The Unreasonable Effectiveness of
Logic
Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

s computing a deep subject?

— COMPUTER CONTROLS
Monster machines such as the power shovel need to be carefully controlled, or they
could do a lot of damage. If they are overloaded or break down they are extremely
expensive to repair. So the power shovel has built-in computer systems that

automatically shut down the engine if there is a danger of overload. Sensors
fitted around the shovel monitor engine performance, temperature and oil pressure.

The computer gives a warning if the engine is not operating properly.
Small shovel

This power shovel is a small one. It is only
13 metres (43 feet] long and weighs a mere
6 tonnes (just under 6 tons). o ;

L 3

Exhaust pipe
This carries away the waste gases and fumes
eoeee® produced by the engine.

Open and shut
This ram uses oil pressure to transmit the
force of a piston to the bucket bottom. This
system, called a hydraulic ram, opens and
closes the bucket.

fiir filter
This filters (or separates) out the dust in
the air, ensuring that only clean air goes

to the engine.
o0 0000

“-...L Engines
7 " ® 064 Theshovel has two powerful diesel
1 i 3 - : ® .. | engines. If one engine breaks down,
s ’ 2 y i the other takes over.
Up and down e0®?®
This hydraulic ram raises

and lowers the boom.

% Driver’s cab
The cab is 6 metres (18 feet) from the
ground. It is sound- and vibration-proofed.
The operator pulls levers to move the boom,
and to open and close the bucket.

Bucket LI
The bucket is hinged in the middle so ®e ot tan_k)
it can open to drop a load. Some very This holds the oil used in
big mining shovels have eight the hydraulic systems.
buckets fitted to a large wheel that
revolves as the machine cuts into the -
coal-face. Crawler tracks
These are driven by the diesel engine. The
e = shouvel can move around safely on the soft soil
1 o o Swing table found in open-cast mines. The tracks work
g \ The cab and boom rest on a circular table separately; to turn the shovel, one track is
that can be turned to swing the driven forward while the other is driven
Replaceable teeth @ upper part of the machine round. backwards or Kept still.
The teeth on the bucket are o °
designed to sharpen o® °
themselues as they cut into © : Blﬁ DlGGER
the coal-face. They can be ° . i o . .
replaced when they . Headlight . A power shovel digs coal out of the walls of an open-cast coa mine. Thls monster
eventually wear out. ° Powerful headlights shine ° machine has a huge bucket at the end of a long arm or boom - it carries up to 140
. QueriH eat o . cubic metres (1,507 cubic feet) of coal. The boom stretches up the coal face to
° on the coal-face for % ; & I ¢
° working at night. Swing motor scrape out coal with the bucket. Whe.n'the bucket is full, the driver swings the_ arm
. The swing table is turned by round and dumps the coal on to a waiting lorry. A power shovel works fast — it can |
Bucket hinge an electric or hydraulic fill a large lorry with 120 tonnes (118 tons) of coal in just two minutes. Power ‘
The bucket opens and shuts here. motor. This swings the boom shovels are driven by petrol or diesel engines, or by electric motors.
round for unloading.

The Marion 6360 power shovel has a boom length of 67 metres (220 feet)
and a reach of 72 metres (236 feet). It weighs 1,100 tonnes (1,082 tons) and uses
R 20 electric motors to power the boom and bucket. It works in an open-cast
: " ; - coal mine near Percy in Illinois, USA.
10

Theoretical computer science is unnatural ...

t unnatural like Ikebana?

IS |

... but

. oris it unnatural like Judo?

