
JFP 30, e17, 14 pages, 2020. c© The Author(s), 2020. Published by Cambridge University Press 1
doi:10.1017/S0956796820000155

T H E O R E T I C A L P E A R L
.= � ≡

Leibniz equality is isomorphic to Martin-Löf
identity, parametrically

A N D R E A S A B E L
Gothenburg University

(e-mail: andreas.abel@gu.se)

J E S P E R C O C K X
TU Delft, Netherlands

(e-mail: j.g.h.cockx@tudelft.nl)

D O M I N I Q U E D E V R I E S E
Vrije Universiteit Brussel, Belgium

(e-mail: dominique.devriese@vub.be)

A M I N T I M A N Y
Aarhus University, Denmark
(e-mail: timany@cs.au.dk)

P H I L I P W A D L E R
University of Edinburgh

(e-mail: wadler@inf.ed.ac.uk)

Abstract

Consider two widely used definitions of equality. That of Leibniz: one value equals another if any
predicate that holds of the first holds of the second. And that of Martin-Löf: the type identifying
one value with another is occupied if the two values are identical. The former dates back several
centuries, while the latter is widely used in proof systems such as Agda and Coq. Here we show that
the two definitions are isomorphic: we can convert any proof of Leibniz equality to one of Martin-Löf
identity and vice versa, and each conversion followed by the other is the identity. One direction of
the isomorphism depends crucially on values of the type corresponding to Leibniz equality satisfying
functional extensionality and Reynolds’ notion of parametricity. The existence of the conversions is
widely known (meaning that if one can prove one equality then one can prove the other), but that the
two conversions form an isomorphism (internally) in the presence of parametricity and functional
extensionality is, we believe, new. Our result is a special case of a more general relation that holds
between inductive families and their Church encodings. Our proofs are given inside type theory,
rather than meta-theoretically. Our paper is a literate Agda script.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0956796820000155
mailto:andreas.abel@gu.se
https://orcid.org/0000-0003-3862-4073
mailto:j.g.h.cockx@tudelft.nl
https://orcid.org/0000-0002-3862-6856
mailto:dominique.devriese@vub.be
mailto:timany@cs.au.dk
mailto:wadler@inf.ed.ac.uk
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

2 A. Abel et al.

1 Introduction

If anything is sufficiently important, there will be more than one way to do it. For instance,
the concept of two objects being the same can be expressed in at least two ways, Leibniz
equality and Martin-Löf identity.

Leibniz asserted the identity of indiscernibles: two objects are equal if and only if they
satisfy the same properties (Leibniz, 1686). This principle sometimes goes by the name
Leibniz’ Law and is closely related to Spock’s Law, “A difference that makes no difference
is no difference.” Leibniz equality is usually formalized to state that a

.= b holds if every
property P that holds of a also holds of b. Perhaps surprisingly, this definition is sufficient
to also ensure the converse that every property P that holds of b also holds of a.

The setting for our paper is a dependent type theory. We present our development as
a literate script for the proof assistant Agda, although our results should be easy to carry
over to other settings. (Indeed, we also provide Coq versions of our results as an online
supplement.) Such systems typically define equality in the style introduced by Martin-Löf
(1975). We will express Martin-Löf identity by stating that the type a ≡ b is inhabited
when a is the same as b. We say that refl inhabits the type a ≡ a, while the type a ≡ b is
empty when a and b are distinct. As we discuss below, some assume that refl is the unique
inhabitant of a ≡ a, while others do not; our results will turn out to hold either way.

Martin-Löf identity has been the subject of considerable discussion (Streicher, 1993;
Hofmann & Streicher, 1996; Altenkirch et al., 2007; the Univalent Foundations Program,
2013; Cohen et al., 2016). In contrast, Leibniz equality has seen surprisingly little
discussion in our community.

It is not hard to show that both concepts are equivalence relations: each is reflexive,
symmetric, and transitive. Further, it is well known that Leibniz equality (a

.= b) implies
Martin-Löf identity (a ≡ b) and vice versa. Indeed, the former is sometimes taken as the
name of the latter (Pfenning & Paulin-Mohring, 1989; Coq Developers, 2017). Here, to
avoid confusion, we stick to calling each by its own name as defined above.

