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ABSTRACT
MSL (Model Schema Language) is an attempt to formalize
some of the core idea in XML Schema. The benefits of
a formal description is that it is both concise and precise.
MSL has already proved helpful in work on the design of
XML Query. We expect that similar techniques can be used
to extend MSL to include most or all of XML Schema.

1. INTRODUCTION
XML is based on two simple ideas: represent documents

and data as trees, and represent the types of documents and
data using tree grammars. Tree grammars are represented
using DTDs [4] or XML Schema [6, 11, 3]. XML Schema
is being developed under the auspices of the World Wide
Web Consortium (W3C), the body responsible for HTML
and XML, among other things. As of this writing, XML
Schema recently entered candidate recommendation status.

XML Schema is more powerful than DTDs. Among other
things, it uses a uniform XML syntax, supports derivation
of document types (similar to subclassing in object-oriented
languages), permits ‘all’ groups and nested definitions, and
provides atomic data types (such as integers, floating point,
dates) in addition to character data. XML Schema is also
more complex than DTDs, requiring a couple of hundred
pages to describe, as opposed to the thirty or so in the orig-
inal specification of XML 1.0 (which included DTDs). The
remainder of this paper assumes some familiarity with XML
Schema.

MSL (Model Schema Language) is an attempt to formalize
some of the core idea in XML Schema. The benefits of
a formal description is that it is both concise and precise,
although it does require some familiarity with mathematical
notation.

MSL is described with an inference rule notation. Orig-
inally developed by logicians [7, 13], this notation is now
widely used for describing type systems and semantics of
programming languages [10]. A basic understanding of
grammar rules and first-order predicate logic should be ad-
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equate to understand this paper; all other notations are de-
fined before they are used.

We hope our work on MSL may make XML Schema eas-
ier to understand, and may aid in the process of designing
other specifications and tools that build on XML Schema.
In particular, MSL has already proved helpful in work on the
design of XML Query, another W3C standard currently un-
der development. We expect that similar techniques can be
used to extend MSL to include most or all of XML Schema.

MSL (like XML Schema) draws on standard ideas about
type systems for semistructured data as described in the
literature [1, 9], notably the use of regular expressions and
tree grammars. In particular, MSL closely resembles the
type system in Xduce [8]. Another example of formalizing
part of an XML specification can be found in [12].

Many important aspects of XML Schema are not modeled
by MSL. We have focussed on the core material in XML
Schema Part I (Structures), as we believe this is the most
complex. Many features of XML Schema are not modeled.
These include the following.

• Identity constraints.

• The mapping from XML Schema syntax into compo-
nents.

• Skip and lax wildcard validation.

• The unambiguity restriction on content models.

• The sibling element constraint.

• The xsi:nil attribute.

• A check that abstract components are not instantiated.

• Support for form and form default.

• Support for final, block, use, and value.

• The Post Schema Validation Infoset.

• Atomic datatypes.

We have begun to work on modeling the first two of these.
We believe that most or all of the items in the above list
could be modeled with additional effort.

In addition, MSL differs from XML Schema on the defi-
nition of restriction. We believe the definition of restriction
in XML Schema is unnecessarily ad hoc, as explained in Ap-
pendix A.

We expect an MSL document to be released by the W3C
and for MSL to continue to evolve, as will XML Schema.



This paper concentrates on the key element of MSL and
XML Schema, namely normalization, refinement, and vali-
dation.

The central point the reader should take away is that it is
possible to create a simple model that captures the essence
of these features. This was not obvious before we began, and
indeed the initial version of MSL was much more complex
than what is presented here.

The remainder of this paper is organized as follows.

• Section 2 gives an overview of MSL.

• Section 3 defines the basic MSL structures, including
names, groups, and components.

• Section 4 describes normalization.

• Section 5 describes refinement.

• Section 6 describes validation.

• Appendix A lists problems with the current XML
Schema Working Drafts, uncovered during the MSL
work.

• Appendix B lists suggestions for improving XML
Schema, based on the MSL work.

