The Unreasonable Effectiveness of Logic

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Is computing a deep subject?

POWER SHOUEL

Monster machines such as the power shovel need to be carefully controlled, or they could do a lot of damage. If they are overloaded or break down they are extremely expensive to repair. So the power shovel has built-in computer systems that automatically shut down the engine if there is a danger of overload. Sensors fitted around the shovel monitor engine performance, temperature and oil pressure.

The computer gives a warning if the engine is not operating properly.

COMPUTER CONTROLS

Small shovel
This power shovel is a small one. It is only
13 metres (43 feet) long and weighs a mere
6 tonnes (just under 6 tons).

Open and shut This ram uses oil pressure to transmit the force of a piston to the bucket bottom. This system, called a hydraulic ram, opens and closes the bucket.

> Up and down This hydraulic ram raises and lowers the boom.

Bucket
The bucket is hinged in the middle so
it can open to drop a load. Some very
big mining shovels have eight
buckets fitted to a large wheel that
revolves as the machine cuts into the
coal-face.

Replaceable teeth
The teeth on the bucket are
designed to sharpen
themselves as they cut into
the coal-face. They can be
replaced when they
eventually wear out.

Bucket hinge
The bucket opens and shuts here.

Headlight Powerful headlights shine on the coal-face for working at night.

Swing motor
The swing table is turned by
an electric or hydraulic
motor. This swings the boom
round for unloading.

Exhaust pipe
This carries away the waste gases and fumes
produced by the engine.

Air filter
This filters (or separates) out the dust in the air, ensuring that only clean air goes to the engine.

Engines The shovel has two powerful diesel engines. If one engine breaks down, the other takes over.

Driver's cab
The cab is 6 metres (18 feet) from the
ground. It is sound- and vibration-proofed.
The operator pulls levers to move the boom,
and to open and close the bucket.

Oil tank This holds the oil used in the hydraulic systems.

Crawler tracks
These are driven by the diesel engine. The
shovel can move around safely on the soft soil
found in open-cast mines. The tracks work
separately, to turn the shovel, one track is
driven forward while the other is driven
backwards or kept still.

BIG DIGGER

EBHERR 962

Swing table

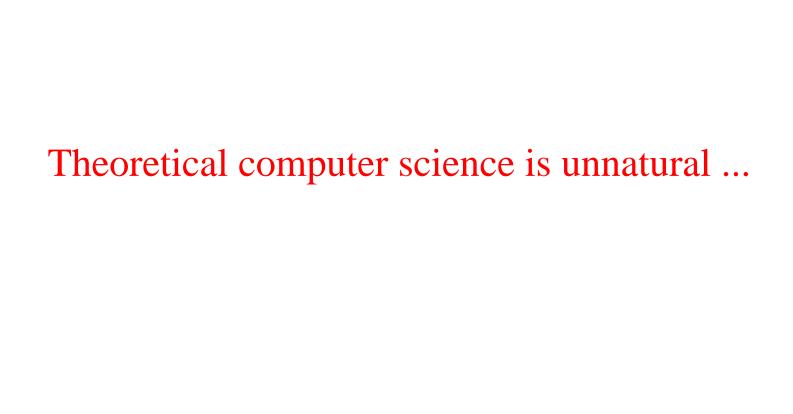
The cab and boom rest on a circular table

that can be turned to swing the

upper part of the machine round.

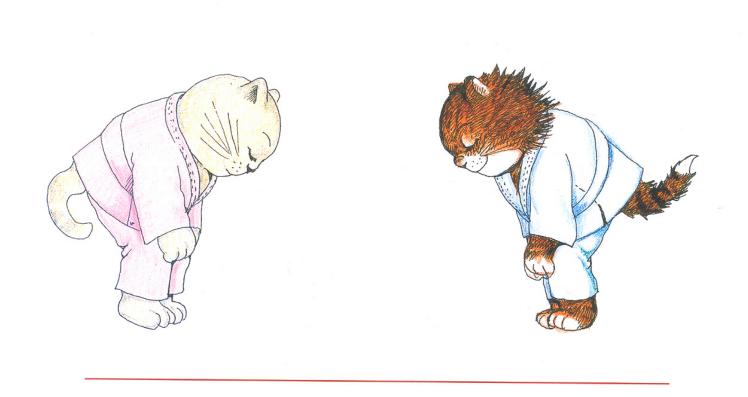
A power shovel digs coal out of the walls of an open-cast coal mine. This monster machine has a huge bucket at the end of a long arm or boom – it carries up to 140 cubic metres (1,507 cubic feet) of coal. The boom stretches up the coal face to scrape out coal with the bucket. When the bucket is full, the driver swings the arm round and dumps the coal on to a waiting lorry. A power shovel works fast – it can fill a large lorry with 120 tonnes (118 tons) of coal in just two minutes. Power shovels are driven by petrol or diesel engines, or by electric motors.

The Marion 6360 power shovel has a boom length of 67 metres (220 feet) and a reach of 72 metres (236 feet). It weighs 1,100 tonnes (1,082 tons) and uses 20 electric motors to power the boom and bucket. It works in an open-cast coal mine near Percy in Illinois, USA.



... but is it unnatural like Ikebana?

... or is it unnatural like Judo?