Simply stating that Leibniz equality implies Martin-Löf identity, and vice versa, is a
weak connection: it means that there is a function that takes every proof of the former into
a proof of the latter, and a function that takes every proof of the latter into a proof of the
former. Here we prove something stronger, namely that Leibniz equality is isomorphic to
Martin-Löf identity: the two functions of the previous sentence are inverses, giving a one-
to-one correspondence. As such, our results imply more than just the existence of equality
proofs, but also relate their computational content. Isomorphism plays a distinguished role
in category theory and homotopy type theory, where it is referred to as an equivalence, and
the computational content of equality proofs is increasingly important in recent type theo-
ries such as Cubical (Cohen et al., 2016) and HoTT (the Univalent Foundations Program,
2013). Our results were new at the time of writing; similar results appear in Cavallo and
Harper (2019), discussed below.

Our proof of the isomorphism depends on the assumption that values of the type cor-
responding to Leibniz equality satisfy a suitable notion of parametricity. Parametricity
was originally defined for the polymorphic lambda calculus (also known as System F)
by Reynolds (1983). Applications of parametricity to functional programming are given
by Wadler (1989). While most descriptions of parametricity are in terms of semantics, a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 3

simple syntactic description of parametricity as a mapping from System F to second-order
logic appears in Wadler (2007). Parametricity has been adapted to dependent type theory
(Bernardy et al., 2012; Atkey et al., 2014; Bernardy et al., 2015; Nuyts et al., 2017; Nuyts
& Devriese, 2018).

Our proof of the isomorphism also depends on the assumption that the Martin-Löf iden-
tity type satisfies functional extensionality: two functions are equal if and only if they map
equal inputs to equal results. Since Martin-Löf identity and Leibniz equality are known
to imply each other, it follows that extensionality with regard to Martin-Löf identity and
extensionality with regard to Leibniz equality also imply each other.

We postulate extensionality in Agda. A postulate cannot be executed computationally,
but that doesn’t detract from our purpose.

Leibniz equality can be viewed as the Church encoding of Martin-Löf identity. Pfenning
and Paulin-Mohring conjectured that inductively defined data types are isomorphic to their
Church encodings in the presence of parametricity (Pfenning & Paulin-Mohring, 1989).
Several special cases of this are known in the literature. Hasegawa demonstrates that
categorical product and sum are isomorphic to their Church encodings in the presence
of parametricity (Hasegawa, 1994), and Wadler demonstrates that the inductive definition
of natural numbers is isomorphic to the Church numerals assuming that Church numerals
satisfy parametricity (Wadler, 2007). Atkey, Ghani, and Johann proved a general version
of the conjecture using their formulation of parametricity in dependent type theory (Atkey
et al., 2014). This paper can be viewed as zooming in on a special case of the property,
but we prove our results inside type theory rather than meta-theoretically (contrary to the
other papers cited in this paragraph).

Leibniz equality is normally formulated in an impredicative setting: when we say
that a

.= b holds if every property P that holds of a also holds of b, the property P may
itself refer to Leibniz equality. Here, perhaps surprisingly, we formulate our results in
the predicative setting of Agda, where the property P may not refer to Leibniz equality.
However, there is no difficulty in extending our results to an impredicate setting, and we
have done so in Coq.

Technically, the properties of Martin-Löf identity are expressed in terms of two axioms,
called J and K. Axiom J is always assumed and corresponds to ≡-elimination as originally
defined by Martin-Löf (1975). Axiom K is more controversial; it corresponds to asserting
uniqueness of identity proofs (UIP), that is, all proofs of the same equality are equal.
However, UIP is incompatible with the approach taken in homotopy type theory, where
one assumes Voevodsky’s univalence axiom, that is, any two isomorphic types are equal
(the Univalent Foundations Program, 2013). Consider possible proofs that the boolean
type is equal to itself, Bool ≡ Bool. Under the former, there is exactly one such proof, refl,
while under the latter there are two, corresponding to the two isomorphisms of Bool to
itself—one which takes each of true and false to itself, and the other which swaps them.
Fortunately, we do not require K for our development, as indicated by the pragma with
which we begin our script; hence our results are compatible with both UIP and univalence.
Axiom K was introduced by Streicher (1993); details of J and K and how to pattern match
in the absence of the latter are discussed by Cockx et al. (2014).

