure |e|, which is obtained by removing type annotations from an
expression e of GGVe. The main cases of its definition are as follows:

|new S| = new

|λmx:T . e| = λmx. |e|
(It is extended homomorphically for all other forms of expressions.)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 39

Theorem 9 states that the GGVe typing is a conservative extension of the GV typing.
We have to take care of the difference between the declarative type system of GV and the
algorithmic type system of GGVe.

Theorem 9 (Typing Conservation over GV). Suppose that � is static.

1. If e is static and type environments that appear in the derivation of � �e e : T are
all static, then T is static and � �GV |e| : T.

2. If f is an expression of GV and � �GV f : T, then T is static and there exist static e
and static T ′ such that |e| = f and � �e e : T ′ and T ′ <: T.

Proof. The first item is by induction on � �e e : T with case analysis on the rule applied
last. We show the main cases as follows.

Case application rule: We are given

� = �1 ◦ �2 e = e1 e2 T = T12

�1 � e1 : T1 �2 � e2 : T2 T1 � T11 →m T12 T2 � T11

Since �, e are static, �1, �2, e1, e2 are also static. By �1 � e1 : T1 and the IH, T1 is static and
�1 � |e1| : T1. By T1 � T11 →m T12 and Lemma 18 (2), T11, T12 are static and T1 = T11 →m

T12. By �2 � e2 : T2 and the IH, T2 is static and �2 � |e2| : T2. By T2 � T11 and Lemma
18 (1), T2 <: T11. By the subsumption rule, �2 � |e2| : T11. Thus, by

�1 � |e1| : T11 →m T12 �2 � |e2| : T11 |e1 e2| = |e1| |e2|
and the application rule, we have �1 ◦ �2 � |e1 e2| : T12.

Case case rule: We are given

� = �′ ◦ � e = case e′ of {lj : xj. ej}j∈J T = U

�′ � e′ : T ′ T ′ � &{lj : Rj}j∈J (�, xj : Rj � ej : Uj)j∈J U =
∨

{Uj}j∈J

Since �, e are static, �′, �, e′, ej are also static. Since any type environment �, xj : Rj is
static, any Rj is static. By �′ � e′ : T ′ and the IH, T ′ is static and �′ � |e′| : T ′. By T ′ � &{lj :
Rj}j∈J and Lemma 18 (2), T ′ <: &{lj : Rj}j∈J . By the subsumption rule,

�′ � |e′| : &{lj : Rj}j∈J

We take some j ∈ J . Since �, xj : Rj is static, by �, xj : Rj � ej : Uj and the IH, Uj is static
and �, xj : Rj � |ej| : Uj. By U = ∨{Uj}j∈J and Lemma 18 (3), Uj <: U and U is static. By
the subsumption rule,

�, xj : Rj � |ej| : U

Thus, by

�′ � |e′| : &{lj : Rj}j∈J (�, xj : Rj � |ej| : U)j∈J

|case e′ of {lj : xj. ej}j∈J | = case |e′| of {lj : xj. |ej|}j∈J

the case rule, we have �′ ◦ � � |case e′ of {lj : xj. ej}j∈J | : U .

The second item is by induction on � �GV f : T with case analysis on the rule applied
last. We show the main cases as follows.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

40 A. Igarashi et al.

Case application rule: We are given

� = �1 ◦ �2 f = f1 f2 T = T12 �1 � f1 : T11 →m T12 �2 � f2 : T11

Since � is static, �1, �2 are also static. By �1 � f1 : T11 →m T12 and the IH, T11, T12 are
static and there exist static e1, U1 such that

�1 � e1 : U1 U1 <: T11 →m T12 |e1| = f1

By inversion of <:, we have U1 = U11 →n U12 and n <: m and T11 <: U11 and U12 <: T12

for some U11, U12, n. Since U1 is static, U11, U12 are also static. By �2 � f2 : T11 and the
IH, T11 is static and there exist static e2, U2 such that

�2 � e2 : U2 U2 <: T11 |e2| = f2

By U2 <: T11 and T11 <: U11 and transitivity, U2 <: U11. By Lemma 13, U2 �U11. From
Figure 9, we have U11 →n U12 � U11 →n U12. Thus, by

�1 � e1 : U11 →n U12 �2 � e2 : U2 U11 →n U12 � U11 →n U12 U2 �U11

and the application rule, �1 ◦ �2 � e1 e2 : U12. Additionally,

|e1 e2| = |e1| |e2| = f1 f2 = f U12 <: T12 = T

Case case rule: We are given

� = �′ ◦ � f = case f ′ of {lj : xj. fj}j∈J

�′ � f ′ : &{lj : Rj}j∈J (�, xj : Rj � fj : T)j∈J

Since � is static, �′, � are also static. By �′ � f ′ : &{lj : Rj}j∈J and the IH, all Rj are static
and there exist static e′, T ′ such that

|e′| = f ′ �′ � e′ : T ′ T ′ <: &{lj : Rj}j∈J

By T ′ <: &{lj : Rj}j∈J and Lemma 13, T ′ �&{lj : Rj}j∈J . We take some j ∈ J . By �, xj : Rj �
fj : T and the IH, T is static and there exist static ej, Tj such that

|ej| = fj �, xj : Rj � ej : Tj Tj <: T

So, (Tj <: T)j∈J . By Lemma 18 (4), there exist some static U such that U = ∨{Tj}j∈J . By
Lemma 18 (3), U <: T . Thus, by

�′ � e′ : T ′ (�, xj : Rj � ej : Tj)j∈J T ′ �&{lj : Rj}j∈J U =
∨

{Tj}j∈J

and the case rule, �′ ◦ � � case e′ of {lj : xj. ej}j∈J : U . Additionally,

|case e′ of {lj : xj. ej}j∈J | = case |e′| of {lj : xj. |ej|}j∈J = case f ′ of {lj : xj. fj}j∈J = f

We already have U <: T .

Case subsumption rule: We are given � � f : U and U <: T . By the IH, U is static and
there exist static e and U ′ such that

� � e : U ′ U ′ <: U |e| = f

By U ′ <: U and U <: T and transitivity, U ′ <: T . �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 41

Proposition 2 states that the cast-insertion translation does not insert casts for static
expressions, which can be seen as expressions of GV if type annotations are removed. The
proof is similar to that of Theorem 9 (1).

Proposition 2. Suppose that � and e are both static. If � � e� f : T, then T is static and
|e| = f .

Proof. By induction on � � e� f : T . with case analysis on the rule applied last. We show
one of the main cases as follows.

