An Introduction to Orwell 6.00

by Philip Wadler
revised by Quentin Miller

Copyright ©1990 by

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX1 3QD

Contents

. SCRIPTS AND SESSIONS
. FUNCTION DEFINITIONS
. BASIC DATA TYPES
. LISTS
. CHARACTERS AND STRINGS
. TUPLES

COMPREHENSIONS

LAZY EVALUATION
HIGHER-ORDER FUNCTIONS
. TYPE DECLARATIONS
. TYPE ABBREVIATIONS
USER-DEFINED TYPES
. OPERATOR DEFINITIONS
ORDERED DEFINITIONS
. OUTPUT FORMATTING
COMMENTS
ERRORS
THE VED EDITOR INTERFACE
THE SCROLLING INTERFACE
USING ORWELL ON THE SUN
. ACKNOWLEDGEMENTS

—
= O

[S I S e e N T
HOWLVLXNAUMAWRN

APPENDIX A: THE ORWELL STANDARD PRELUDE
APPENDIX B: ORWELL GRAMMAR

An Introduction to Orwell 6.00

Philip Wadler, 1 April 1985
(revised, December 1985 by Philip Wadler)
(revised, September 1986 by Quentin Miller)
(revised, December 1987 by Quentin Miller)
(revised, October 1988 by Quentin Miller)
(revised, January 1990 by Quentin Miller)

A man may take to drink because he feels himself to be a failure, and then
fail all the more completely because he drinks. It is rather the same thing that is
happening to the English language. I't becomes ugly and inaccurate because our
thoughts are foolish, but the slovenliness of our language makes it easier for us to
have foolish thoughts.

- George Orwell,
Politics and the English Language, 1946

Orwell is a functional programming language, and it is also asystem (including a text
editor) for creating and executing programs in that language. This note provides an introduc-
tion to the language. At the end are brief instructions on the use of the Orwell system. The
Orwell standard prelude is included as an appendix. (Users are warned that the Orwell
system is still under development and subject to change.)

The name Orwell was chosen as a reminder that literary values are also important to
computer scientists. If we could write programs, documentation and papers that posess a
fraction of the power and clarity of the writing of George Orwell, then we would be doing well
indeed. Naming a language after Orwell seems particularly appropriate because of his strong
concern with the relation between ideas and their expression in words.

1. SCRIPTS AND SESSIONS

Programming in Orwell consists of two parts. First, one creates a script containing a
number of declarations. Most of these declarations will be equations defining functions, but
one may also write declarations to define new operator symbols and new types. Second, one
enters a session in which one can type expressions which are evaluated (in the context defined
by the script) and the results printed.

2 Orwell 6.00

For example, in a script one may enter the following definitions:

xX % x
x ¥ x ¥ x

> square X
> cube x

One then changes from editing the script to editing the session (using the QUOTE E or
QUOTE X command, see later). Inthe session, one may then type the following:

? square (cube 3)
729

(0.02 CPU seconds, 7 reductions, 65 cells)

?

Here, the Orwell system provided the prompt ™? . Following this, the user typed
square (cube 3) followed by a carriage return. The Orwell system responded by typing
the answer, ¢23, some information about the resources used to calculate this answer, and a
new prompt symbol.

2. FUNCTION DEFINITIONS

Functions can be defined using recursion and conditionals. For example, one may
define a function to raise X tothe N'th power as follows:

S
x ¥ power x (n-1),

> power x n

>

f n=9
f n>0

vl

Or, one may define the same function in another way, using pattern matching on the
left hand side of the equations:

1
x % power’ x n

> power’ x 0
> power’® x (n+1)

This definition is exactly equivalent to the previous definition, but it is shorter, andit
also makes more clear the inductive nature of the definition of exponentiation.

In general, the right hand side of an equation may be a conditional form written using
if and (optionally) otherwise, Also, the right hand side of anequation may be followed by
a where clause, which defines the value of one or more variables. For example:

roots ab c = [(-b+r)/(2*a), (-b-r)}/(Z*a)l, ifd>®©
= [-b/(2%al)], ifd=20
=101, otheruise

>
>
>
> where d = b%b — 4¥a¥c
> r =saqtd

Orwell 6.00 3

In many languages, extra symbols (like BEGIN, END and ;) are needed toindicate the
extent of an expression. In Orwell, this information is indicated by indenting. The ruleis that
any expression following an equal sign (ina top-level equation or in a where clause) must be
indented to appear entirely to the right of the equal sign. Similarly, any expression following
an i must be indented to appear entirely to the right of the i f.

A where clausein Orwell may contain function definitions of 0 or more arguments.
Each of these definitions in turn may contain i f and where clauses. Note that if clauses
may not themselves contain other if or where clauses.

3. BASIC DATA TYPES

Life would be dull if we could only write functions on numbers. In addition to numbers,
Orwell provides operations on booleans, characters, lists, tuples, and functions, as well as on
other types the user may care to define.

Integers are written in standard decimal notation, e.g.,, 42. Real numbers are written
using a decimal point (there must be atleast one digit to the left of the point) or using scientific
notation, e.g., 2-0eB, 3-44e—12 The $div and $mod operations can be applied only to
integers (giving integral results), while the operations + — % / * and prefix — canbe
applied to integers or real numbers. The boolean values are written True and False.
Boolean values are returned by the comparisonoperators: = *= < > <= >= Boolean
values may also be combined using * & and \/ (rwot, and, and or respectively).

The name of the number type is UM, and the name of the boolean type is bool.

4. LISTS

Lists are written enclosed in square brackets with commas seperating elements, for
example [1, 2, 31, Theemptylistis written [, and alist containing just the number four
is written [41. Allof these values have type [numl. One may have lists of any type, for
example [True, Falsel has type [bool] and [[1., 2-4, 3.81, [1, [1.0e-8] 1

has type [[num]], Allelements of a list must have the same type.