Similar results to ours appear in Cavallo and Harper (2019). Their paper was written at
the same time as ours and is currently under submission. They present a type theory that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

4 A. Abel et al.

combines univalence and parametricity, and prove the equivalence of Leibniz and Martin-
Löf equality as one example result. Their results depend on a technical notion of bridge-
discrete types, which we do not try to explain here. Our results are initially restricted
to small types (types of the first in a hierarchy of universes), which can be taken to be
bridge-discrete.1 In Section 6 we discuss how to generalise to arbitrary universes by using
parametric quantifiers, as proposed by Nuyts et al. (2017). Cavallo and Harper (2019)
present many more results than we do, but is dense and technical. We focus solely on the
equivalence between Leibniz identity and Martin-Löf equality, and aim to be accessible to
a broader audience.

This note is a literate Agda script. Its source is available as an artifact and can be directly
executed in Agda. In fact, the source consists of two parts, one of which can be exe-
cuted in Agda, while, for reasons we will explain, the second can only be executed in
Agda-parametric, the proof-of-concept implementation of Nuyts et al.’s parametric type
theory (2017). We also submit as an artifact the same proof in Coq. Our Agda proof uses
a predicative setting, and the Coq proof uses both predicative and impredicative settings.

This paper is organized as follows. Section 2 introduces Martin-Löf identity, and
Section 3 introduces Leibniz equality. Section 4 reprises a related result from the literature,
where two types are shown to be isomorphic in the presence of parametricity. Section 5
presents our proof that Leibniz equality is isomorphic to Martin-Löf identity. Section 6
generalizes our result to equalities between values of large types, explaining how para-
metricity requires additional nuance in the presence of universe types, and demonstrating
one way to do this. Section 7 concludes.

Our script begins with a little housekeeping. We use an Agda pragma to avoid pattern
matches that depend on Axiom K (Cockx et al., 2014, 2016; Cockx & Devriese, 2017).

{-# OPTIONS –without-K #-}

This ensures that we do not use Axiom K by accident, and thus our development can
be carried out the same in homotopy type theory, at least in a version that supports the
parametricity axioms we use.

We make use of modules. As required by Agda, our development is encapsulated in a
module with the same name as the file containing Sections 2–5 of this paper.

module LeibnizEquality where

We only import one module from the Agda standard library, which defines universe levels.

open import Agda.Primitive public

2 Martin-Löf identity

As mentioned in the introduction, we follow Martin-Löf (1975) by taking the identity type
a ≡ b to be the type expressing the equality of two objects a and b. This type has a sin-
gle constructor, refl : a ≡ a. Whenever a and b are definitionally equal, meaning that they
have the same normal form, then we have refl : a ≡ b. If an element a≡b : a ≡ b can be
constructed, then a and b are considered equal. On the other hand, if a and b are obviously

1 By this we mean that a type theory where all small types are bridge-discrete is compatible with the model.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 5

distinct, for example a = 0 and b = 1, then a ≡ b is an empty type. (Here we have followed
the usual Agda convention, where we let the identifier a≡b range over values of the type
a ≡ b. In Agda almost any sequence of characters not containing a space may be used as
an identifier.)

We encapsulate this section as an Agda module, assuming a set A as a parameter for all
definitions contained in this module.

module Martin-Löf {�} {A : Set �} where

We define equality at types A in any universe Set �, where � is a universe level, as usual in
Agda. We will return to universe polymorphism in Section 6.

We define ≡ inductively as an indexed data type with the single constructor refl.

data _≡_ (a : A) : A → Set � where
refl : a ≡ a

This characterizes Martin-Löf identity as the least type containing refl : a ≡ a for any a : A.
Martin-Löf identity satisfies the standard properties of an equivalence relation: reflexiv-

ity, symmetry, and transitivity.

reflexive≡ : {a : A} → a ≡ a
reflexive≡ = refl

symmetric≡ : {a b : A} → a ≡ b → b ≡ a
symmetric≡ refl = refl

transitive≡ : {a b c : A} → a ≡ b → b ≡ c → a ≡ c
transitive≡ refl refl = refl

Here we show these properties using dependent pattern matching (Coquand, 1992).
We end the module and make all its definitions available.

open Martin-Löf public

This allows us to invoke ≡ at any type, not just A.
We require one additional assumption, namely functional extensionality, which says that

two functions are equal if they map equal values to equal results.

postulate
ext : ∀ {� � ′} {A : Set �} {B : A → Set � ′} {f g : (a : A) → B a} →

(∀ (a : A) → f a ≡ g a) → f ≡ g

Although functional extensionality follows from univalence, it is strictly weaker and it can
also be used in type theories that assume UIP.