More than a coincidence?

second-order logi¢

modal logic

classical logic

polymorphism

monads

continuations

Java

XML

Links

Part |

A remarkable coincidence

Gerhard Gentzen (1909-1945)

Gerhard Gentzen (1935) — Natural Deduction

=]

/g
Pa)
A >N

&—E

A&D A&D
D) B

v—I

|

v—FE
[2] [¥]

AvPB € €

AvB AvY

3-I

2yl
=Ly

secf

(]
A

-

¢

=g
[3a]
Jrdr @

g
]
2

9| >

Gerhard Gentzen (1935) — Natural Deduction

[A]*
: ADB A -
D_
B
Sz b
ADB
A B A& B A& B
&-| — &-Ey — &-Fy

Simplifying a proof

B & AJ? B & AJ?
&-E; &-Ey
A B
&-|
A& B (B]Y [A]®
S5 &-I
(B& A) > (A& B) BGA
D_

A& B

Simplifying a proof

(B & AJ? (B & A]”

p &-E;

A& B

Simplifying a proof

B & AJ? B & AJ?
p &-E; - &-Ep
&-1
A& B (Bl [A]*
D-17 &-|
(B& A)> (A& B) B& A
O-E
A& B
J
BlY T Y T
BY AP B Ar
B& A B& A
— &-E; — &-E
A B
&-I
A& B
J
A]* [B]Y

Alonzo Church (1903-1995)

Alonzo Church (1932) — Lambda calculus

An ocecurrence of a variable x in a given formula is called an occurrence
of X as a bound variable in the given formula if 1t is an occurrence of X
in a part of the formula of the form AX[M]; that is, if there is a formula M
such that Ax[M] occurs in the given formula and the occurrence of X in
question is an occurrence in AZx[M]. All other occurrences of a variable
in a formula are called occurrences as a fiee variable.

A formula is said to be well-formed it it is a variable, or if it is one

Fanclional Programmimyg

CAMBRICHEE
EaTrTmmiTY Falid

Alonzo Church (1940) — Typed-calculus

x: A)*

: s:ADB t: A .
) 5.

u: B .

L st: B
M.u:ADB

t: A u: B s: A& B s: A& B

&-1 &-Ep

(t,u): A& B sg: A s1: B

&-E;

Simplifying a program

1z : B& AJ? |z : B& AJ?
&-E4 &-Eq
21 - A 20 - B
&-
(z1,20) : A& B I ly: BlY |z A]*
D- z
Az.(z1,20) : (B& A) D (A& B) (y,z): B& A o

D-E

(Az.{(z1,20)) (y,x): A& B

Simplifying a program

1z : B& AJ? |z : B& AJ?
&-E; &-Ey
21 - A 20 - B

&-I

(z1,20) : A& B 1 ly: B]Y |x: A]* -
Az.(z1,20) : (B& A) D (A& B) (y,z): B& A

(Az.{(z1,20)) (y,x): A& B

4
TR L. P . S S
(y,z): B& &-E, (y,z) : B& A &-E,
(y,x)1 : A (y,x)o : B o

{y, z)1, (y,z)o) : A& B

D-E

Simplifying a program

1z : B& AJ? |z : B& AJ?
&-E; &-Ey
21 - A 20 - B
&-
(z1,20) : A& B 1 ly: BlY |z A]* -
Az.(z1,20) : (B& A) D (A& B) (y,z): B& A .
D_
(Az.{(z1,20)) (y,x): A& B
Y
[y : B]y. 58; j]fv o E B]y. [z« A]® o
(y,x) : L-E, (y,z) : B& A &-E,
(y,x)1 : A (y,x)o : B o
<<y7 $>1, <y,:13>0> A& B
4

[z A"y BJY
(x,y): A& B

&-l

William Howard (1980) — Curry-Howard Isomorphism

THE FORMULAE-AS-TYPES NOTION OF CONSTRUCTION

W. A. Howard

Department of Mathematice, University of
Illinois at Chicago Cirele, Chicago, Illinois 60680, U.S.A.

Dedicated to H. B. Curry on the occasion of his 80th birthday.

The following consists of notes which were privately circu-
lated in 1969. Since they have been referred to a few times in
the literature, it seems worth while to publish them. They have
been rearranged for easier reading, and some inessential correc-

tions have been made.

More than a coincidence?

second-order logi¢

modal logic

classical logic

polymorphism

monads

continuations

Java

XML

Links

Part |l

Second-order logic,
Polymorphism,
and Java

Gottlob Frege (1879) — Quantifiers)(

It 4s clear also that from

F— @)

we can derive

Fro—)
—4

if A is an expression in which a does not occur and if a stands only in the argument places

of @(a).** If —L—(qa) is denied, we must be able to specify a meaning for

such that @(a) will be denied. If, therefore, —3%— ®(a) were to be denied and

Gottlob Frege (1879) — Quantifiers)(

If from the proposition that d has property F, whatever d may be, it can be inferred
that every result of an application of the procedure f to d has property F, then property F
18 hereditary in the f-sequence.