Case application rule: We are given

� = �1 ◦ �2 e = e1 e2 f = (f1 : T1
p⇒? T11 →m T12) (f2 : T2

p⇒? T11) T = T12

�1 � e1� f1 : T1 �2 � e2� f2 : T2 T1 � T11 →m T12 T2 � T11

Since �, e are static, �1, �2, e1, e2 are also static. By �1 � e1� f1 : T1 and the IH, T1 is
static and |e1| = f1. By T1 � T11 →m T12 and Lemma 18 (2), T11, T12 are static and T1 =
T11 →m T12. So,

f1 : T1
p⇒? T11 →m T12 = f1 = |e1|

By �2 � e2� f2 : T2 and the IH, T2 is static and |e2| = f2. By T2 � T11 and Lemma 18 (1),
T2 <: T11. So,

f2 : T2
p⇒? T11 = f2 = |e2|

Thus, f = |e1| |e2| = |e1 e2|. �

4.4 (Failure of) The gradual guarantee

In a gradually typed language, changing type annotations in a program should not change
the static or dynamic behavior—except for runtime errors caused by casts. Such an expec-
tation is formalized by Siek et al. (2015b) as the gradual guarantee property. It usually
consists of two statements concerning the static and dynamic aspects of programs. The
static counterpart of the gradual guarantee (simply called the static gradual guarantee)
states that less precise type annotations make the type of an expression less precise,
whereas the dynamic gradual guarantee states that making type annotations less precise
does not change the final outcome of a program.

We will show that, unfortunately, GGVe satisfies neither the static nor dynamic gradual
guarantee by constructing counterexamples. We analyze the problem and argue that it is
not easy to recover without losing other good properties.

First, to capture the notion of programs with more precise type annotations formally, the
precision over types is extended to type environments and expressions. The relation �1 �
�2 is the least relation that satisfies · � · and �1, x : T1 � �2, x : T2 if �1 � �2 and T1 � T2

and the relation e1 � e2 is the least precongruence that is closed under the following rules:

T1 � T2 e1 � e2

λmx:T1. e1 � λmx:T2. e2

S1 � S2

new S1 � new S2
(1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

42 A. Igarashi et al.

Using the precision, the static gradual guarantee can be stated as follows.

If �1 � �2, e1 � e2, and �1 � e1 : T1, then �2 � e2 : T2 and T1 � T2 for some T2.

However, it does not hold.

Theorem 10 (Failure of the Static Gradual Guarantee). There exist �1, �2, e1, e2, and T1

such that �1 � �2, e1 � e2, �1 �e e1 : T1 and, for any T2 such that �2 �e e2 : T2, T1 �� T2.

Proof. Let

�1 = x : T1, y : T2, z : &{l1 : end!, l2 : end!}
�2 = x : �, y : T2, z : &{l1 : end!, l2 : end!}
e1 = e2 = case z of {l1 : x1. close x1; x, l2 : x2. close x2; y}
T1 = unit →lin unit

T2 = unit →un unit

(where e1; e2 stands for usual sequential composition). Then, �1 � �2, e1 � e2, �1 �e e1 :
T1, and �2 �e e2 : T2; but T1 �� T2. �

Although we do not state the dynamic gradual guarantee formally, we expect at least
that, if two programs e1 and e2 satisfy e1 � e2 and the execution of e1 (after cast insertion)
terminates normally (at 〈()〉), then e2 also terminates normally. Unfortunately, it would not
be very difficult to see such an expectation fail. Let’s consider

e′
1 = (λlinx:T1. e1) (λlinx1:unit. x1)

and a more imprecise expression

e′
2 = (λlinx:�. e2) (λlinx1:unit. x1)

The former will return λlinx1:unit. x1 if l1 is selected by another process. However, e′
2 shows

different behavior: the cast-inserting translation puts a cast from � to T2 = unit →un unit
on x in the first branch of case in e2 but x will be bound to (a reference to) a linear function
and, if l1 is selected, the cast will fail and raise blame.

The problem seems to stem from the fact that ∨ has subtle interaction with �. For
typing case-expressions, we would naturally require precision to be preserved by the join
operation, i.e., if T1 � T ′

1, then T1 ∨ T2 � T ′
1 ∨ T2. However, the current definition of ∨

breaks this property as the counterexample to the static gradual guarantee above shows.
Also, as we can see from the counterexample to the dynamic gradual guarantee, join with
a more precise type can yield a supertype—that is, T1 � � and � ∨ T2 <: T1 ∨ T2 hold.

One possible workaround is to adapt the “lifted join” operation ˜̈∨ of the GTFL� lan-

guage (Garcia et al., 2016) to Gradual GV. Like ∨, unit →lin unit ˜̈∨ unit →un unit =
unit →lin unit but, unlike ∨, � ˜̈∨ unit →un unit = �. Thus, the lifted join would perhaps
recover the gradual guarantee. However, it seems that the lifted join is the least upper
bound operation for no known ordering between types and we would lose the minimal
type property of GGVe if we used ˜̈∨. Also, the lifted join has the following property:
T ˜̈∨ � is T only if T does not have nontrivial supertypes; otherwise T ˜̈∨ � is �. For
example, unit ˜̈∨ � = unit and unit →lin unit ˜̈∨ � = unit →lin unit but unit →un unit ˜̈∨ � = �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 43

(because unit →un unit <: unit →lin unit). It means that the standard narrowing property—
if �, x : T1 �e e : T and T2 <: T1, then �1, x : T2 �e e : T—does not hold. We leave more
detailed analysis of the problem and possible remedy for future work.

5 Related work

5.1 Gradual typing

Findler and Felleisen (2002) introduced two seminal ideas: higher-order contracts that
dynamically monitor conformance to a type discipline, and blame to indicate whether
it is the library or the client which is at fault if the contract is violated. Siek and Taha
(2006, 2007) introduced gradual types to integrate untyped and typed code, while Flanagan
(2006) introduced hybrid types to integrate simple types with refinement types. Both used
target languages with explicit casts and similar translations from source to target; both
exploit contracts, but neither allocates blame. Motivated by similarities between gradual
and hybrid types, Wadler and Findler (2009) introduced blame calculus, which unifies the
two by encompassing untyped, simply typed, and refinement-typed code. As the name indi-
cates, it also restores blame, which enables a proof of blame safety: blame for type errors
always lays with less-precisely typed code—“well-typed programs can’t be blamed.”

While the first investigations of gradual typing were based on simply typed calculi,
subsequent work has explored gradual typing for a range of typing features. Polymorphism
(Ahmed et al., 2011; Igarashi et al., 2017b; Toro et al., 2019) has proved to be quite tricky,
with one important question about the Jack-of-All-Trades Principle (Ahmed et al., 2011)
still open. A gradual treatment of record types may be found in the paper on Abstract
Gradual Typing (AGT) (Garcia et al., 2016). Variant types have proved elusive, but union
types have been considered (Siek & Tobin-Hochstadt, 2016) along with intersection types
and polymorphism as part of a set-theoretical reevaluation of gradual principles (Castagna
et al., 2019).

Moving toward session types, systems with gradual typestate have been considered
(Wolff et al., 2011; Garcia et al., 2014); they extend an object-oriented language with
typestate by a dynamic type and define a suitable translation to an internal language with
casts. The additional complication is to track the current typestate at runtime. Thiemann
(2014) describes a system with gradual types and session types, but in it only types (and
not session types) can be gradual.

