' . Jaaumuons! fiepreters for Higher-Oider Programnung Languages

-71L-lh-1q

N 2hn C Reveouls, Syrecuse University

g re 0 /Dzﬁmwu oA |

&

Higher-order programming languages (i.e.,
languages in which procedures or labels
can oczur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GEDANKENl, and recent
unpublished work by L. Morris and

C. wadsworth. Such definitions can
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by--nane) in the defined language
depends upon the order of application

in the defining language. As an example,
we consider the definition of a simple
applicative programming language by
means of an intervreter written in

a similar language. Definitions in

each of the above clascifications are
derived ircm one another by informal

but constructive methods. The treat-
ment of imperative features such as

jumps and assignment is also discussed.

be

Key Words ancd Pnrases: programming
language, lauguage definition,
interpreter, lambda calculus,
applicative language, higher-order

INTRODUCTJTON

An important and frequently uscd
method of defining a programming language
is to give an intcrpreter for the language
vhich is written in a second, hopefully
better undecrstood language. (We will
call thesc two languages the defined
and defining languages, respectively.)

In this paper, we will describhe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification”
is original, the paper is basically an
attempt to review and systematize
previous work in the field, and we have
tried to make the presentation accessible
to readers who are unfamiliar with this
previous work. .

(Of course, interpretation can
provide an implementation as well as a
definition, but therc are large practical
differences between these usages.
Definitional interpreters often achieve
clarity by sacrificing all scmblence of
efficiency.)

We begin by noting some salient
characteristics of programming languages
themselves., The fecatures of these
languages can be divided uscfully into
two categories: applicative features,
such as expression evaluation and the

function, closure, order of appli- definition and application of functions,
cation, continuation, LISP, and imperative features, such as
GEDANKEN, PAL, SECD machine, statement sequencing, labels, jumps,
J-operator, reference, acsignment, and procedural side-effects.

CR Categories: 4,20, 5.24, 4.13

*Work supported by Rome Air Force Dev-
elopment Center Contract No.
30602-72-C-0281 and ARPA Contract

2 No.
DAHC04-72-C-0003.

Lot 25 Nat..Cafts) T .

717

Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imperative, there are few "higher-level”
languages in this category. (IPL/V
might be an example.)' On the other hand,
there is at least one well-known example
of a purely applicative language: LISP.
(i.e., the languE?e defined in McCarthy's
original paper.( Most LISP implemen-~
tations provide an extended language
including imperative features.) There
are also several more recent, rather
theoretical languages (xswim(2), par(3)
and GEDANKEN(4)) which have been designed

4T LTINS LN s B 81 e e e S S Em—— e ——— s =t =



PUECFYR T SRR

L e a5 b A e ddaeans o Sl B il N s

D QT I P ST I7,. 7. C ST P LY

by starting with an apnlicative languaqge
and adding imperative eoxtensions.

Purcly applicative languages are
often said to be bascd on a logical
system called the lambda calculus (5, 6),
or even to be "syntactically sugared”
versions of the lambda calculus. 1In
particular, Landin{7) has shown that
such languages can be reduced to the
lambda calculus by treating ecach type of
cxpression as an abbreviation for some
expression of the lambda calculus. In-
deed, this kind of reducibility could
be taken as a precise definition of the
notion of "purely applicative." However,
as we will see, although an unsugared
applicative language is syntactically

equivalent to the lambda calculus, there
is a subtle semantic difference.
Essentially, the semantics of the "real"

lambcda calculus implies a different
"order of application” than most

applicative programming languages.
’

A sccond useful characterization is
the notion of a higher-order programming
language. 1In analogy with mathematical
logic, we will say that a programming
language is higner-oraer if procedures
or labels can occur as data, i.e., if
these entities can be used as arguments
to procedurecs, results of functions, or
values of assignable variables. A
language which is not higher-order will
be called first-order.

In ALGOL and its various descendents,
procedures and labels can be used as
procedure arguments, and in more recent
languages such as PL/I and ALGOL 68,
they may also be used as function
results and assignable values, subject
to certain "scope" restrictions (which
are imposed to prescrve a stack dis-
cipline for the storage allocation of
the representations of functions and
labels). However, the unrestricted
use of procedures and labels as data
is permitted in only a handful of
languages which sacrifice efficiency
for generality: LISP (in most of its
interpretive implementations), TISWIM,
PAL, GEDANKFEN, and (roughly) POP-2.

With regard to current techniques
of language definition, there is a
substantial Jdisparity between first-
order and higher-order languaages.

As a result of work by Floyd(B),
Manna(9), noare(10), and others,

most aspects of first-order languages
can be defined logically, i.e., cne

can give an ecffective method for
transforming a program in the de-

fined language into a logical

statement of the relation between its
inputs and outputs. However, it has not
vet been possible to apply this approach
to higher-order languages. (Although
recent work by Scott{ll) and Milner{24)
represents a major step in this
direction.)

Almost invariably, higher-order
languages have been definzd by the

;)

approach discussed in this paper, i.e.,

.by giving interprecters which are them-

selves written in a programming language.
(An apparent cxception is ths definition
of ALGOL given by Burstall(14), but this
can be characterized as a logical
definition of a first-order interpreter
which interprets a higher-order
language.) Moreover, even when the
defined language contains imperative
features, the defining language is
usually purely applicative. (Probably
because applicative languages are well
suited for computations with symbolic
expressions.) Examvles include McCarthy's
definition of LISP(l), Landin's SECD
machine(7), the Vienna definition of
PL/I(13), Reynolds' definitions of
GEDANKEN (14), and recent unpublished
work by L. Morris(15) and C. wWadsworth.

(There are a few instances of
definitional interpreters which fall
outside the conceptual framcwork de-
veloped in this paper. A broader
review of the field is-given by
deBakker, (28))

These examples exhibit considerable
variety, ranging from very concise and
abstract interpreters to much more
elaborate and machine-like ones. To
achieve a more precise classification,
we will introduce two criteria. Tirst,
we ask whether the defining language
is higher-order, or more precisecly,
whether any of the functions which
comprise the interpreter either accept
or produce values which are themsclves
functions,

The second criteria involves the
notion of order of application. 1In
designing any language which allows
the use of procedures or functions, one
must choose between two orders of
application which are called (following
ALGOL terminology) call-by-value and
call-by-name. Lven when the language
is purely applicative, this choice will
affect the meaning of some, but not all,
programs which can be written in the
language. Remembering that an inter-
preter is a specific program, we obtain
our second criteria: Does the meaning
of the interprecter depend upon the
order of application chosen for the
defining language?

These two criteria establish four
possible classes of interpreters, each
of which contains one or more of the
examples cited ecarlier:

o ” dobal i



. Order-of Use of higher-order functinns:

application

dependence yes no
yes direct interpreter McCarthy's
for GEDANKIEN definition of LISP
no Morris-Wadsworth SECD machine
method Vienna definition

The main goal of this paper is to
illustrate and rezlate thesc classes of
definitional interpreters. In the next
section we will introduce a simple
applicative language, which we will use
as the defining language and also, with
several restrictions, as the defined
language. Then we will present a simple
interpreter which uses higher-order
functions and is order-of-application
dependent, and we will transform this
interpreter into examples of the three
remaining classes. Finally, we will
consider the problem of adding imperative
featurcs to the defined language (while
keeping the defining language purely
applicative).

A SIMPLE APPLICATIVE LANGUAGE

In an applicative language, the
meaningful phrases of a program are
called expressions, the process of
exccuting or interprcting these ex-
pressions is called evaluation, and the
result of evaluating an expression is
called a value. However, as is evident
from a simple arithmetic expression
such as r + y, different evaluations of
the same expression can procduce dif-
ferent values, so that the process of
evaluation must depend upon something
more than just the expression being
evaluated. It is evident that this
"something more" must specify a value
for every variable which might occur
in the expression (more precisely,
occur free). We will call such a
specification an envirgnment, and
say that it binds variables to
values.,

It is also evident that the
evalvation process may involve the
creation of new environments from old
ones. Suppose X7, ... , I arc
variables, v3, ... , v, are values,
and e and e' are environments. If
e' specifies the value v; for each
z;, and behaves the same way as e for
all other variables, then we will say
that e¢' is the cxtension of e which
binds the x;'s to the v;'s.