2. OVERVIEW
This section uses a running example to introduce the MSL

representation of a schema. MSL uses a mathematical no-
tation that is easier to manipulate formally than the XML
syntax of Schema. One aspect of MSL is the use of normal-
ization to provide a unique name for each component of a
schema.

Figure 1 shows an example schema written in W3C XML
Schema syntax, and Figure 2 shows an example XML doc-
ument which validates against the given schema. These will
be used as running examples throughout this section.

2.1 Normalization
MSL uses a normalized form of a schema, which assigns a

unique universal name to each component of a schema, and
flattens the structure. A component is anything which may
be defined or declared: an element, an attribute, a simple
type, a complex type, a group, or an attribute group.

Figure 3 shows the normalized universal names of the com-
ponents in our sample schema. For each name, we list two
forms: the long form is the name proper, while the short
form is an abbreviated version we use in examples to im-
prove readability.

The names reflect the nesting structure of the original
schema. Nested elements or attributes are given the name
of the element or attribute; nested types are given the anony-
mous name *. The syntax of names is chosen to be similar
to XPath [5].

MSL’s normalized names clearly distinguish local names
from global names. Where previously it might be possible to
confuse the global a element with the local a element, now
these are given distinct names, a and u/d/*/a respectively.
The latter indicates that the global type u contains a local
element d which contain an anonymous type * which con-
tains a local element a. Each attribute or element contains
at most one anonymous type, so using the name * for such
types leads to no confusion.

<xsi:schema
targetNamespace = "http://www.foo.org/baz.xsd"
xmlns = "http://www.foo.org/baz.xsd"
xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema"
elementFormDefault = "qualified">

<xsi:element name="a" type="t"/>
<xsi:simpleType name="s">

<xsi:list itemType="xsi:integer"/>
</xsi:simpleType>
<xsi:complexType name="t">

<xsi:attribute name="b" type="xsi:string"/>
<xsi:attribute use="optional" type="s" name="c"/>

</xsi:complexType>
<xsi:complexType name="u">

<xsi:complexContent>
<xsi:extension base="t">

<xsi:choice>
<xsi:element name="d">

<xsi:complexType>
<xsi:sequence>

<xsi:element name="a"
type="xsi:string"
minOccurs="1"
maxOccurs="unbounded"/>

</xsi:sequence>
</xsi:complexType>

</xsi:element>
<xsi:element name="e" type="xsi:string"/>

</xsi:choice>
</xsi:extension>

</xsi:complexContent>
</xsi:complexType>

</xsi:schema>

Figure 1: Example XML Schema

<a xmlns = "http://www.foo.org/baz.xsd"
xmlns:xsi =

"http://www.w3.org/2000/10/XMLSchema-instance"
xsi:type = "u"
b = "zero"
c = "1 2">

<d xmlns = "">
<a>three</a>
<a>four</a>

</d>
</a>

Figure 2: Example XML document

2.2 Model groups
MSL uses a mathematical notation that is more compact

than XML, and more amenable to formal use. Mathematical
notation is used for model groups, components, and docu-
ments.

MSL uses standard regular expression notation [2] for
model groups. In what follows, g stands for a model group
(as does g1, g2, and so on). The constructors for model
groups include the following.

ε empty sequence

∅ empty choice



long form short form

http://www.foo.org/baz.xsd#element::a a

http://www.foo.org/baz.xsd#type::s s

http://www.foo.org/baz.xsd#type::t t

http://www.foo.org/baz.xsd#type::t/attribute::b t/@b

http://www.foo.org/baz.xsd#type::t/attribute::c t/@c

http://www.foo.org/baz.xsd#type::u u

http://www.foo.org/baz.xsd#type::u/element::d u/d

http://www.foo.org/baz.xsd#type::u/element::d/type::* u/d/*

http://www.foo.org/baz.xsd#type::u/element::d/type::*/element::a u/d/*/a

http://www.foo.org/baz.xsd#type::u/element::e u/e

Figure 3: Normalized universal names

g1 , g2 sequence, g1 followed by g2

g1 | g2 choice, g1 or g2

g1 & g2 interleaving, g1 and g2 in any order (‘all’
group)

g{m,n} repetition, g repeated between minimum m
and maximum n times (m a natural number,
n a natural number or ∞)

mixed(g) mixed content in group g

a[g] attribute, with name a and content g

e[g] element, with name e and content g

w wildcard

p atomic datatype (such as xsi:String)

x component name

Here is an example of a group in MSL notation, which
corresponds to an a element with content of type u in our
running example.