3 Leibniz equality

Following Leibniz, two objects are equal if they satisfy the same predicates. Let a and b
be the objects of type A. For now, we restrict our discussion to sets A that are small, i.e., of
type Set, not in higher universes Set �.

module Leibniz {A : Set} where

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

6 A. Abel et al.

In Section 6 we will come back to this.
We say that a

.= b holds if for every predicate P over type A we have that P a implies
P b.

_ .=_ : (a b : A) → Set1

_ .=_ a b = (P : A → Set) → P a → P b

We will see shortly that this definition implies its converse: for every predicate P over type
A we also have that P b implies P a.

Leibniz equality is reflexive and transitive.

reflexive .= : {a : A} → a
.= a

reflexive .= P Pa = Pa

transitive .= : {a b c : A} → a
.= b → b

.= c → a
.= c

transitive .= a
.=b b

.=c P Pa = b
.=c P (a .=b P Pa)

Here the first is shown by a variant of the identity function and the second by a variant of
function composition.

Symmetry is less obvious. We have to show that if P a implies P b for all predicates P,
then the implication holds the other way round as well.

symmetric .= : {a b : A} → a
.= b → b

.= a
symmetric .= {a} {b} a

.=b P = Qb
where
Q : A → Set
Q c = P c → P a
Qa : Q a
Qa = reflexive .= P
Qb : Q b
Qb = a

.=b Q Qa

Let us unpack this. Given a specific P and a proof Pb of P b, we have to construct a proof
of P a given a

.= b. To do so, we instantiate the equality with a predicate Q such that Q c
holds if P c implies P a. The property Q a is trivial by reflexivity, and hence Q b follows
from a

.= b. But Q b is exactly what we wish to show that P b implies P a.
Again, we end the module and make all its definitions available.

open Leibniz

4 A related result

As a warm up to the equivalence of Martin-Löf identity and Leibniz equality, we show a
well-known related result where proving an isomorphism requires parametricity (Wadler,
1989).

We show that the types A and T A are isomorphic, where T A is defined as follows.

T : Set → Set1

T A = ∀ (X : Set) → (A → X) → X

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 7

The type T A is related to continuation-passing style: a value of type A accepts a contin-
uation of type A → X and returns a value of type X . It can also be seen as the Church
encoding of the datatype Box A with a single constructor box : A → Box A.

We encapsulate the remainder of this section as an Agda module.

module WarmUp (A : Set) where

One direction of the isomorphism will require the parametricity of type T A, which we
postulate.

postulate
paramT : (t : T A) → (X X ′ : Set) (R : X → X ′ → Set) →

(k : A → X) (k ′ : A → X ′) (kR : (a : A) → R (k a) (k ′ a)) →
R (t X k) (t X ′ k ′)

This postulate (and the one we will encounter in the next section) can be proven in type
theories that offer an internal notion of parametricity (Nuyts et al., 2017). In other type
theories, a proof can be derived mechanically for any closed value t of type T (Bernardy
et al., 2010).

To unpack the property, let R be a relation between types X and X ′. Assume a : A and
t : T A, with functions k : A → X and k′ : A → X ′. Parametricity for T A tells us

if (k a, k′ a) ∈ R then (t k, t k′) ∈ R.

We can diagram parametricity by

A X 1 X

A X ′ 1 X ′

k

id R

t k

id R

k′ t k′

where horizontal lines represent functions and vertical lines relations, and the commuting
square on the left implies the one on the right.