The simplest expressions in our
applicative language are constants and
varicbles. The evaluation of a constant
always gives the same value, regardless
of the environment. We will not specify
the set of constants precisely, but will
assume that it contains the integers and
the Boolecan constants true and false.
The evaluation of a variable simply

719

i) v sceiin 4 vy Lo YNNIV s o o o = e

produces the value which is bound to that
variable by the environment. In the
programs in this paper we will usc
alphanuneric variables, with occasional
superscripts and subscripts.

If our language is going to involve
functions, then we must have a form of
expression whose cvaluation will cause
the application of function to its
arguments. If rgp, r'jy «.s 4 I'y are
expressions, then ry(r;, ... , rn) is an
application erprersion, whose oberator
is rp and whose cperands are T34 eve 4 T
The evaluation of an application ex-
pression in an cnvironment proceeds as
follows:

(1) The subexpressions

*or T3+ os. ., 7, are evaluated

in the same environment to obtain

values f, az, ... , a,.

(2) If f is not a function
of n arguments, then an error
stop occurs.

(3) Othecrwise, the function

S is applied to the arguments

Q34 «oo 4 @y, and if this

application produces a result, then

the result is the value of the
application expression.

There are several assumptions hiding
behind this description which need to be
made explicit: .

" (1) A "function of =

arguments” is a kind of value which

can be subjected to the process of

being "applied" to a sequence of n

values called "arguments",

(2) For some functions and
arguments, thc process of application
may never produce a result, either
because the process does not
terminate (i.e., it runs on for-
ever), or because it causes an
error stop. Similarly, for some
expressions and environments, the
process of evaluation may never
produce a value.

(3) In a purely applicative
language, the application of the
same function (Lo the same scquence
of arguments will always have the
same effect, i.e., both the result
which is produced, and the prior
question of whether any result is
produced, depcnd only upon the
function and its arguments.
Similarly, the evaluation of the
same cxprescion in the same
environment will always have the
same effect.

L e I T . s e ke

LA p s m = 4 . cemmme eer e————



(4) Duvring the evaluation of an
application expression, the applica-
tion vrocess does not begin until
after the operator and all of its
operands have been evalnated, "This
is the eall-by-vaiue order of appli-
cation mentioned in the introduction.
In the alternative order of applica-
tion, known as call-lLy-name, the
application process would begin as
soon as the operator had been eval-
uated, and each operand would only
be evaluated when (and if) the
function being applied actually
depended upon its value. This dis-
tinction will be clarified helow.

(5) Although we have specified
that all of the subcxpressions

0+ .-+ 1 Iy are to be cvaluated

r
before the application process begins,

we have not spacified the relative
order in which these subcxpressions
are to be evaluated. In a purely
applicative language, this choice
has no effect. (A slight exception
occurs if the evaluation of one

' subexpression never terminates while
the evaluation of another gives an
error stop.) llowever, the choice
will become significant when we
start adding imperative features to
the defined language. 1In anticipa-
tion of this extension, we will
assume that the subexpressions are
cvaluated successively from left to
right.

Next, we must have a form of ex-
pression whose cvaluation will produce
a function. If z3, ... , Xn are:
variables and r is an cxpression, then
Ary, oo s z,).r is a laembda
expression, whose formal parameters
are 3, ... , %, and whose body is r.
(The parentheses may be omitted if
there is only one formal paramecter.)
The evaluation of a lambda expression
with n formal parameters always
terminates and always produces a
function of n arguments. To describe
this function, we must specify what
will happen when it is applied to its
arguments.

Suppose that f is the function
obtained by evaluating Aflzjy, ... , z,).r
in an environment e. Then the appli-
cation of f to the arguments
Gy, «ox 5 Gy will cause the evaluation
of the body r in the environment which
is the extcnsion of e which binds ecach
r: to the corresponding a;. If this
evaluation produces a value, then the
value becomes the result of the
application of f.

The key pnint is that the environment

in which the body is evaluated during
application is an extension of the
carlier environment in which the lambda
expression was cvaluated (rather than
the more recent environment in which the
application takes place). As a con-

global variables (i.e., variables which
arc not formal parameters), its cvalua-
tion in diffcrent environments can

produce different functions. For example,
the lambda expression lz. x+y can produce
an incrementing function, an identity
function (for the integers), or a
decrementing function, when evaluated in
environments which bind y to the values

1, 0, or -1 respectively.

Nowadays, it is gencrally acccpted
that this bechavior of lambda expressions
and environments is a basic characteris-
tic of a well-designed higher-order
language. Its importance is that it
permits functional data to depend upon
the partial results of a program.

Having introduced application and
lambda expressions, we may now clarify
the distinction between call-by-value
and call-by-name. Consider the
evaluation of an application expression
rolrg, «oe r,) in an environment eg,,
and suppose that the value of the operator
rp is a function f which was originally
created by evaluating the lambda express-
ion Az, ... , zy). ry in an cnvironment
ey. (Possibly this lambda expressionis ryg
itself, but more generally rp may be a
non-lambda expression whose functional
value was created earlier in the com-
putation.) When call-by-value is used,
the following steps will occur during the
evaluation of the application expression:

(1) rp is evaluated in the
environment e, to obtain the
function value f.

(2) r9, ... , rp are evaluated
in the environment e, to obtain
arguments ajz, ... o Qpe

(3) r) is evaluated in the
extension of ey which hinds each .
z; to the corresponding a;, to
obtain the value of the application
expression.

When call-by-name is used, the same
expressions arc evaluated in the same
environments. But the cvaluations of the
operands rj, ... , ry will occur at a
later time and may occur a different
number of times. Specifically, instcad
of being evaluated before step (3), each
operand r;-is repeatedly evaluated during
step (3), each time that its value ag
is actually used (as a function to be
applied, a Boolean value determining a
branch, or an argument of a primitive
operation).

At first sight, since the evaluation
of the same ezpression in the same
environment always produces the same
cffect, it would apnear that the result
of a program in a purely applicative
language should be unaffected by
changing the ordevr of application (al-
though it is evident that the repeated
evaluation of operands occurring with
call-by-name can be grossly inzfficient).
But this overluoks the possibility that

L1} " " o " S
scquence, if a lambda expression contains repeatedly” may mean "never®. During

720

e cem empem s sopeeits @ N e eh = R L T e I R EE b it Srundil ity

ne oy g -y csw | e epge Y Sy g TR s 4 o e



step (3) of the evaluation of

rolr7, oo r.ty it may happen that
certain arguments a; are never used, SO
that the correcsponding operands r; will
never be evaluated under call-by-name.
Now supposc that the evaluation of one
of these r; never terminates (or gives
an error «top). Then the evaluation of
the original application expression
will terminate under call-by-name but
not call-by-value. In brief, changing
the order of application can affect the
value of an application expression when
the function being applied is inde-
pendent of some of its arguments and the
corresponding operands arc non-
terminating.

(In ALGOL the distinction between
call-by-value and call-by-name also
involves a change in "“coercion conven-
tions". Illowever, this change is
irrelevant in the absence of assignment.)

In the defined language, we will
only consider the use of call-by-value,
but in ‘the defining language we will

" consider both orders of application.
In particular, we will inquire whether
the above-described situation occurs
in our interprecters, so that changing
the order of application in the defining
language can affect the meaning of the
defincd language.

vWie now introduce some additional
kinds of expressions. If ryp, re and r,
are expressions, then if r, then rg
else r, is a simple conditional .
expression, whose premiss is rp, whose
conclusion is r,, and whose alternative
is r,. The eva vation of a conditional
expression in an environment e begins
#ith the evaluation of its premiss r
in the same environment. Then, de-
pending upon whether the value of the
premiss is true or false, the valve of
the conditional expression is obtained
by evaluating either the conclusion
rp, or the alternative rg in the
environment e. Any other value of the
premiss causes an error stop.