More than a coincidence?

second-order logic	polymorphism	Java
modal logic	monads	XML
classical logic	continuations	Links

Part I

A remarkable coincidence

Gerhard Gentzen (1909–1945)

Gerhard Gentzen (1935) — Natural Deduction

&
$$-I$$

&-E

$$\vee$$
- I

 \vee -E[X] [B] UVB C C

$$\frac{\mathfrak{A} \& \mathfrak{B}}{\mathfrak{A}} \quad \frac{\mathfrak{A} \& \mathfrak{B}}{\mathfrak{B}} \qquad \frac{\mathfrak{A}}{\mathfrak{A} \vee \mathfrak{B}} \quad \frac{\mathfrak{B}}{\mathfrak{A} \vee \mathfrak{B}}$$

$$\forall -I$$

$$\forall -E$$

$$\exists -I$$

$$\exists -E$$

$$\frac{\mathfrak{B}}{\mathfrak{A} \supset \mathfrak{B}}$$

$$\supset -E$$

$$\frac{\mathfrak{A} \quad \mathfrak{A} \supset \mathfrak{B}}{\mathfrak{B}}$$

$$\neg -E$$

$$\frac{\mathfrak{A}-\mathfrak{A}}{\wedge} \frac{\Lambda}{\mathfrak{D}}.$$

Gerhard Gentzen (1935) — Natural Deduction

$$\begin{array}{c}
[A]^{x} \\
\vdots \\
B \\
\hline
A \supset B
\end{array} \supset -\mathbf{I}^{x}$$

$$\frac{A \supset B}{B} \longrightarrow \mathbf{A} \\
B$$

$$\frac{A \quad B}{A \& B} \& -I \qquad \frac{A \& B}{A} \& -E_0 \qquad \frac{A \& B}{B} \& -E_1$$

Simplifying a proof

$$\frac{[B \& A]^{z}}{A} \& -E_{1} \qquad \frac{[B \& A]^{z}}{B} \& -E_{0} \\
\frac{A \& B}{(B \& A) \supset (A \& B)} \supset -I^{z} \qquad \frac{[B]^{y} \quad [A]^{x}}{B \& A} \supset -E$$

Simplifying a proof

$$\frac{[B \& A]^{z}}{A} \& -E_{1} \qquad \frac{[B \& A]^{z}}{B} \& -E_{0} \\
 \frac{A \& B}{(B \& A) \supset (A \& B)} \supset -I^{z} \qquad \frac{[B]^{y} \quad [A]^{x}}{B \& A} \& -I \\
 \frac{A \& B}{A} & \Rightarrow -E$$

$$\frac{[B]^{y} \quad [A]^{x}}{A} \& -I \qquad \frac{[B]^{y} \quad [A]^{x}}{B \& A} \& -I \\
 \frac{B \& A}{A} \& -E_{1} \qquad \frac{B \& A}{B} \& -E_{0} \\
 \frac{A \& B}{A} \& -E_{0}$$

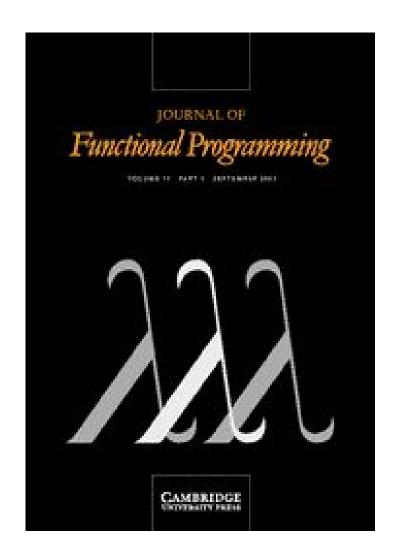
Simplifying a proof

Alonzo Church (1903–1995)

Alonzo Church (1932) — Lambda calculus

An occurrence of a variable \mathbf{x} in a given formula is called an occurrence of \mathbf{x} as a bound variable in the given formula if it is an occurrence of \mathbf{x} in a part of the formula of the form $\lambda \mathbf{x}[\mathbf{M}]$; that is, if there is a formula \mathbf{M} such that $\lambda \mathbf{x}[\mathbf{M}]$ occurs in the given formula and the occurrence of \mathbf{x} in question is an occurrence in $\lambda \mathbf{x}[\mathbf{M}]$. All other occurrences of a variable in a formula are called occurrences as a *free variable*.

A formula is said to be well-formed if it is a variable, or if it is one



Alonzo Church (1940) — Typed λ -calculus

$$\frac{t:A \qquad u:B}{\langle t,u\rangle:A\ \&\ B}\ \&\text{-I}\qquad \frac{s:A\ \&\ B}{s_0:A}\ \&\text{-E}_0\qquad \frac{s:A\ \&\ B}{s_1:B}\ \&\text{-E}_1$$

Simplifying a program

$$\frac{[z:B\&A]^{z}}{z_{1}:A}\&-E_{1} \qquad \frac{[z:B\&A]^{z}}{z_{0}:B}\&-E_{0} \\
\frac{\langle z_{1},z_{0}\rangle:A\&B}{\langle z_{1},z_{0}\rangle:(B\&A)\supset(A\&B)}\supset-I^{z} \qquad \frac{[y:B]^{y}\quad [x:A]^{x}}{\langle y,x\rangle:B\&A}\supset-E \\
\frac{(\lambda z.\langle z_{1},z_{0}\rangle)\langle y,x\rangle:A\&B}{\langle z_{1},z_{0}\rangle\langle y,x\rangle:A\&B}$$

Simplifying a program

Simplifying a program

$$\frac{[z:B\&A]^z}{z_1:A} \& -E_1 \qquad \frac{[z:B\&A]^z}{z_0:B} \& -I_0$$

$$\frac{\langle z_1,z_0\rangle : A\&B}{\langle z_1,z_0\rangle : (B\&A)\supset (A\&B)} \supset -I^z \qquad \frac{[y:B]^y \quad [x:A]^x}{\langle y,x\rangle : B\&A} \& -I_0$$

$$\frac{(\lambda z. \langle z_1,z_0\rangle) \langle y,x\rangle : A\&B}{\langle \lambda z. \langle z_1,z_0\rangle : (B\&A)\supset (A\&B)} \supset -E_0$$

$$\frac{[y:B]^y \quad [x:A]^x}{\langle y,x\rangle : B\&A} \& -I_0$$

$$\frac{\langle y,x\rangle : B\&A}{\langle y,x\rangle_1 : A} \& -E_1 \qquad \frac{[y:B]^y \quad [x:A]^x}{\langle y,x\rangle_0 : B\&A} \& -I_0$$

$$\frac{\langle y,x\rangle_1 : A}{\langle y,x\rangle_1, \langle y,x\rangle_0\rangle : A\&B} \& -I_0$$

$$\frac{[x:A]^x \quad [y:B]^y}{\langle x,y\rangle : A\&B} \& -I_0$$

William Howard (1980) — Curry-Howard Isomorphism

THE FORMULAE-AS-TYPES NOTION OF CONSTRUCTION

W. A. Howard

Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680, U.S.A.