The operator * (pronounced cons)adds anelement tothe front of a list. Forexample,
1 : (2, 31is[1, 2, 31 and 4 = [1is [4].Infac, [1, 2/ 31 isjustan
abbreviation for 1:2:3: [1 (whichisin turn an abbreviation for 1:(Zz (3201 since : is
right associative).

Other operations onlists are append (written ++), length (written ¥), and subscript
(written !). Also, [m- .n1 returns the list of numbers from M upto N, while [m, n..ol
returns the list of numbers from M upto © going by steps of (n—m)_If m>n, then the

4 Orwell 6.00

sequence will decend to O. For example,

[1, 21 ++ [3, 41 evaluatesto 1, 2, 3, 41

ul0, 1, 21 evaluatesto 3

(16, 11, 121'1 evaluatesto 11

[3..51 evaluatesto [3, 4, 5]

[-8.. -81] evaluatesto [—81

[5..3] evaluatesto [1

(5, 16..331 evaluatesto [5» 16, 15, 28, 25, 301
{2, 1.5..0] evaluatesto [2, 1.5- 1, ©-5, 01

Inthe exampleof [—8-- —81, note that there must beaspace between the - - and
the — to prevent them from being interpreted as a single symbol.

Note that subscripting begins at zero.

One can define new functions on lists using recursion and patterns on the left-hand
side containing [1 and :. The following function squares every element of a list:

[l

x¥x : squares Xs

> squares [1
> squares (x:xs)

For example, squares [1- Z- 31 evaluatesto 1, 4, 91

5. CHARACTERS AND STRINGS

Characters are written enclosed insingle quotes, such as "@”. The function code
converts a character to the integer corresponding to its ASCII code, and deco de isthe
:nverse. For example, code a’ is 97, and decode 97 is "a’.

A string is just a list of characters. For example, abc” isequivalentto [’a”» "b7-
<’ 1. One may manipulate strings in the same way as lists; forexample, "Hi ™ ++
»there!” evaluatesto ~Hi there!”,

Special characters may be writtenin the same notation as in C. In particular, a newline
‘s written " \n’ and a double quote or backslash character can be included in a string by

prefacing it with backslash. For example:

"There’s a newline between this backslash \\ and\n this quote \"”.

Characters have the type char, so strings have the type [charl,

Orwell 6.00 5
6. TUPLES

All elements of a list must have the same type. Collections of objects of different types
may be expressed as tuples; for example (1, 2» "a’). Thetypeof (1, Z, '@’) is
Cnum, num, char),

The operation ZiP takes a pairof lists and returns a list of pairs; for example zip
([1; 2, 3]; "abc") evaluates to [(1; 'a’). (2; 'b')» (3, 'c')], The result

list will have the same length as the shorter of the two input lists. For example, ZiP
("hello™, [4, 21) evaluatesto [CR', 4)» (Ce’» 2)1.

7. COMPREHENSIONS

The list comprehension notation makes it easy to describe certain common operations
on lists. This notationis very similarto the set comprehension notation from set theory. It will
be explained first by example, and then a more precise definition will be given.

The function that squares every element of alist (seen previously) can be defined as:
> squares’ xs = [x%x | x (- xsl

Similarly, a function that squares only the odd elements of a list can be defined by:
> oddsquares xs = [x¥x | x <~ xs3 X $mod 2 = 11

Vector addition (add corresponding elements of two lists) can be defined using
comprehension and the zip function on pairs:

> vecadd xs ys = [xty | (x,» ¥) <~ zip (xs, ys)]

The cartesian product of two lists (a list of all pairs with one member from each list)
can be defined by:

> cp xs ys = [(x,y)lx(—xs;y(—ys]

For example, CP (1, 21 *abc™ returns thelist: [¢c1, ’a’l), (1, 'b*), (1,
'c’), (2, ’a’), (2, °b%), (2- *c’)1 . Notethat the second variable changes
more rapidly then thefirst.

The final example is a functional version of Quicksort:

> gqsort [= [1
> gsort (x:xs) = gsort [u | u€—xs; ulx] +
> [x] ++

> gsort [u | ul-xs; u>=xl

6 Orwell 6.00

This divides a list into two lists, one of all elements less than some element (say, the
first), and the other of all elements greater than or equal to that element. The two new lists are
then sorted recursively. -

Here is a precise, if compact, definition of list comprehensions. A comprehension has
theform Le | gl ..5 gnl,where eisan expression (of type ?), and ¢Z,..., gnare
qualifiers ; the comprehension has type [¢]. Each qualifier gi is either a generator or an
expression of type boolean. Each generator has the form pi {- ei, where piisa pattern (of
type ti) and e is an expression (of type [¢i1). The pattern pi may contain variables, which are
local variables whose scope is the initial expression e and the qualifiers g(i+1), ..., gn.

8. LAZY EVALUATION

Say that we wish to find the first perfect number. (A number is perfectif the sum of its
factors, including 1 but not including the number itself, is equal to the number.) If we know
that the first perfect number is less than 1000 then we could write:

[i | i <-I1.-n-11; n $mod i = @]
sum (factors n) =n
hd [In | n <~ [1..1000]1; perfect nl

> factors n
> perfect n
> firstperfect

(The function hd returns the first element of alist.) This programis correct, but there
are two difficulties. First, the program appears to dorather more work than necessary, since
it appears to find a list of all perfect numbers up to 1000, and then throw away all but the first
(which is 6). Second, it is annoying to haye to give an arbitrary limit, such as 1000.