It is also convenient to use a
1,ISP-1like notation for "multiple"
conditional expressions. If

Ynge «ee 1 Tpy and rq3, .. 4 Pgy are
egpre551ons, then
(rpl * To1r Tpo * Tegr eee 0 Ton Y rcn)

is a multiple conditional expression,
with the same meaning as the following
sequence of simple conditional ex-
pressions: .

if Tol then r ., else if TH2 then r_, else

we. if r__then r lse ‘error
if ro, n r_, elsc’erro

Next, we introduce a_form of ex-
pression (due to Landin 7))y which is
analogous to the block in ALGOL. If
Ly, ces. 4 Iy are variables, and
Ty, .+. 1 Py and ry, are expressions,
tgen

let Xy =TIy and ... and %x_ = T,

in r, .
n in Iy

is a let czpression, whose aeclarcd

variables are 7, ...  Tn, Whosc
declaring expressions arce Iy, «.e 1 Tno
and whosa body is »;. (We will call

each pair z; = r; a declaration.) The
evaluation of a let expression in an
environment e begins with the evaluation
of its declaring expressions r; in the
same environment. Then the value of the
let expression is obtained by evaluating
its body rp in the environment which is
the extension of e which binds each
declared variable z; to the value of the
corresponding declaring expression r;.
It should be noted that the extended
environment only affects the evaluation
of the body, not the declaring express-
jons. For example, in an environment
which binds = to 4, the value of let
x = z+1 and y = -1 in xxy is 15.” As a
consequence, let expressions cannot be
used (at least directly) to define
recursive functions. One might expect,
for instance, that

let £ = Ax. if x = 0 then 1
else x x f{x-1) in ...

would create an extended environment in
which f was bound to a recursive function
(for computing the factorial). But in
fact, the occurrence of f inside the
declaring expression will not "feel" the
binding of f to the value of the declaring
expression, so that the resulting function
will not call itself recursively.

To overcome this problem, we introduce
a second kind of block-like expression.
1f 7, ... , =y are variables,
23, vo. o iy are lambda expressions, and
ry is an expression, then

letrec Xy = 2, and ... and Xg

1 — —

=2 in r,
. 'n — b
is a recursive let expression, whose
declared variables are X3, ... + In.

whose declaring expressions are

L3, «.. » %,, and whose body is rp. The
value of a recursive let expression in an
environment e is obtained by evaluating
its body in an environment e' which
satisfies the following property: e’

is the extension of e which binds each
declared variable xz; to the function
obtained by evaluating the corresponding !
declaring lambda expression £; in the
environment e'.

There is a circularity in the
property "e' is the ... in the environ-
ment e' " which is characteristic of
recursion, and which prevents this
property from being an explicit de-
finition of e'. To be rigorous, we
would have to show that there actually
exists an environment which satisfies
this property, and also deal with the
possibility that this environment might
not be unigque. The mathematical
technigues neceded to achieve this rigor
are beyond the scope of this paper(16,11),
However, we will eventually derive an
interpreter which defines recursive let
expressions more explicitly.

721 i

Hichadciribe st BT Sc oA

lay PRyt

YT ST Y St ST IR

4



(It is possible to generalize
recursive let expressions by allowing
arbitrary declaring expressions. We
have chosen not to do so, since the
generalization would considerably com-
plicate some of the definitional
interpreters, and is not unique.)

To maintain generality, we have
avoided specifying the set of data which
can occur as the result of expression
evaluation (beyond asserting that this
set should contain functions and the
boolean values true and false). However,
it is evident that our language must
contain basic (i.e., built-in) operations
and tests for manipulating this data.
For example, if integers are to occur as
data, we will need at least an incremen-
ting operation and a test for integer
equality. !lore likely, we will want all
of the usual arithmetic operations and
tests. If some form of structured
data is to be used, we will need
operations for constructing and analyzing
the structures, and tests for classifying
them.

Regardless of the specific nature
of the data, there are three ways to
introduce basic operations and tests
into our applicative language:

(1) We may introduce constants
denoting the basic functions (whose
application will perform the basic
operations and tests).

(2) Ve may introduce predefined
variabies denoting the basic
functions. These variables differ
from constants in that the program-
mer can redefine them with his own
declarations. They are specified
by introducing an initial environ-
ment, to be used for the evaluation
of the entire program, which binds
the predefined variables to their
functional values.

(3) We may introduce special
expressions whose evaluation will
perform the basic operations and
tests. Since this approach is
used in most programming languages
(and in mathematical notation), we
will frequently use the common
forms of arithmetic and boolean
expressions without explanation.

THE DEFINED LANGUAGE

Although our defining language
will use all of the features des- *
cribed in the previous secction, along
with appropriate basic operations and
tests, the defined language will be
considerably more limited, in order
to avoid complications which would be
out of place in an introductory paper.
Specifically:

(1) Functions will be limited
to a single argument. Thus all
applicative expressions will have a
single operand, and all lambda
expression will have a single formal

.

I L T Y P P T T Al )

722

P LI R

parameter.

{2) Only call-by-value will be
used.

(3) Only simple conditional
expressions will be used.

(4) HNonrccursive let expressions
will be excluded.

(5) All recursive let expressions
will contain a single declaration.

(6) Values will be integers,
booleans, and functions. The only
basic operations and tests will be
functions for incrementing integers
and for testing integer equality,
denoted by the predefined variables
suce and equal, respectively.

The reader may accept an assurance
that these limitations will eliminate a
variety of tedious complications without
evading any intellectually significant
problems. Indeed, with slight cxceptions,
the eliminated features can be regarded
as syntactic sugar, i.e., they can be
defined as abbreviations for ex?ressions_
in the restricted language.”r4

ABSTRACT SYNTAX

We now turn our attention to the
defining language. To permit the writing
of interpreters, the values used in the
defining language must include cxpressions
of the defined language. At first sight,
this suggests that we .should use character
strings as values denoting expressions,
but this approach would enmesh us in
guestions of grammar and parsing which
are beyond the scope of this paper. (An .
excellent review of thesec matters is
contained in reference 17.)

Instead, we use the approach of
abgtract s%nta:, originally suggested by
McCarthy (18), In this approach, it is
assumed that programs are "really"
abstract, hierarchically structured data
objects, and that the character strings
that one actually reads into the computer
are simply representations of these
abstract objects (in the same sense that

‘digit strings are representations of

integers). Thus the problems of grammar
and parsing can be set aside as "input
editing". (Of course, this does not
eliminate these problems, but it separates
them clearly from semantic considerations.
See, for example, Wozencraft and
Evans, (25)) ’
We are left with two closely related
problems: low to define sets of abstract
expressions (and other structured data
to be used by the interprcters), and how
to dafine the basic functions for con-
structing, analyzing, and classifying
these objects. Both problems are solved
by introducing three forms of abstract
syntaxr equation. (A morc elaborate
defined language would require a more
complex treatment of abstract syntax, as
given in Reference 13, for example.)
Within these equations, upper case letter
strings denote sets, and lower case letter

o pamas B ee e s

B LT YL N AT Rl T2l Bltid



Strings denote pasic functions.

Let S5, &7, , Sy be upper-case
letter strings and a;, ... , an be lower-
casc letter strings. Then a record
equation of the form

Sp ='[al: Sys +ee + ap: Syl
implies that:
(1) Sp is a set, disjoint from

any other set defined by a record
equation, whose mombers are records
with n fields in which the value

of the ith field belongs to the set
S;. (Mathematically, S, is a dis-
joint set which is isomorphic to
cartesian product §; x x S,.)

(2) Each a; (is a predefined
identifier which) denotes the
selector function which accepts a
member of S, and produces its ith
field value. .

(3) Let sy be the string ob-
tained from S, by lowering the case
of each character. Then s8gp?
denotes the elassifier function
which tests whether its argument be-
long to S, , and mk-sy denotes the
eonstructor function of n arguments
(belonging to the sets S14 oo 4 Sn)
which creates a record in S, from
its field values.