Effect systems have been gradualized based on ideas from abstract interpretation by
Banados Schwerter and others (2014). While the former work only presented a gradualiza-
tion of effects themselves a subsequent extension adds a full treatment of types (Schwerter
et al., 2016). Related ideas are explored by Thiemann and Fennell (2014), who present an
approach to gradualize annotated type systems, like units and security labels. Following an
earlier approach for gradual security typing for simply typed lambda calculus (Disney &
Flanagan, 2011), Fennell and Thiemann (2013) developed gradual security for an ML core
language with references and subsequently for a Java core language LJGS with polymor-
phic security labels (Fennell & Thiemann, 2016). Toro and others (2018) developed a
gradual calculus with slightly different features from first principles using the AGT (Garcia
et al., 2016) approach. In each of these approaches, special measures have to be taken to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

44 A. Igarashi et al.

ensure the key property of noninterference. Gradual type systems related to session types
also include the runtime enforcement of affine typing of Tov and Pucella Tov and Pucella
(2010).

As noted in the introduction, gradual typing may be important as a bridge to type systems
that go beyond what is currently available, including dependent, effect, and session types.
There is a range of gradual type systems for dependent types. Ou and others (2004) bridge
the gap between simply typed lambda calculus and a calculus with indexed types. In
Flanagan’s hybrid typing (2006), subtyping judgments are either proved or disproved stat-
ically by SMT theorem proving or residualized as runtime checks. Greenberg and others
(2010) consider different styles of contracts in simply typed and dependently typed set-
tings. Lehmann and Tanter (2017) present an approach that uses the AGT methodology
to obtain a gradual system that mediates between simple types and dependent refinement
types. This work has been augmented with type inference by Vazou and others (2018) and
it has been extended to verification (Bader et al., 2018) where specifications may contains
unknown subformulas. Jafery & Dunfield (2017) consider gradualized refinements for sum
types with the goal to control errors in pattern matching.

Gradual ownership types (Sergey & Clarke, 2012) is a gradualization of the Owners
as Dominators principle of ownership. Its theory is built with similar principles as other
gradual languages, but its flavor is different as ownership is not a semantic property, but a
structure imposed by the programmer.

Siek and others (2015b) review desirable properties of gradually typed languages, while
Wadler Wadler (2015) discusses history of the blame calculus and why blame is important.
These papers provide overviews of the field, each with many further citations. Many of the
above-cited works strive to fulfill the properties of Siek and others, not all of them are
successful, but further discussion of the properties exceeds the scope of this survey of
related work.

TypeScript TPD (Williams et al., 2017) applies contracts to monitor the gradual typ-
ing of TypeScript, and evaluates the successes and shortcomings of contracts in this
context.

5.2 Session types

Session types were introduced by Honda (1993) and Honda et al. (1998). The original
system addressed binary sessions, whereby types describe the interaction between two
partners. Binary sessions were eventually extended to the more general setting of multi-
party session types (Honda et al., 2016). Recent years have seen the introduction of session
types in programming languages, and software development tools. We review the most
important works.

Session types inspired the design of several programming languages. Sing# (Fähndrich
et al., 2006) constitutes one of the first attempts to introduce session types in programming
languages. An extension of C, Sing# was used to implement Singularity, an operating sys-
tem based on message passing. Gay and others (2010) propose attaching session types to
class definitions, allowing to treat channels as objects for session-based communication in
distributed systems. SePi (Franco & Vasconcelos, 2013) is a concurrent, message-passing
programming language based on the pi-calculus, featuring a simple form of refinement
types. SILL (Toninho et al., 2013; Pfenning & Griffith, 2015) is a higher-order session

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 45

functional programming language, featuring process expressions as first class objects via
a linear contextual monad. Concurrent C0 (Willsey et al., 2017) is a type-safe C-like pro-
gramming language equipped with channel communication governed by session types.
Links (Lindley & Morris, 2017) is a functional programming language designed for tierless
web applications that natively supports binary session types.

Proposals have been made to retroactively introduce session types in mainstream
programming languages. Session Java (Hu et al., 2008) introduces API-based session
primitives in Java, while (Hu et al., 2010) presents a Java language extension and type dis-
cipline for session-based event-driven programming. Featherweight Erlang (Mostrous &
Vasconcelos, 2011) imposes a session-based type system to discipline message passing in
Erlang. Mungo (Kouzapas et al., 2016) is a tool for checking Java code against session
types, presented in the form of typestates. Embedding of session types have been pro-
posed for Haskell (Pucella & Tov, 2008; Sackman & Eisenbach, 2008; Polakow, 2015;
Orchard & Yoshida, 2016; Lindley & Morris, 2016a), OCaml (Padovani, 2017), Scala
(Scalas & Yoshida, 2016), and Rust (Jespersen et al., 2015). Most of these embeddings
delegate linearity checks to the runtime system.

Session types can be used in the software development process under different forms,
including languages to describe protocols, specialized libraries to invoke session-based
communication primitives, provision for runtime monitoring against session types, and
extended type checkers. Scribble (Honda et al., 2011) is a language-agnostic protocol
description formalism used in many different tools. Multiparty Session C (Ng et al.,
2012) uses Scribble, a compiler plug-in, and a C library to validate against session types.
Hu and Yoshida (2016) generate protocol-specific Java APIs from multiparty session
types described in Scribble. SPY (Neykova et al., 2013) generates runtime monitors for
endpoint communication from Scribble protocols. Neykova and Yoshida (2014) designed
and implemented a session actor library in Python together with a runtime verification
mechanism. Bocchi and others (2017) present a theory that incorporates both static typing
and dynamic monitoring of session types. Fowler (2016) describes a framework for
monitoring Erlang applications against multiparty session types. Neykova and Yoshida
(2017) investigate failure handling for Erlang processes in a system that dynamically
monitors session types.

6 Conclusions

We presented the design of Gradual GV, which combines a session-typed language GV
along the lines of Gay and Vasconcelos (2010) with a blame calculus along the lines of
Wadler and Findler (2009), and with dynamic enforcement of linearity along the lines of
Tov and Pucella (2010). We established expected results for such a language, including
type safety and blame safety. The gradual guarantee however does not hold, and it is not
clear how it can be recovered without losing other good properties.

Much remains to be done; we consider just one future direction here. The embed-
ding of linear types in the unrestricted dynamic type relies on an indirection through
a cell in the store. In our present work, these cells are used once and then discarded.
This one-shot policy imposes a certain usage pattern on linear values embedded in the
unityped language. In particular, the send and receive operations on a channel need

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

46 A. Igarashi et al.

to be chained as in (close (send v2 (send v1 c))). However, one could imagine a uni-
typed language where one may use the channel nonlinearly in an imperative style as in
(send v1 c; send v2 c; close c), mimicking the style of network programming in conven-
tional languages. This style can also be supported by a variant of Gradual GV with a
multi-shot policy that restores an updated channel to the same cell from which it was
extracted. We leave the full formalization of this policy to future work.