a[
(t/@b[xsi:String] &
t/@c[xsi:Integer{0,∞}]{0,1}),

(u/d[u/d/*/a[xsi:String]{1,∞}] |
u/d/*/e[xsi:String])

]

Note that the group constructors are used uniformly in sev-
eral contexts. Repetition (g{m,n}) is used for lists of atomic
datatypes, to indicate whether an attribute is optional, and
for elements. Similarly, interleaving (g1 & g2) is used for at-
tributes and for elements.

2.3 Components
Next, we show how components are represented in MSL

notation. Each component is one of seven sorts: element,
attribute, simple type, complex type, attribute group, or
model group. Regardless of sort, each component is repre-
sented uniformly as a record with seven fields:

sort is the sort of the component;

name is the name of the component;

base is the name of the base component of the structure;

derivation specifies how the component is derived from the
base, it is one of restriction or extension;

refinement is the set of permitted derivations from this
component as base, it is a subset of {restriction,
extension};

abstract is a boolean, representing whether this type is
abstract;

content is the content of the structure, a model group.

Here are the components of the normalized schema repre-
sented in MSL notation.

component(
sort = element,
name = a,
base = xsi:UrElement,
derivation = restriction,
refinement = {restriction,extension},
abstract = false,
content = a[u]

)

component(
sort = simpleType,
name = s,
base = xsi:UrSimpleType,
derivation = restriction,
refinement = {restriction},
abstract = false,
content = xsi:Integer{0,∞}

)

component(
sort = complexType,
name = t,
base = xsi:UrType,
derivation = restriction,
refinement = {restriction,extension},
abstract = false,
content = t/@b & t/@c

)

component(
sort = attribute,
name = t/@b,
base = xsi:UrAttribute,
derivation = restriction,
refinement = {restriction},
abstract = false,
content = t/@b[xsi:String]

)



component(
sort = attribute,
name = t/@c,
base = xsi:UrAttribute,
derivation = restriction,
derivation = {restricition},
abstract = false,
content = t/@c[s]{0,1}

)

component(
sort = complexType,
name = u,
base = t,
derivation = extension,
refinement = {restriction,extension},
abstract = false,
content = (t/@b & t/@c), (u/d | u/e)

)

component(
sort = element,
name = u/d,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d[u/d/*]

)

component(
sort = complexType,
name = u/d/*,
base = xsi:UrType,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d/*{0,∞}

)

component(
sort = element,
name = u/d/*/a,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d/*/a[xsi:String]

)

component(
sort = element,
name = u/e,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/e[xsi:String]

)

Observe that if we start with the content of the top-level a
node, replace the name t with its refinement u, and then
expand out all names (that is, replace the names t/@b and
t/@c with the contents of those attributes, and so on), then
the result is the same as the model group given in the pre-
vious subsection.

Note that MSL does not nest declarations to express their
scope. Instead, the scope of a declaration is reflected in its
normalized name.

2.4 Documents
MSL also provides a compact notation for XML docu-

ments, both before and after normalization. Here is the
original document in MSL notation.

a[
@xsi:type["u"],
@b["zero"],
@c[1,2],
d[
a["three"],
a["four"]

]
]

Note that attributes and elements are represented uniformly,
as are sequences of attributes, sequences of elements, and
lists of atomic datatypes.

Here is the normalized document in MSL notation.

a[
@xsi:type["u"],
t/@b["zero"],
t/@c[1,2],
u/d[
u/d/*/a["three"],
u/d/*/a["four"]

]
]

Finally, here is the normalized document in MSL notation
with type information added.

a[
u 3
t/@b[xsi:String 3 "zero"],
t/@c[s 3 1,2],
u/d[
u/d/* 3
u/d/*/a[xsi:String 3 "three"],
u/d/*/a[xsi:String 3 "four"]

]
]

Unlike the xsi:type convention, the MSL notation allows
one to uniformly express information about element and at-
tribute types. The type of an element or attribute is indi-
cated by writing x[t 3 d] where x is an attribute or element
name, t is a type name, and d is the content of the attribute
or element.