The isomorphism between A and T A is given by a pair of functions, i and j. The forward
direction takes a : A to a function that accepts k : A → X and returns k a.

i : A → T A
i a X k = k a

The reverse direction takes t : T A, instantiates it at type A, and applies it to the identity
function at type A.

id : A → A
id a = a

j : T A → A
j t = t A id

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

8 A. Abel et al.

It is trivial to show that j is a (left) inverse of i.

ji : (a : A) → (j (i a) ≡ a)
ji a = refl

Showing that i is inverse to j requires an application of parametricity. First, we prove the
result up to functional extensionality.

ijext : (t : T A) (X : Set) (k : A → X) → (i (j t) X k ≡ t X k)
ijext t X k = paramT t A X R id k (λ a → refl)
where
R : A → X → Set
R a x = k a ≡ x

To unpack this, given t : T A and X and k : A → X , we have i (j t) X k = k (t A id) by
definition of i and j, so we need to show

k (t A id) ≡ t X k

Recall that parametricity holds for an arbitrary relation R from X to X ′, and arbitrary k :
A → X and k′ : A → X ′. Instantiate X to A and k to id, and X ′ to X and k′ to k, and choose
R so that (a, x) ∈ R iff k a ≡ x. Then parametricity instantiates to

if k a ≡ k a then k (t A id) ≡ t X k.

The hypothesis holds trivially, and the desired result follows immediately from the
conclusion. We can diagram the instance of parametricity by

A A 1 A

A X 1 X

id

id k

t id

id k

k t k

where now both horizontal and vertical lines represent functions.
Applying extensionality yields the final result.

ij : (t : T A) → (i (j t) ≡ t)
ij t = ext (λ X → ext (λ k → ijext t X k))

This completes the section and closes the module (permitting us to redefine i, j, ij, and ji
in the next section).

5
.= � ≡

Following the outline of the previous section, we now prove an isomorphism between
Leibniz equality and Martin-Löf identity.

module MainResult (A : Set) where

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 9

One direction of the isomorphism will require the parametricity of Leibniz equality,
which we postulate. Without providing many details, the property is known to be sound,
because it is validated by the model of Atkey, Ghani, and Johann (2014), although, as we
shall see later, this is only true because we have restricted ourselves to small sets A : Set.

postulate
param .= : {a b : A} (a .=b : a

.= b) →
(P P ′ : A → Set) → (R : (c : A) → P c → P ′ c → Set) →

(Pa : P a) (P ′a : P ′ a) → R a Pa P ′a →
R b (a .=b P Pa) (a .=b P ′ P ′a)

To unpack this, for a given c : A and predicates P, P′ over A, let R c be a relation between
P c and P′ c. If Pa is a proof that P a holds, then a

.=b P Pa is a proof that P b holds, and
similarly if P′a is a proof that P′ a holds. Parametricity for

.= tells us

if (Pa, P′a) ∈ R a then (a
.=b P Pa, a

.=b P′ P′a) ∈ R b.

We can diagram parametricity by

P a P b

P′ a P′ b

a
.=b P

R a R b

a
.=b P′

where horizontal lines represent functions and vertical lines relations.
The isomorphism between a ≡ b and a

.= b is given by a pair of functions, i and j. In the
forward direction, if we know a ≡ b we need for any P to take a proof of P a to a proof of
P b, which is easy since identity of a and b implies that any proof of P a is also a proof of
P b.

i : {a b : A} (a≡b : a ≡ b) → a
.= b

i refl P Pa = Pa

This function i is often called subst because it allows us to substitute b for a if we have a
proof a ≡ b. It is also called transport in the context of homotopy type theory.

In the reverse direction, given that for any P we can take a proof of P a to a proof of
P b we need to show a ≡ b. The proof is similar to that for symmetry of Leibniz equality.
We take Q to be the predicate that holds of c if a ≡ c. Then Q a is trivial by reflexivity of
Martin-Löf identity, and hence Q b follows from a

.= b. But Q b is exactly what we wish
to show that a ≡ b.

j : {a b : A} → a
.= b → a ≡ b

j {a} {b} a
.=b = Qb

where
Q : A → Set
Q c = a ≡ c
Qa : Q a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

10 A. Abel et al.

Qa = reflexive≡
Qb : Q b
Qb = a

.=b Q Qa

It is trivial to show that j is the inverse of i.

ji : {a b : A} (a≡b : a ≡ b) → j (i a≡b) ≡ a≡b
ji refl = refl

Showing that i is inverse to j requires an application of parametricity. First, we prove the
result up to extensionality.