Acknowledgments

We would like to thank Alceste Scalas and Nobuko Yoshida for comments and point-
ing out errors in the definition of subtyping rules, Kaede Kobayashi for pointing out
subtle errors in the operational semantics, and anonymous reviewers for construc-
tive comments. We are also grateful to Hannes Saffrich for implementing a type
checker for the calculus in this paper. This work was supported in part by the JSPS
KAKENHI Grant Number JP17H01723 (Igarashi), by FCT through the LASIGE Research
Unit ref. UID/CEC/00408/2019 and project Confident ref. PTDC/EEI-CTP/4503/2014
(Vasconcelos), and by EPSRC program grant EP/K034413/1 (Wadler).

References

Ahmed, A., Findler, R. B., Siek, J. G. & Wadler, P. (2011) Blame for all. In Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26–28, 2011, Ball, T. & Sagiv, M. (eds), ACM, pp. 201–214.

Bader, J., Aldrich, J. & Tanter, É. (2018) Gradual program verification. In Verification, Model
Checking, and Abstract Interpretation – 19th International Conference, VMCAI 2018, Los
Angeles, CA, USA, January 7–9, 2018, Proceedings, Dillig, I. & Palsberg, J. (eds). Lecture Notes
in Computer Science, vol. 10747. Springer, pp. 25–46.

Bañados Schwerter, F., Garcia, R. & Tanter, É. (2014) A theory of gradual effect systems. In
International Conference on Functional Programming (ICFP). ACM, pp. 283–295.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics. North-Holland.
Bierman, G., Abadi, M. & Torgersen, M. (2014) Understanding TypeScript. In European Conference

on Object-Oriented Programming (ECOOP). LNCS, vol. 8586. Springer, pp. 257–281.
Bierman, G. M., Meijer, E. & Torgersen, M. (2010) Adding dynamic types to C#. In European

Conference on Object-Oriented Programming (ECOOP). LNCS. Springer, pp. 76–100.
Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K. & Yoshida, N. (2013) Monitoring networks

through multiparty session types. In Formal Techniques for Distributed Systems, Beyer, D. &
Boreale, M. (eds). Springer, pp. 50–65.

Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K. & Yoshida, N. (2017) Monitoring networks
through multiparty session types. Theor. Comput. Sci. 699, 33–58.

Brady, E. (2013) Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program. 23(05), 552–593.

Caires, L. & Pfenning, F. (2010) Session types as intuitionistic linear propositions. In International
Conference on Concurrency Theory (CONCUR). LNCS. Springer, pp. 222–236.

Caires, L., Pfenning, F. & Toninho, B. (2014) Linear logic propositions as session types. Math.
Struct. Comput. Sci. 26(03), 367–423.

Carbone, M., Honda, K. & Yoshida, N. (2007) Structured communication-centred programming
for web services. In De Nicola, R. (ed), Programming Languages and Systems, 16th European
Symposium on Programming, ESOP 2007, Held as Part of the Joint European Conferences

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 47

on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24–April 1, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4421. Springer, pp. 2–17.

Carbone, M., Honda, K. & Yoshida, N. (2012) Structured communication-centered programming for
web services. ACM Trans. Program. Lang. Syst. 34(2), 8.

Castagna, G., Lanvin, V., Petrucciani, T. & Siek, J. G. (2019) Gradual typing: A new perspective.
PACMPL 3(POPL), 16:1–16:32.

Chaudhuri, A., Vekris, P., Goldman, S., Roch, M. & Levi, G. (2017) Fast and precise type checking
for JavaScript. PACMPL 1(OOPSLA), 48:1–48:30.

Cimini, M. & Siek, J. G. (2016) The Gradualizer: A methodology and algorithm for generating
gradual type systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22,
2016, pp. 443–455.

Cooper, E., Lindley, S., Wadler, P. & Yallop, J. (2007) Links: Web programming without tiers. In
Formal Methods for Components and Objects, de Boer, F. S., Bonsangue, M. M., Graf, S. & de
Roever, W. P. (eds). Springer, pp. 266–296.

Demangeon, R. & Honda, K. (2011) Full abstraction in a subtyped pi-calculus with linear types.
In Katoen, J.-P. & König, B. (eds), CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6–9, 2011. Proceedings. Lecture
Notes in Computer Science, vol. 6901. Springer, pp. 280–296.

Demangeon, R., Honda, K., Hu, R., Neykova, R. & Yoshida, N. (2015) Practical interruptible con-
versations: Distributed dynamic verification with multiparty session types and python. Formal
Methods Syst. Des. 46(3), 197–225.

Disney, T. & Flanagan, C. (2011) Gradual information flow typing. In STOP. Available at:
https://users.soe.ucsc.edu/∼cormac/papers/stop11.pdf

Ernst, E., Møller, A., Schwarz, M. & Strocco, F. (2017) Message safety in Dart. Sci. Comput.
Program. 133, 51–73.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G. C., Larus, J. R. & Levi, S. (2006)
Language support for fast and reliable message-based communication in Singularity OS. In
European Conference on Computer Systems (EuroSys). ACM, pp. 177–190.

Fennell, L. & Thiemann, P. (2012). The blame theorem for a linear lambda calculus with type
dynamic. In Trends in Functional Programming, Loidl, H-W. & Peña, R. (eds). LNCS, vol. 7829.
Springer, pp. 37–52.

Fennell, L. & Thiemann, P. (2013) Gradual security typing with references. In 2013 IEEE 26th
Computer Security Foundations Symposium, New Orleans, LA, USA, June 26–28, 2013. IEEE
Computer Society, pp. 224–239.

Fennell, L. & Thiemann, P. (2016) LJGS: Gradual security types for object-oriented languages.
In Krishnamurthi, S. & Lerner, B. S. (eds), 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18–22, 2016, Rome, Italy. LIPIcs, vol. 56. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 9:1–9:26.

Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In International
Conference on Functional Programming (ICFP). ACM, pp. 48–59.

Flanagan, C. (2006) Hybrid type checking. In Principles of Programming Languages (POPL),
Morrisett, J. G. & Peyton Jones, S. L. (eds). ACM, pp. 245–256.

Fowler, S. (2016) An Erlang implementation of multiparty session actors. In Interaction and
Concurrency Experience, pp. 36–50.

Franco, J. & Vasconcelos, V. T. (2013) A concurrent programming language with refined session
types. In SEFM. LNCS, vol. 8368. Springer, pp. 15–28.

Garcia, R., Clark, A. M. & Tanter, É. (2016) Abstracting gradual typing. In Principles of
Programming Languages (POPL). ACM, pp. 429–442.

Garcia, R., Tanter, É., Wolff, R. & Aldrich, J. (2014) Foundations of typestate-oriented program-
ming. ACM Trans. Program. Lang. Syst. 36(4), 12:1–12:44.

Gay, S. & Hole, M. (2005) Subtyping for session types in the pi calculus. Acta Informatica 42(2–3),
191–225.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://users.soe.ucsc.edu/~cormac/papers/stop11.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

48 A. Igarashi et al.

Gay, S. & Vasconcelos, V. (2010) Linear type theory for asynchronous session types. J. Funct.
Program. 20(01), 19–50.