For example, the record equation

APPL = [opr: EXP, opnd: EXP)
implies that an application expression
(i.e., a member of APPL) is a two-field
record whose field values are both ex-
pressions (i.e., member of EXP). It
also implies that opr and opnd are
selector functions which produce the
first and second field values of an ap-
plication expressions, that aeppl? is a
classifier function which tests whether
a value is an application expression,
and that mk-appl is a two-argument
constructor function which constructs
an application expression from its
field values. It is evident that if
r; and r, are expressions,

opr(mk-appl(rl, rp)) = ri
opnd (mk-appl(ry, r)) = r,

and that if appl?(r) is true, then
mk-appl(opr(r), opnd(r)) = r

The remaining forms of abstract
syntax equation are the union equation:

SO = Slu ces uSn

which implies that S5, is the union of
sets 57, ... , §, and the functian.
equation:

S0 = Sl, ces Sn
which implies that 5, is the set of n-
argument functions which accept argu-
ments in S, ... , S, and produce results
in Sp. (More precisely, Sp is the set of
n-argument functions f with the property
that if f is applied to arguments in the
sets 54, ... , Sy, and if f terminates
without an error stop, then the result

+Sr.

723

of f belongs to S,.)

We may now use these forms of
abstract syntax equation to define the
principal set of data uscd by our inter-
preters, i.ec., the set EXP of expressions
of the defincd language:

EXP = CONST uv VAR u APPL
LAMBDA v COND v LETREC
APPL = {opr: EXP, oond: EXP]

LAMBDA = [fp: VAR, body: EXP]
COND = [prem: EXP, conc: EXP,
altr: LEXP)
LETREC = [dvar: VAR, dexp: LAMBDA,
body: EXP])

A cumbersome but fairly accurate trans-
lation into English is that an expression
(member of EXF) is one of the following:

(1) A constant ({(member of CONST),

(2) A variable (mcmber of VAR),

(3) An application expression
(member of APPL), which consists of
an expression called its operator
(selected by the basic function opr)
and an expression called its operand
(selected by opnd),

(4) A lambda expression (member
of LAMBDA), which consists of a
variable called its formal parameter
(sclected by fp) and an expression
called its body (selected by body),

(5) A conditional expression
(member of COWD), which consists of
an expression called its premiss
(selected by prem) and an expression
called its conclusion (sclected by
conc) and an expression called its
alternative (selected by altr),

(6) A recursive let expression
(member of LETREC), whiclhi consists of
a variable called its declared
variable (selected by dvar), a lambda
expression called its declaring
lambda expression (selected by dezp),
and an expression called its body
(selected by body).

We have purposely left the sets
CONST and VAR unspecified. For CONST, we
will only assume that there is a basic
function const? which tests whether its
argument is a constant, and a basic s
function evcon which maps each constant
into the value which it denotes. For
VAR, we will assume that there is a basic
function var? which tests whether its
argument is a variable, that variables
can be tested for equality, and that two
particular variables are denoted by the
quoted strings "succ" and "equal".

We must also define the abstract
syntax of two other data sets which will
be used by our interpreter. The first
is the set VAL of values of the defined
language:

- VAL = INTEGER u BOOLEAN u FUNVAL
FUNVAL = VAL =+ VAL

One must be careful not to confuse values
in the defined and defining languages.
Strictly speaking, VAL is a subset of the

SRETAAAME G M- ottt A LR bl ey

TY TR TSR TR 4y ey



P o mranis s et iera et

values of the defining language whose
menbers repreascnt the values of the de-
fined lanouage. Howaver, since the
variety of values provided in the
defining language is richer than in the
defined language, we have been able to
represent each defined-language value
by the same defining-language value.
our later interpreters this situation
will change, and it will become more .
evident that VAL is a set of value
representations.

Finally, we must definc the set ENV
of cenvironments. Since the purpose of
an environment is to specify the value

In

which is bound to ecach variable, the
simplest appreoach is to assumc that an
environment is a function from variahles
to values, i.e.,

ENV = VAR = VAL,

Within the various interpretors which
we will present, each variable will range
over some set defined by abstract syntax
equations. For clarity, we will use
different variables for different sets,
as summarized in the following table:

Variable Range variable Range

r EXP e e' ENV

X 2z VAR cc' CONT

£ 0 LAMBDA mm' m" MEM

ab VAL rf REF

£ FUNVAL n INTEGER

(The sets CONT, MEM, and REF will be defined later.)
’

A META~CIRCULAR INTERPRETER

our first interpreter is a straightforward
definition we have already given. Its central

transcription of the informal language
component is a function eval which

produces the value of an expression r in a environment e:

eval = A(r, e). I.1l
(const? (r) + evcon(r), " .
var?(r) =+ e(r), .3
appl?(r) ~ (eval (opr(r}, e)) (eval (opnd(r) ,e)), I.4
lambda? (r) ~+ evlambda(r, e), ' 1.5
cond?(r) + if eval (prem(x), e) . 1.6

.EDEE eval (conc{r), e) else eval (altr(r),e), 1.7
letrec?(r) —+ letrec e' = I. '
Ax, if x = dvar(r) then evlambda (dexp(r), e') else e (x) . I.9
in eval (body (r), e')) 1.10
evlambda = A(%, e). Aa. eval(body (%), ext(fp(L), a, e)) I.11
ext = M(z, a, e). Ax. if x = z then a elsc e(x) I.12

- - - - > P = W =

The subsidiary function evlambda produces the value of a lambda expression & in

an environment e. (We have extracted it as
from two places, in lines I.5 and I.9.)

noted that, in the evaluation of a recursive

e' a recursive function.
instead of calling itself,

itself as an argument.)

H owever,

The function eval does not define the meaning of the predefined variables.

this purpose, we introduce the "main" function

program r to be evaluated in an initial environment,

variable into the.corresponding basic function:

interpret = ir. eval(r, initenv)
initenv = Ax. ( x = "succ" - Aa. succ(a),
x = "equal" -+ la. Ab. equal(a, b))

724

ot b o @R 1 £ ASm TEBIAL N P T Attt A M W TITY AR .

Cow o EEREREAReT 2 e

a separate function since it-is called
The subsidiary function ext produces the
extension of an environment e which binds the variable z to the value a.

It should be

let expression (lines I.8 to I1.10), the
circularity in the definition of the cxtended environment e

is handled by making

it is a rather unusual recursive function which,
calls another function evlambda, to which

it provides

For
interpret, which causes a complete
initenv, which maps each predefined

1.13

I.14

I.15

o o MR RN g Al Epe e sy ST



In the last line we have used a trick called Currying (after the logician H. Curry)
to solve the problem of introducing a binary oncration into a language where all
functions must accept a single argument. (The referee comments- that although
"Currying" is tastier, “"Schonfinkeling” might be more accuvate.) In the defined
language, equal is a function which accepts a single argument o and returns another
function, which in turn accepts & single argument b and returns true or false depending

. upon whether a = b. Thus in the defined language, one would write (equallal)(b) instead
3 of equalf(a, b).

(Each of our interpreters will consist of a sequence of function declarations.

We will assume that these are implicitly imbedded in a recursive let expression whose
body is interpret(r), where R is the program to be intervreted.)

We have coined the word "meta-circular" to indicate the basic character of this
interprcter: it defines each feature of the defined language by using the corresponding
feature of the defining language. TFor example, when eval is applied to an application
expression (lambda expression, conditional expression, recursive let expression) of the
defined language, it evaluates an application expression (lambda expression, condifional
expression, recursive let expression) in the defining language. Similarly, the initial
environment defines the basic functions of the defined language in terms of the same
functions in the defining language.

In onc sense, this situation is not undesirable. For the reader who already has a
thorough and correct understanding of the defining languaqe, a meta-circular definition
will provide a concisc and complete description of the defined language. (Of course
this is a rather vacuous accomplishment when the defined language is a subset of the
defining language.) The probiem is that any misunderstandings about the defining
language are likely to be carried over to the defined language intact. TFor example,
if we were to assume that in the defining language, the function suce decreases an
integér by one, or that a conditional expression gives the same result when the.value
of its premiss is non-Boolean as when it is false, the above interpreter would lead
us to the same assumptions about the defined language.