3. STRUCTURES
This section defines the structures used in MSL: names,

wildcards, atomic datatypes, model groups, components,
and documents.

3.1 Names
A namespace is a URI, and a local name is an NCName,

as in the Namespace recommendation. We let i range over
namespaces and j range over local names.

namespace i ::= URI
local name j ::= NCName

A symbol space is one of the six symbol spaces in XML



Schema. We let ss range over symbol spaces.

symbol space ss ::= element

| attribute

| type

| attributeGroup

| modelGroup

| notation

(We make no further use of attributeGroup, modelGroup,
and notation in this document.)

A symbol name consists of a symbol space paired with a
local name or with * (the latter names an anonymous com-
ponent). A name consists of a URI followed by a sequence
of one or more symbol names. We let sn range over symbol
names, and x range over names.

symbol name sn ::=
named ss::j
anonymous | ss::*

name x ::= i#sn1/· · · /snl

It is sometimes convenient to use a short form of names.
For these, we make the simplifying assumption that there
are only two symbol spaces. Symbol names in the attribute
symbol space are written @j, all other symbol names are
written j (or * for anonymous names). The URI may be
dropped when it is obvious from context.

Example names are shown in Figure 3. The scope length
of the second to last name, with short form u/d/*/a, is 4.

Before normalization, all names in a document have scope
length equal to one. It is helpful to define functions to
extract the namespace from a name, and to extract the
symbol space and local name of the last symbol name.
If x = i#sn1/· · · /snl and snl = ss::j then we define
namespace(x) = i, symbol(x) = ss, and local(x) = j.

We also introduce several subclasses of names. An at-
tribute name is the name of an attribute component, and
similarly for element, simple type, and complex type names.
We let a, e, s, k range over attribute, element, simple type,
and complex type names.

attribute name a ::= x
element name e ::= x
simple type name s ::= x
complex type name k ::= x

A type name is a simple or complex type name. We let t
range over type names.

type name t ::= s
| k

The class of a name must be consistent with its symbol
space.

symbol(a) = attribute

symbol(e) = element

symbol(t) = type

3.2 Wildcards
A wildcard denotes a set of element names. A wildcard

item is of the form *:* denoting any name in any names-
pace, or i:* denoting any name in namespace i. A wildcard
consists of wildcard items, union of wildcards, or difference

of wildcards. We let v range over wildcard items, and w
range over wildcards.

wildcard item v ::=
any namespace *:*

given namespace | i:*

wildcard w ::=
wildcard item v
union | w1+w2

difference | w1!w2

A wildcard union w1+w2 stands for any name in w1 or w2. A
wildcard difference w1!w2 stands for any name in w1 but not
in w2. For example, the wildcard *:*!(baz:*+xsi:String)

denotes any name in any namespace, except for names in
namespace baz, and local name String in namespace xsi.

3.3 Atomic datatypes
MSL takes as given the atomic datatypes from XML

Schema Part 2 [3]. We let p range over atomic datatypes,
and c range over constants of such datatypes.

Typically, an atomic datatype is either a primitive
datatype, or is derived from another atomic datatype by
specifying a set of facets. Lists of atomic datatypes are
specified using repetition, while unions are specified using
alternation, as defined below.

An example of an atomic datatype is xsi:String, and a
constant of that datatype is "zero".

3.4 Model groups
We use traditional regular expression notation for model

groups. Let g range over model groups.

group g ::=
empty sequence ε
empty choice | ∅
sequence | g1 , g2

choice | g1 | g2

interleave | g1 & g2

repetition | g{m,n}
attribute | a[g]
element | e[g]
mixed content | mixed(g)
wildcard | w
atomic datatype | p
component name | x

minimum m ::= natural

maximum n ::= m
unbounded | ∞

An example of a group appears in Section 2.2.
The empty sequence matches only the empty document;

it is an identity for sequence and interleaving. The empty
choice matches no document; it is an identity for choice.