Gay, S. J. (2016) Subtyping supports safe session substitution. In A List of Successes That Can
Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
Lindley, S., McBride, C., Trinder, P. W. & Sannella, D. (eds). Lecture Notes in Computer Science,
vol. 9600. Springer, pp. 95–108.

Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N. & Caldeira, A. Z. (2010) Modular ses-
sion types for distributed object-oriented programming. In Principles of Programming Languages
(POPL). ACM, pp. 299–312.

Girard, J.-Y. (1987) Linear logic. Theoret. Comput. Sci. 50(1), 1–101.
Gommerstadt, H., Jia, L. & Pfenning, F. (2018) Session-typed concurrent contracts. In Programming

Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14–20, 2018, Proceedings, Ahmed, A. (ed). Lecture Notes in
Computer Science, vol. 10801. Springer, pp. 771–798.

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts made manifest. In Principles of
Programming Languages (POPL). ACM, pp. 353–364.

Honda, K. (1993) Types for dyadic interaction. In International Conference on Concurrency Theory
(CONCUR). LNCS, vol. 715. Springer, pp. 509–523.

Honda, K., Mukhamedov, A., Brown, G., Chen, T. & Yoshida, N. (2011) Scribbling interactions
with a formal foundation. In ICDCIT. LNCS, vol. 6536. Springer, pp. 55–75.

Honda, K., Vasconcelos, V. & Kubo, M. (1998) Language primitives and type discipline for struc-
tured communication-based programming. In European Symposium on Programming (ESOP).
LNCS. Springer, pp. 122–138.

Honda, K., Yoshida, N. & Carbone, M. (2008) Multiparty asynchronous session types. In Principles
of Programming Languages (POPL). ACM, pp. 273–284.

Honda, K., Yoshida, N. & Carbone, M. (2016) Multiparty asynchronous session types. J. ACM
63(1), 9.

Hu, R., Kouzapas, D., Pernet, O., Yoshida, N. & Honda, K. (2010) Type-safe eventful sessions
in Java. In European Conference on Object-Oriented Programming (ECOOP). LNCS, vol. 6183.
Springer, pp. 329–353.

Hu, R. & Yoshida, N. (2016) Hybrid session verification through endpoint API generation.
In Fundamental Approaches to Software Engineering (FASE). LNCS, vol. 9633. Springer,
pp. 401–418.

Hu, R., Yoshida, N. & Honda, K. (2008) Session-based distributed programming in Java.
In European Conference on Object-Oriented Programming (ECOOP). LNCS, vol. 5142. Springer,
pp. 516–541.

Igarashi, A., Thiemann, P., Vasconcelos, V. T. & Wadler, P. (2017a) Gradual session types.
PACMPL 1(ICFP), 38:1–38:28.

Igarashi, Y., Sekiyama, T. & Igarashi, A. (2017b) On polymorphic gradual typing. PACMPL
1(ICFP), 40:1–40:29.

Jafery, K. A. & Dunfield, J. (2017) Sums of uncertainty: Refinements go gradual. In Castagna,
G. & Gordon, A. D. (eds), Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18–20, 2017. ACM, pp. 804–817.

Jespersen, T. B. L., Munksgaard, P. & Larsen, K. F. (2015) Session types for Rust. In Workshop on
Generic Programming (WGP). ACM, pp. 13–22.

Jia, L., Gommerstadt, H. & Pfenning, F. (2016) Monitors and blame assignment for higher-
order session types. In Bodík, R. & Majumdar, R. (eds), Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20–22, 2016. ACM, pp. 582–594.

Kobayashi, N., Pierce, B. C. & Turner, D. N. (1999) Linearity and the pi-calculus. ACM Trans.
Program. Lang. Syst. 21(5), 914–947.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 49

Kouzapas, D., Dardha, O., Perera, R. & Gay, S. J. (2016) Typechecking protocols with Mungo and
StMungo. In Principles and Practice of Declarative Programming (PPDP). ACM, pp. 146–159.

Lehmann, N. & Tanter, É. (2017) Gradual refinement types. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18–20, 2017, Castagna, G. & Gordon, A. D. (eds). ACM, pp. 775–788.

Lindley, S. & Morris, J. G. (2016a) Embedding session types in Haskell. In Symposium on Haskell.
ACM, pp. 133–145.

Lindley, S. & Morris, J. G. (2016b) Talking bananas: Structural recursion for session types.
In International Conference on Functional Programming (ICFP). ACM, pp. 434–447.

Lindley, S. & Morris, J. G. (2017) Lightweight functional session types. In Behavioural Types: From
Theory to Tools. River Publishers.

Melgratti, H. C. & Padovani, L. (2017) Chaperone contracts for higher-order sessions. PACMPL
1(ICFP), 35:1–35:29.

Milner, R., Parrow, J. & Walker, D. (1992) A calculus of mobile processes, I. Inform. Comput.
100(1), 1–40.

Mostrous, D. & Vasconcelos, V. T. (2011) Session typing for a featherweight Erlang.
In Coordination Models and Languages (COORDINATION). LNCS, vol. 6721. Springer,
pp. 95–109.

Neykova, R. & Yoshida, N. (2014) Multiparty session actors. In Coordination Models and Languages
(COORDINATION). LNCS, vol. 8459. Springer, pp. 131–146.

Neykova, R. & Yoshida, N. (2017) Let it recover: Multiparty protocol-induced recovery.
In International Conference on Compiler Construction (CC). ACM, pp. 98–108.

Neykova, R., Yoshida, N. & Hu, R. (2013) SPY: Local verification of global protocols.
In International Conference on Runtime Verification (RV). LNCS, vol. 8174. Springer,
pp. 358–363.

Ng, N., Yoshida, N. & Honda, K. (2012) Multiparty Session C: Safe parallel programming with
message optimisation. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation (TOOLS). LNCS, vol. 7304. Springer, pp. 202–218.

Norell, U. (2009) Dependently typed programming in Agda. In Proceedings of the 4th International
Workshop on Types in Language Design and Implementation. TLDI’09. ACM, pp. 1–2.

Orchard, D. & Yoshida, N. (2016) Effects as sessions, sessions as effects. In Principles of
Programming Languages (POPL). ACM, pp. 568–581.

Ou, X., Tan, G., Mandelbaum, Y. & Walker, D. (2004) Dynamic typing with dependent types. In
IFIP International Conference on Theoretical Computer Science, vol. 155. Springer, pp. 437–450.

Padovani, L. (2017) A simple library implementation of binary sessions. J. Funct. Program 27, e4.
Pfenning, F. & Griffith, D. (2015) Polarized substructural session types. In International Conference

on Foundations of Software Science and Computation Structures. LNCS, vol. 9034. Springer,
pp. 3–22.

Pierce, B. C. (2002) Types and Programming Languages. MIT Press.
Polakow, J. (2015) Embedding a full linear lambda calculus in Haskell. In Symposium on Haskell.