These problems are solved by the use of an evaluation strategy called 1azy evaluation.
Inlazy evaluation, only those parts of the program necessary to calculate the answer are
evaluated. This means that only the first element of the list will be calculated by the program
above, so that it in fact does no extra work. Further, it means that one is allowed to create
infinite structures, which are expanded in memory only as needed. For example, [1- -1
returns the infinitelist [1» 2, 3, ... 1

We may return the infinite list of all perfect numbers by writing:
> perfects = [n | n <= [1..]; perfect nl
Given this script, we can have the following session:

? hd perfects
5]

(0.12 CPU seconds., 138 reductions, 467 cells)

Orwell 6.00 -

? perfects
(6, 28{Interrupted!}

(4.24 CPU seconds, 7976 reductions, 25620 cells)

The first term, hd perfects, causesthe first perfect number to be printed. The
second term, perfects, causes theinfinite list of perfect numbers to be printed. Orwell will
continue searching for the next element of this list forever, or until aninterrupt is typed, as was
done here. (The default interrupt characteris control-C')

Infinite lists may also be created using where clauses. For examp le:

> dither = (yesno, noyes)
> where yesno = "YES” : noyes
> noyes = "NO” : yesno

returns a pair of infinite lists: ([”"YES”. ”N0”, “YES™, ...1, [”NO%, »YES”,
*NO”, ...1),

Another property of lazy evaluation is revealed by the following script:

>k xvy
> loop

x
loop

What is the value of k 42 loop?In manylanguages, the answer is that the program

enters aninfinite loop. But in a language with lazy evaluation, such as Orwell, the answer is
42,

9. HIGHER-ORDER FUNCTIONS

One important property of functional languages is that functions are values, justlike
numbers or lists. Thus, a function may be an argument of a function, the result of a function,
an element in a list, and so on. For example, the function

> map f xs = [f x| x (- xsl

takes two arguments, a function f and alist s, and applies T toevery element of Xs.

Note that map, as well as foldr, sum and product (below) are already defined in
the standard prelude.

A function may also be partially "applied” by giving only some of its arguments. For
example, here is yet another way of defining the function that squares every element of a list:

> squares’’ = map square

8 Orwell 6.00

Thus, map square [1,2,3] and squares’’ [1,2,31 bothevaluateto
[1.4.91

This style of programming can be quite powerful. For example, the following function
defines a common pattern of computation :

> foldr ¥ a [1
> foldr ¥ a (x:xs)

a
f x (foldr f a xs)
Functions to find the sum and product of all the elements of a list can be defined by:

foldr (+) ©
foldr (%) 1

> sum
> product

Notice that to pass an infix operator, such as + or ¥, asanargumenttoaf unction, it
must be writtenas (#) or (%),

10. TYPE DECLARATIONS

The type—-checker automatically de duces the type of all f unctions used in a program.
Thus, type declarations are completely optional. However, programs are often clearer if they
contain some type declarations as well.

Type declarations are writtenin the form namel, .., namen :: type., where
there are one or more function names or operators seperated by commas. For example:

num —> num
fnuml -> [numl
num —> Num -2 num

> square, cube
) squares
> (+), (%)

The types of some functions may contain type variables.

> map :: (a-=->b) => [al -> Ibl
> foldr iz a->b->b) ->b->1Ial > b

The type variables must consist of a single lower—case character. If a type contains type
variables, it is said to be polymorphic. For example, the function map has the type given
above for any values of @ and b. If welet @ and b both be num, then we see that one
possible type of m@p is (num -> num) -> [numl -> [numl, so that the application
map square iswell-typed, and itself hasthe type [numl —=> [numl,

11. TYPE ABBREVIATIONS

One may give a new name (o an existing type by a declaration of the form name ==
type, The name may be used anywhere in place of the equivalent type. For example,

Orwell 6.00 9

> string == [char]l

> addnl

:: string -> string
> addnl s = 5

+4 "\r‘"

The above definition of String is included inthe standard prelude.

12. USER-DEFINED TYPES

The user may define new types. Here is a definition of a tree data type (this example is
adapted from a paper by David Turner):

> tree x ::= Leaf x | Pair (tree x) (tree x)

It might be read asfollows: ”A tree of X iseithera Leaf, which contains an X,ora
Pair,whichcontainsa tree of x anda tree of x.” Here X is whatiscalled a generic
type variable; it stands for the type of elements of the tree, which may be any type. Pair and
Leaf are called constructors; they must be more than one characterinlength, and they must
not begin with a lower—case letter. (Any other symbol must not begin with a capitalletter.) For
example:

Pair (Leaf 1) (Leaf 2) hastype tree num
Pair (Leaf ’a’) (Leaf 'b’) hastype tree char
Leaf (Pair (Leaf 1) (Leaf 2)) hastype tree (tree num)

But Pair (Leaf 1) (Leaf 'b") isnot alegal tree, and will cause atype error to
be reported.

The constructors Leaf and Pair may appearon theleft hand side of equations, as
in the following function definition

> reflect (Leaf x) = lLeaf x
> reflect (Pair x y) = Pair (reflect y) (reflect x)

For example, reflect (Pair (Leaf ’0') (Leaf ’h’)) returns Pair
(Leaf ’h’) (Leaf '0’).

New types do not necessarily involve type variables. For example, the prelude file
defines

> bool ::= False | True

The built—in function showtype canbeused to find the type of anexpression; its use
is described below under "OUTPUT FORMATTING".

10 Orwell6.00

13. OPERATOR DEFINITIONS

Orwell allows one to define new operators. For example, we can define an operator %%
such that X%¥n denotes X raised tothe n’thintegral power.