These particular difficulties are easily overcome; we could define functions such as
succ in terms of elementary mathematics, and we could insert explicit tests for
erroneous values. But there are threec objections to meta-circularity which are much
more serious:

(1) 'The meta-circular interpreter does not shed much light on the nature
of higher-order functions. For this purpose, we would prefer an interpreter
of a higher-order defined language which was written in a first-order defining
language.

(2) Changing the order of application used in the defining language induces
a similar change in the defined language. To see this, suppose that eval is
applied to an application expression rp(ry) of the defined languagc. Then the
Mf) result of eval will be obtained by evaluating the application expression
(line I.4)

L

(eval(ro, e))(eval(rl, e))

in the defining language. TIf call-by-value is uSed in the defining language, then
eval(ry, e) will be evaluated before the functional value of eval(ry, e) is
applieé. But evaluating eval(r;, e) interprets the evaluation of ry, and applying
the value of eval(r,, e) interprets the application of the value of rg. Thus in
terms of the defincg language, ry will be evaluated before the value of Iy is
applied, i.e., call-by-value will be used in the defined lJanguage.

On the other hand, if call-by-name is used in the defining language, then
the application of the functional value of eval(rg, e) will begin as soon as
eval(ry, e) has been evaluated, and the operand cval(rl, e) will only be evaluated *
when and if the function being applied depends upon its value. In terms of the
defined language, the application of the value of rg will begin as soon as ry
has been evaluated, and the operand ry will only be evaluated when and if the
function being applied depends upon its value, i.e., call-by-name will be used in
the defined language.

(3) Suppose we wish to extend the defined language by introducing the
imperative features of labels and jumps (including jumps out of hlocks). 2As far
as is known, it is impossible to extend the meta-circular definition straight-
forwardly to accommodate thesc features (without introducing similar features
into the defining language).

In the next section we will develop transformations of the mcta-circular interpreter
which will meet the first two of these objections. Then we will find that the
transformation designed to meet the second objection also mects the third.

It should be emphasized that, although these transformations are motivated by
their application to interpreters, they are actually applicable to any program written
in the defining language, and their validity depends entirely upon the properties of
the defining language.

g) 725

-
\

Pasl-Entond it It Bl Bl o el STA R R L LE IV P E ST

‘mmrr'f__w L aaens 2o ¢ M e an Jemae P Radul el l ol % e Lt 0k Cov Fievenk il & '\l"rrv'v‘ﬁg’\’, o




ELIMINATION OF HIGHER-ORDER FUNCTIONS

our first task is to modify the meta-circular interpreter so that none of the
functions which comprise this interpreter accept arguments or produce results which
are functions. An examination of the abstract syntax shows that this goal will be
met if we can replace the two sets FUNVAL and ENV by sets of values which are not
functions. Specifically, the new members of these sets will be records which
represent functions.

We first consider the set FUNVAL., Since the new members of this set are to be
records rather than functions, we can no longer apply these members directly to
arguments. Instead we will introduce a new function apply which will “interpret" the
new members of FUNVAL. Specifically, if f,,y, is a record in FUNVAL which represents a
function f,14, and if a is any member of VAi, then apply(fpgy, @) will produce the same
result as fpig4fa). Assuming for the moment that we will be able to define apply, we
must replace each application of a member of FUNVAL (to an argument a) by an application
of apply (to the member of FUNVAL and the argument a). In fact, the only such applica-
tion occurs in line I.4, which must become

appl?(r) - apply (eval (opr(r), e), eval(opnd(r), el), I.4' .
To decide upon the form of the new members of FUNVAL, we recall that whenever a

function is obtained by evaluating a lambda expression, the function will be determined
by two items of information: (1) the lambda expression itself, and (2) the values which
were bound to the global variables of the lambda expression at the time of its evalua-
tion. It is evident that these items of information will be sufficient to represent
the function. This suggests that the new set FUNVAL should be a union of disjoint sets
of records, one set for each lambda expression whose value belonged to the old FUNVAL,
and that the fields of each record should contain values of the global variables of
the corresponding lambda expression.

In fact, the meta-circular interpreter contains four lambda expressions (indicated
by solid underlining) which produce members of FUNVAL. The following table gives
their locations and global variables, and the equations defining the new sets of records
which will represent their values. (The connotations of the set and selector names
we have chosen will become apparent when we discuss the role of these entities in the
interpretation of the defined language.)

Location Global Variables New Record Equation

I.11 L e CLOSR = [lam: LAMBDA, en: ENV]
I.14 none sc = []

I.15 (outer) none EQ1

{]
I.15 (inner) a EQ2 [argl: VAL]

Thus the new set FUNVAL will be
FUNVAL = CLOSR v SC v EQl v EQ2
and the overall structure of apply will be:

apply = A(f,a).
(closr? (£) + ...
sc?(f) + ...
eql?(f) » ...
eqg2?(f) + ... )

Our remaining task is to replace each of the four lambda expressions by appropriate
record-creation operations, and to insert expressions in the branches of apply which
will interpret the corresponding records. The lambda expression in line I.ll must be
replaced by an expression which creates a CLOSR-record containing the value of the
global variables % and e:

evlambda = A (%, e). mk-closr(%, e) I.11°

Now apply(f, a) must produce the result of applying the function represented by f to the
argument a. When f is a CLOSR-record, this result may be obtained by evaluating the
body of the eliminated lambda-expression:

eval (body (2), ext(fp(L), a, e))

in an appropriate environment. This environment must bind the formal parameter of the
lambda expression to the value of a and must bind the global variables of the lambda
expression to the same value as the environment in which the CLOSR-record was created.
Since the latter values are stored in the fields of f, we have:

apply = A(f, a).
(closr?(f) =+ let a = a and L = lam(f) and e = en(f)
%E eval (body (2), ext(fp(L), a, e)),

726




2

(In this particular case, but not in general, the declaration a = a is unnecessary, since
the formal parameter of the eliminated lambda expression and the second formal parameter
of apply are the same variable. From now on, we will omit such vacuous declarations.)

% similar treatment (somewhat simplified since there are no global variables) of the
lambda expression in I.14 and the outer lambda exoression in I.15 gives:

initenv = Ax. ( x = "succ" -+ mk-sc(), I.14"
x = "equal” - mk-eql()) I1.15'
and
apply = X(f, a).
(closr?(f) = let £ = lam(f) and e = en (f)
in eval(body (%), ext (fp(T), a, e)),
sc?(f) - succla),
eql?(f) ~ ib. equal (a, b),

eq2? (£f) ~ ... )

Finally, we must replace the lambda expression which originally occurred as the
inner expression in I.15. Although we have already moved this expression into the body
of apply (since it was the body of a previously eliminated lambda expression), the same
basic treatment can be applied to the new occurrence, giving:

apply = A(£, a).
(closr?(f) -~ let & = lam(f) and e = en(f)
in eval(body (2), ext(fp(Z), a, e)),
sc?(f) = succl(a),
eql?(f) -~ mk-eq2(a),
eq2?(f) +~ let b = a and a = argl(f) in equal(a, b))

(Note that the declaration relating formal parameters is not vacuous in this case.)

The entire transformation which converts FUNVAL from a set of functions to a set of
records has been informally justified by appealing to an understanding of the defining
language, without regard to the meaning or use of the particular program being trans-
formed. But now it is illuminating to examine the different kinds of records in FUNVAL
in terms of their role in the interpretation of the defined language. The records in
the set CLOSR represent functional values which are produced by evaluating the lambda
expressions occurring in the defined language programs. They are equivaleqt to the
objects called FUNARG triplets in LISP and closures in the work of Landin. 7). The
unigque records in the one-element sets SC and EQl obviously represent the basic
functions succ and equal. Finally, the records in EQ2 represent the functions which
are created by applying equal to one argument.

