John Reynolds,
Definitional Interpreters tor
Higher-Order Programming

LLanguages

Philip Wadler
University of Edinburgh
Papers We Love, 7 June 2016

Some other Papers I Love

John McCarthy, Toward a Mathematical

Science of Computation, IFIP Congress, pages
21-28, 1962.

Peter Landin, The Next 700 Programming
Languages, CACM, 9(3):157-166, March 1966.

Gordon Plotkin, Call-by-name, Call-by-value,
and the Lambda Calculus, 7CS 1:125-159,
1975.

John McCarthy presents
Recursive Functions of
Symbolic Expressions and

Their Computation by

Machine, Part I, CACM 3(4):

184 — 195, April 1960.

S SN L~
X —

Philip Wadler explains

‘Propositions as Types’,

CACM, 58(12):75—84,
December 2015.

The Papers

John Reynolds, Definitional Interpreters for Higher-Order
Programming Languages, in Proceedings of the ACM Annual
Conference, Volume 2, pages 717—740, August 1972.

John Reynolds, Definitional Interpreters for Higher-Order

Programming Languages, in Higher-Order and Symbolic
Computation, 11(4):363—397, 1998.

John Reynolds, Definitional Interpreters Revisited, in Higher-
Order and Symbolic Computation, 11(4):355—361, 1998.

John Reynolds, The Discoveries of Continuations, in Lisp
and Symbolic Computation, 6:233—248, 1993.

v

¥,

J Jaatmationed B rpreters lor Hlwpher Oder Programenng Langusgts

*oa G R gvgat, Syrasie Unieetaiy

gt o [Definctiomat

Higher-ordcr programming lanquages (i.e.,
languuges in which procedures or labels
can octur &% values) are usually dofined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative lancuags such as pure LISP).
Examplas include NecCarthy's definition
of LISP, Landin's SCECD machine, the
Vienna dofinition of PL/I, Neynolds'
dofinitions of GEDNIKEN, and recent
unpublished work by L. Morris and

C. Wadsworth, Such definitions can be
classificd according to whather the
interpreter contains higher-order
functions, and whether tho order of
applicazion (i.e., call-by-value versus
call-ly-name} in the defincd language
depcenda upon the order of application

in the defining language. As an example,
we consider the definition of a simple
applicative prograzming language by
means of an intervreter written in

a similar languesge. Definitions in
ench of the above cinsesifications are
derived {rom uvne another by informal

but constiructive methods. The treat-
mont ¢f imperative featurcs such as
jumps and azsignment is also discussed.

Xey Werds ané Phrases: programeing
langumgc, lauguage décfinition,
interpreter, lambda calculus,
applicative lanouage, higher-order
function, closure, order of appli-
cation, continuation, LISP,
GEDMNKEN, PAL, SECD machina,
J-operator, refercnce.

CR Categories: 4.20, 5.24, 4.1)

’Ibrk supported by Rome Air Force Dev-
clopnent Center Contract No.
30602-72~-C=02EB1 and ARPA Contract No.
DNIC04~72-C-0003.

KON TZBE P VX SN Sy (.

17

TL-lwyy

INTRODUCTION

An important and frequently uscd
method of defining a programming lunguage
is to give an imcrpreter four the language
vhich is written in a second, hopefully
better undorstnod language., (Wo will
call thesc tvo lancuages the defimed
and defining languages, respectively.)

In this paper, we will descride and
classify sovoral varioties of such
interpreters, and show how they may be
derived from one another by informal but
constructive mathods, Although our
approach to “constructive classificetion”
is original, the paper is bacicslly an
attermpt to review and systematize
previous work in the ficid, and we have
tried to make the presentacion accessible
to readers vho ace unfamilianr with this
previous work. .

{0f course, intecrpretation can
provide on implementotion on well as a
definition, but there ore larce practical
differgnces betwcen these un2oes.
Definitional interpreters often achicve
clarity by sacrificing all scmblence of
cificicncy.)