In order to define a new operator, one must first declare the operator symbol and then
define its meaning. One can say that *¥* is a new operator symbol that has precedence level 8
and is right associative by writing:

> %right 8 E

(The precedence level 8 was chosen because it is just higher than the precedence level
for multiplication, which is 7, as can be seen in the standard prelude included in the
appendix.) The precedence level may be any single digit, and the associativity may
be one of 212~Ft, 2ri th, Znon, or Eprefix,

If ® and * are rwo operator symbols of the same precedence and associativity, then
x By * zmeans (x B ¥) * Z if theoperators are left associative, X & (y * z)
if the operators are right associative, and s illegalif the operators are non-associative.

The definition of power can now berewritten:

1

X ¥* X¥¥N

> xxx*Q
> x¥x(n+1)

(The reader should compare this with the definition of PoWer givenearlier.)

In Orwell, a term of the form X 8 y where B is an infix operator, is treated the same
as (8) x y. This allows, for instance, operators to be operated on by high-order f’ unctions.
(See the examples sum and product, above.) Using an operator as a function by enclosing itin
parentheses is called sectioning; the following sections are all equivalent to X e y:

(B) x ¥
(x B) ¥
(8 y) x

There is one exceptionto this. — canbeused as aninfixora prefixoperator, so
sectionsof — are interpreted as follows: ’

-] binary —
(- a) unary~
(a -) binary =

Sectioning also allows operators to be used on the left hand sides of type declarations.
Forexample,

Orwell 6.00 11

> (%x) :z num —> Num -2 num

In addition, any function may be used as an infix operator by prepending it with S
$mod and $div are examples of this. For anyfunction £, x $f isequivalentto ¥ x 7.
If $f is not explicitly declared in an operator definition, it will be right associative and have
the greatest possible prece dence level.

The names of types and constructors may also be user defined operators. A
constructor operator is declared with %leftcon, Xrightcon, %noncon, or ¥prefixcon,

For example, the list type is declared in the standard prelude by the following:
> %rightcon 1 g
> list a :z==[1]| a: list a

(Note that [a] is actually an abbreviation for list a.) Any constructor may also be
used as an operator by prepending it with %, as can be done with anyf’ unction.

Indeed, because Orwell includes user- defined types and operator symbols, many
things which must be "built in” in other languages can be defined by a normal Orwell script.
The standard prelude gives many examples of this.

14. ORDERED DEFINITIONS

Orwell requires that the equations defining a function be disjoint, thatis, that at most
one equation can apply. The i ollowing is anillegal Orwell definition of afunctionto find the
last element of a list:

> last [x]
> last (x:xs)

X
last xs

This is because, e.g., 1ast [1] can bereduced by either the first equation (giving 1)
or by the second equation (giving last [], anerror).

One can write the keyword %else before an equation, toindicate thatthe equation
should be tried only after trying to match previously declared equations:

> last’ [xl] = x
> Zelse
> last’ (x:xs)

last’ xs

Itis a matter of taste whether one prefers to write the above, or to write:

12 Orwell 6.00

> last’’ [x]

X
> last’’ (x:x’:xs) last”’ (x’:xs)

o

Here the two equations are disjoint, because the second equation only applies to lists '
with two or more elements.

Note that 1ast is defined in the standard prelude.

15. OUTPUT FORMATTING

Orwell can only print objects of type string, Allother objects must be converted to
strings before they can be printed. The primitive f’ unction shosW maps any object onto a
string. For example,

shouw "hel lo™ evaluates to ”\"”hel lo\™”
show 3. 1416 evaluates to »3.1416"
show "a’ evaluatesto '@’ "

chow (1:2:3:11) evaluatesto " [1, Z» 317

If an expression is typed after the 7 prompt which is not of type string,then Orwell
will apply Show to the result before printingit.

Thereis also a showtype primitive function, which maps any object onto a printable
representation of its type. Forexample:

shoutype "hi” evaluatesto T Lcharl s

showtype (1, "eek!™, True) evaluatesto ~(num, [charl, beol)”
shoutype show evaluatesto @ —> stri ng”
showtype (map show) evaluatesto [al —> [stringl”

16. COMMENTS

In most programming languages, comments are indicated by some special symbol. In
Orwell, it is the other way around: everything that is not acomment is indicated by beginning
the line with the symbol Y. Also, comments and program must be separated by a blank line.

This convention allows one to write scripts that read ina natural way. For example, this
document is itself a legal Orwell script! (Note that examples of illegal definitions or
definitions already appearing in the standard prelude have a space before the 2,sothatthey
are treated as comments.)

Orwell .00 13

A word of warning: occasionally one willforgetto puta > atthe beginning of a line.
Remember to check for this if Orwell seems to be ignoring part of your script! Orwell requires
that comments and program are separated by a blank line, and this will often catch cases
where one omits a > by mistake.

17. ERRORS

Orwell always reduces an expression as faras possible. If an expression cannot be
further reduced because it is in error, Orwell will markit as such and perform whatever
reductions it can elsewhere. Expressions marked aserrorsare printed surrounded by curly
braces.

Here is a sample from a session:

2 (3+4, map =map, S5 + (2 / (3 - 3))
(7, {map = map}, €2 / 03)

(0.12 CPU seconds., 10 reductions. E65 cells)

The result is a tuple of three objects, two of which are errors. The first error results
from performing a comparison operation on a function, and the second error results from
attempting to divide by zero. Note that if the term containing the error is nested, as in (S +
(2 /7 (3-33)), thenonlythe partof theterm that is in error (in this case, {2 / 0f) will be
returned.

This treatment of errors is very close to the treatment of L indomain theory. (The
symbol 1, pronounced bottom, denotes an undefined value, such as the value of an evalua-
tion that enters aninfinite loop.) Orwell hasa builtinfunction undef ined which has no
defined value. For example, consider the infinite list}nes:

> bottom = undefined
> ones = addone ones
> addone xs = {W-Uixs

In domain theory, this listis defined asthe limit of the sequence

1 addone L, addone (addone L), ...