§ 26. R) .
NS 5(y)
e 5@
f{:I:, C[) Y
| L [
" f(3, «)
, L < 8 (76)

John Reynolds (1974) — Polymorphism

TOWARDS A THEORY OF TYPE STRUCTURE .

John C. Reynolds
Syracuse University

Syracuse, New York 13210, U.S.A.

Introduction
The type structure of programming languages has been the subject of an
active development characterized by continued controversy over basic

(1-7)

principles. In this paper, we formalize a view of these principles

(5)

somewhat similar to that of J. H. Morris. We introduce an extension of
the typed lambda calculus which permits user-defined types and polymorphic
functions, and show that the semantics of this language satisfies a

representation theorem which embodies our notion of a "correct" type structure.

Syntax
To formalize the syntax of our language, we begin with two disjoint,
countably infinite sets: the set T of type variables and the set V of normal

variables. Then W, the set of type expressions,is the minimal set satisfying:

(la) If t ¢ T then:

t e W.

1 w2 ¢ W then:
(wl > WE} e W.

(1b) If w

(lc) If t ¢ T and w € W then:
(At. w) & W.

Jean-Yves Girard (1972) — Polymorphism

UNE EXTENSION DE L'INTERPRETATION
DE GODEL A L’ANALYSE, ET SON APPLICATION

A L’ELIMINATION DES COUPURES DANS

L’ANALYSE ET LA THEORIE DES TYPES

Jean-Yves GIRARD
(8, Rue du Moulin d’Amboile, 94-Sucy en Brie, France)

Ce travail comprend (Ch. 1-5) une interprétation de I’ Analyse, exprimée
dans la logique intuitionniste, dans un systéme de fonctionnelles Y, décrit
Ch. 1, et qui est une extension du syst¢tme connu de Godel [Gd]. En gros, le
systéme est obtenu par I’adjonction de deux sortes de types (respectivement
existentiels et universels, si les types construits avec - sont considérés comme
implicationnels) et de quatre schémas de construction de fonctionelles corres-
pondant 4 I'introduction et & I’élimination de chacun de ces types, ainsi que
par la donnée des régles de calcul (réductions) correspondantes.

Robin Milner (1975) — Polymorphism

A Theory of Type Polymorphism in Programming
k-
Ropin MILNER

Cemputer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work 4s largely a practical one. A widely empleyed style of programming,
particularly in structure-processing languages which impose no discipline of types,
eniails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polyiorphic procedures in the context of a simpie pro-
rramming language, and a compile time type-checking algorithra %7 which enforees the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-tvpe programs cannot “go wrong’ and a Syntactic Soundness Theorem
states that if ¥~ accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on #" 1s in fact already
implemented and working, for the metalanguage MI, in the Edinbuigh LCFE system.

Gosling, Joy, Steele (1996) — Java

James Gosling ¢ Bill Joy * Guy Steele

The Java™ Language
Specification

The Java Series

P 5

(=) -
i = : _____,../J | 4
- - | /
/)

... from the Source”

Odersky and Wadler (1997) — Pizza

Pizza into Java:

Translating theory into practice

Martin Odersky
University of Karlsruhe

Example 2.1 Polymorphism in Pizza

class Paircelem> {
elem x; elem y;
Pair (elem x, elem y) {this.x = x; this.y = y:}
void swap () {elemt =x; x =y; y = t;}

Pair<String> p = new Pair("world!", “Hello,");

powan();
System.out.printin(p.x + p.y);

Pair<int> g = new Pair(22, 64);

gowap()
System.out.printin{g.x = q.y);