We begin by noting some salient
charactoristics of proyramming languages
themselves. The fcatures of thesc
languages can be divided uscfully into
two catogories: eapplicative features,
such as expression cvaluation and the
definition and application of functions,
and imperative features, such as
statement sequencing, labels, jumps,
azsignment, and procedural side-cffects,
Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imporative, thoro aro few “highor-level®
languages in this category. (IPL/V
might be an cxample.)™ On the other hand,
there is at loast one well=kXnown exanple
of a purely applicative language: LISP.
fi.e., the lang?f?e defined in MeCarthy's
ozizsnul paver. Most LISP implemen-
tations provide an extended language
including imperative fcatures.) Thore
are also several more recent, rather
theoretical languages (ISWIM(2), PAL(2)
and croxixen{€)) unich have been designed

P T e L - -

Jatmuons! f;e rpreters for Higher-Order Programnung Languages
1

BT of n.-n-o..:;,. Cyrasuse Universtly

@Mm-’m /sz"muua&

Higher-order programming languages (i1.e., INTRODUC'TTON
languaoes in which procedures or labels

can oczur &5 values) are usually defined An imporiant and
by interpreters which are themselves method of defining a
written in a orograwmming lanauage based is to give an interpre
on the lambdea calculus (i.e., an vhich is written in a
applicative lancuagre such as pure LISP). better undcrstood lanc
Examples include McCarthy's definition call thesc two languac
of LISP, Landin's SECD machine, the and defining language:
Vienna definition of PL/I, Reynolds' In this papey, we wil.
definitions of GEDANKEN, and recent classify several vari
unpublished work by L. Morris and interpreters, and sho
C. wadsworth. Such definitions can be derived from one anot!
classified according to whether the constructive methods.
interpreter contains higher-oraer approach to “"construc
functions, and whether the order of is original, thec pape:

anmnItiration (.. ecall-Bu-=value vercues attammnt 40 yYyouvisew aned

Higher-Order and Symbolic Computation. 11, 363-397 (1998)
wN ¢ 1998 Kluwer Academic Publishers. Boston. Manufactured in The Netherlands.

14
fin

Definitional Interpreters
for Higher-Order Programming Languages’

JOHN C. REYNOLDS™*
Systems and Information Science, Syracuse University

Abstract. Higher-order programming languages (1.e.., languages in which procedures or labels can occur as
values) are usually defined by interpreters that are themselves written in a programming language based on the
lambda calculus (1.e.. an applicative language such as pure LISP). Examples include McCarthy’s definition of
LISP. Landin’s SECD machine, the Vienna definition of PL/I. Reynolds™ definitions of GEDANKEN. and recent
unpublished work by L. Morris and C. Wadsworth. Such definitions can be classified according to whether the
interpreter contains higher-order functions. and whether the order of application (1.e., call by value versus call by
name) in the defined language depends upon the order of application in the defining language. As an example.
we consider the definition of a simple applicative programming language by means of an interpreter written in a
similar language. Definitions in each of the above classifications are derived from one another by informal but
constructive methods. The treatment of imperative features such as jumps and assignment 1s also discussed.

Kavwwoarde araocramming laonomince 1anoiaoe Asafinitinn internratar 1InmbAda calenihiice annlicatitre lanagnaoce

Higher-Order and Symbolic Computation, 11, 355-361 (1998)
ww ¢ 1008 Kluwer Academic Publishers. Boston. Manufactured in The Netherlands.

Ir
fin

Definitional Interpreters Revisited

JOHN C. REYNOLDS john reynolds@cs.cmu.edu
School of Computer Science, Carnegie Mellon University

Abstract. To introduce the republication of “Definitional Interpreters for Higher-Order Programming Languages™.
the author recounts the circumstances of its creation, clarifies several obscurities. corrects a few mistakes. and
briefly summarizes some more recent developments.

Kevwords: operational semantics, denotational semantics. interpreter, lambda calculus, applicative language.
functional language. metacirculanty. higher-order function, defunctionalization. closure. call by value. call by
name, continuation, continuation-passing-style transformation, LISP, ISWIM. PAL. Scheme. SECD machine.
J-operator. escape, assignment.