Dedicated to H. B. Curry on the occasion of his 80th birthday.

The following consists of notes which were privately circulated in 1969. Since they have been referred to a few times in the literature, it seems worth while to publish them. They have been rearranged for easier reading, and some inessential corrections have been made.

More than a coincidence?

second-order logic	polymorphism	Java
modal logic	monads	XML
classical logic	continuations	Links

Part II

Second-order logic,
Polymorphism,
and Java

Gottlob Frege (1879) — Quantifiers (∀)

It is clear also that from

$$\Phi(a)$$

we can derive

if A is an expression in which a does not occur and if a stands only in the argument places of $\Phi(a)$.¹⁴ If $-\Phi(a)$ is denied, we must be able to specify a meaning for a such that $\Phi(a)$ will be denied. If, therefore, $-\Phi(a)$ were to be denied and

Gottlob Frege (1879) — Quantifiers (\forall)

If from the proposition that δ has property F, whatever δ may be, it can be inferred that every result of an application of the procedure f to δ has property F, then property F is hereditary in the f-sequence.

§ 26.

$$\begin{bmatrix}
\delta \\
 & \delta \\$$

John Reynolds (1974) — Polymorphism

TOWARDS A THEORY OF TYPE STRUCTURE

John C. Reynolds

Syracuse University

Syracuse, New York 13210, U.S.A.

Introduction

The type structure of programming languages has been the subject of an active development characterized by continued controversy over basic principles. (1-7) In this paper, we formalize a view of these principles somewhat similar to that of J. H. Morris. (5) We introduce an extension of the typed lambda calculus which permits user-defined types and polymorphic functions, and show that the semantics of this language satisfies a representation theorem which embodies our notion of a "correct" type structure.

Syntax

To formalize the syntax of our language, we begin with two disjoint, countably infinite sets: the set T of type variables and the set V of normal variables. Then W, the set of type expressions, is the minimal set satisfying:

(la) If $t \in T$ then:

- (1b) If w_1 , $w_2 \in W$ then: $(w_1 \rightarrow w_2) \in W.$
- (1c) If t ϵ T and w ϵ W then: $(\Delta t. \ w) \ \epsilon \ W.$

Jean-Yves Girard (1972) — Polymorphism

UNE EXTENSION DE L'INTERPRETATION DE GÖDEL A L'ANALYSE, ET SON APPLICATION A L'ELIMINATION DES COUPURES DANS L'ANALYSE ET LA THEORIE DES TYPES

Jean-Yves GIRARD

(8, Rue du Moulin d'Amboile, 94-Sucy en Brie, France)

Ce travail comprend (Ch. 1-5) une interprétation de l'Analyse, exprimée dans la logique intuitionniste, dans un système de fonctionnelles Y, décrit Ch. 1, et qui est une extension du système connu de Gödel [Gd]. En gros, le système est obtenu par l'adjonction de deux sortes de types (respectivement existentiels et universels, si les types construits avec → sont considérés comme implicationnels) et de quatre schémas de construction de fonctionelles correspondant à l'introduction et à l'élimination de chacun de ces types, ainsi que par la donnée des règles de calcul (réductions) correspondantes.

Robin Milner (1975) — Polymorphism

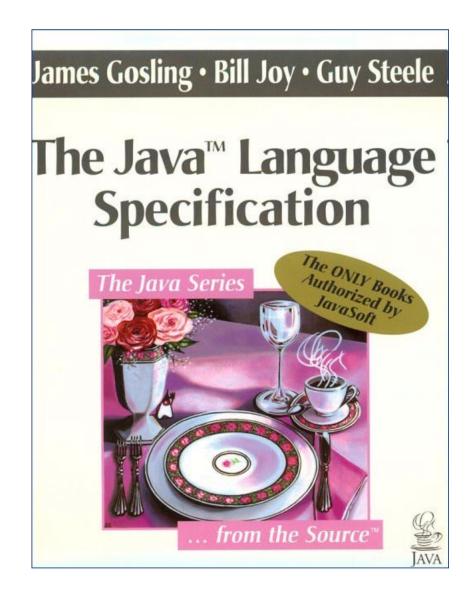
A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland
Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming, particularly in structure-processing languages which impose no discipline of types, entails defining procedures which work well on objects of a wide variety. We present a formal type discipline for such polymorphic procedures in the context of a simple programming language, and a compile time type-checking algorithm $\mathcal W$ which enforces the discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) states that well-type programs cannot "go wrong" and a Syntactic Soundness Theorem states that if $\mathcal W$ accepts a program then it is well typed. We also discuss extending these results to richer languages; a type-checking algorithm based on $\mathcal W$ is in fact already implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Gosling, Joy, Steele (1996) — Java



Odersky and Wadler (1997) — Pizza

Pizza into Java: Translating theory into practice

Martin Odersky University of Karlsruhe

Philip Wadler University of Glasgow

```
Example 2.1 Polymorphism in Pizza

class Pair<elem> {
    elem x; elem y;
    Pair (elem x, elem y) {this.x = x; this.y = y;}
    void swap () {elem t = x; x = y; y = t;}
}

Pair<String> p = new Pair("world!", "Hello,");
p.swap();
System.out.println(p.x + p.y);

Pair<int> q = new Pair(22, 64);
q.swap();
System.out.println(q.x - q.y);
```

```
Example 2.3 Homogenous translation of polymorphism
into Java
class Pair {
   Object x: Object y:
   Pair (Object x, Object y) \{this.x = x; this.y = y;\}
   void swap () {Object t = x; x = y; y = t;}
class Integer {
   int i:
   Integer (int i) \{ this.i = i; \}
  int intValue() { return i; }
Pair p = new Pair((Object)"world!", (Object)"Hello,");
p.swap();
System.out.println((String)p.x + (String)p.y);
Pair q = new Pair((Object)new Integer(22),
                   (Object)new Integer(64)):
q.swap();
System.out.println(((Integer)(q.x)).intValue() -
                   ((Integer)(q.y)).intValue());
```