A similar transformation can be used to “defunctionalize" the set ENV of
environments. To interpret the new members of ENV, we will introduce a function get,
with the property that if e,,, represents an environment ep14 and zr is a member of VAR,
then getle,,y, %) = epigfz). Applications of get must be inserted at the three points
(in lines I.3, I.9, and I.12) in the interpreter where environments are applied to
variables:

var?(r) +~ get(e, 1), 2k b
Ax. if x = dvar(r) then evlambda(dexp(r), e') else get(e,x) bR
ext = A(z, a, e). ix. if x = z then a else get(e, X) 1.12°7

Next, there are three lambda-expressions which produce environments; they are
indicated by broken underlining which we have carefully preserved during the previous
transformations. The following table gives their locations and global variables, and
the equations defining the new sets of records which will represent their values:

Location Global Variables New Record Eguation
I.14'-15" none INIT = [}
I.12" z ae SIMP = [bvar: VAR, bval: VAL, old: ENV]

1.9 ree' REC = [letx: LETREC, old: ENV, new: ENV]

721




Thus the new set of environment repres:ntations is:
ENV = INIT v SIMP v REC
Elimination of the three environment-producing lambda-expressions gives:

letrec?{r) ~ letrec e' = mk-rec(r, e, e') I.8-9"
ext = A(z, a, e). mk-simp(z, a, e) I.12"
initenv = mk-init() I.14"-15"

and the environment-interpreting function is:

get = Ale, x). - .
(init?(e) + (x = "succ" = mk-sc(), x = "equal” ~ mk-eql()),
simp? (e) =~ let z = bvar(e) and a = bval(e) and e = old(e)
in if x = z then a else get(e, x), )
rec?(e) = let r = letx(e) and e = old(e) and e' = nev (e)

in if x = dvar (r) then evlambda(dexp(r), e') else get(e, x))

But now we are faced with a new problem. By eliminating the lambda ex ression in
5 ] g P
I.9', we have created a recursive let expression

letrec e' = mk-rec(r, e, e') o

which violates the structure of the defining language, since its declaring sub-
expression is no longer a lambda expression. However, there is still an obvious
intuitive interpretation of this illicit construction: it binds e' to a "cyclic"
record, whose last field is (a pointer to) the record itself.

If we accept this interpretation, then whenever ¢ is a member of REC, we will
have new(e) = e. This allows us to replace the only occurrence of new(e) by e,
so that the penultimate line of get becomes:

rec?(e) + let r = letx(e) and e = old(e) and e' = e cee

But now our program no longer contains any references to the cyclic new-fields, so that
these fields can be deleted from the records in REC. Thus the record equation for REC
is reduced to:

REC = [letx: LETREC, old: ENV]
and the offending recursive let expression becomes:

letrec? (r) ~ let e' = mk-rec(r, e) - I.8'-9"!

At this point, once we have collected the bits and pieces produced by the various
transformations, we will have obtained an interpreter which no longer contains any
higher-order functions. However, it is convenient to make a few simplications:

(1) Let expressions can be eliminated by substituting the declaring
expressions for each occurrence of the corresponding declared variables

in the body.

(2) Line I.1l' can be eliminated by replacing occurrences of evlambda
by mk-clorr.
(3) Line I.12" can be eliminated by replacing occurrences of ext by
mk-gimp. :
(4) Lines I.14"-15" can be eliminated by replacing occurrences of
initenv by mk-init().
Thus we obtain our second interpreter:

FUNVAL = CLOSR v SC u CQl v EQ2
CLOSR = [lam: LAMBDA, en: ENV]

sc = [}

EQl = [)

EQ2 = [argl: VAL]

'ENV = INIT u SIMP u REC

INIT = []
SIMP = [bvar: VAR, bval: VAL, old: ENV]
REC = [letx: LETREC, old: ENV]

728



interpret = Ar., eval(r, mk-init()) II.1

" eval = A(r, e). I1.2
(const?(r) -+ evcon(r), ) I1.3

var?(r) + get(e, ), ‘ ’ I11.4

‘”3 appl?(r) + apply(eval(opr(r), e), eval(opnd(r), e})), I1.5
lambda?(r) -+ mk-closr(r, e), I1.6

cond?(r) =+ if eval (prem(r), e) 11.7

then eval (conc(r), e) else eval (altr(x), e), 11.8

letrec?(r) -+ eval(body(r), mk-rec(r, e))) 11.9
apply = A (L, a). I1.10
{(closr? (f) =+ II1.11

eval (body (lam(f)), mk~simp (fp(lam(f)), a, en(f))), i I1.12
sc? (£f) -+ succ(a), I1.13

cql? (f) -+ mk-eq2(a), II1.14
eq2?(£f) - equal (argl(f), a)) . II.15

get = A(e, x). II.16
(init?(e) » (x = "suce" + mk-sc(), x = "equal” -+ mk-eql()), II.17
simp?(e) + if x = bvar(e) then bval(e) else get(old(e), x), I1.18

rec?{e) + if x = dvar(letx(e)) . II.19
then mk-~closr(dexp(letx(e)), e) else get(old(e), x)) 1I.20

Just as with FUNVAL, we may examine the different kinds of records in ENV with
regard to their role in the interpretation of the defined lanquage. The unique record
in INIT has no subfields, while the records in SINMP and PEC each have one field
(selected by old) which is another member of FENV. Thus environments in our second
interpreter are lincar lists (in which each element specifies the binding of a single
variable), and the unique record in INIT serves as the empty list.

It is easily scen that getf(e, x) searches such a list to find the blndxng of the
variable z. When get encounters a record in STMP, it compares x with the lvar-ficld,

and if a match occurs, it returns the value stored in the bLval-field. ‘'hen get
tiy encounters a record in REC, it compares =z with dvar(letz(e)) (the declarcd variable
) 3 of the recursive let expression which created the binding), and if a match occurs, it
s returns the value obtained by evaluating dexp(letz(e)) (the declaring subexpression of

the same recursive let expression) in the environment e. The fact that ¢ includes

the very binding that is being "looked up" reflects the esscntial recursive character-
istic that the declaring subexpression should "fecl" the effect of the declaration in
which it is imbedded. When get encounters the empty list, it compares x with each of
the predefined variables, and if a match is found, it returns the appropriate value.

The definition of get reveals the consequences of our restricting recursive let
expressions by requiring that their declaring subexpressions should be lambda
exprescions. Becausc of this restriction, the declaring subexpressions are always
evaluated by the trivial operation of forming a closure. Therefore, the function
get always terminates, since it never calls any other recursive function, and can
never call itself more times than the length of the list which it is searching. (On
the other hand, if we had permitted arbitrary declaring subexpressions, line II.20
would contain eval(dexp(letx(e)), e) instead of mk-closr(dexp(letx(e)), e). This
seemingly slight modification would convert get into a function which might run on
forever, as for example, when looking up the variable k in an environment created by
the defined-language construction letrec k = k+I1 in ... .)

The second interpreter is simiTar in style, and in many details, to lMcCarthy's
definition of LISP. (1) The main differences arise from our insistence unon FUNARG
binding, the use of reccursive let expressions instead of label expressions, and the
use of predefined variables instead of variables with flaggced property lists.

CONTINUATIONS

The transition from the meta-circular interpreter to our second interpreter has not
eliminated order-of-application dependence. It can easily be seen that a change in the
order of application used in the defining-language expression

apply (eval (opr(r), e), eval(opnd(r), e))
{(in II.5) will cause a similar change for all application ¢xpressions of the c>fined
language.

-

729

T e .=

e T et BT L P, A S T AT IR T IR VM T v e PR £ TIPS S bt st 4 - ¢ om0t e ot 6 =



To eliminate this -dependence, we must first identify the circumstances under which
an arbitrary program in the defining language will be affected by the order of applica-
tion. The essential effect of switching from cull-by-value to call-by-name is to ]
postpone the evaluation of the operands of application expressions (and declaring sub-
expressions of let expressions), and to alter the number of times these opcrands are
cvaluated. We have already scen that in a purely applicative language, the only way
in which this change can affect the meaning of a program is to avoid the evaluation of a
non-terminating operand. Now suppose we define an expression to be serious if there
is any possibility that its evaluation might not terminate. Then a sufficient condition
for order-of-application independence is that a program should contain no serious
operands or declaring expressions.