In late 1971, Jean Sammet and Burt Leavenworth asked Art Evans and me to give a tutorial
session on “the application of the lambda calculus to programming languages™ at the 25th
Anniversary ACM National Conference to be held the following summer. I had recently
returned from a sabbatical at Queen Mary College 1n London. where I had immersed mv-

LISP AND SYMBOLIC COMPUTATION: An International Journal, 6, 233-248, 1993
© 1993 Kluwer Academic Publishers —~ Manufactured in The Netherlands

The Discoveries of Continuations

JOHN C. REYNOLDS (John.Reynolds@cs.cmu.edu)

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15218-3890

Keywords: Semantics, Continuation, Continuation-Passing Style

Abstract. We give a brief account of the discoveries of continuations and related con-
cepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L.. Morris, C. P. Wadsworth.
J. H. Morris, M. J. Fischer, and S. K. Abdal.

In the early history of continuations, basic concepts were independently
discovered an extraordinary number of times. This was due less to poor
communication among computer scientists than to the rich variety of set-
tings in which continuations were found useful: They underlie a method
of program transformation (into continuation-passing style), a style of def-
initional interpreter (defining one language by an interpreter written in
another language), and a style of denotational semantics (in the sense of

Definitional Interpreters for
Higher-Order Programming
LLanguages

Order-of
application
dcgcndcnce

yes

no

Use of higher-order functinns:

yes

direct interpreter
for GEDANKEN

Morris-wWadsworth
mcthod

no

McCarthy's
derinition of LIsP

SECD machine
Vienna definition

Order-of
application
dencndence

yeos

no

IV

Use of higher-order functinns:

yes no

direct interpreter II McCarthy's
for GEDANKEN derinition of L1SP

Morris-wadsworth II SECD machine
mcthod Vienna definition

Next, we introduce a_form of cx-
pression (due to Landin(7)) which is
analogous to the block in ALGOL. If
Zys e+ o2 X, are variables, and
Py, «++ » Yy @nd r, are expressions,
then

let xl = r1 and ... and x_ = r_ 1n rb.

— n n —

is a let expression, whose aeclarcd
variables are Xj, «++« 1 Tnos whosc
declaring expressions arc ., ++« o+ Tpo
and whose body is »;. (We will call
each pair z; = r; a declaration.) The
evaluation of a let expression in an
environment e begins with the evaluation
of its doclaring cxpressions ry; in the
same environment. Then the value of the
let expression is obtained Dby evaluating
its body rp in the environment which is
the extension of e which binds each
declared variable z; to the value of the
corresponding declaring expression ry.

- -

them.

Regardless of the specific nature
of the data, there are three ways to
introduce basic operations and tests
into our applicative language:

(1) We may introduce constants
denoting the basic functions (whose
application will perform the basic
operations and tests).

(2) We may introduce predejfined
variabies denoting the basic
functions. These variables differ
from constants in that the program=-
mer can redefine Lthem with his own
declarations. They are specified
by introducing an initial environ-
ment, to be used for the evaluaticn
of the entire program, which binds
the predefined variables to their
functional values.

(3) We may introduce special
expressions whose evaluation will
perform the basic operations and
tests. Since this approach is
used in most programming languages
(and in mathematical notation), we
will fregquently use the common
forms of arithmetic and boolean
expressions without explanation.

THE DEFINED LANGUAGE

Althouch our decfining language
will use all of the features des- '’
cribed in the previous scction, along
with appropriate basic operations and
tests, the defined language will be
considerably more limited, in order
tc avoid complications which would be
out of place in an introductory paper.
Specifically:

(1) Functions will be limited
to a single argument. Thus all
applicative expressions will have a
single operand, and all lambda
expression will have a single formal

ABSTRACT SYNTAX

We now turn our attention to the
defining language. To permit the writing
of interpreters, the values used in the
defining language must include cxpressions
of the defined language. At first sight,
this suggests that we should use character
strings as values denoting expressions,
but this approach would enmesh us in
questions of grammar and parsing which
are beyond the scope of this paper. (An .
excellent review of these matters is
contained in reference 17.)