Using Orwell’s error mechanism, one can actually compute these approximations to
the infinite list of ones:

? bottom
{undef ined>

14 Orwell §.00

7?7 addone bottom
(1] ++ {undefined}

? addone (addone bottom)
{1, 11 ++ {undef ined}

Of course, one can also print the infinite list of ones directly:

? ones
(1, 1, 1, 1. B PR L LG s L i D L L B LAl b 3 {Interrupted!}

18. THE VED EDITOR INTERFACE

Orwell can be used with the VED text editor, and users of Orwell with VED should read
the VED manual. All of the normal VED commands may be used to edit at any time during an
Orwell session.

One begins by editing one or more files containing the script, just as one would edit any
other files in VED. One may switch to a new file within VED using the E (edit) command; see
the VED manual. When the script files are ready, they may be loaded by the X (execute)
command:

QUATE X filel ... filen QUOTE

The scriptis takento be the contents of the standard prelude followed by filel, ...
filen in order. A — may appearin placeof anyof the files; it refers tothe file being edited.
To justload the file currently being edited, type QUOTE X — QUOTE, To just load the
prelude, type QUOTE X . QUOTE,

Afterthe X command, the user will be editing a file called Session, Text typed after
the 7 prompt atthe end of this file is treated as an Orwell expression to be evaluated, as
shownin the examples of sessions above. Evaluation of anexpressionin a session (and any
long editor command, like FIND) may be interrupted by typing control/-C.

After some timein the session, the user may wish to edit one of the script files. This
may be done, as usual, using the E command. Using the E command without a filename
switches one to the last file edited. One may then return tothe Session file usingthe E
command; for convenience, QUGTE X QUOTE ajso returnsto the session. The Orwell system
will automatically reload any files of the script that have changed before continuing the
session. (Remember, however, to use the X command whenever you wish to change the set of
files thatis the script; Orwell does not assume that the scriptis always the last file edited.)

Orwell 6.00 15

If there is a syntax error in a script file, then when the fileisloaded the bell will ring and
the file containing the error will be displayed with the cursor at the position the reader was at
when the syntax error was detected. The user may correct the error using the editor, and then
resume by giving the QUOTE X QUOTE command. If there is more than one error, this
process will be repeated. It is usually easy to fix errors, because one is left in the editor with the
cursor near the place the error occured.

Type errors are indicated in a similar way, with the cursor at the beginning of the equa-
tion that was being analyzed when the type inconsistency was found. Usually, the error will be
in this equation, but sometimes the erroris in a previous equation and this equation only
reveals the inconsistency. One can get some additionalinformation about the inconsistency by
giving the Y (why) command. This willinsert some information about the error into the docu—
ment; the user will usually wish to delete this information after reading it. For convenience,
the mark is left at the beginning of the inserted text, which makes it easy to delete with the CUT
command (see the VED manual).

19. THE SCROLLING INTERFACE

Orwell can also be used with a simple teletype~style interface. The interaction between
user and interpreter will not be recorded in a "session” file, but the user may use any editor to
edit script files.

When Orwell is invoked with this interface, the user will be putinto a session right
away. Inresponse to the ? prompt given by theinterpreter, the user may type any of the
following:

COMMAND: MEANING:

X re-load current scripts which have changed
X . just load the prelude

:x filel ... filen load filel ... filen

th 4 give details of last type error

: ! command execute command under Bourneshell

:e file invoke editor containing file

:q exit Orwell

:h display commands

:? display commands

Anything else typed in response to a prompt is assumed to be an Orwell expression,
which will be reduced and displayed. Asinthe VED interface, evaluation can be interrupted
by typing control-C.

16 Orwell6.00

The :e command invokes the editor named by your shell variable, EDITOR. If this
variable is not defined, then ed isinvoked. Note that if you change a current script file, it will
not automatically be re-loaded when you exit the editor; youmust use the =X command. -
(This is different from the behaviour of the VED interface.)

You can find out what the current files are at any time by giving the X command with
no arguments — no files will be read unless they have changed since their last reading, and a
list of the current files will be displayed.

If an erroris found in a script file which is being loaded, you will be told the line on
which the error was found. The actual cause of the error may be ona differentline inthe same
equation. You can use the € command to edit thefile in question, thenuse the X
command to try toload the file once you have fixed the error.

20. USING ORWELL ON THE SUN

To use Orwell with the VED interface on a Sun computer, your -Profile or
.login mustbe setup to allow youto use VED. (See the VED manual for details.) Which-
ever interface you use, you must define the environment variable ORWELLELIB tobe
/pra/OrwellB, and exportit. Then your bin directory (or some directory in your search
path) must contain the following links:

orwell -> $SORWELLBLIB/orwell
orwellved -> $ORWELLBLIB/oruwellved

Orwell with VED may be invoked by typing

$ orwellved filename

This will enter the editor, with filename as the current document. To enter a session
directly with filename as the current script, type:

$ orwellved —x filename

When the —x flagisused, any number of filenames may appear onthe command
line. If no filenames are given, then only the prelude is loaded. The command line may also
contain VED flags; see the VED manual.

Another command line option allows you touse a larger or smaller heap thanthe
default 100000 cells. Invoking Orwell with —n number of cells onthe command line allows
youto have a heap as small as 10000 or aslarge as your machine has space for.

Orwell 6.00 17
Toinvoke Orwell with the scrolling interface, type:
$ orwell filel ... filen

Any number of files may be given (including zero). Orwell willload the prelude and all
the files given, and begin a session. The —n number of cells option can also be used with this
command.

Users of Orwell are warned thatit is subject to change. Any comments on Orwell, its
implementation, or this document are welcome. If you need help, please see Quentin Miller,
Richard Bird, or Bernard Sufrin.