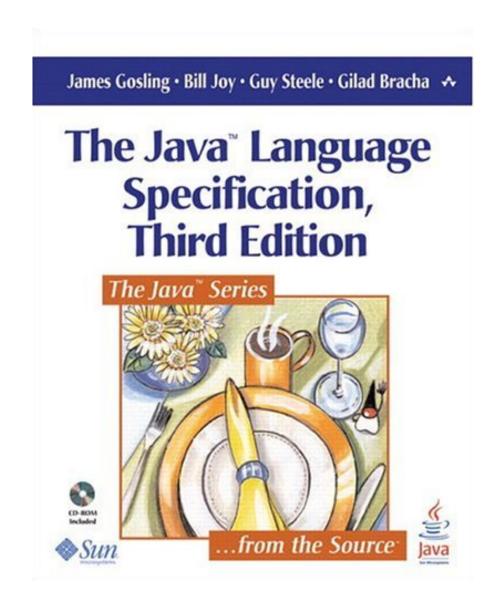
Igarashi, Pierce, and Wadler (1999) — Featherweight Java

$$\begin{split} \Gamma \vdash \mathbf{x} : \Gamma(\mathbf{x}) \\ & \frac{\Gamma \vdash \mathbf{e}_0 : \mathbf{C}_0 \quad \mathit{fields}(\mathbf{C}_0) = \overline{\mathbf{C}} \ \overline{\mathbf{f}}}{\Gamma \vdash \mathbf{e}_0 . \mathbf{f}_i : \mathbf{C}_i} \\ \\ & \frac{\Gamma \vdash \mathbf{e}_0 : \mathbf{C}_0 \quad \mathit{mtype}(\mathbf{m}, \mathbf{C}_0) = \overline{\mathbf{D}} \rightarrow \mathbf{C} \quad \Gamma \vdash \overline{\mathbf{e}} : \overline{\mathbf{C}} \quad \overline{\mathbf{C}} \lessdot \overline{\mathbf{D}}}{\Gamma \vdash \mathbf{e}_0 . \mathbf{m}(\overline{\mathbf{e}}) : \mathbf{C}} \\ & \frac{\mathit{fields}(\mathbf{C}) = \overline{\mathbf{D}} \ \overline{\mathbf{f}} \quad \Gamma \vdash \overline{\mathbf{e}} : \overline{\mathbf{C}} \quad \overline{\mathbf{C}} \lessdot \overline{\mathbf{D}}}{\Gamma \vdash \mathbf{new} \ \mathbf{C}(\overline{\mathbf{e}}) : \mathbf{C}} \\ & \frac{\Gamma \vdash \mathbf{e}_0 : \mathbf{D} \quad \mathbf{D} \lessdot \mathbf{C}}{\Gamma \vdash (\mathbf{C}) \mathbf{e}_0 : \mathbf{C}} \\ & \frac{\Gamma \vdash \mathbf{e}_0 : \mathbf{D} \quad \mathbf{C} \lessdot \mathbf{D} \quad \mathbf{C} \not= \mathbf{D}}{\Gamma \vdash (\mathbf{C}) \mathbf{e}_0 : \mathbf{C}} \\ & \frac{\Gamma \vdash \mathbf{e}_0 : \mathbf{D} \quad \mathbf{C} \not\leq \mathbf{D} \quad \mathbf{C} \not\neq \mathbf{D}}{\Gamma \vdash (\mathbf{C}) \mathbf{e}_0 : \mathbf{C}} \end{split}$$

Igarashi, Pierce, and Wadler (1999) — Featherweight Generic Java

$$\begin{array}{c} \Delta;\Gamma\vdash x:\Gamma(x)\\ \\ \underline{\Delta;\Gamma\vdash e_0:T_0 \quad fields(bound_{\Delta}(T_0))=\overline{T}\ \overline{f}}\\ \\ \Delta;\Gamma\vdash e_0:T_0 \quad mtype(\mathbb{m},\,bound_{\Delta}(T_0))=<\overline{Y}\, \lhd\overline{p}>\overline{U}\to U\\ \underline{\Delta\vdash \overline{V}\ ok\quad \Delta\vdash \overline{V}<:[\overline{V}/\overline{Y}]\overline{p}\quad \Delta;\Gamma\vdash \overline{e}:\overline{S}\quad \Delta\vdash \overline{S}<:[\overline{V}/\overline{Y}]\overline{U}}\\ \\ \underline{\Delta\vdash \overline{V}\ ok\quad \Delta\vdash \overline{V}<:[\overline{V}/\overline{Y}]\overline{p}\quad \Delta;\Gamma\vdash \overline{e}:\overline{S}\quad \Delta\vdash \overline{S}<:[\overline{V}/\overline{Y}]\overline{U}}\\ \underline{\Delta\vdash \overline{N}\ ok\quad fields(\overline{N})=\overline{T}\ \overline{f}\quad \Delta;\Gamma\vdash \overline{e}:\overline{S}\quad \Delta\vdash \overline{S}<:\overline{T}\\ \underline{\Delta;\Gamma\vdash e_0:\overline{T}}\quad \Delta;\Gamma\vdash new\ \overline{N(\overline{e})}:\overline{N}\\ \\ \underline{\Delta;\Gamma\vdash e_0:T_0\quad \Delta\vdash bound_{\Delta}(T_0)<:\overline{N}\\ \underline{\Delta;\Gamma\vdash (\overline{N})e_0:\overline{N}}\\ \\ \underline{\Delta;\Gamma\vdash (\overline{N})e_0:\overline{N}}\\ \underline{\Delta;\Gamma\vdash (\overline{N})$$

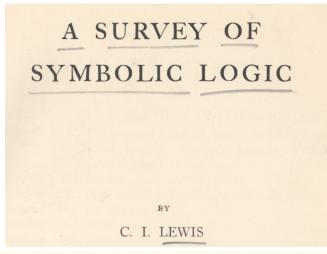
Gosling, Joy, Steele, Bracha (2004) — Java 5



Part III

Modality, monads, and XML

Clarence Lewis (1918) — Modal Logic



Systems previously developed, except MacColl's, have only two truth-values, "true" and "false". The addition of the idea of impossibility gives us five truth-values, all of which are familiar logical ideas:

- (1) p, "p is true".
- (2) -p, "p is false".
- (3) $\sim p$, "p is impossible".
- (4) -p, "It is false that p is impossible"—i. e., "p is possible".
- (5) $\sim -p$, "It is impossible that p be false"—i. e., "p is necessarily true".