Philip Wadler
University of Glasgow

Example 2.3 Homogenous translation of polymorphism
into Java

class Pair {
Object x; Object y;
Pair (Object x, Object y) {this.x = x; this.y = y;}
void swap () {Object t = x; x = y; y = t:}

class Integer {
int i;
Integer (int i) { this.i = i; }
int intValue() { return i; }

Pair p = new Pair{(Cbject)"world!", (Object)"Hello,");
p.swap(): _
System.out.printin((String)p.x + (String)p.y);

Pair q = new Pair((Object)new Integer(22),
(Object)new Integer(64)):

q.swap():

System.out.printin{((Integer)(q.x)).intValue() -
((Integer){q.y}).intValue());

lgarashi, Pierce, and Wadler (1999)
— Featherweight Java

I'=z:['(x)

I'Heg: Cp fields(Cp) =C £
I'kFeg.f; : C;

I'teg:Co miype(m, Cg) = D—C '+s:¢ C< D

I'eyg.m(8) : C

fields(C) =D £ FFe:C C< D
I'Fnew C(8) : C

I'Fep:D D < C
I'F({Cleg:C

I'Fey:D C <D C#D
I'F({Cleg:C

I'kep:D C¢D D%C stupid warning
I'F{Clep : C

lgarashi, Pierce, and Wadler (1999)
— Featherweight Generic Java

MA:TEx:Iix)

AT Heg: T fields(bound A (To)) =T £
AT Feg. .ty Ty

AT Heg : Ty mitype(m, bound A (Tp)) = <Y aF>U—U
AFVok AFV<[V/YP A;THE:5 AFS< VAU

AT Foep.meVa(E) : [V/Y|U

AN ok fields(N) =T £ A;THE: 8 AFS<T
M;T - new Ni(e) : N

A;'kep: Tp A b bounda(To) < N
A;T'H (Nep : N

M:ThHeg : T AN ok AFN< bounda(To)
N = C<T> bound A (To) = D<U> deast(C, D)

AT (Nep : N

AT Feq: Tn AFNok N =C<T> bound s (To) = D<U>
cCAD DHAC stupid warning

AT E (Wep : N

Gosling, Joy, Steele, Bracha (2004) — Java 5

James Gosling * Bill Joy « Guy Steele « Gilad Bracha

The Java' Language
Specification,
Third Edition

Part |l

Modality,
monads,
and XML

Clarence Lewis (1918) — Modal Logic

A SURVEY OF
SYMBOLIC LOGIC

Bt S

BY

C. I LEWIS

Systems previously developed, except MacColl’s, have only two truth-
values, “true” and “false”. The addition of the idea of impossibility
gives us five truth-values, all of which are familiar logical ideas:

(1) psplstuue ..

(2) -p, “pis false”.

(3) ~p, “p is impossible”.

(4) =~p, “It is false that p is impossible”’—i. e., “p Is possible .

(5) ~-p, “It is impossible that p be false”—i. e., “p is necessarily
true’’.

Strictly, the last two should be written =(~p) and ~(-p): the parentheses
are regularly omitted for typographical reasons.

— 1

e B S e e TR

Eugenio Moggi (1988) — Monads

Computational lambda-calculus and monads

Eugenio Moggi*
LFCS
Dept. of Comp. Sci.
University of Edinburgh
EH9 3J7Z Edinburgh, UK
em@l]fcs.ed.ac.uk

October 1988
Definition 2.1
A computational model is a monad (1,7, ;1) over a category C, i.e. a functor

T:C — C and two natural transformations n:1d¢ — T and p: T? - T s.t.

|) Tn.
734 HTA . 724 TA_TA q2p 1A 7y
N //
i id]‘A l
= i \ - 7 /idm
Z
T2A— S TA TA
Ha

which satisfies also an extra equalizing requirement: 1n4: A — T'A is an equalizer
of ntA and T(n4), i.e. for any f: B — TA s.t. finra = f:T(na) there exists a
unique m: B — A s.t. f = m;na’.