ijext : {a b : A} (a .=b : a
.= b) →

(P : A → Set) (Pa : P a) → i (j a
.=b) P Pa ≡ a

.=b P Pa
ijext {a} a

.=b P Pa = param .= a
.=b Q P R refl Pa refl

where
Q : A → Set
Q c = a ≡ c
R : (c : A) (Qc : Q c) (Pc : P c) → Set
R c Qc Pc = i Qc P Pa ≡ Pc

To unpack this, given a proof a
.=b of a

.= b, a predicate P over type A, and a proof Pa : P a,
we have i (j a

.=b) P Pa = i (a
.=b Q refl) P Pa by definition of j, so we need to show that

i (a
.=b Q refl) P Pa ≡ a

.=b P Pa

where Q c = a ≡ c, just as in the definition of j. Recall that parametricity holds for an
arbitrary relation R c from P c to P′ c. Instantiate P to Q and P′ to P, and choose R c so
that (Qc, Pc) ∈ R c iff i Qc P Pa ≡ Pc. Note that Q a = a ≡ a, so we can prove it by refl.
Then parametricity instantiates to

if i refl P Pa ≡ Pa then i (a
.=b Q refl) P Pa ≡ (a

.=b P Pa).

The hypothesis holds by definition of i, and the desired result follows immediately from
the conclusion.

Applying extensionality yields the final result.

ij : {a b : A} (a .=b : a
.= b) → i (j a

.=b) ≡ a
.=b

ij a
.=b = ext (λ P → ext (λ pa → ijext a

.=b P pa))

6 Universes and predicativity

So far, we have restricted our discussion of Leibniz equality a
.= b to values a and b of

a small set A : Set. However, to avoid inconsistencies with the rule Set : Set, most type
theories use a hierarchy of universes Set0, Set1, Set2, . . ., where each universe is a member
of the next. In this section, we will extend our discussion to sets A in an arbitrary universe.
For reasons we will explain, we will not do this in pure Agda, but in Agda-parametric,
the implementation of the parametric dependent type theory of Nuyts et al. (2017). The
previous code executes in regular Agda. To allow the code of this section to be processed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 11

with Agda-parametric, it is contained in a separate source file. We repeat the previous
pragma, start a new module, and import some of the previous definitions.

{-# OPTIONS –without-K #-}
module LeibnizEqualityParam where
open import LeibnizEquality

As we will see when we extend the definition to big A, parametricity in dependently
typed languages needs a bit more nuance in the presence of higher universes. We will
explain the problem and one way to resolve it. We will also consider versions of Leibniz
equality that quantify over more general predicates and consider how they are related.

We will make use of universe polymorphism: a feature of proof assistants such as Agda
and Coq that allows one to define types at all universe levels at once. For example, in
Section 2 we defined Martin-Löf identity for types in any universe Set �. Here � can be
instantiated to any concrete universe level 0, 1, 2, . . . Agda provides two basic operations
on levels: lsuc � increases the level by 1 and �1 	 �2 takes the maximum of two levels.

First, let us try to generalize our definition of Leibniz equality to bigger A. We again
begin a new module in order to reuse names from the previous section.

module BigLeibniz {�a} (A : Set �a) where

A natural generalization of Leibniz equality for bigger A can be defined as follows.

module FirstAttempt where
_ .=_ : ∀ (a : A) (b : A) → Set (lsuc �a)
_ .=_ a b = (P : A → Set �a) → P a → P b

The corresponding generalization of the parametricity axiom param
.= looks as follows.

postulate
param .= : {a b : A} (a .=b : a

.= b) →
(P P ′ : A → Set �a) → (R : (c : A) → P c → P ′ c → Set) →
(Pa : P a) (P ′a : P ′ a) → R a Pa P ′a →
R b (a .=b P Pa) (a .=b P ′ P ′a)

Unfortunately, to the best of our knowledge, none of the models for parametric dependent
type theory supports this axiom for general A.

Contrary to what one might think, this is not just a technical problem. Instead, it illus-
trates a general fact about parametricity in dependent type theories, namely that it becomes
more nuanced in the presence of higher universes.