Instcad, we use the approach of
abstract a%ntax, originally suggested by
McCarthy (1B)., 1In this approach, it is
assumed that programs are "really”
abstract, hierarchically structured data
objects, and that the character strings
that one actually reads into the computer
are simply representations of these _
abstract objects (in the same sense that

'digit strings are representations of

integers). Thus the problems of grammar
and parsing can be set aside as "input
editing". (Of course, this does not
eliminate these problems, but it separates
them clearly from semantic considerations.
See, for example, Wozencraft and

Evans, (23))

We are left with two closely related
oroblems: ‘iow to define scts of abstract
expressions (and other structured data
to be used by the interprcters), and how
to dofine the basic functions for con-
structing, analyzing, and classifying
these objects. Both problems are solved
by introducing three forms of abstract
syntar eguation. (A more eclaborate
defined language would require a more
complex treatment of abstract syntax, as
given in Refercnce 13, for example.)
Within these equations, upper case letter
strings denote sets, and lower case letter

values of the defining language whose which is bound to each variable, the

monber:s represcnt the values of the de- simplest approach is to assume that an
tined language, Howaver, since the environment is a function from variables
variety of values provided in tho : to values, i.c.

defining language is richer than in the

\ ENV = VAR = VAL.
definced language, we have been able to

represent each defined-language value Within the various interpretars which
by the same defining-language value. In we will present, gach variable will range
our later interpreters this situation over some set defined by abstract syntax
will change, and it will become more . equations, For clarity, we will use
evident that VAL is a set of value different variables for different sets,
representations. € as summarized in the following table:

Finally, we must definc the set ENV
of environments. Since the purpose of
an environment is to specify the value

Variable - Range Variable Range
EXP e e ENV

X 2 VAR cec' ° CONT
£ . LANMBDA mm' m" MEM
ab VAL rf REF

£ FUNVAL n

INTEGER
(The sets CONT, MEM, and REF will be defined later.) "
14

A META-CIRCULAR INTERPRETER

Qur first interpreter is a straightforward transcription of the informal language

definition we have already given. 1Its central component is a function eval which
produces the value of an expression r in a environment e:

eval = A(r, e). - I.l
(const?(r) =+ evcon(r), 3 . I.2
var?(r) + e(r), I.3
appl?(r) + (eval(opr(r), e)) (eval(opnd(r),e)), I.4
lambda? (r) -+ evlambda(r, e), | 1.5
cond?(r) + if eval(prem(r), e) ' . 1.6

then eval(conc(r), e) alse eval(altr(r),e), I.7
letrec?(r) + letrec e' = ' I.8 .
Ax, if x = dvar(r) then evlambda (dexp(r), e') else e(x) . I.9
in eval(body(r), e')) I.10
evlambda = A (%, e). la. eval(body (L), ext(fp(k), a, e)) I.11l
ext = A(z, a, e). Ax. if x = 2 then a elsc e(x) I.12

The cubeidiarvy Functrion ecvliaembda nrodiucees Fhe value of a lambda exnression L in

I
A meta-circular interpreter

Types: Syntax

EXP = CONST uv VAR u APPL
LAMBDA v COND u LETREC
APPL = {opr: EXP, oond: EXP]
LAMBDA = [fp: VAR, body: EXP}
COND = [prem: EXP, conc: EXP,
altr: EXP]
LETREC = [dvar: VAR, dexp: LAMBDA,
body: EXP]

Types: Semantics

+ VAL = INTEGER v BOOLEAN uv FUNVAL
FUNVAL = VAL - VAL

A META-CIRCULAR INTERPRETER

Qur first interpreter is a straightforward transcription of the informal language

definition we have already given. 1Its central component is a function eval which
produces the value of an expression r in a environment e:

eval = A(r, e). : I.l
(const?(r) =+ evcon(r), 3 I.2
var?(r) + e(r), | I.3
appl?(r) ~ (eval(opr(r), e)) (eval(opnd(r) ,e)), I.4
lambda? (r) -+ evlambda(r, e), | 1.5
cond?(r) + if eval(prem(r), e) ; . I.6

then eval (conc(r), e) alse eval(altr(r),e), I.7
letrec?(r) + letrec e' = ‘ I.8

Ax, if x = dvar(r) then evlambda(dexp(r), e') clse e(x) . 1.9

in eval(body(r), e')) I.10

evlambda = A(&, e). la. eval(body(L), ext(fp(L), a, e)) I.1ll

ext = A(z, a, e). Ax. if x = 2 then a elsc e(x) I.12

interpret =)r. eval(r, initenv) 1.13

initenv = Ax. (x = "succ" =+ Aa. succ(a), I.14

’

x = "equal" -+ la. Ab. equal(a, b)) : I.15

(1) The meta-circular interpreter does not shed much light on the nature
of higher-order functions. For this purpose, we would prefer an interpreter
of a higher-order defined language which was written in a first-order defining
language.