ACM, pp. 177–188.
Pucella, R. & Tov, J. A. (2008) Haskell session types with (almost) no class. In Symposium on

Haskell. ACM, pp. 25–36.
Sackman, M. & Eisenbach, S. (2008) Session Types in Haskell: Updating Message Passing for the

21st Century. Available at: https://spiral.imperial.ac.uk:8443/handle/10044/1/5918.
Scalas, A. & Yoshida, N. (2016) Lightweight session programming in Scala. In European Conference

on Object-Oriented Programming (ECOOP). LIPIcs. Schloss Dagstuhl, pp. 21:1–21:28.
Schwerter, F. B., Garcia, R. & Tanter, É. (2016) Gradual type-and-effect systems. J. Funct. Program.

26, e19.
Sergey, I. & Clarke, D. (2012) Gradual ownership types. In Programming Languages and Systems -

21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April
1, 2012. Proceedings, Seidl, H. (ed). Lecture Notes in Computer Science, vol. 7211. Springer,
pp. 579–599.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://spiral.imperial.ac.uk:8443/handle/10044/1/5918
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

50 A. Igarashi et al.

Siek, J., Thiemann, P. & Wadler, P. (2015a) Blame and coercion: Together again for the first time.
In Programming Language Design and Implementation (PLDI), ACM, pp. 425–435.

Siek, J. G., & Taha, W. (2006) Gradual typing for functional languages. In Scheme and Functional
Programming Workshop (Scheme), pp. 81–92. Available at: http://scheme2006.cs.uchicago.edu
and the paper URL is http://scheme2006.cs.uchicago.edu/13-siek.pdf

Siek, J. G. & Taha, W. (2007) Gradual typing for objects. In ECOOP. Lecture Notes in Computer
Science, vol. 4609. Springer, pp. 2–27.

Siek, J. G. & Tobin-Hochstadt, S. (2016) The recursive union of some gradual types. In Lindley,
S., McBride, C., Trinder, P. W. & Sannella, D. (eds), A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Lecture Notes
in Computer Science, vol. 9600. Springer, pp. 388–410.

Siek, J. G., Vitousek, M. M., Cimini, M. & Boyland, J. T. (2015b) Refined criteria for gradual typing.
In Summit on Advances in Programming Languages (SNAPL). LIPIcs, vol. 32. Schloss Dagstuhl,
pp. 274–293.

The Coq Development Team (2019) The coq proof assistant, version 8.9.0.
The Dart Team (2014) Dart programming language specification. Google, 1.2 edition.
Thiemann, P. (2014) Session types with gradual typing. In TGC. LNCS, vol. 8902. Springer,

pp. 144–158.
Thiemann, P. & Fennell, L. (2014) Gradual typing for annotated type systems. In Programming

Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5–13, 2014, Proceedings, Shao, Z. (ed). Lecture Notes in Computer
Science, vol. 8410. Springer, pp. 47–66.

Tobin-Hochstadt, S. & Felleisen, M. (2008) The design and implementation of typed Scheme. In
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7–12, 2008, Necula, G. C. &
Wadler, P. (eds). ACM, pp. 395–406.

Toninho, B., Caires, L. & Pfenning, F. (2013) Higher-order processes, functions, and sessions:
A monadic integration. In European Symposium on Programming (ESOP). LNCS, vol. 7792.
Springer, pp. 350–369.

Toninho, B. & Yoshida, N. (2018) Depending on session-typed processes. In FoSSaCS. Lecture
Notes in Computer Science, vol. 10803. Springer, pp. 128–145.

Toro, M., Garcia, R. & Tanter, É. (2018) Type-driven gradual security with references. ACM Trans.
Program. Lang. Syst. 40(4), 16:1–16:55.

Toro, M., Labrada, E. & Tanter, É. (2019) Gradual parametricity, revisited. PACMPL 3(POPL),
17:1–17:30.

Tov, J. A. & Pucella, R. (2010) Stateful contracts for affine types. In European Symposium on
Programming (ESOP). LNCS, vol. 6012. Springer, pp. 550–569.

Vasconcelos, V. T. (2012) Fundamentals of session types. Inform. Comput. 217, 52–70.
Vazou, N., Tanter, É. & Horn, D. V. (2018) Gradual liquid type inference. PACMPL 2(OOPSLA),

132:1–132:25.
Verlaguet, J. (2013) Facebook: Analysing PHP statically. In Workshop on Commercial Uses of

Functional Programming (CUFP).
Vitousek, M. M., Swords, C. & Siek, J. G. (2017) Big types in little runtime: Open-world soundness

and collaborative blame for gradual type systems. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18–20,
2017, Castagna, G. & Gordon, A. D. (eds). ACM, pp. 762–774.

Wadler, P. (2012) Propositions as sessions. In International Conference on Functional Programming
(ICFP). ACM, pp. 273–286.

Wadler, P. (2014) Propositions as sessions. J. Funct. Program. 24(2–3), 384–418.
Wadler, P. (2015) A complement to blame. In 1st Summit on Advances in Programming Languages

(SNAPL). LIPIcs, vol. 32. Schloss Dagstuhl, pp. 309–320.
Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In European Symposium

on Programming (ESOP). LNCS, vol. 5502. Springer, pp. 1–16.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

http://scheme2006.cs.uchicago.edu
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 51

Walker, D. (2005) Substructural type systems. In Advanced Topics in Types and Programming
Languages. MIT Press, pp. 3–43.

Williams, J., Morris, J. G., Wadler, P. & Zalewski, J. (2017) Mixed messages: Measuring con-
formance and non-interference in TypeScript. In European Conference on Object-Oriented
Programming (ECOOP). LIPIcs, vol. 74. Dagstuhl, Germany: Schloss Dagstuhl, pp. 28:1–28:29.

Willsey, M., Prabhu, R. & Pfenning, F. (2017) Design and implementation of concurrent C0. In
International Workshop on Linearity. EPTCS, vol. 238, pp. 73–82.

Wolff, R., Garcia, R., Tanter, É. & Aldrich, J. (2011) Gradual typestate. In European Conference on
Object-Oriented Programming (ECOOP). LNCS, vol. 6813. Springer, pp. 459–483.

Yoshida, N., Hu, R., Neykova, R. & Ng, N. (2014) The Scribble protocol language. In International
Symposium on Trustworthy Global Computing. LNCS, vol. 8358. Springer, pp. 22–41.

Yoshida, N. & Vasconcelos, V. (2007) Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communi-
cation. Entcs 171(4), 73–93.