To understand why this is the case, consider the simpler example of a function f of type
(B : Set) → B → A. Intuitively, parametricity for f expresses that it has to work for an
arbitrary set B, and consequently, that it cannot actually use the argument of type B in any
way. In other words, parametricity should imply that the function f is constant.

And indeed, this is the case for small A : Set. However, consider what happens when
A = Set of type Set1. In this case, a legal definition of f is λ B b → B. That is, a lambda
function that effectively does not make use of its argument b of type B, but returns the type
B. Clearly, the result is a non-constant function, contradicting our intuitive parametricity
result.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

12 A. Abel et al.

For similar reasons, it is far from clear that our generalized parametricity result is actu-
ally sound. Luckily, a solution is offered by the parametric quantifiers of Nuyts et al.
(2017). The idea is to not simply assume that a function like (B : Set) → B → A can-
not make non-parametric use of the argument B, but to enforce this using a parametric
quantification over B. In other words, we will work with a different function space
(B : {#} Set) → B → A for which the language enforces parametric treatment of the
argument B.

The parametric quantifiers of Nuyts et al. are not available in regular Agda, but an
implementation called Agda-parametric is available. This is the reason why this section is
defined in a separate literate Agda file that should be typechecked with Agda-parametric.

Using Nuyts et al.’s parametric quantifier #, we can define Leibniz equality as follows.

_ .=_ : ∀ (a : A) (b : A) → Set (lsuc �a)
_ .=_ a b = (P :{#} A → Set �a) → P a → P b

For this alternative definition, our parametricity axiom is supported by Nuyts et al.’s
model. In fact, instead of keeping it as an axiom, we can even prove the statement inside
the Agda-parametric type theory, using special internal parametricity primitives, that we
do not go into details on here.

param .= : {a b : A} (a .=b : a
.= b) →

(P P ′ : A → Set �a) → (R : (c : A) → P c → P ′ c → Set �a) →
(Pa : P a) (P ′a : P ′ a) → R a Pa P ′a →
R b (a .=b P Pa) (a .=b P ′ P ′a)

With these modifications, our proof from the previous section goes through without
additional changes, so we do not repeat it here. The full proof is in the accompanying
artifact.

Although we can now show that Leibniz equality and Martin-Löf identity are iso-
morphic for arbitrary A, there is still a small but significant difference if we look at
their universe levels. Specifically, if A : Set � and x, y : A then we have x ≡ y : Set � but
x

.= y : Set (lsuc �). The reason for this is that Agda is a predicative theory: any type that
makes use of Set � must be defined at least at level lsuc �. What our proof shows is that in
the particular case of Leibniz equality, this was not really necessary: since it is equivalent
to a type defined at level �, it could be defined at universe level � itself without break-
ing soundness of the system. This could be accomplished in a type theory with resizing
rules (Voevodsky, 2011).

7 Conclusion

We have shown that Leibniz equality and Martin-Löf identity are isomorphic, under
assumptions of parametricity and functional extensionality. Along the way, we noticed
how parametricity requires additional nuance in the presence of higher universes, and
looked at how this can be avoided by using the explicit parametric quantifiers of Nuyts
et al. (2017). Our proof is straightforward, and it was previously unknown. We wonder
whether, with this proof in hand, it might not be too difficult to show, internally in a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

Leibniz equality is isomorphic to Martin-Löf identity, parametrically 13

type theory like Agda-parametric, the general result, conjectured by Pfenning and Paulin-
Mohring(1989), that inductive data types are isomorphic to their Church encodings in the
presence of parametricity.

Acknowledgments

We are indebted to the reviewers of our manuscript, whose feedback helped us to great
improvements. Andreas Abel acknowledges support by the Swedish Research Council
through grant 621-2014-4864 Termination Certificates for Dependently-Typed Programs
and Proofs via Refinement Types and by the EU Cost Action CA15123 Types for program-
ming and verification. Philip Wadler acknowledges support from UK EPSRC programme
grant EP/K034413/1 ABCD: A Basis for Concurrency and Distribution. Dominique
Devriese held a Postdoctoral Fellowship of the Research Fund - Flanders (FWO) during
part of the development of this work.

Conflicts of Interest

None.