Strictly, the last two should be written $-(\sim p)$ and $\sim (\sim p)$: the parentheses are regularly omitted for typographical reasons.

Eugenio Moggi (1988) — Monads

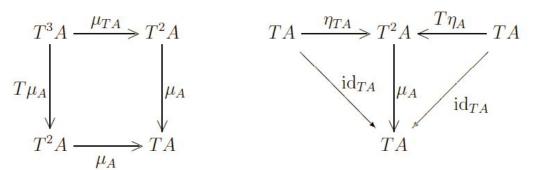
Computational lambda-calculus and monads

Eugenio Moggi*
LFCS
Dept. of Comp. Sci.
University of Edinburgh
EH9 3JZ Edinburgh, UK
em@lfcs.ed.ac.uk

October 1988

Definition 2.1

A computational model is a monad (T, η, μ) over a category C, i.e. a functor $T: C \to C$ and two natural transformations $\eta: \mathrm{Id}_{\mathcal{C}} \to T$ and $\mu: T^2 \to T$ s.t.



which satisfies also an extra equalizing requirement: $\eta_A: A \to TA$ is an equalizer of $\eta_T A$ and $T(\eta_A)$, i.e. for any $f: B \to TA$ s.t. $f; \eta_{TA} = f; T(\eta_A)$ there exists a unique $m: B \to A$ s.t. $f = m; \eta_A^3$.

Philip Wadler (1990) — Comprehensions

Comprehending Monads

Philip Wadler University of Glasgow

Comprehensions 2.2

Many functional languages provide a form of list comprehension analogous to set comprehension. For example,

$$[(x,y) | x \leftarrow [1,2], y \leftarrow [3,4]] = [(1,3),(1,4),(2,3),(2,4)].$$

In general, a comprehension has the form $[t \mid q]$, where t is a term and q is a qualifier. We use the letters t, u, v to range over terms, and p, q, r to range over qualifiers. A qualifier is either empty, Λ ; or a generator, $x \leftarrow u$, where x is a variable and u is a list-valued term; or a composition of qualifiers, (p,q). Comprehensions are defined by the following rules:

- $\begin{array}{lll} (1) & \begin{bmatrix} t \mid A \end{bmatrix} &=& unit \ t, \\ (2) & \begin{bmatrix} t \mid x \leftarrow u \end{bmatrix} &=& map \left(\lambda x \rightarrow t \right) u, \\ (3) & \begin{bmatrix} t \mid (p,q) \end{bmatrix} &=& join \left[\begin{bmatrix} t \mid q \end{bmatrix} \mid p \right]. \end{array}$

Peter Buneman et al (1991) — Comprehensions

Comprehension Syntax

Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong

A more verbose version of this query can also be written in SQL

```
SELECT Name = p.Name, Mgr = d.Mgr
FROM Emp p, Dept d
WHERE p.D\# = d.D\#
```

We can put a different interpretation on the syntax of this query. In SQL, the symbols p and d are simply aliases for the relation names Emp and Dept respectively. interesting connections with what we shall develop. In our syntax this query is written:

```
\{[\mathsf{Name} = p.\mathsf{Name}, \; \mathsf{Mgr} = d.\mathsf{Mgr}] \mid \\ \propto p <-- \; \mathsf{Emp}, \\ \propto d <-- \; \mathsf{Dept}, \\ p.\mathsf{DNum} = d.\mathsf{DNum}\}
```

The syntactic form $\{e \mid c_1, c_2, \ldots, c_n\}$ is a comprehension. It is an expression that denotes a collection – in

XQuery (2004) — FLWOR

XQuery 1.0: An XML Query Language

W3C Working Draft 29 October 2004

3.8 FLWOR Expressions

XQuery provides a feature called a FLWOR expression that supports iteration and binding of variables to intermediate results. This kind of expression is often useful for computing joins between two or more documents and for restructuring data. The name FLWOR, pronounced "flower", is suggested by the keywords for, let, where, order by, and return.

The result of the above expression is as follows:

```
<authlist>
  <author>
     <name>Abiteboul</name>
      <books>
         <title>Data on the Web</title>
      </books>
  </author>
  <author>
      <name>Buneman</name>
         <title>Data on the Web</title>
      </books>
  </author>
  <author>
      <name>Stevens</name>
         <title>TCP/IP Illustrated</title>
         <title>Advanced Programming
                in the Unix Environment</title>
      </books>
  </author>
  <author>
     <name>Suciu</name>
         <title>Data on the Web</title>
      </books>
  </author>
</authlist>
```

XQuery (2004) — FLWOR

The result of the above expression is as follows:

```
<authlist>
   <author>
      <name>Abiteboul</name>
      <books>
         <title>Data on the Web</title>
      </books>
   </author>
   <author>
      <name>Buneman</name>
      <books>
         <title>Data on the Web</title>
      </books>
   </author>
   <author>
      <name>Stevens</name>
      <books>
         <title>TCP/IP Illustrated</title>
         <title>Advanced Programming
                in the Unix Environment</title>
      </books>
   </author>
   <author>
      <name>Suciu</name>
      <books>
         <title>Data on the Web</title>
      </books>
   </author>
</authlist>
```

XQuery (2004) — Formal Semantics

XQuery 1.0 and XPath 2.0 Formal Semantics

W3C Working Draft 20 February 2004

A document node matches a document type if the node's content matches the document type's corresponding content type.

statEnv I- <u>Value</u> matches <u>Type</u>
statEnv I- document { <u>Value</u> } matches document { <u>Type</u> }

The rules for matching an element value with an element type are more complicated. When an element value is not nilled, the element matches an element type if the element name and the element type resolve to some type name, and the element value's type annotation is derived from the resolved type name. Note that there is no need to check structural constraints on the value since since those have been checked during XML Schema validation and the value is assumed to be consistent with its type annotation.

statEnv I- <u>ElementName</u> name lookup <u>ElementType</u> yields <u>Nillable</u>? of type <u>BaseTypeName</u>
statEnv I- <u>TypeName</u> derives from <u>BaseTypeName</u>
<u>Value</u> filter @xsi:nil ⇒ () or false

statEnv I- element <u>ElementName</u> of type <u>TypeName</u> { <u>Value</u> } matches <u>ElementType</u>

Note

Type matching uses the name lookup judgment defined in [7.1.3 Element and attribute name lookup (Dynamic)].