Philip Wadler (1990) — Comprehensions

Comprehending Monads

Philip Wadler

University of Glasgow

2.2 Comprehensions

Many functional languages provide a form of list comprehension analogous to set compre-
hension. For example,

[(zsy) | @ < [1. 2], y + [3:4]] = [(1,3),(1,:4):(2,3):(2,4)]-

In general, a comprehension has the form [¢ | ¢], where { is a term and ¢ is a qualifier. We
use the letters £, u, v to range over terms, and p, ¢, 7 to range over qualifiers. A qualifier
is either empty, A; or a generator, £ + u, where & is a variable and w is a list-valued
term; or a composition of qualifiers, (p, ¢). Comprehensions are defined by the following
rules:

(1) (1] A] = unitt,
(2) [tz u] = map(de = 1),
(3) [tlp9] = join[[tlq]]p]-

Peter Bunemanst al (1991) — Comprehensions

Comprehension Syntax

Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong

A more verbose version of this query can also be written
in SQL

SELECT Name = p.Name, Mgr = d.Mgr
FROM Emp p, Dept d
WHERE p.D# = d.D#

We can put a different interpretation on the syntax of
this query. In SQL, the symbols p and d are simply
aliases for the relation names Emp and Dept respectively.

interesting connections with what we shall develop. In
our syntax this query is written:

{[Name = p.Name, Mgr = d.Mgr] |
\P == EITIP,
\d <~ Dept,
p.DONum = d.DNum}

The syntactic form {e | ¢1, ¢2,..., ¢n} is 2 comprehen-
ston. It 1s an expression that denotes a collection — in

XQuery (2004) — FLWOR

XQuery 1.0: An XML Query Language
W3C Working Draft 29 October 2004

3.8 FLWOR Expressions

XQuery provides a feature called a FLWOR expression that supports iteration and binding of variables to intermediate results. This kind of
expression is often useful for computing joins between two or more documents and for restructuring data. The name FLWOR, pronounced
"flower", is suggested by the keywords for, 1et, where, order by, and return.

The result of the above expression is as follows:

<authlist>

for $a in fn:distinct-values($bib/book/author)
order by $a
return
<author>
<name> {$a} </name>
<books>

for $b in $bib/bock|authcr = $a)
order by $b/title
return $b/title

¥
</books>
</author>

<fauthlist>

<authlist>
<author>
<name>Abiteboul</name>
<hooks>
<title>Data on the Web</title>
</books>
</author>
<author>
<name>Buneman</name>
<books=>
<title»Data on the Web</title>
</books>
<fauthor>
<author>
<name>Stevens</name>
<hbooks>
<title>TCP/IP Illustrated</title>
<title>Advanced Programming
in the Unix Environment</title>
</books>
<fauthor>
<author>
<name>3suciu</name>
<books>
<title»Data on the Web</title>
</books>
</author>
<fauthlist>

XQuery (2004) — FLWOR

The result of the above expression is as follows:

<authlist>
<author>
<name>ibiteboul</name>
<hooks>
<title>Data on the Web</title>
< /books>
</author>
<author>
<name>Buneman</name>
“hooks>
<title>Data on the Web</title>
</books>
</author>
<author>
<name>Stevens</name>
<hooks>
<title>TCP/IP Illustrated</title>
<title>RAdvanced Programming
in the Unix Environment</title>
< /books>
=/author>
<author>
<name>Suciu</name>
<hooks>
<title>Data on the Web</title>
< /books>
</author>
</authlist>

XQuery (2004) — Formal Semantics

XQuery 1.0 and XPath 2.0 Formal Semantics
W3C Working Draft 20 February 2004

A document node matches a document type if the node's content maiches the document type's corresponding content type.

statEnv |- Value matches Type

statEnv |- document { Value } matches document { Type }

The rules for matching an element value with an element type are more complicated. When an element value is not nilled, the element
matches an element type if the element name and the element type resolve to some type name, and the element value's type annotation is
derived from the resolved type name. Note that there is no need to check structural constraints on the value since since those have been
checked during XML Schema validation and the value is assumed to be consistent with its type annotation.

statEnv |- ElementName name lookup ElementType yields Nillable? of type BaseTypeName
statEnv |- TypeName derives from BaseTypeName
Value filter @xsi:nil => () or false

statEnv |- element ElementName of type TypeName { Value } matches ElemeniType
Note

Type matching uses the name lookup judgment defined in [7.1.3 Element and attribute name lookup (Dynamic)].