(2) Changing the order of application used in the defining language induccs
a similar change in the defined language. To sece this, suppose that eval is
applicd to an application expression » (ry) of the defined languauc. Then the
result of eval will be obtained by evaluating the application expression
(line I.4)

(eval(ro, e))(eval(rl, e))

in the defining language. 1If call-by-value is used in the defining language, then
eval(r,, e) will be evaluated before the functional valuc of eval(r,, e) is
applieé. But evaluating eval(r,, e) interprets the ecvaluation of ry, and applying
the value of eval(r,, e) interprets the. application of the value of rp. Thus in
terms of the dcfincg language, r; will be evaluated before the value of rn is
applied, i.e., call-by-value will be used in the defined language.

(3) Supposé we wish to extend the defined language by introducing the
imperative features of labels and jumps (including jumps out of hlocks). As far
as is known, it is impossible to extend the meta-circular definition straight-

forwardly to accommodate these features (without introducing similar features
into the defining language).

In the next section we will develop transformations of the meta-circular interpreter
which will meet the first two of these objections. Then we will find that the
transformation designed to meet the second objection also mects the third.

I1
Defunctionalisation

Location Global Variables New Record Eguation

I.1l1 L e CLOSR = [lam: LAMBDA, en: ENV]
I.14 none SC = [)

I.15 (outer) none EQl = [)

I.15 (inner) a EQ2 = [argl: VAL]

Our remaining task is to replace each of the four lambda expressions by appropriate
record-creation operations, and to insert expressions in the branches of apply which
will interpret the corresponding records. The lambda expression in line I.ll must be
replaced by an expression which creates a CLOSR-record containing the value of the
global variables & and e:

evlambda = A(L, e). mk-closr(i, e) I.11'

Now apply(f, a) must produce the result of applying the function represented by f to the
argument a. When f is a CLOSR-record, this result may be obtained by evaluating the
body of the eliminated lambda-expression:

eval (body (L), ext(fp(R), a, e))

in an appropriate environment. This environment must bind the formal parameter of the
lambda expression to the value of a and must bind the global variables of the lambda
expression to the same value as the environment in which the CLOSR-record was created.
Since the latter values are stored in the fields of f, we have:

apply = A(f, a).
(closr?(f) - let a = a and L = lam(f) and e = en(f)
)i_ﬂ eval(baa_y'(l)p exmp(l)o a, e)),

FUNVAL = CLOSR v SC v CQl1 v EQ2

CLOSR = [lam: LAMBDA, en: ENV]

SC = [}

EQL = []

EQ2 = [argl: VAL]

'ENV = INIT u SIMP u REC

INIT = []

SIMP = [bvar: VAR, bval: VAL, old: ENV]
REC = [letx: LETREC, old: ENV]

interpret = Ar, eval(r, mk=init{())

eval = A(x, e).

(const?(r) - evcon(r),

var?(r) - get(e, r),

appl? (r) » apply(eval(opr(r), e), eval (opnd(r), e)),
lambda?(r) -+ mk-closr(r, e),

cond?(r) = if eval(prem(r), e)

then eval (conc(r), e) else eval(altr(r), e),

letrec?(r) = eval(body(r), mk-rec(r, e)))

apply = x(f, a).

get

(closr?(f) =+

eval (body (lam(£f)), mk-simp(fp(lam(f)), a, en(ﬁ))),.
sc?(f) = succ(a),
cql? (£) - mk-cq2(a),
eq2?(f) - equal(argl(f), a))
= Ale, x).
(init?(e) » (x = "succ" =+ mk-sc(), x = "equal” » mk-eql()),
simp?(e) + if x = bvar(e) then bval(e) else get(old(e), x),
rec?(e) +~ if x = dvar(letx(e))

then mk-closr(dexp(letx(e)), e) else get(old(e), x))