The empty sequence matches the empty sequence type.

statEnv I- () matches empty

If two values match two types, then their sequence matches the corresponding sequence type.

statEnv I- <u>Value</u>₁ matches <u>Type</u>₁ statEnv I- <u>Value</u>₂ matches <u>Type</u>₂

statEnv I- <u>Value</u>₁, <u>Value</u>₂ matches <u>Type</u>₁, <u>Type</u>₂

Part IV

Classical logic, continuations, and the Web

Andrei Kolmogorov (1925)

On the principle of excluded middle ANDREI NIKOLAEVICH KOLMOGOROV (1925)

To an elementary formula \mathfrak{S} there corresponds in pseudomathematics the formula \mathfrak{S}^* , which expresses the double negation of \mathfrak{S} :

$$\mathfrak{S}^* \equiv \overline{\mathfrak{S}}.$$

In what follows we shall, for convenience, denote the double negation of \mathfrak{S} by $n\mathfrak{S}$.

To the formula of the *n*th order $F(\mathfrak{S}_1, \mathfrak{S}_2, \ldots, \mathfrak{S}_k)$, where $\mathfrak{S}_1, \mathfrak{S}_2, \ldots, \mathfrak{S}_k$ are formulas of the (n-1)th order at most, there corresponds in pseudomathematics the formula $F(\mathfrak{S}_1, \mathfrak{S}_2, \ldots, \mathfrak{S}_k)^*$ such that

$$(49) F(\mathfrak{S}_1, \mathfrak{S}_2, \dots, \mathfrak{S}_k)^* \equiv nF(\mathfrak{S}_1^*, \mathfrak{S}_2^*, \dots, \mathfrak{S}_k^*),$$

 $\mathfrak{S}_1^*, \mathfrak{S}_2^*, \ldots, \mathfrak{S}_k^*$ being regarded as already determined. For example, to the formula

$$a = b \rightarrow \{A(a) \rightarrow B(a)\}$$

there corresponds in pseudomathematics the formula

$$n[n(a = b) \rightarrow n\{nA(a) \rightarrow nB(a)\}].$$

Gordon Plotkin (1975)

CALL-BY-NAME, CALL-BY-VALUE AND THE λ-CALCULUS

G. D. PLOTKIN

We begin with a simulation of call-by-value by call-by-name. Given a call-by-value language with its Constapply, Eval, and λ_{ν} , we consider the call-by-name language whose variables are those of the given language together with three others, κ , α and β say, and whose list of variables for the substitution prefix is that of the given language. Its Constapply will be given in a little while. First the term simulation map $M \mapsto \overline{M}$ sending terms in the call-by-value language to the call-by-name language is given by the recursive definition:

$$\bar{a} = \lambda \varkappa (\varkappa a)$$

$$\bar{x} = \lambda \varkappa (\varkappa x)$$

$$\bar{\lambda} x \bar{M} = \lambda \varkappa (\varkappa (\lambda x \bar{M}))$$

$$\bar{M} \bar{N} = \lambda \varkappa (\bar{M} (\lambda \alpha \bar{N} (\lambda \beta \alpha \beta \varkappa))).$$
Constapply_N is given by:
$$Constapply_N(a, b) = \overline{Constapply_V(a, b)}$$

Philip Wadler (2000)

Call-by-Value is Dual to Call-by-Name

Philip Wadler Avaya Labs

```
(\beta \&)
                     \langle V, W \rangle \bullet \operatorname{fst}[K]
                                                                                                                                                                                   \longrightarrow_n M \bullet P
                                                                                                                   (\beta \& z)
                                                                                                                                         \langle M, N \rangle \bullet \operatorname{fst}[P]
                     \langle V, W \rangle \bullet \operatorname{snd}[L] \longrightarrow_{v} W \bullet L
(\beta \& z)
                                                                                                                                         \langle M, N \rangle \bullet \operatorname{snd}[Q] \longrightarrow_n N \bullet Q
                                                                                                                    (\beta \& z)
                     \langle V \rangleinl • [K, L]
                                                                                                                                         \langle M \rangleinl • [P,Q]
                                                                                                                                                                              \longrightarrow_n M \bullet P
(\beta \vee)
                                                                                                                    (\beta \vee)
(\beta \vee)
                    \langle W \rangle \operatorname{inr} \bullet [K, L] \longrightarrow_{v} W \bullet L
                                                                                                                                        \langle N \rangleinr • [P,Q]
                                                                                                                                                                               \longrightarrow_n N \bullet Q
                                                                                                                   (\beta \vee)
                    [K] not \bullet not\langle M \rangle \longrightarrow_v M \bullet K
(\beta \neg)
                                                                                                                                        [K] not \bullet not\langle M \rangle \longrightarrow_n M \bullet K
                                                                                                                   (\beta \neg)
                     \lambda x. N \bullet V @ L \longrightarrow_{v} V \bullet x. (N \bullet L)
(\beta\supset)
                                                                                                                                        \lambda x. N \bullet M @ Q \longrightarrow_n M \bullet x. (N \bullet Q)
                                                                                                                   (\beta\supset)
                    V \bullet x.(S) \longrightarrow_{v} S\{V/x\}

(S).\alpha \bullet K \longrightarrow_{v} S\{K/\alpha\}
                                                                                                                                        M \bullet x.(S) \longrightarrow_n S\{M/x\}

(S).\alpha \bullet P \longrightarrow_n S\{P/\alpha\}
(\beta L)
                                                                                                                   (\beta L)
(\beta R)
                                                                                                                   (\beta R)
```