The empty sequence maiches the empty sequence type.

statEnv |- () matches empty
If two values match two types, then their sequence matches the corresponding sequence type.

statEnv |- Value, matches Type,
statEnv |- Value, matches Types

statEnv |- Value,,Value, matches Type,, Tvpes

Part IV

Classical logic,
continuations,
and the Web

Andrel Kolmogorov (1925)

On the principle of excluded middle

ANDREI NIKOLAEVICH KOLMOGOROV
(1925)

To an elementary formula & there corresponds in pseudomathematics the formula
©*, which expresses the double negation of &:

(48) S* = GC.

In what follows we shall, for convenience, denote the double negation of & by n&.
To the formula of the nth order F(&,, &,,..., S;), where &,, &,,..., S, are

formulas of the (n—1)th order at most, there corresponds in pseudomathematics the

formula F(&,, &,,..., &,)* such that

(49) H(&,, S, - - -, 'E'Jc)* = ?’lF(C"ZT, 6’;: GGy ei‘)a

ST, S¥, ..., ©F being regarded as already determined. For example, to the formula

a =b—{A(a) > B(a)}
there corresponds in pseudomathematics the formula

n[n(a = b) — n{nd(a) - nB(a)}].

Gordon Plotkin (1975)

CALL-BY-NAME, CALL-BY-VALUE AND THE
#~CALCULUS

G. D. PLOTKIN

We begin with a simulation of call-by-value by call-by-name. Given a calil-by-value
language with its Consiapplyy, Eval, and A,, we consider the call-by-name _anguage
whose variables are these of the given language together with thiec others, », o and f8
say, and whose list of variables for the substitution prefix is that of the given language.
Its Constapply will be given in a little while. First the term :imulation map M ~ M
sending terms in the call-by-value language to the call-by-name language is given

by the recursive definition:
a = Ax (xa)
X = Ax (xx)
AxM = Jat (x (\xM))
MN = 23 (M (AaN (ABapa))).
Constapplyy is given by:

Constapplyx(a, b) = Constapply,(a, b)

Philip Wadler (2000)

Call-by-Value is Dual to Call-by-Name

Philip Wadler
Avaya Labs

(B&) (V.W)efstK] —. VeK (B&) (M,N)efstfP] —, MeP

(B&) (V,W)esnd[L] —, WelL (B&) (M,N)esnd[Q] —n. NeQ

(BV) {1-'}1111 @ [I‘f._ L] —, VoK (BV) r;ﬂf:}inl o [P Q] —t MaP

(BV) (Wiinre [K,L] —, Wel (BV) (N)inr e [P, Q] —s, NeQ

(8-) [K]not e not(M) —, MeK (5—) [K]not e not(M) —, MeK

(B2) Axz.NeV@L —, Vexz(NeL) (83) Iz.NeM@Q —, Mez.(NeQ)
(BL) Vex(S) —y S{V/x} (BL) M ex.(S) b, S{Mx}

(BR) (S)aek —y S{K/a} (GR) (S)aeP —n S{P/a}

Philip Wadler (2000)

ot A= Teid

F—=alM:A P—=+81LIN: B
&R

- 1dR

IdL

a:Al—=a: A

K AIT =06 L:BIT =0

&L

T—=O1(MN): A& B

I'=0I1M:A

fst[K] :