Appendix: Type-checking algorithm for the external language

We give a type-checking algorithm for GGVe and show that it is correct. The type-checking
algorithm is slightly involved due to linearity: CHECKEXPR(�, e) outputs a pair of type T
and a set X of variables, containing the linear variables occurring free in e.

function CHECKEXPR(�, e)
case e of

| z ⇒
assert z ∈ dom(�)
T := �(z)
if lin(T) then return T , {z}
else return T , ∅

| () ⇒ return unit, ∅
| λmx:T1. e1 ⇒

T2, Y := CHECKEXPR((�, x : T1), e1)
if lin(T1) and m = un then

assert Y = {x}
return T1 →un T2, ∅

else if lin(T1) and m = lin then
assert x ∈ Y
return T1 →lin T2, Y \ {x}

else if un(T1) and m = un then
assert Y = ∅
return T1 →un T2, ∅

else return T1 →lin T2, Y

| e1 e2 ⇒
T1, X := CHECKEXPR(�, e1); T2, Y := CHECKEXPR(�, e2)
assert X ∩ Y = ∅
T11 →m T12 := MATCHINGFUN(T1)
assert T2 � T11

return T12, X ∪ Y

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

52 A. Igarashi et al.

| (e1, e2)m ⇒
T1, X := CHECKEXPR(�, e1); T2, Y := CHECKEXPR(�, e2)
assert X ∩ Y = ∅
if m = un then assert un(T1) and un(T2)

return T1 ×m T2, X ∪ Y

| let x1, x2 = e1 in e2 ⇒
T , Y := CHECKEXPR(�, e1)
T1 ×m T2 := MATCHINGPROD(T)
U , Z := CHECKEXPR((�, x : T1, y : T2), e2)
if lin(T1) then

assert x1 ∈ Z
Z := Z \ {x1}

if lin(T2) then
assert x2 ∈ Z
Z := Z \ {x2}

assert Y ∩ Z = ∅
return U , Y ∪ Z

| fork e1 ⇒
T , X := CHECKEXPR(�, e1)
assert T ∼ unit
return unit, X

| new S ⇒ return S ×lin S, ∅
| send e1 e2 ⇒

T1, X := CHECKEXPR(�, e1); T2, Y := CHECKEXPR(�, e2)
assert X ∩ Y = ∅
!T3. S := MATCHINGSEND(T2)
assert T1 � T3

return S, X ∪ Y

| receive e1 ⇒
T1, X := CHECKEXPR(�, e1)
?T2. S := MATCHINGRECEIVE(T1)
return T2 ×lin S, X

| select lj e1 ⇒
T , X := CHECKEXPR(�, e1)
⊕{lj : Sj} := MATCHINGSELECT(T , lj)
return Sj, X

| case e0 of {l1 : x1. e1, . . . , lk : xk . ek} ⇒
T , X := CHECKEXPR(�, e0)
&{l1 : R1, . . . , lk : Rk} := MATCHINGCASE(T , {l1, . . . , lk})
for j = 1 to k do

Uj, Yj := CHECKEXPR((�, xj : Rj), ej)
assert xj ∈ Yj

Yj := Yj \ {xj}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 53

assert Y1 = · · · = Yk(=: Y)
U := U1 ∨ . . . ∨ Uk

assert X ∩ Y = ∅
return U , X ∪ Y

| close e1 ⇒
T , X := CHECKEXPR(�, e1)
assert T ∼ end!

return unit, X

| wait e1 ⇒
T , X := CHECKEXPR(�, e1)
assert T ∼ end?

return unit, X

function MATCHINGFUN(T)
case T of

| T1 →m T2 ⇒ return T1 →m T2

| � ⇒ return � →lin �

| _ ⇒ error

function MATCHINGPROD(T)
case T of

| T1 ×m T2 ⇒ return T1 ×m T2

| � ⇒ return � ×lin �

| _ ⇒ error

function MATCHINGSEND(T)
case T of

| !T ′. S ⇒ return !T ′. S

| �© | � ⇒ return !�. �©
| _ ⇒ error

function MATCHINGRECEIVE(T)
case T of

| !T ′. S ⇒ return !T ′. S

| �© | � ⇒ return !�. �©
| _ ⇒ error

function MATCHINGSELECT(T , lj)
case T of

| ⊕{li : Si}i∈I ⇒
assert j ∈ I
return ⊕{lj : Sj}

| �© | � ⇒ return ⊕{lj : �©}
| _ ⇒ error

function MATCHINGCASE(T , {lj}j∈J)
case T of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

54 A. Igarashi et al.

| &{li : Si}i∈I ⇒
if I ⊆ J then return &{li : Si}i∈I ∪ {lj : �©}j∈J\I

else error
| �© | � ⇒ return &{lj : �©}j∈J

| _ ⇒ error

Theorem 11 states soundness of the type-checking algorithm. A few lemmas are required
in preparation. Let rm(�, X) denote the operation that removes variables X from a type
environment �.

Lemma 19. Suppose y : U ∈ � with lin(U).

If CHECKEXPR(�, e) = T , X and y /∈ X , then CHECKEXPR(rm(�, {y}), e) = T , X .

Proof. By induction on e, we show one important case as follows.

Case e = e1 e2: We are given

�(y) = U lin(U) CHECKEXPR(�, e1 e2) = T , X y /∈ X

By the definition of the algorithm, CHECKEXPR(�, ei) = Ti, Xi for i = 1, 2 and

T1 � T11 →m T12 T2 � T11 T = T12 X = X1 � X2

Since y /∈ X , we have y /∈ X1 and y /∈ X2. By CHECKEXPR(�, ei) = Ti, Xi and y /∈ Xi and the
IH for i = 1, 2, we have

CHECKEXPR(rm(�, {y}), e1) = T1, X1 CHECKEXPR(rm(�, {y}), e2) = T2, X2

Thus, by the definition of the algorithm, CHECKEXPR(rm(�, {y}), e1 e2) = T , X . �

Lemma 20. Suppose flv(�) = X1 � X2. If �1 = rm(�, X2) and �2 = rm(�, X1), then � =
�1 ◦ �2 and flv(�1) = X1 and flv(�2) = X2.

Proof. By induction on �. �

Theorem 11 (Soundness of the type-checking algorithm). If CHECKEXPR(�, e) = T , X
and flv(�) = X , then � �e e : T.

Proof. By induction on e, we show main cases as follows.

Case e = λmx:T1. e1: We are given

CHECKEXPR(�, λmx:T1. e1) = T , X flv(�) = X

We consider only when m = un and lin(T1). By the definition of the algorithm,

CHECKEXPR((�, x : T1), e1) = T2, {x} X = ∅
So, flv(�) = X = ∅. By lin(T1), we have flv(�, x : T1) = {x}. Thus, by the IH, we have �, x :
T1 � e1 : T2. Here, by flv(�) = ∅, we have un(�). So, un:>(�). We finish by

�, x : T1 � e1 : T2 un:>(�)

and the abstraction rule.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

Gradual session types 55

Case e = e1 e2: We are given

CHECKEXPR(�, e1 e2) = T , X flv(�) = X

By the definition of the algorithm, CHECKEXPR(�, ei) = Ti, Xi for i = 1, 2 and

T1 � T11 →m T12 T2 � T11 T = T12 X = X1 � X2

Let �1 = rm(�, X2) and �2 = rm(�, X1). By Lemma 20, � = �1 ◦ �2 and flv(�1) =
X1 and flv(�2) = X2. By CHECKEXPR(�, ei) = Ti, Xi and Lemma 19, we have
CHECKEXPR(�i, ei) = Ti, Xi for i = 1, 2. By flv(�i) = Xi and CHECKEXPR(�i, ei) = Ti, Xi

and the IH, we have �i � ei : Ti for i = 1, 2. We finish by

�1 � e1 : T1 �2 � e2 : T2 T1 � T11 →m T12 T2 � T11

and the application rule. �

We will also show the converse of the theorem above. Completeness states that
CHECKEXPR(�, e) computes a minimal type with respect to negative subtyping.