21. ACKNOWLEDGEMENTS

Readers familiar with functional programming languages will recognize that Orwell is
mainly a composition of ideas from the work of others, notably Peter Landin’s Iswim, Rod
Burstall's (and other’s) NPL and Hope, Robin Milner’s (and other’s) ML, and David Turner’s
SASL, KRC, and Miranda. In particular, many of the ideas and notations in Orwell have been
taken directly from KR C and Miranda. (Mirandaisa trademark of Research Software Ltd.)

Orwell has benefitted immensely from discussions with Richard Bird, John Hughes,
and Bernard Sufrin. Jeremy Jacob served as Orwell’s first user. The firstimplementation
of Orwell was written by Phil Wadler and Martin Raskovski. The present implementation
was written by Quentin Miller.

This work was performed while the author was supported by a grant from ICL.

18

Orwell 6.00

At the present time I think we are on the verge of discovering at last what pro-
gramming languages should really be like. I look forward to seeing many responsible
experiments with language design during the next few years; and my dream is that by
1984 we will see a consensus developing for a really good programming language . . .

Will Utopia 84, or perhaps we should call it N ewspeak, contain 90to state—
ments?

—~Donald Knuth,
Structured Programming with
Go To Statements, 1974

In the year 1984 there was not as yet anyone who used Newspeak as his sole
means of communication, either in speech or in writing. The leading articles of The
Times were written in it, but this was a tour de force which could only be carried
out by a specialist. It was expected that Newspeak would finally have superseded
Oldspeak (or Standard English, as we should call it) by about the year 2050. Mean-
while it gained ground steadily, all Party members tending to use Newspeak words
and grammatical constructions more and more in their everyday speech.

- George Orwell,
Nineteen Eighty-Four, 1949

Orwell 6.00

APPENDIX A: THE ORWELL STANDARD PRELUDE

Orwell Standard Prelude
Phil Wadler, 7 August 1985
(revised Quentin Miller, 13 December 1989)

Operator declarations :

The parser reads—a as$neg a,

> ¥right] ->

> Zrightcon 1 :

> Zright 1 + —

> %right 2 \/

> Zright 3 R

> Znon 4 >)= = »= (=< $in
> %Zright 5 $max $min

> Zleft 6 + -

> Zleft ? * [/ $div $mod
> Zright 8 -

> Zright | !

> Zprefix = $neg #

Type Declarations:
There are two primitive types, char and num,
Lists and tuples are built-in; for example,

[lisreadasNil;
[x» ¥» z)isread asx:y:Z=Ni1;
[x]isread as (1ist x)in atype declaration,
x:Nilin avalue declaration.
(x,¥,2) isread as (tuple3 x y zJ)inatypedeclaration,
(Tuple3 x y z) inavalue declaration.

> bool ::= False | True
> list a ::= Nil | a = list a
> string == Lcharl

Any number of tuple types can be defined using the following
pattern; the parser will read them correctly.

20 Orwell&.00

> tuple2 a b ::= Tuplez a b
> tuple3 a b c ::= Tuple3 a b c
= Tuplet abcd

> tuplet abc d s:

Display functions:

> show : a—> string
> showtype : a = string
Primitives:

comparison operations:

>(=) , (),). K2, O=), (=) a —> a -> bool

arithmetic operations:

> (4), (=), (%), ($div), ($mod),
> (73, (/)

nuUm —> Num —2> num

> sqrt, exp, log, sin.

> cos, arctan, entier, ieee Aum —> NuUm

> ($neg) : num —> Num
character conversions:

> code :: char —> num

> decode :z num —> char

strictness:

> strict iz (@ ->b) ->a->b

(strict f x) forcesevaluation of X and then returns f x).

file input/output:

> keyboard : bool —-> string

> keyboardchar : a —> bool

> fileout : string —> string -2 string
> filein :: string => string

keyboard b returns the list of characterstyped atthe

keyboard. Theinput list may be terminated by
typing an EOF character (control-D by default).

Orwell 6.00

If b is True, the characters are echoed as they
aretyped. If bisFalse echoingis not
performed.
keyboardchar x returns Trueif keyboard characters have been
typed but not yet read by thekeyboard primitive;
False otherwise. (The argument is ignored.)

fileout f x returns the string X, marked in a way that causes
it tobe sent to file ¥ when it is printed.
filein f returns the contents of thefile f.

Warning : keyboard, keyboardchar, and fi lein arenot referentially
transparent! For example, (keyboard b) = (keyboard b) doesnot
necessarily return True; it will return Trueif you type, for

example, "abc*D*D”.

systemio:

> system :: string -2 string

system cmd returns the standard output and error streams
given when cmd is evaluated by the operating
system.

system is, of course, not referentially transparent.

Standard prelude functions: (built-in primitives for speed)

> (1) :z [@]l => num -> a
* (xzxs) ! © = X

* (x:xs) ! (n+1) = xs ! n

> (#) t: [al —=> num

* #{] = 0

* #(x:xs) = 1 + #ixs

> (+4) :: [al => [a] - [al
* []1 ++ ys ¥S

(xs ++ ys)

o
X
”

¥ (x:xs) ++ ys

21

22

%" oK K O K K

xs — [1]
xs — (y:ys)

(.)