Ir—+alN:B

A&BIT—=© snd[L]: A&BIT = ©

K:AIT =06 L:BIT"—B6
VR v,

T =01 (M)al: AV B
K:AI'=—0©
r=0o01 [fl—]ll{_lt : A

=l

z: A Il'=IN:B
- - DR
'+ QlAz. N:AD B

TISHO,a: A
RI

r=+0I(5.a:A

'-eIM:A

I'=+8al{Nym: AV B

[K,L| :AVBIT =8

r-eiM:4
aot{M): ~AIT 58O |

r—-eIM:A LB LAY N

- oL
MQL:ADBIT, A= 0,A

w:ATISBO
z.(S): AIT—=©

K:ALA=A

Cht

FTAlMe Kb G,A

Orbitz: Two flights

B Cirhitr: Flight Search B esulis— Namestic X
| o (1 & G Locaton [1EastPage-riersiia) é » [2] @ =
: Alaska Aidines 15
E Fri. Aug 16
6 airfare Alaska Aidines 2168
5 service fee operatzd by partner airine plane ¢
1 tnp cost Sat Aug 31
Alaska &idines 1529
operated by partner airine
Sut Aug 31
: fAlaska Aidines 1551
EE operatzd by partner airine
3 amrtare Fn, Aug 18
9 service fee | Alaska Aidines 2086
8 tnp cost opcratzd by partner airfine
| T

Graunke, Findler, Krishnamurthi, Felleisen (ESOP 2003)

Orbitz: Clone and submit first

] el o Flighl Eearel Hrsnllz Diameslie

o Ol 125 Gt Locades | 24 wadPuc ssinlor o s ili 'r__ﬂi -

Alaska Aidines 15
“EELECT Fii, Awg 15
16 airtare Alaskn Airlines 2168
§5 seivice fee oparated by pariner irine
11 trip cost Sart Aug 37
Alaskn Airlines 1529
apareted by purinzr 2idine
Sot Aug 37
Alaska &idines 16561

aparated by paitner 2iline
- Fris Aug 1%
B <iteir: Fligghe T asss i [nhormarnia DI:| Al ka Airli POEE
MO A et b [4] - 0 n:-p-aﬂsa'hed llzng'.;;ﬁm:r aitfine
o

Orbitz: Submit second

dapart a30am Y Logan Intern
Lot Eoston

|8 Erbse: F Ll | eavEles linlumin

230 & T Loceey 8] __

depart 5.50pm Loga
avening Hosto

Orbitz:

Select first — problem!

L CAt: Flig Traveler Infennariai [=]a] =]
o N T S T T F RN = [- R TP

Bam g LE_RLS LS

$5.00
118.00

2 dapart O-30am Logan Intern
marning Boslon

August 18, 2002
.ﬂ-.laska Alrllnﬁ 1551

Alaska Alrlihas 2056

Burstall I\/IacQueen and Sannella (1980) — Hope

Burstall, MacQueen, and Sannella (1980) — Hope

¢ AT AT I 1 et S g N N
) B T e UND_ g 1P 500

MORNINGSIDE RD.

Wadler and Yallop (2005) — Links

main() ->
todo([]).
todo(items) ->
<htmlI><body>
<hl>ltems to do</h1>

<table> {
for item in items return
<tr>
<td> {item} </td>
<td>
<form action=" {todo(items\\[item])}
<input type="submit" value="done"/>
</form>
</td>
</tr>
} </table>
<form action=" {todo(items++[new])} ">

<input name=" {new} " type="text" size="40">
<input type="submit" value="add"/>
</form>
</body></html>

To do list

06

’ d . p] [A A] [¢ l [==] = file:// /Users /wadler/Documents/docs/papers /lin} ~Q- Google

.

1 Home Infl funnie Google mediar localv A+L¥ edv conferencesv macw >

To do list

. done
Buy groceries —
- (done)
Deliver lecture —
[done)

Vote

Part V

Conclusions

Kinds of coincidence

Historicalconfluence of great minds — Hume, Hutton, Smith

Geographicashape of continents

Astronomicalsize of sun and moon from earth

More than a coincidence?

second-order logi¢

modal logic

classical logic

polymorphism

monads

continuations

Java

XML

Links

More than a coincidence?

second-order logi¢ polymorphism | Java
Milner

modal logic monads XML
Moggi,Buneman

classical logic continuations | Links
Plotkin

Invitation

Scottish Programming Language Seminar
Invited speakers: John Reynolds, David Watt

10.00-16.00, 7 December 2004, University of Glasgow
Simon Gay, simon@dcs.gla.ac.uk

Special thanks to
My colleaguedor their ideas
Martina Sharp, Avaya Labs, and Diana Sisu, Informafi@sscanning

Adam and Leordor their books

Catherindor the tie

You for listening