I1.1
I1.2
II.3
IT.4
I1.5
I1.6
1.7
II.8
I11.9
IX1.10
II.11
I1.12
I1.13
II.14
II.15
I1.16
1I1.17
I1.18
II.19
II.20

eval [e;a] = |

atom [ei — assoe [e; al;

atom [ear [e]] — [
eq [ear [e]; QUOTE] — cadr {ef;

eq [ear [e]; ATOM] - atom [eval [eadr [e]; afi;

oq [ear [el; BQ] — [eval {eadr [e]; al = eval [caddr fe]; all;

2

eqf [ear le]; CONDI - eveon jedr [e]: al;

eq [ear [e]; CAR] — car [eval [eadr [e]; a]];

eq [car {e]; CDR] — «dr [eval [cadr [e]; all;

eq [ear [e]; CONSI — cons [eval [cadr [e]; a]; eval [eaddr le];
all; T -— eval icons fassoc [car [e]; al;

evlis [edr [e]; a]]; all;

eq [caar [e]; LABEL] — eval [cons [caddar [e]; edr [el];

cons [list [eadar [e]; car [ef; a]l;
eq |eaar {e]; LAMBDA] — eval [caddar fe];
append [pair [cadar [e]; evlis [edr [e]; al; a]l|

1
Continuations

Next, suppose that we can divide the functions which ma
L : . . y be applied by our program
into 8erious functxong, whose application may sometimes run on forgver, aid trisiag
functxons, whose application will always terminate.

As can be scen with a little thought, the condition implics
that whenever some function calls a serious function, the calling function must return
the same result as the called function, without performing any further computation. DBut
any function which calls a scrious function must be serious itself. Thus by induction,
as soon as any serious function returns a result, every function must immediately return
the same result, which must therefore be the final result of the entire proaram.

Nevertheless, there is a method for transforming an arbitrary Program iNto one wiiicn
meets our apparently restrictive condition.

The underlying idea has appeared in a
variety of contexts,(19,20,21) but its application to definitional interoreters is due
to Horris and Wadsworth.(15) pBasically, one replaces cach serious function fy14
(except the main progrom) by a new seriou

s function fye, which accepts an additional
argument called a continuation. The continuation will be a function itself, and Inew
is evpected to compute the same result as fold, apply the continuation to this result,
and then return the result of the continuation, i.e.,

fnew(XI' “ s xn' C) = c(fold(Xl' see Xn)) .

L Uy | BN T e

CONT = FIN u EVOPN u APFUN v BRANCH

FIN = [])

EVOPN = [ap: APPL, en: ENV, next: CONT)

APFUN = [fun: VAL, next: CONT]

BRANCH = [cn: COND, en: ENV, next: CONT]
FUNVAL, ENV, etc. = same as in Interpreter II.

interpret = Ar. eval(r, mk=init(), mk=£fin())
eval = A(r, e, C).
(const?(r) =+ cont(c, evcon(r)),
var? (r) = contl(c, get(e, r)),
appl?(r) - eval(opr(r), e, mk-evopn(r, e, c)),
lambda?(r) - cont(c, mk-closr(r, e)),
cond?(r) = eval(prem(r), e, mk-branch(r, e, c)),
letrec?(r) -+ eval(body(r), mk:rec(r. e), ¢))
apply = A(f, a, c).
(closr?(f) =
eval (body (lam(£)), mk-simp(fp(lam(£f)), a, en(£f)), c),
sc?(f) - cont(c, succ(a)),
eql?(f) + cont(c, mk-eg2(a)),
eq2?(£f) = cont(c, equal(argl(f), a)))
cont = A(c, a).

III

(fin? (c) =+ a,

evopn?(c) » let f = a and r = ap(¢c) and e = en(c) ind ¢ = next(c)
in eval{opnd(r), e, wh-apfun(f, c)),

apfun?(c) = let f = fun(c) and ¢ = next(c) in apply(f, a, c),

branch?(¢c) = let b = a and r = cn(c) and e = en(c) and ¢ = next(c)

in if b then eval(conc(x), e, c) else eval(altr(r), e, c))
get = same as in Interpreter 11,

IV
Continuations
with higher-order functions
(Continuation-Passing Style)