Next, suppose that we can divide the functions which may he applied by our program
into serious functions, whose application may sometimes run on forever, and trivial
functions, whose application will always terminate. (Of course, it is well-known that
one cannot effectively decide whether an arbitrary function will always terminate, but
one can still establish this classification in a "fail-safe" manner, i.e., classify a
function as serious unless it can be shown to terminate for all arguments.) Then an
expression will only be serious if its cvaluation can cause the application of a serious.
function, and a program will be independent of order-of-application if no operand or
declaring expression can cause such an application. A

At first sight, this condition appears to be so restrictive that it could not be met
in a non-trivial program. As can be scen with a little thought, the condition impliecs
that whencver some function calls a serious function, the calling function must return
the same result as the called function, without performing any further computation. But
any function which calls a serious function must be serious itself. Thus by induction,
as soon as any serious function returns a result, every function must immediately return
the same result, which must therefore be the final result of the entire program.

Mevertheless, there is a method for transforming an arbitrary program into one which
meets our apparently restrictive condition. The underlying idea has appeared in a
variety of contexts,{(19,20,21) but its application to definitional interpreters is due
to Morris and Wadsworth. (15) Basically, one replaces each serious function fold
{except the main program) by a new serious function fpey which accepts an additional
argument called a continuation. The continuation will be a function itself, and fuqy
is eupected to compute the same result as fold, apply the continuation to this result,
and then return the result of the continuation, i.e.,

frew(X1s «+e o+ X, €) = clfg1glx1s «0ov 4 X))

This introduction of continuations provides an additional "degree of freedom” which
can be used to meet our condition for order-of-evaluation independence. Essentially,
instead of performing further actions after a serious function has returncd, onc imbeds
the further actions in the continuation which is passed to the serious function.

To transform our sccond interpreter, we must -first classify its functions. Since
the defined language contains expressions and functions whose evaluation and application
may never terminate, the defining-language functions eval and apply are serious and must
be altered to accept continuations. On the other hand, since we have scen that get
always terminates, it is trivial and will not he altered. (Note that this situation
would change if the defined language permitted recursive let expressions with arbitrary
declaring subexpressions.)

Both eval and apply produce results in the set VAL, so that the arguments of con-
tinuations will belong to this set. The result of a continuation will always be the
value of the entire program being interpreted, which will also belong to the set VAL.
Thus the sct of continuations is: 0

CONT = VAL - VAL .

(In a more complicated interpreter in which different serious functions produced
different kinds of results, we would have to introduce different kinds of continuations.)
The overall form of our transformed interpreter will be:

interpret = Ar, eval(r, mk-init(), }ra. a) IT.1'
eval = A(r, ¢, c). ... I1.2"
apply = A (f, a, c). ... II.10'
get = same as in Interpreter II. I1.16-20

lNote that the "main level" call of eval by interpret provides an identity function as
the initial continuation. :

e must now alter each branch of eval and apply to apply the continuation ¢ to the
former results of these funcltions. In lines II.3, 4, 6, 13, 14, and 15, tho branches
evaluate cxpressions which are not serious, and which are therefore permissible operands.
Thus in thesc cases, wo may simply apply the continuation e to cach expression:

730



eval = A(x, ¢, c). II.2"

(const?(xr) - c(evcon(r)), I1.3'
var?(r) -+ c(get(e, rj), I1.4°"
lambda? (r) -+ c{mk-closr{r, e)), ... ) I1.6°
apply = X (£, a, ). (P I1.]0¢
sc?(f) + c(sucec(a)), I1.13"'
eql?(f) - c(mk-eg2{(a)), II.14"
eq2?(f) + c(equal(argl(f), a))) IT.15"

In Lines II1.9 and II.12, the branches cvaluate expressions which are serious them-
selves but contain no serious operands. By themselves, these expressions are permissible,
put they must not be used as operands in applications of the continuation. The solution
is straightforward; instead of applying the continuation ¢ to the result of cval, we

passlc as an argument to eval, i.e., we "instruct" eval to apply ¢ before returning its
result:

letrec?(r) -+ eval(hody(r), mk-rec(r, e), c)) 11.9'
closr?(f) - IT.11!
eval (body (lam(f)), mk-simp(fp(lam(£f)), a, en(f)), c), I1.12'

The most complex part of our transformation occurs in the branch of eval which
evaluates application expressions in line 1I.5. Here we must perform four serious
operations:

(1) Evaluate the operator. -

(2) Evaluate the operand.

(3) Apply the valuc of the operator to the value of the operand.

(4) Apply the continuation ¢ to the result of (3).
Moreover, we must specify explicitly that these operations are to be done in the above
order. This will insure that the defined language uscs call-by-value, and also that
the subexpressions of an application expression are evaluated from left to right
(operator before operand).

The solution is to call eval to perform operation (1), to give this call of eval a
continuation which will call eval to perform oberation (2), to give the second call of
cval a continuation which will call apply to perform (3), and to give apply a continua-
tion (the original continuation e¢) which will perform (4). Thus we have:

appl?(r) -+ eval(opr(r), e, II.5a'
Af. eval (opnd(r), e, la. apply(f, a, c))), II.5b'

A similar approach handles the branch which evaluates conditional eypressions in
Lines IXI.7 and 8. Herec there are three serious operations to be performed successively:
(1) Evaluate the premiss.
(2) Evaluate the conclusion or the alternative, depending on the ,
result of (1).
(3) Apply the continuation ¢ to the result of (2).
The transformed branch is:

)

cond?(r) + eval(prem(r), e, I1.7°'
Ab. if b then eval(conc(r), e, c) else eval(altr(r), e, c)), II.8!

Combining the scattered piececs of our transformed interpreter, we have:

interpret = Ar. eval (r, mk-init(), Xa. a) I1.1!
eval = A(r, e, c). ) Ir.2'
(const?(r) + c(evcon(r)), II,3!
var?(r) -+ c(get(e, xr)), 11.4"
appl?(r) + eval (opr(r), e, II.5a!
Af. eval(opnd(r), e, ra. apply(f, a, c))), II.5b"

74)




lambda? (r) = c{mk-closr{r, e)), 1I1.6°
cond? (r) -+ eval(prem(r), e, I1.7°

Ab. if b then eval (conc(r), e, c) else eval(altr(r), e, c)), I1.8'

letrec?(r) -+ eval (body(r), mk—tec(j, e), c)) I1.9'
apply = A(f, a, c). I1.10°
(closr?(f) - Ir,.11
eval (body (lam(f)), mk-simp(fp(lam(£f)), a, en(f)), ), 11.12°

sc?(f) - c(succ(a)), I1.13"
eql?(f) + c(mk-eg2(a)), IT.14"
eq2?(f) - cl(egual(argl(f), a))) II.15"

get = same as in Interpreter II.

At this stage, since continuations are functional arguments, we have achieved order-
of -application independence at the price of re-introducing higher-order functions.
Fortunately, we can novw "defunctionalize" the set CONT in the same way as FUNVAL and ENV,
To interpret the new members of CONT we introduce a function cont such that if cpg,
represents the continuation c,;; and a is a member of VAL then contlecy,,,,a) = cold?a).
The application of cont must ge introduced at each point in eval and apply where a
continuation is applied to a value, i.e., in lines II.3', 4', 6', 13', 14', and 15'.

There are four lambda expressions, indicated by solid underlining, which create
continuations. The following table gives their locations and global variables, and the
equations defining the new sets of records which will represent their values:

Location Global Variables New Record Equation

I1.1° none FIN = []

II.Sb' (outer) rec EVOPN = [ap: APPL, en: ENV, next: CONT])
I1.5b' (inner) fc APFUN = [fun: VAL, next: CONT]

I1.8' rec BRANCH = [cn: COND, en: ENV, next: CONT]

By replacing these lambda expressions by record-creation operations and moving their
bodies into the new function cont (within let expressions which rebind their formal
parameters and global variables appropriately), we obtain an interpreter which is
independent of order-of-application and does not use higher-order functions:

CONT = FIN v EVOPN u APFUN u BRANCH
FIN = []
EVOPN = [ap: APPL, en: ENV, next: CONT]
APFUN = [fun: VAL, next: CONT]
BRANCH = [cn: COND, en: ENV, next: CONT]
FUNVAL, ENV, etc. = same as in Interpreter II.
interpret = Ar. eval(r, mk-init(), mk-=£fin())
eval = A(r, e, ¢).