Philip Wadler (2000)

$$\frac{x : A \to \mathbb{I} x : A}{x : A \to \mathbb{I} x : A} \text{ IdR} \qquad \frac{\alpha : A \mathbb{I} \to \alpha : A}{\alpha : A \mathbb{I} \to \alpha : A} \text{ IdL}$$

$$\frac{\Gamma \to \Theta \mathbb{I} M : A}{\Gamma \to \Theta \mathbb{I} \langle M, N \rangle : A \& B} \& R \qquad \frac{K : A \mathbb{I} \Gamma \to \Theta}{\text{fst}[K] : A \& B \mathbb{I} \Gamma \to \Theta} \qquad \frac{L : B \mathbb{I} \Gamma \to \Theta}{\text{snd}[L] : A \& B \mathbb{I} \Gamma \to \Theta} \& L$$

$$\frac{\Gamma \to \Theta \mathbb{I} M : A}{\Gamma \to \Theta \mathbb{I} M : A} \qquad \frac{\Gamma \to \Theta \mathbb{I} N : B}{\Gamma \to \Theta \mathbb{I} \langle N \rangle \text{inr} : A \lor B} \lor R \qquad \frac{K : A \mathbb{I} \Gamma \to \Theta}{[K, L] : A \lor B \mathbb{I} \Gamma \to \Theta} \lor L$$

$$\frac{K : A \mathbb{I} \Gamma \to \Theta}{\Gamma \to \Theta \mathbb{I} \langle M \rangle \text{inf} : A \lor B} \to R \qquad \frac{\Gamma \to \Theta \mathbb{I} M : A}{\text{not} \langle M \rangle : \neg A \mathbb{I} \Gamma \to \Theta} \to L$$

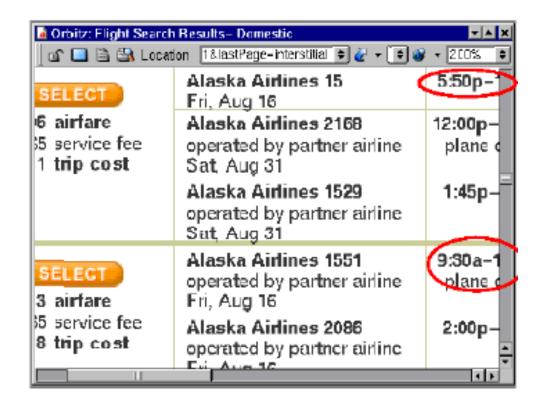
$$\frac{x : A, \Gamma \to \Theta \mathbb{I} N : B}{\Gamma \to \Theta \mathbb{I} \lambda x . N : A \supset B} \supset R \qquad \frac{\Gamma \to \Theta \mathbb{I} M : A}{M @ L : A \supset B \mathbb{I} \Gamma, \Delta \to \Theta, \Lambda} \supset L$$

$$\frac{\Gamma \mathbb{I} S \mapsto \Theta, \alpha : A}{\Gamma \to \Theta \mathbb{I} \langle S \rangle : \alpha : A} R \mathbb{I} \qquad \frac{x : A, \Gamma \mathbb{I} S \mapsto \Theta}{x . \langle S \rangle : A \mathbb{I} \Gamma \to \Theta} L \mathbb{I}$$

$$\frac{\Gamma \to \Theta \mathbb{I} M : A}{\Gamma \to \Theta \mathbb{I} M : A} \qquad K : A \mathbb{I} \Delta \to \Lambda$$

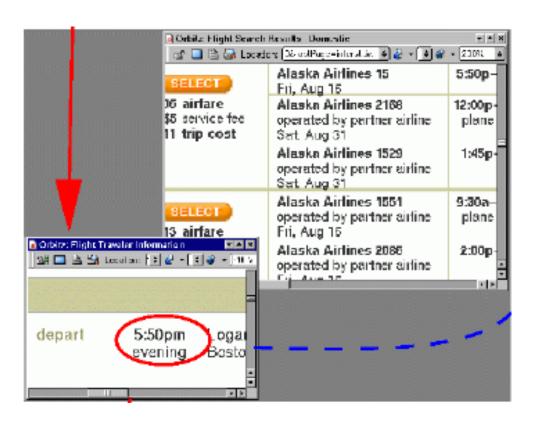
$$\frac{\Gamma \to \Theta \mathbb{I} M : A}{\Gamma \to \Theta \mathbb{I} M : A} \qquad Cut$$

Orbitz: Two flights

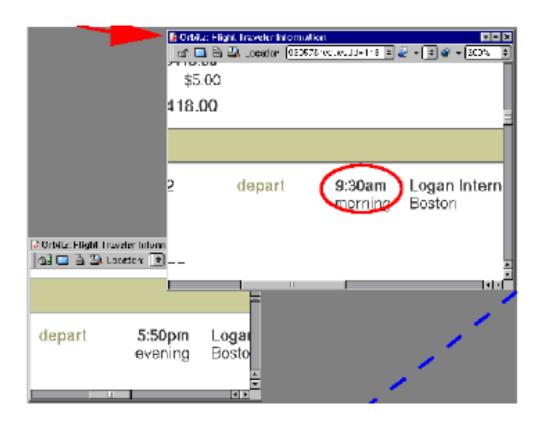


Graunke, Findler, Krishnamurthi, Felleisen (ESOP 2003)