ε , g = g = g , ε
∅ | g = g = g | ε
ε & g = g = g & ε

For use with repetitions, we extend arithmetic to include
∞ in the obvious way. For any n we have n+∞ =∞+n =
∞ and n ≤ ∞ is always true, and ∞ < n is always false.



3.5 Components
A sort is one of the six sorts of component in XML

Schema. We let srt range over sorts.

sort srt ::= attribute

| element

| simpleType

| complexType

| attributeGroup

| modelGroup

(We make no further use of attributeGroup or modelGroup
in this document.)

A derivation specifies how a component is derived from
its base. We let der range over derivations, and ders range
over sets of derivations. We let b range over booleans.

derivation der ::= extension

| refinement

derivation set ders ::= {der1, · · · , derl}
boolean b ::= true

| false

A component is a record with seven fields.

sort is the sort of the component (srt);

name is the name of the component (x);

base is the name of the base component of the structure
(x);

derivation specifies how the component is derived from the
base (der);

refinement is the set of permitted derivations from this
component as base (ders);

abstract is a boolean, representing whether this type is
abstract (b);

content is the content of the structure, a model group (g).

We let cmp range over components.

component cmp ::= component(

sort = srt
name = x
base = x
derivation = der
refinement = ders
abstract = b
content = g

)

Examples of components appear in Section 2.3.
For a given schema, we assume a fixed dereferencing map

that takes names to the corresponding components. We
write deref(x) = cmp if name x corresponds to component
cmp.

The dereferencing map must map attribute names to
attribute components, and similarly for elements, simple
types, and complex types.

deref(a).sort = attribute

deref(e).sort = element

deref(s).sort = simpleType

deref(k).sort = complexType

3.6 Constraints
Recall that the group constructs are used uniformly in

several contexts. Repetition (g{m,n}) is used for lists of
atomic datatypes, to indicate whether an attribute is op-
tional, and for elements. Similarly, interleaving (g1 & g2) is
used for attributes and for elements. The advantage of this
approach is that the semantics of groups is uniform, and
need be given only once. Thus, for instance, how repeti-
tion acts is defined once, not separately for attributes and
elements.

However, it is helpful to define additional syntactic cate-
gories that specify various subsets of groups. These syntactic
classes are then used to constrain the content of components,
for instance, to indicate that the content of an element com-
ponent should be an element, and that the content of a type
component should consist of attributes followed by elements.

An attribute group contains only attribute names, com-
bined using interleaving. An element group contains no at-
tribute names.

attribute group ag ::=
empty sequence ε
interleaving | ag1 & ag2

attribute name | a

element group eg ::=
empty sequence ε
empty choice | ∅
sequence | eg1 , eg2

choice | eg1 | eg2

interleaving | eg1 & eg2

repetition | eg{m,n}
wildcard | w
element name | e
type name | t

(Interleaving in element groups might be further con-
strained, as in Schema Part 1, Section 5.7, All Group Lim-
ited.)

Given the above, we can specify the allowed contents of
the four sort of component as follows. An attribute content
is either an attribute or an optional attribute, where the
content is a simple type name. An element content is an
element where the content is a type name. A simple type
content is an atomic datatype or a list of atomic datatype.
A complex type content is an attribute group followed by
either a simple type content or an element group.

attribute content ac ::=
attribute a[s]
optional attribute | a[s]{0,1}

element content ec ::=
element e[t]

union content uc ::=
atomic datatype p
union | uc | uc

simple content sc ::=
union uc
list | uc{m,n}

complex content kc ::=
simple ag , sc
element | ag , eg
mixed | ag , mixed(eg)



The content of each sort of component corresponds to the
syntax above. That is, the content of an attribute com-
ponent is always an attribute content ac; the content of an
element component is always an element content ec; the con-
tent of a simple type component is always a simple content
sc; and the content of a complex type component is always
a complex content kc. Further, for an attribute or element
component the name of the component is the same as the
name of the attribute or element in its content.

It is easy to confirm that the example components in Sec-
tion 2.3 satisfy these constraints.

