ACM SIGPLAN Notices

Influential Papers

Editor: Fermin Reig, Univ. of Nottingham and Michael Franz, Univ. of California, Irvine; f.reig@cs.nott.ac.uk, franz@uci.edu

Reminiscences on Influential Papers

This new column is about the dissemination of scien-
tific discovery and how this influences our research, often
in unpredictable ways.

We have asked a few well-known and respected peo-
ple in the programming language community to identify
apaper that had a major influence on their research, and to
describe what they liked about that paper and the impact
it had on them. Their responses make very interesting
reading.

This SIGPLAN Notices column follows the format of
a very popular column in ACM’s SIGMOD Record. We
are grateful to the editors of that column for letting us
borrow their idea and title.

Philip Wadler, University of
wadler@inf.ed.ac.uk.

Edinburgh,

[John C. Reynolds. Definitional interpreters for higher-
order programming languages. In Proceedings of the
ACM National Conference, pages 717-740, August
1972.]

Editor’s note: This paper was reprinted in Higher-
Order and Symbolic Computation, 11(4):363-397, 1998.
See also ‘Definitional Interpreters Revisited’, in the same
issue (pages 355-361).

Certain papers change your life. McCarthy’s ‘Recur-
sive Functions of Symbolic Expressions and their Com-
putation by Machine (Part I)’ (1960) changed mine,
and so did Landin’s ‘The Next 700 Programming Lan-
guages’ (1966). And I remember the moment, halfway
through my graduate career, when Guy Steele handed me
Reynolds’s ‘Definitional Interpreters for Higher-Order
Programming Languages’ (1972).

It is now common to explicate the structure of a pro-
gramming language by presenting an interpreter for that
language. If the language interpreted is the same as the
language doing the interpreting, the interpreter is called
meta-circular. Interpreters may be written at differing
levels of detail, to explicate different implementation
strategies. For instance, the interpreter may be written

in a continuation-passing style, or some of the higher-
order functions may be represented explicitly using data-
structures, via defunctionalisation. More elaborate inter-
preters may be derived from simpler versions, thus pro-
viding a methodology for discovering an implementation
strategy and showing it correct. Each of these techniques
has become a mainstay of the study of programming lan-
guages, and all of them were introduced in this single pa-
per by Reynolds.

The paper had a profound effect on me because it
placed an elegant, logical structure on so much of what
had come before. McCarthy’s interpreter for Lisp in Lisp
and Landin’s SECD machine were well and good, but
they contained “cogs and wheels” whose origin appeared
arbitrary. I was particularly concerned that Landin’s J
operator in Iswim (a forerunner of call/cc in Scheme)
seemed to depend crucially on what I thought were ar-
bitrary aspects of the SECD machine. Reynolds’s start-
ing point was the simplest possible interpreter for lambda
calculus in lambda calculus, with no room for any ar-
bitrary choice, not even that of evaluation order. From
this he derived, by simple and obviously correct steps of
program transformation, interpreters that were essentially
equivalent to McCarthy’s and Landin’s. In the process,
among other things, he gave an elegant resolution of the
“FUNARG” question of Lisp, and gave the first explana-
tion of the J operator that I felt made sense. His pene-
trating and systematic development stuck with me as an
epitome to aim for in all my work: to use theory to clarify
practice, and practice to inspire theory.

Krzysztof R. Apt, CWI (currently at the National Uni-
versity of Singapore), apt@cwi.nl.

[O.-J. Dahl, E.-W. Dijkstra and C.A.R. Hoare. Structured
Programming. Academic Press, 1972.]

I came to computer science from mathematical logic.
In 1975 I met Edsger Dijkstra when I knew nothing about
computer science. He recommended me to study the
book “Structured Programming” by Dahl, Dijkstra, and
Hoare that contained three articles written by the authors.
Studying them allowed me to appreciate the beauty of the

Vol. 38(12) Dec 2003

Influential Papers

programs and of the programming languages and raised
my interest in program verification. The article of Dijk-
stra explained how programs can be systematically devel-
oped. The second article, by Hoare, provided the theoret-
ical background for the type system of Pascal. The third
article, by Dahl and Hoare discussed the benefits of the
class concept as realized in the Simula language. After
31 years, the book is still on sale, see amazon . com, and
still worthwhile to read.

Each of the authors received eventually the ACM Tur-
ing Award.

Matthias Felleisen, Northeastern University.

[Gordon Plotkin. Call-by-name, call-by-value, and the A-
calculus. Theoretical Computer Science, 1(2):125-159,
1975.]

On the very last day of my first graduate course (De-
cember 1984), my PhD advisor (Daniel Friedman, Indi-
ana) handed out Plotkin’s paper and said something like
“I think this is interesting but I haven’t really absorbed
it yet.” The next day I flew back to Germany for Christ-
mas and read the paper on the airplane. Needless to say, I
didn’t understand a word beyond the introduction and put
it away without a second thought. Six months later, Dan
and I were trying to figure out how to create a lambda
calculus with a Scheme-inspired call/cc operator. Even-
tually, I recognized the connection between our idea and
the introduction to Plotkin’s paper. So, I spent the next
two months on the paper, using Barendregt’s book as an
auxiliary reading.

Plotkin’s paper consists of two parts. The first part
explains five aspects of an operational model of a pro-
gramming language: the abstract (virtual) machine; the
calculus (a “proof™ system); the reduction system (an-
other “proof” system); the standard reduction relation
(yet another one); and its observational equivalence rela-
tion (“truth”). It does so with two small examples: a func-
tional language based on the call-by-name lambda calcu-
lus and another one based on the call-by-value calculus.
By designing a calculus for a functional call-by-value lan-
guage, Plotkin clarifies that the conventional lambda call-
by-name calculus does not play a canonical role in pro-
gramming languages. Instead, when we wish to study a
programming language, we should investigate its opera-
tional equivalence and design sound calculi and reduction
systems.

The second part of the paper is about the relationship
between the by-name and by-value languages. Plotkin
proves that the continuation-passing transformation maps

ACM SIGPLAN Notices

the call-by-value calculus in a sound but incomplete man-
ner to the call-by-name calculus; he also poses a number
of research questions about this relationships.

As I studied the paper, I began to see the first part
of the paper as not just a result but an implicit research
program. Starting with my dissertation research, I spent
many years working out a new style of semantics for
programming languages (reductions based on evaluation
contexts), showing its applicability to a reasonably broad
spectrum of languages, and validating the usefulness
of this style for many situations (with Friedman, Hieb,
Wright). I also worked on some of the open questions
in the second part of the paper (with Flanagan, Sabry,
Sitaram), though by no means all of them. Because of my
own personal success with Plotkin’s paper, I have recom-
mended it to many people over the past twenty years, and
I am happy to see that it has found a large audience. The
paper has also set my standards for research papers—it is
not just about what a paper says but what it inspires. By
those standards, Plotkin has done extremely well here.

10 Vol. 38(12) Dec 2003