VAL = INTEGER v BOOLEAN v FUNVAL
FUNVAL = VAL, CONT = VAL

ENV = VAR + VAL

CONT = VAL =+ VAL

interpret = Ar. eval(r, initenv, la. a)
aval = A\ (r, e, c). |
(const? (r) + c(evcon(r)),
var?(r) = c(e(x)),
appl?(r) + eval(opr(r), ¢, Af. eval(opnd(r), e,)a. f(a, ¢))),
lambda?(r) + c(evliambda(r, c)),
cond?(r) =+ eval(prem(r), e,
b, 1f b then eval(conc(r), e, c) elsec eval(altr(z), e, c)),
letrec?(r) + letrec e' =

v

Ax, 1f x = cdvar(r) then evlambda(dexp(r), e') else e(x)
in eval(body(r), e', ¢)) ,
eviambda = A(%, e). A(a, c),eval (body(2), ext(fp(), a, e), c)
ext = A(z, a, e). Ax. 1f x = z then a else e(x)
initenv = Ax. (x = "succ" +)(a, c). c(succ(a)),
x = "equal" -+ i(a,). c(A(b, ¢'). ¢'(equal(a, b))))

v

Escape expressions
(Scheme’s call/cc)

1f (in the defined language) x is a variable and » is an expression, tnen
escape x in r

is an cccape expreesion, whose escape variable is z &nd whose body is r. The evaluation
of an escapc cxpression in an environment e proceeds as follows:
(1) The body r is evaluated in the environment which is the extension
of e which binds z to a function called the escape function,
(2) If the escape function is never applied during the evaluation of r,
then the value of r hccomes the value of the escape exvression.
(3) If the escape function is applied to an argqument a, then the
evaluation of the body r is ahorted, and a immediately becomes the value
of the escape expression,
Essentially, an escape function is a kind of label, and its aoplication is a kind of
jump. The greater gencrality lies in the ability to pass arguments while jumping.
(Landin's J-operator can be defined in terms of the escapec expression by
regarding let g = J Az, r; in rg as an abbreviation for escave h tn let g = Ax. hir,;)
in rp, where h is a new variable not occurring in ry or r;. Converscly, one can
rcgard eeccape g in r as an abbreviation for let g = J Az. = in »r,)

- am - ,_L—_——-L—MA

L b mm 1 A M MmRTRA AU EAD D Y TS LI hprin hv

-'v—?— —

Since evel is a serious function, its result, which is obtained by applying
the continuation ¢ to the value of the escape expression, must be the final result
of the entire program being interpreted. This means that ¢ itself must be a function
which will accept the value of the escape expression and carry out the interpretation
of the remainder of the program. But the member nf FUNVIL representing the escape
function is also serious, and must therefore also produce the final result of the
entire program. Thus to abort the evaluation of the body and treat the arcument a
as the value of the escape expression, it is only necessary for the escape function to
ignore its own continuation e', and to apply the higher-level continuation e to a. Thus
we have:

eval = A(r, e, c). (...
escp? (r) = eval(body(r), ext(escv(r), A(a, c¢'). c(a), e), c))

VI
Assignment

interpret

Ar. eval(r, initenv, initmem, M(m, a). a)
eval =){(r, e, m, c).
(const?(r) + c(m, evcon(r)),
var?(r) » c(m, e(x)),
appl?(r) = eval (opr(r), e, m,
A(m*, £). eval(opnd(r), e, m', A(m", a).

f(t‘l, m"l c)))l
lambda?(r) - c(m, evliambda(r, e)),

cond?(r) = eval(prem(r), e, m, A(m', b). if b '

then eval(conc(r), e, m', ¢) eclse eval(altr(r), e, m', ¢)),
letrec?(r) = letrec e' =

Ax. if x = dvar(r) then evlambda (dexp(r), e') else e(x)
in eval(body(r), e', m, c),
escp?(r) + eval(body(r),
ext(escv(r), A(a, m', c¢'). c(m', a), e), m, c))
cvlambda = A(L, e). A(a, m, c). eval(body(2), ext(fp(R), a, e), m, c)
ext = A(z, a, e)., Ax. if x = z then a clse e(x)
initenv = Ax. (x = "succ" = A(a, m, ¢c). c(m, succ(a)),

x = "equal" -+ A(a, m, c). c(m, A(b, m"', c').c'(m', equal(a, b))))