3.7 Documents
A document is a sequence of items, where each item is

an atomic datatype, or an attribute (with a document as
content), or an element (with a document as content). We
let d range over documents.

document d ::=
empty document ε
sequence | d1 , d2

constant | c
attribute | a[d]
element | e[d]

Examples of documents appear in Section 2.4.
A typed document is a document with added type infor-

mation for each element and attribute. We let td range over
typed documents.

document td ::=
empty document ε
sequence | td1 , td2

constant | c
attribute | a[s 3 d]
element | e[t 3 td]

Examples of typed documents appear in Section 2.4. Typed
documents are the result of normalization, Section 4.

An document item is either a constant of atomic datatype,
or an attribute, or an element.

document item di ::=
constant | c
attribute | a[c]
element | e[d]

Document items are used to define interleaving, Section 6.

3.8 Inference rules
Operations such as normalization and validation are de-

scribed with an inference rule notation. Originally devel-
oped by logicians [7, 13], this notation is now widely used
for describing type systems and semantics of programming
languages [10]. In this notation, when all judgements above
the line hold, then the judgement below the line holds as
well. Here is an example of a rule used later on. We write
d ∈ g if document d validates against group g.

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

The rule says that if both d1 ∈ g1 and d2 ∈ g2 hold, then d1,

d2 ∈ g1,g2 holds as well. For instance, take d1 = a[1], d2 =

b["two"], g1 = a[xsi:Integer], and g2 = b[xsi:String].
Then since both

a[1] ∈ a[xsi:Integer]

and

b["two"] ∈ b[xsi:String]

hold, we may conclude that

a[1] , b["two"] ∈ a[xsi:Integer] , b[xsi:String]

holds.

4. NORMALIZATION
Normalization of a document replaces each name by the

corresponding normalized name, and adds type information
to the document. Normalization is performed with respect
to a given schema; in our formalism the schema is deter-
mined by the dereferencing map, deref(). Section 2.4 gives
an example of a document before and after normalization.

Prior to normalization, all names in the document have
exactly one symbol name. To build normalized names, we
use an operation that extends a name with an additional
symbol name. Let x1 and x2 be two names, and where the
second name has only one symbol name. We write x1�x2 for
the operation that extends x1 by adding the symbol name
of x2 (if they are in the same namespace) or is the name x2

(if they are in different namespaces).

i#sn1/· · · /snl � i#sn = i#sn1/· · · /snl/sn
i#sn1/· · · /snl � i′#sn = i′#sn, i 6= i′

For each sort there is a root type (AnyType, AnyElement,
etc), for which we define

x� AnyElement = AnyElement.

In effect, the root types are in a fixed namespace, so the rule
for roots is subsumed by the rule for different namespaces.

We write x ` a ⇒ a′ or x ` e ⇒ e′ to indicate that in
the context specified by name x that attribute name a nor-
malizes to a′ or that element name e normalizes to e′. To
normalize an attribute or element name we extend the con-
text by the name (if extension yields the normalized name of
some component; these are the ‘extend’ rules), or use the el-
ement name directly (otherwise; these are the ‘reset’ rules).
We write x ∈ dom(deref()) and x 6∈ deref() to indicate
whether or not x is in the domain of the dereferencing map;
that is, whether or not x names some component.

x� a ∈ dom(deref())

x ` a⇒ x� a
(extend attribute)

x� e ∈ dom(deref())

x ` e⇒ x� e
(extend element)

x� a 6∈ dom(deref())

x ` a⇒ a
(reset attribute)

x� e 6∈ dom(deref())

x ` e⇒ e
(reset element)



We write x ` d ⇒ dt to indicate that in the context
specified by name x that document d normalizes to typed
document td. We write @xsi:type 6∈ d if d does not con-
tain an xsi:type attribute. Note that the type names in
xsi:type attributes always refer to global types and need
not be normalized.