References

Altenkirch, T., McBride, C. & Swierstra, W. (2007) Observational equality, Now! In Workshop on
Programming Languages Meets Program Verification. ACM, pp. 57–68.

Atkey, R., Ghani, N. & Johann, P. (2014) A relationally parametric model of dependent type theory.
In Principles of Programming Languages (POPL). ACM, pp. 503–515.

Bernardy, J.-P., Coquand, T. & Moulin, G. (2015) A Presheaf model of parametric type theory.
Electr.Notes Theor. Comput. Sci. 319(Supplement C), 67–82.

Bernardy, J.-P., Jansson, P. & Paterson, R. (2010) Parametricity and dependent types. In International
Conference on Functional Programming (ICFP). ACM, pp. 345–356.

Bernardy, J.-P., Jansson, P. & Paterson, R. (2012) Proofs for free—parametricity for dependent
types. J. Funct. Program. 22(2), 107–152.

Cavallo, E. & Harper, R. 2019. Parametric Cubical Type Theory. arXiV:1901.00489.
Cockx, J. & Devriese, D. (2017) Lifting proof-relevant unification to higher dimensions. In Certified

Programs and Proofs (CPP). ACM, pp. 173–181.
Cockx, J., Devriese, D. & Piessens, F. (2014) Pattern matching without K. In International

Conference on Functional Programming (ICFP). ACM.
Cockx, J., Devriese, D. & Piessens, F. (2016) Unifiers as equivalences: Proof-relevant unification of

dependently typed data. In International Conference on Functional Programming (ICFP). ACM,
pp. 270–283.

Cohen, C., Coquand, T., Huber, S. & Mörtberg, A. (2016) Cubical Type Theory: A constructive
interpretation of the univalence axiom. Arxiv e-prints.

Coq Developers. (2017) Coq documentation.
Coquand, T. (1992) Pattern matching with dependent types. In Types for Proofs and Programs.

TYPES.
Hasegawa, R. (1994) Categorical data types in parametric polymorphism. Math. Struct. Comput. Sci.

4(1), 71–109.
Hofmann, M. & Streicher, T. (1996) The groupoid interpretation of type theory. In Venice

Festschrift. Oxford University Press, pp. 83–111.
Leibniz, G. (1686) Discourse on metaphysics.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://arXiv.org/abs/1901.00489
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

14 A. Abel et al.

Martin-Löf, P. (1975) An intuitionistic theory of types: Predicative part. In Logic Colloquium.
Studies in Logic and the Foundations of Mathematics, vol. 80. Elsevier, pp. 73–118.

Nuyts, A. & Devriese, D. (2018) Degrees of relatedness: A unified framework for parametricity,
irrelevance, Ad Hoc polymorphism, intersections, unions and algebra in dependent type theory. In
Symposium on Logic in Computer Science (LICS). ACM.

Nuyts, A., Vezzosi, A. & Devriese, D. (2017) Parametric quantifiers for dependent type theory. Proc.
ACM Program. Lang. (PACMPL), 1(ICFP).

Pfenning, F. & Paulin-Mohring, C. (1989) Inductively defined types in the calculus of constructions.
Lecture Notes in Computer Science. Springer, New York, NY.

Reynolds, J. C. (1983) Types, abstraction, and parametric polymorphism. In Information Processing,
Mason, R. E. A. (ed), North Holland, pp. 513–523.

Streicher, T. (1993) Investigations into Intensional Type Theory. Habilitation thesis, Ludwig-
Maximilians-University Munich.

The Univalent Foundations Program. (2013) Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book.

Voevodsky, V. (2011) Resizing Rules – Their Use and Semantic Justification. Talk at the Institute
for Advanced Study in Princeton, NJ.

Wadler, P. (1989) Theorems for free. In Functional Programming Languages and Computer
Architecture (FPCA). ACM.

Wadler, P. (2007) The Girard-Reynolds isomorphism (second edition). Theor. Comput. Sci.
375(1–3), 201–226.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000155
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 17 Jun 2020 at 09:39:21, subject to the Cambridge Core terms of use, available at

https://homotopytypetheory.org/book
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000155
https://www.cambridge.org/core

	THEORETICAL PEARL
	Introduction
	Martin-Löf identity
	Leibniz equality
	A related result
	=.
	Universes and predicativity
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