(f . 9) x
()

True & ¥y
False & ¥
(\/)

True \/ vy
False \/ vy
(~)

< True

« False

all

all p

and

and
cjustify
cjustify n s

fal -> [al -> [al

xS
remgve Xs y — ¥YS
where remove [] y =[]
remove (x:xs) ¥y
XS,

X : remove XxXs Y-

Orwell 6.00

ifx=y
otheruise

ta->b) > (c—->a) ->c—>b

f (g x)

bool - bool -> bool

b4
False

bool -> bool —> bool

True
b4

:: bool =) bool

False
True

: (a =) bool) -> [al —> bool

and . map p

: [booll -> bool

foldr (&) True

: num - string = string

space halfm ++ s ++ space (m - halfm)

where m = n - #s
halfm = m $div 2

Orwell 5.00

>

%

L I

concat

concat

const

const k x

copy

copy n X

drop

drop © xS
drop (n+1) [1
drop (n+1) (x:xs)

dropuhi le

dropuhile p [1
dropuhile p (x:xs)

filter

filter p [1
filter p (x:xs)

foldl

foldl £ a [1
foldl £ a (x:xs)
foldl1l

foldll f (x:xs)

23

: [[al]l -> [al

foldr (++) L[]

ta->b ->a

k

: num - a = [al

take n xs where xs = x:xs

num —> [al —=> [al

xS
I1
drop n xs

(a => bool) => [al -> [al

[1
dropwhile p xs» if p x
XS XS » otherwise

(a => bool) => [al -> [al

[1
x : Filter p xs»
filter p xs»

if px
otherwise

(a->b->a) ->a->1Ibl —>a

a
strict (foldl f) (F a x) xs

:: (@ ~->a->a)~>Ial -> a

foldl f x xs

24 Orwell@.00

> foldr (@a->b->b) ->b ->I[al ->b

* foldr £ a [1]
* foldr f a (x:xs)

a
f x (foldr f a xs)

> foldril (a->a->a) ->Ial - a

* foldrl f [x]
% foldrl f (x:y:xs)

x
f x (foldrl f (y:xs))

> fst z= (a,b) => a

* fst (x,y) = x

> hd : [a]l => a

#* hd (x=xs) = X

> id = a->a

* id x = X

> ($in) :z a =) [al ~> bool
* x $in xs = so&e (x =) xs

> init : [al —-> [al

* init I[x] [1

* jnit (x:y:xs) x : init (y:xs)

> iterate : (@ ->a) > a -> [al
* jterate ¥ x = x : iterate f (f x)
> last : [a]l] -> a

* last [x] b

* last (x:y:xs) last (y:xs)

Orwell §.00 25

> layn :: [stringl -> string

% layn xs = lay 1 xs

* where lay n [1 = [1]

* lay n (x:xs)

* = rjustify 4 (shouw n) ++ ") ”
* ++ x ++ "\n” ++ lay (n¥+1) xs

> listmax :: [al -> a

% listmax = foldll (Emax)

> listmin :: [al -> a

listmin = foldll (¥min)

> ljustify :: num -> string = string
% Jjustify n s = g + space (n — #Hs)

> map :: (a => b) -> [al —> [b]
* map f xs = [f x| x {— xs]

> (Bmax) ::a—->a->a

*¥ x $max y X if x>=y

%
o

¥ otherwise
> merge :: [al -> [a] —> [al
%* merge []1 ys = ys
* merge (x:xs) L[] = X:1XS
% merge (x:xs) (y:ys) = x:{merge xs (y:ys)), if x<=y
* = y:{merge (x:xs) ys), otheruise

> ($min)

:a->a->a

* x $min ¥ = X if x <=y
* =y, otherwise

26 Orwell 6.00

> or 2z [booll -> bool

* or = Ffoldr (\/) False

> product z: [numl —> num

* product = Foldl (%) 1

Y reverse :: [al - [al

* reverse = foldl prefix []

2 where prefix xs x = x:xs

> rjustify :: npum —) string —> string

* rjustify n s = space (n — #s) ++ 5

> scan : (a—->b->a) —>a->Ibl = [al

¥ scan f a xs = a:sc f axs

* where sc ¥ a [1] = [1

* sc f a (x:xs) =scan f (f a x) xs
> snd : (asb) —> b

* snd (x,y) =y

> some = (a ~>» bool) => [al -> bool

* some p = or . map p

> sort :z [al -> [al

* sort = foldr insert [1]

* where insert x [1] = [x]

* insert x (y:=ys)

* = xX:1y:ys, if x {=y
* = y:insert x ys., otheruise
> space :z num —> string

* space n = copy n '

Orwell 6.00

> sum

* sum

> swap

%* gwap f x ¥

> take

* take O xS
* take (n+1) [
* take (n+l) (x:xs)

> takewuhile

* takewhile p [1]
* takewhile p (x:=xs)

> tl
% t]1 (x=xs)
> until

* until p f x

> zip

® zip ({1, ys)
* zip ((x:xs), [1)
® zip ((x:xs), (y:ys))

> zipwith

® zipwith f (xs, ¥s)

fnum] —> num

foldl (+) O

(a->b->c¢c) >b->a->c

fyx

num —> [al -> [al

[1
[1
x : take n xs

{a => bool) —> [al -> [al

[1

x : takewhile p xs,» if p x
[1, otherwise
[al —=> [al

xS

(a => bool) —> (a —> a) -> a—> a
X» if px

until p f (f x)» otherwise
([al, [bl1) -> [(a, b)1]

[1
[1
(x, ¥) = zip (xs, ¥s)

:: (@ -> b => c) -> ([al, [bl) -> el

[f xy | (x, ¥) <- zip (xs, ys)]

27

28

Orwell6.00

APPENDIX B: ORWELL GRAMMAR

Notation

The notation used to describe the syntaxis as follows:

[patternl
{pattern}
(pattern)
{pattern>

"literal”

Syntax

program
decl

syndecl
condecl
typedecl

name

tylhs

tylhsi
tylhsprimary
tylhssection

type

tyterml
tyterm2
typrimaryname
typrimary
tysection
tylist
tytuple

construct
opdecl

opkind
assoc

optional

Zero or more repetitions

grouping

off-side rule -—the layout must be indented so
that every tokenappearsto the right of the
token preceding the pattern to which the off'side
rule applies.