x ` c⇒ c′
(constant)

x ` ε⇒ ε
(empty document)

x ` d1 ⇒ td1 y ` d2 ⇒ td2

x ` d1 , d2 ⇒ td1 , td2
(sequence)

x ` a⇒ a′

deref(a′).content = a′[s] or
deref(a′).content = a′[s]{0,1}

s ` d⇒ td

x ` a[d]⇒ a′[s 3 td]
(attribute)

x ` e⇒ e′

@xsi:type 6∈ d
deref(e′).content = e′[t]

t ` d⇒ td

x ` e[d]⇒ e[t 3 td]
(untyped element)

x ` e⇒ e′

deref(e′).content = e′[t′]
t <: t′

t ` d⇒ td

x ` e[@xsi:type[t] , d]⇒ e[t 3 td]
(typed element)

The (typed element) rule uses the relation x<:x′, which
is defined Section 5.1.

5. REFINEMENT

5.1 Base chain
We write x<:x′ if starting from the component with name

x one can reach the component with name x′ by successively
following base links.

x <: x
(reflexive)

x <: x′ x′ <: x′′

x <: x′′
(transitive)

deref(x).base = x′

x <: x′
(base)

5.2 Extension
We write g <:ext g

′ if group g is derived from group g′

by adding attributes and elements. It is specified using at-
tribute groups ag and element groups eg as defined in Sec-
tion 3.6.

ag , eg <:ext (ag & ag′) , eg , eg′
(extend)

5.3 Restriction
We write g<:res g

′ if the instances of group g are a subset
of the instance of group g′. That is, g <:res g

′ if for every
document d such that d ∈ g it is also the case that d ∈ g′.

5.4 Constraints
A schema must satisfy certain constraints on refinement

to be well-formed. Define x<:der x
′ to be x<:res x

′ if der =
restriction and x<:extx

′ if der = extension. We write ` x
to indicate that the component with name x is well-formed
with respect to refinement.

x′ = deref(x).base
der = deref(x).derivation
der ∈ deref(x′).refinement

deref(x).content<:der deref(x
′).content

` x
(refinement)

6. VALIDATION
We write c ∈p p if constant c validates against atomic

datatype p. We do not specify this relation further, but
simply assume it is as defined in Schema Part 2.

We write e ∈v v and e ∈w w if element name e validates
against wildcard item v or wildcard w. We write e 6∈w w if
it is not the case that e ∈w w.

e ∈v *:*
(any namespace)

namespace(x) = i

e ∈v i:*
(given namespace)

e ∈v v
e ∈w v

(wildcard item)

e ∈w w1

e ∈w w1+w2
(wildcard sum 1)

e ∈w w2

e ∈w w1+w2
(wildcard sum 2)

e ∈w w1 e 6∈w w2

e ∈w w1!w2

(wildcard difference)

We write d 7→inter d
′ ; d′′ (read “d interleaves d′ and d′′”)

if some interleaving of d′ and d′′ yields d. This relates one
sequence to many pairs of sequences. For example,

a[1],a[2],a[3] 7→inter a[1],a[2] ; a[3]
a[1],a[2],a[3] 7→inter a[2] ; a[1],a[3]
a[1],a[2],a[3] 7→inter ε ; a[1],a[2],a[3]

among other possibilities. This is used in the rule for inter-
leaving, g1 & g2.

ε 7→inter ε ; ε
(interleave empty)



d1 7→inter d
′
1 ; d′′1 d2 7→inter d

′
2 ; d′′2

d1 , d2 7→inter d
′
1 , d

′
2 ; d′′1 , d′′2
(interleave sequence)

di 7→inter id ; ε
(interleave item 1)

di 7→inter ε ; di
(interleave item 2)

We write d 7→unmix d
′ (read “d unmixes to d′”) if d is a

sequence of elements and character data and d′ is the same
sequence with all character data removed. For example,

a[1],"x",a[2] 7→unmix a[1],a[2]

This is used in the rule for mixed content, mixed(g).

ε 7→unmix ε
(unmix empty)

d1 7→unmix d
′
1 d2 7→unmix d

′
2

d1 , d2 7→unmix d
′
1 , d

′
2

(unmix sequence)

e[d] 7→unmix e[d]
(unmix element)

c 7→unmix ε
(unmix character data)

We write d ∈ g if document d validates against model
group g.