Theorem 12 (Completeness of the type-checking algorithm). If � �e e : T, then
CHECKEXPR(�, e) = T ′, X and T ′ <:− T and flv(�) = X for some T ′.

To prove this theorem, we need a stronger statement, namely Lemma 24. We define
environment positive consistent subtyping, written �′ <:− �, as dom(�) ⊆ dom(�′) and
�(x) <:− �′(x), for any x ∈ dom(�). Then, the theorem follows from the fact that <:− on
type environments is reflexive. We start with a few lemmas about <:−.

Lemma 21.

1. If T ′
1 <:− T1 and T1 � T11 →m T12, then there exist some T ′

11, T ′
12, and n such that

MATCHINGFUN(T ′
1) = T ′

11 →n T ′
12 and T ′

11 →n T ′
12 <:− T11 →m T12.

2. If T ′
1 <:− T1 and T1 � T11 ×m T12, then there exist some T ′

11, T ′
12, and n such that

MATCHINGPROD(T ′
1) = T ′

11 ×n T ′
12 and T ′

11 ×n T ′
12 <:− T11 ×m T12.

3. If T ′
1 <:− T1 and T1 � !T11. S12, then there exist some T ′

11 and S′
12 such that

MATCHINGSEND(T ′
1) = !T ′

11. S′
12 and !T ′

11. S′
12 <:− !T11. S12.

4. If T ′
1 <:− T1 and T1 � ?T11. S12, then there exist some T ′

11 and S′
12 such that

MATCHINGRECEIVE(T ′
1) = ?T ′

11. S′
12 and ?T ′

11. S′
12 <:− ?T11. S12.

5. If T ′
1 <:− T1 and T1 � ⊕{lj : Sj}, then there exist some S′

j such that
MATCHINGSELECT(T ′

1, lj) = ⊕{lj : S′
j} and ⊕{lj : S′

j} <:− ⊕{lj : Sj}.
6. If T ′

1 <:− T1 and T1 � &{l1 : S1, . . . , lk : Sk}, then there exist some S′
1, . . . , S′

k

such that MATCHINGCASE(T ′
1, {l1, . . . , lk}) = &{l1 : S′

1, . . . , lk : S′
k} and &{l1 :

S′
1, . . . , lk : S′

k} <:− &{l1 : S1, . . . , lk : Sk}.

Proof. By case analysis on T � U . �

Lemma 22. If T <:− U and un(U), then un(T).

Proof. By case analysis on T <:− U . �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

56 A. Igarashi et al.

Lemma 23.

1. If T1 <:− T2 and T2 � T3, then T1 � T3.
2. If T1 � T2 and T2 <:+ T3, then T1 � T3.

Proof. Both items are proved by simultaneous induction on �. �

Lemma 24. If � �e e : T and �′ <:− �, then there exists T ′ such that CHECKEXPR(�′, e) =
T ′, X and T ′ <:− T and flv(�) = X .

Proof. By induction on e, we show main cases as follows.

Case e = e1 e2: By inversion of the typing relation, �1 �e e1 : T1 and �2 �e e2 : T2 and
� = �1 ◦ �2 and T1 � T11 →m T12 and T2 � T11 for some �1, �2, T1, T2, T11, T12, and m.
It is easy to show �′ <:− �1 and �′ <:− �2. By the induction hypothesis, for some T ′

1,
T ′

2, X , and Y , T ′
1, X = CHECKEXPR(�′, e1) and T ′

1 <:− T1 and flv(�1) = X and T ′
2, Y =

CHECKEXPR(�′, e2) and T ′
2 <:− T2 and flv(�2) = Y . Since �1 ◦ �2 is well defined, X ∩ Y

must be ∅. By Lemma 21, T ′
11 →n T ′

12 = MATCHINGFUN(T ′
1) and T ′

11 →n T ′
12 <:− T11 →m

T12 for some T ′
11 and T ′

12. By inversion of <:−, we have T11 <:+ T ′
11 and T ′

12 <:− T12. Then,
T ′

2 � T ′
11 is shown by Lemma 23. It is easy to show X ∪ Y = flv(�) because � = �1 ◦ �2.

Finally, T ′
12 <:− T12 finishes the case.

Case e = case e0 of {lj : xj. ej}j∈J : By inversion of the typing relation, we have �1 �e e0 :
T0 and T0 � &{lj : Rj}j∈J and (�2, xj : Rj �e ej : Uj)j∈J and T = ∨{Uj}j∈J and � = �1 ◦ �2

for some �1, �2, Rj, and Uj (for j ∈ J). It is easy to show �′ <:− �1 and �′ <:− �2. By
the induction hypothesis, T ′

0, X = CHECKEXPR(�′, e0) and T ′
0 <:− T0 and flv(�1) = X for

some T ′
0 and X . By Lemma 21, MATCHINGCASE(T ′

0, {l1, . . . , lk}) = &{l1 : R′
1, . . . , lk : R′

k}
and &{lj : R′

j}j∈J <:− &{lj : Rj}j∈J for some (R′
j)j∈J . By inversion of <:−, we have (R′

j <:−

Rj)j∈J . By the induction hypothesis, for any j ∈ J , there exist U ′
j and Yj such that U ′

j , Yj =
CHECKEXPR((�′, xj : R′

j), ej) and U ′
j <:− Uj and flv(�2, xj : Rj) = Yj. It is easy to show that

xj ∈ Yj for any j ∈ J and Y1 = · · · = Yk and X ∩ Y1 = ∅ because Rj is linear and �1 ◦ �2 is
well defined. It is also easy to show X ∪ (Y1 \ {x1}) = flv(�) because � = �1 ◦ �2. Finally,
∨{U ′

j }j∈J <:− ∨{Uj}j∈J is shown by Lemma 15. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000169
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 19 Nov 2019 at 13:56:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796819000169
https://www.cambridge.org/core

	Gradual session types
	Introduction
	Motivation
	A compute service
	The view from the client side
	A unityped server
	The gradual way
	Dynamic linearity
	End-to-end dynamicity

	GV and gradual GV
	GV
	Types and subtyping
	Expressions, processes, and typing
	Reduction

	Gradual GV
	Types and subtyping
	Expressions, processes, and typing of GGVi
	Reduction
	External language GGVe
	Cast-inserting translation
	Embedding

	Results
	Preservation and absence of runtime errors for GGVi
	Blame safety
	Properties of GGVe
	(Failure of) The gradual guarantee

	Related work
	Gradual typing
	Session types

	Conclusions