literal

decl {decl?}
syndecl | condecl | typedecl | opdecl | def

tylhs "==" <type>
tylhs ":=z=" <construct {"|” constructl}>
name {",” name} "::" {type>

var | "(” (var | prefix | infix) =)

tyvar infix tyvar | prefix tyvar | tvlhsl
tylhsprimary {tyvarl

tyname | "(” (tylhs | tylhssection))"
prefix | infix | infix tyvar | tyvar infix

tyterml [infix typel

prefix tyterml | tytermZ

typrimary | typr imaryname {typrimary}

tyname | "(” (type | tysection))"
typrimaryname | tyvar | tytuple | tylist
prefix | infix | infix tyterml | tyterml infix
n[n t)'pe n]n

n(n type n'u type {n'n t)’l:!e} ll)u

con {typrimary} | typrimary infix typrimary
prefix typr imary

opkind <op {op}>

assoc digit | "%prefix” | *%prefixcon”
n"xleft” | "%risht” | "%non” |
»xleftcon” | "%rightcon” | "%noncon”

Orwell 6.00 29
def = pat "=" rhs {{"%else”] pat =" rhsk

rhs = ({term> | conditional) [wherepart]
conditional = ifpart {"=" ifpart”} ["=" otherpart]
ifpart = {term ",” "if"” term>

otherpart = <term ”,” "otheruwise™>

wherepart = "where” <{def {defl}>

pat = patl [infix patl

patl = prefix patl | pat2

patl = patpr imary | patprimaryname {patprimaryl
patpr imaryname = var | (" (pat | patsection) ")~

patpr imary = patprimaryname | literal | pattuple | patlist
patsection = prefix | infix | infix patl | patl infix
pattuple = "(" pat "," pat {”,” pat})"

patlist ="[" [pat €",” patl] "1"

term = terml [infix terml

terml = prefix terml | termZ

termZ = primary | primaryname {pr imary?}

pr imaryname = var | "(” (term | section) ")”

primary = primaryname | fliteral | tuple | list
section = prefix | infix | infix terml | terml infix
list = listform | upto | comp

tuple = "¢" term ”," term €",” term} ”)”

listform = "[" [term {",” term}] "1”

upto = "[" term [”,” term] "..” [term] "17

comp = "[" term ”|"” [qualifier {"3" qualifier¥] ”1”
qualifier = term | pat "<-" term

fliteral = float | literal

literal = integer | character | string

infix = op

prefix = op

tyname = id

tyvar = id

con = id

var = Mid

Notes On The Syntax

Each prefixorinfix 0P mustbe declared inan opdecl before it is used.

An id maybe either a tyname, tyvar, con, or var. If the id appearsina type
or ty1hs thenitis a tyvar ifitconsists of only onecharacter,ora tyname if itislonger.
Otherwise an id isa con if it begins with a capital letter, ora var if it does not.

Each OP iseither prefixor infix, or both in the unique case of ~. (—x) denotes the
negative of X rather than a function that subtracts X from its argument. Any other ambig-
uous use of — is resolved in favour of the infix (binary) interpretation.

30 Orwell 6.00

Higher declared precedences bind more tightly. Infix operators beginning with "$”,
unless they are explicitly declared, bind more tightly than any symbolic operator. Note that
prefix operators bind more tightly than infix operators, but less tightly than application.

Lexical Grammar

integer = digit {digit}

float = integer ".” integer ["e” ["-"] integer]
character = "'" (char | escchar) ™*”"

string = "™ {char | escchar} ”™"

escchar = "\” (char | digit [digit [digit]])
pragma = "3” id

id = letter {letter | digit | "'” I=")

op = symbol {symbol} | ”$” id

Notes On The Lexical Grammar

A symboal is one of
Rl IR D I S N A 1 T (T S IR T S A TR S S R S
The other characters that mayappearin a program are

PR () || 45

and letters, digits, and blank space. A blank spaceisa space or newline character.

Note that tab characters are not recognized by Orwell, either in a script file orina
session. This is because different editors interpret tabs as being equivalent to different
numbers of spaces. In order for the off-side rule to work correctly, Orwell must know the
exact horizontal position of tokens. Some editors (such as VED) always convert tabs into a
number of spaces ; so when using such an editor this warming about tabs may be ignored.

Escapecharactersin character and string literals are as follows :

\n newline

\t tab

\f formfeed

\r carriage return
\b backspace

\ddd character with ASCII code ddd,
where ddd is up to three decimal digits

Orwell §.00 31

The same conventions are used in C and Miranda (although in C escape characters of
the form \ddd are inoctal, not decimal).

Any other character preceeded by a backslash will be read asthatliteral character,
with no special meaning attached.

The following are reserved keywords or key-symbols:
if otherwise where = == =z:= .. ; | <~

Except for =, none of these may be used as identifier or operator names. The pragmas
and other special symbols that are recognized bythe lexical scanner are

Xleft Xleftcon Iright %rightcon Inon Tnoncon ¥prefix Eprefixcon
¥else » ()L 1]

Pragmas are distinct fromidentifiers, so for example, 1left is a legal identifier name.

Eachlexeme s aslong as possible. Sometimes extra spaces or parentheses will be
needed to disambiguate. Forexample, @=b is read as @ followed by =" followed by b; to
test the equality of @ and b one mustwrite a=(*b) or a= b,

Blank space maynot appear inside lexemes, except that spaces mayappearin a
character or string literal. Any blank space between lexemesis only significant for the of f-side
rule.

A comment is any line in which >’ is not the first character onthe line. The ">’ at the
beginning of a non-comment line isignored. Any comment line adjacent to a non-comment
line must contain only blank space; thus, a blank line always seperates programs from
comments.