ε ∈ ε
(empty)

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

d ∈ g1

d ∈ g1 | g2
(choice 1)

d ∈ g2

d ∈ g1 | g2
(choice 2)

d 7→inter d1 ; d2 d1 ∈ g1 d2 ∈ g2

d ∈ g1 & g2

(interleave)

d1 ∈ g d2 ∈ g{m,n}
d1 , d2 ∈ g{m+ 1,n+ 1}

(repetition 1)

d1 ∈ g d2 ∈ g{0,n}
d1 , d2 ∈ g{0,n+ 1}

(repetition 2)

ε ∈ g{0,n}
(repetition 3)

d ∈ g
a[d] ∈ a[g]

(attribute)

d ∈ g
e[d] ∈ e[g]

(element)

d 7→unmix d
′ d′ ∈ g

d ∈ mixed(g)
(mixed group)

d ∈ s
e[s 3 d] ∈ e[s]

(typed attribute)

d ∈ t t <: t′

e[t 3 d] ∈ e[t′]
(typed element)

d ∈ e e ∈w w
d ∈ w

(wildcard)

c ∈p p
c ∈ p

(atomic datatype)

d ∈ e e <: e′

d ∈ e′
(element refinement)

d ∈ g g = deref(x).content

d ∈ x
(component name)

The (typed element) and (element refinement) rules
use the relation x <: x′, which is defined Section 5.1. The
check that t<:t′ in the (typed element) rule is redundant,
as it is also performed during normalization.

When processing a normalized document with types, the
(attribute) and (element) rules are not required, the
(typed attribute) and (typed element) are used in-
stead.
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APPENDIX

A. PROBLEMS WITH XML SCHEMA

• Restriction. The following problems were uncovered in
Schema Part 1, Section 5.10, which describes restric-
tion.

– Complexity. An attempt at defining formal rules
corresponding to the definition of restriction re-
quired more than 100 lines of formal rules (as com-
pared to the one-line definition given in the current
document). Many rules had five or six premises.

– Transitivity. There appear to be numerous cases
where type t is a restriction of type t′ and type
t′ is a restriction of type t′′, but type t is not a
restriction of type t′′, according to the given rules.

– Ad hoc. As noted below, many of the choices in the
defition of restriction seem arbitrary.

– Elt:Elt–NameAndTypeOK. Why the constraint
that nullable of R and B be identical? A weaker
constraint is more sensible: if R is nullable then B
must be nullable. That is, it is fine for R not to be
nullable even if B is nullable.

– Elt:Elt–NameAndTypeOK. Why is it ok for the cor-
responding types to be related by list or extension,
but not by restriction? Clearly, restriction should
be allowed.

– Elt:All/Choice/Sequence—RecurseAsIfGroup.
Why does Elt:All/Choice/Sequence recurse, but
Wildcard:All/Choice/Sequence is forbidden?
Recursion seems equally sensible for both.

– All:All–Recurse vs. Sequence:All–RecurseUnorder-
ed. Why must the former maintain order while
the latter need not? Losing order seems equally
sensible for both.

• Wildcards. Say that element e is in the equivalence
class of element e′ (that is, that e has base e′), and
that elements e and e′ are in different namespaces, and
that a wildcard w includes the namespace of e′ but not
of e. If the wildcard is strict, does element e validate
against wildcard w? Intuitively, one would expect e

to match w (and this is what happens in MSL), but
Schema Part 1 does not appear to consider this case.

B. SUGGESTIONS FOR XML SCHEMA

• Restriction. Change the definition of restriction to the
one used in this document. One type is a restriction
of another if every instance of the first type is also an
instance of the second.

• Uniformity. Change the name equivClass to base, to
emphasize the uniformity between elements and types.

• Wildcards. Specify how wildcards interact with equiv-
alence classes. (See discussion in Appendix A.)

• Symbol spaces. Combine all symbol spaces other than
attribute. This allows one to use the short form of
naming described in the document. For instance, in
place of

type::u/element::d/type::*/element::a

one could write u/d/*/a, and in place of

type::t/attribute::b

one could write t/@b.