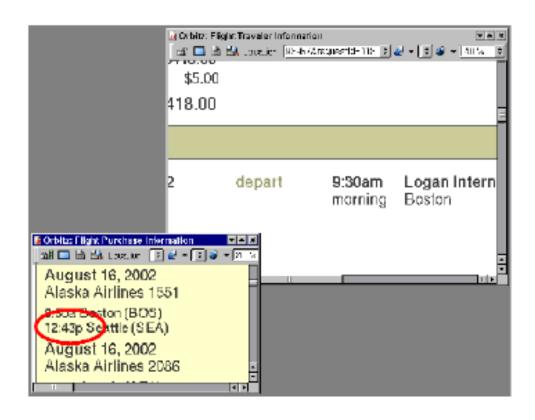
Orbitz: Clone and submit first



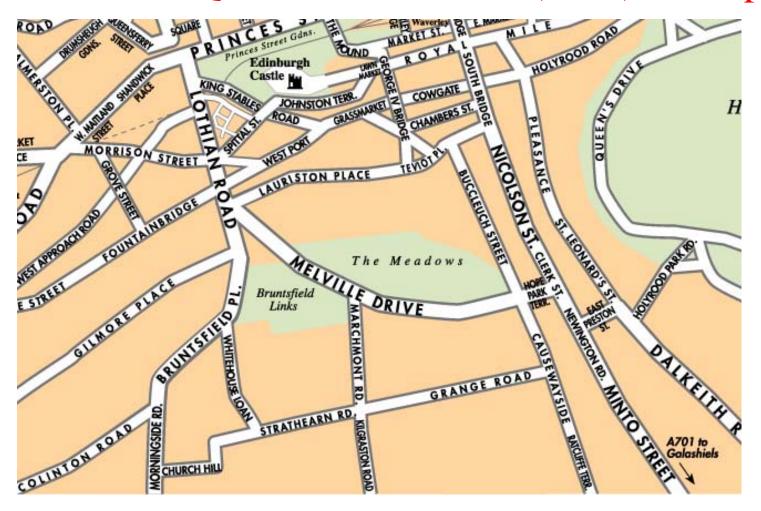
Orbitz: Submit second



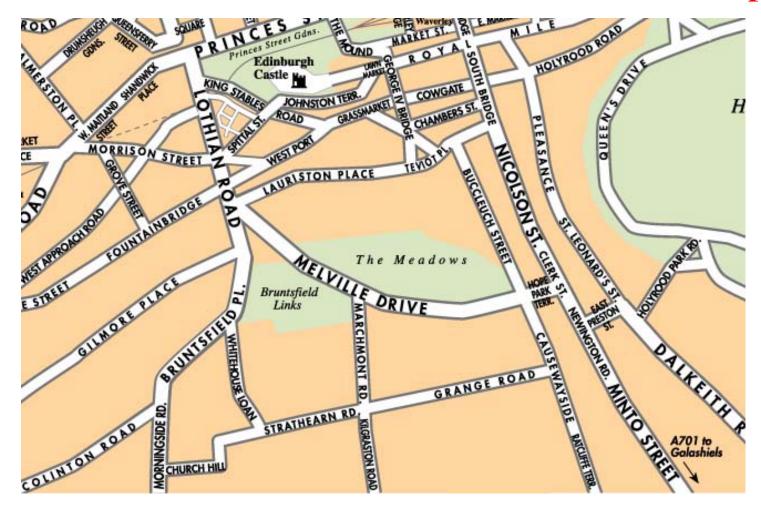
Orbitz: Select first – problem!



Burstall, MacQueen, and Sannella (1980) — Hope

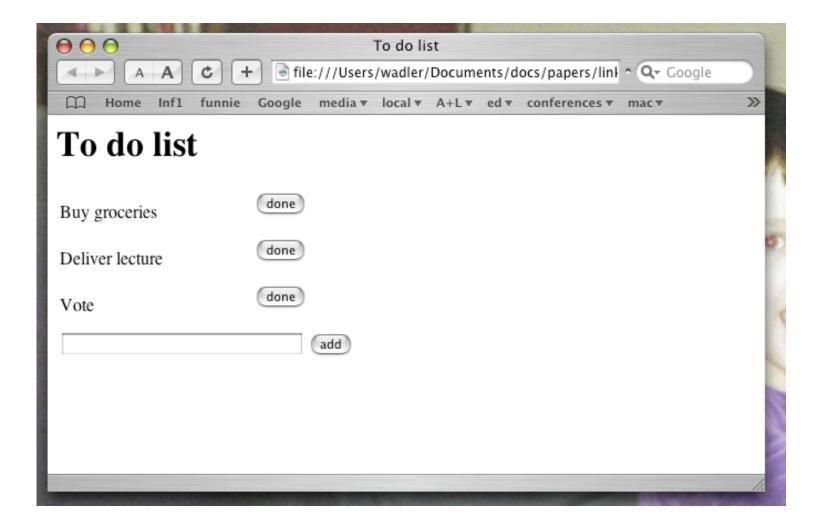


Burstall, MacQueen, and Sannella (1980) — Hope



Wadler and Yallop (2005) — Links

```
main() ->
 todo([]).
todo(items) ->
 <html><body>
   <h1>Items to do</h1>
   {
     for item in items return
       {item}
         <form action="{todo(items\\[item])}">
             <input type="submit" value="done"/>
           </form>
         }
   <form action="{todo(items++[new])}">
     <input name="{new}" type="text" size="40">
     <input type="submit" value="add"/>
   </form>
 </body></html>.
```



Part V

Conclusions

Kinds of coincidence

Historical confluence of great minds — Hume, Hutton, Smith

Geographical shape of continents

Astronomical size of sun and moon from earth

More than a coincidence?

second-order logic	polymorphism	Java
modal logic	monads	XML
classical logic	continuations	Links

More than a coincidence?

second-order logic	polymorphism	Java
	Milner	
modal logic	monads Moggi,Buneman	XML
classical logic	continuations	Links
Classical 10gic	Plotkin	Links

Invitation

Scottish Programming Language Seminar Invited speakers: John Reynolds, David Watt

10.00–16.00, 7 December 2004, University of Glasgow Simon Gay, simon@dcs.gla.ac.uk

Special thanks to

My colleagues for their ideas

Martina Sharp, Avaya Labs, and Diana Sisu, Informatics, for scanning

Adam and Leora for their books

Catherine for the tie

You for listening