(const?(r) -+ cont(c, evcon(r)),

var?(r) + contl(c, get{e, r)}, ITI

appl?(r) - eval(opr(r), e, mk-evopn(r, e, c)),

lambda? (r) -+ cont(c, mk-closr(r, e)),

cond?{r) + eval(prem(r), e, mk-branch(r, e, c)),

letrec?(r) -+ eval(body(r), mk-rec(r, e), c))
apply = A (£, a, ). [

(closr?(f) =~

eval (body (lam(f)), mk-simp(fp(lam(£f)), a, en(f)), c),

sc?(f) » cont(c, succ(a)),

eql?(f) =+ cont(c, mk-eg2(a)),

eq2? (f) -+ cont(c, equal(argl(f), a)))
cont = A(c, a).

(fin?(c) - a,

132




evopn?(c) »+ let £ = a and r = ap(c) and e = en(c) and ¢ = next{c)
in eval(opnd(r), e, wh-apfun(f, c)),

apfun?(c) -+ let f = fun(c) and ¢ = next(c) jin apply(f, a, c),

)
branch?{¢c) + let b = a and r = cn(c) and e en(c) and ¢ = next(c)

in if b then eval(eonc(x), e, ¢) elsc eval(altr(r), e, c})
get = same as in Interpreter I1I.

From their abstract syntax, it is evident that continuvations in our thirdinter-
preter are linear lists, with the unique rccord in FIN acting as the empty list, and
the next-fields in the other records acting as link fields. In ef{fect, a continuation
is a list of instructions to be¢ interpreted by the function cont. Tach inalruction
accepts a "current value" (the second argument of eont) and produces a new value which
will be given to the next instruction. The following list gives approximate meanings
for each typoe of instruction:

FIN: 7he current value is the final value of the program. Halt,

EVOPN: The current value is the value of an opecrator. Fvaluate the

operand of the application expression in the ap-field, using the

environment in the en-field, 7Then obtain a new value by applying the

current value to the value of the operand.

APTUN: The current value is the value of an operand.” Obtain a new

value by applying the function stored in the fun-field to the current

value.

BRANCH: The current value is the value of a premiss., If it is true

(false) obtain a new value by evaluating the conclusion (alternative)

of the conditional expression stored in the en-field, using the

environment in the en-field.

Each of the three serious functions, eval, apply, and coni, does a branch on the
form of its first argument, performs trivial operations such as field selection, record
creation, and cnvironment lookup, and then calls another scrious furction. Thus our
third interpreter is actually a state-transition machine, vhose states each consist of
the name of a scrious function plus a list of its arguments.

This interpreter is similar in style to Landin's SECD machine, {7) though there is
considerable difference in detailed mechanisms. (Very rounghly, one can construct the
continuation by merging Landin's stack and control and concatenating this merged stack
with the dump.)

CONTINUATIONS WITH HIGHIR-ORDER FUNCTIONS . i

In transf{orming Interpreter I into Interpreter III, we have moved from a concise,
abstract definition to a more complex machine-like one. If clarity consists of the
avoidance of subtle characteristics of the defining language, then Interpreter III is
certainly clearer than Interpreter I. But if clarity consists of conciscness and the
absence of unnecessary complexity, then the reverse is true. The machine-like
character of Interpreter III includes a variety of "cogs and wheels" which are gquite
arbitrary, i.e., one can easily construct equivalent interpreters (such as the SECD
machine) with different cogs and wheels.

In fact, these "cogs and wheels" were introduced when we defuncticnalized the sets
FUNVAL, ENV, and CONT, since we replaced the functions in these sets by representations
which were correct, but not unique. Had we chosen different representations, we would
have obtained an equivalent but quite differcnt interoreter.

This suggests the desirability of retaining the use of higher-order functions,
providing thesc entities can be given a mathematically rigorous definition which is
independent of any specific representation. Fortunately, such a_definition has
recently been provided by D. Scott's new theory of computation, 1 which is based

~on concepts of lattice theory and topology. (The central technical problem that Scott

has solved is to define functions which are not only higher-order, but also typeless,
so that any function may be applied to any other function, including itself.) Although
a description of this work would be beyond the scope of this paper, we may summarize its

4

main implication for definitional intbrpreters: Scott has developed a mathematical model

of the lambda calculus, which-is thereby a model for a purely applicative higher-order
dafining language. UBut the defining language modelled by Scott uses call-by-name rather
than call-by-value. (In terms of the lambda calculus, it uses normal order of
evaluation.) Thus to apply Scott's work to a defined language which usces call-by-value,
we need a definitional interpreter which retains higher-order functions but is order-of-
application independent.

An obvious approach to this goal is to introduce continuvations directly into the
meta-circular interpreter. At first sight, this appears to be straightflorward.
Referring back to Interpreter I, we sce that the function eval is obviously serious,
while evlambda, ext and intitenv are trivial. (evlambda is trivial since the

723

v Adadie 0 Nt PITE NIRRT ST 7 LTRSS FERIUNI AL o -

'




evaluation of lambda expressions always terminates.) Apparently eval is the only
function which must accept continuations, ) ,
But when we transform the hranch of eval which evaluates application expressions,
the construction described in the previous section scems to give:
appl?(r) = eval(opr(r), e, Af. eval(opnd(r), e, Ara. c(f(a)))),

Unfortunately, the subexpression e(ffa)) is not independent of the order-of-application,
since the evaluation of the operand f(a) may never terminate, while the function ¢ may
be independent of its argument.

The difficulty is that the class of serious functions must include every potentially
non-terminating function which may be applied during the execution of the interpreter;
in addition to eval, this class contains the members of the sct FUNVAL of defined-
language functional values. Thus we must modify the functions in FUNVAL to accept
continuations:

FUNVAL = VAL, CONT - VAL

replacing each function fy14 by an fpey such that fpeufa, ¢) = of(f,7490a)). This allows
us to rveplace the order-dependent expression e(f(a)) by the order-independent ex-
pression f(ea, e¢). Of course, we must add continuations as an extra formal parameter to
cach lambda expression which creates a member of FUNVAL,

(A similar modification of the functions in ENV is unnecessary, since it can be
shown that the functions in this set always terminate. Just as with get, this depends
on the exclusion of recursive let expressions with arbitrary declaring subexpressions.)

Once the necessity of altering FUNVAL has heen realized, the transformation of

, Interpreter I follows the basic lines described in the previous section. We omit the
details and state the final result:

VAL = INTEGER v BOOLEAN u FUNVAL
FUNVAL = VAL, CONT -+ VAL ’
ENV = VAR + VAL
CONT = VAL + VAL
interpret = Ar. eval(r, initenv, la. a)
eval = A(r, e, c).
(const?(r) + c(evcon(r)), .
var?(r) + cfe(r)), ;V
appl?(r) + eval(opr(r), e, Af. eval(opnd(r), e, Xa. f(a, E))),
lambda?(r) -+ c(evliambda(r, e)), . .
cond? (r) + eval(prem(r), e,
b, i1f b then eval(conc(r), e, c) else eval(altr(z), e, o)),
letrec?(r) + letrec e' =
Ax, if x = dvar(r) then evlambda(dexp(r), e') else e(x)
in eval(body(r), e', c)) .
: evlambda = A(%, e). A(a, c),eval(body(2), ext(fp(L), a, e), c)
ext = A(z, a, e). Ax. {f x = z then a else e(x)
initenv = Ax, (x = "succ" + A(a, ¢). c(succ{a)),
x = "equal" + A(a, ¢). c( A(b, ¢'). ¢'(equal(a, b))))

This is basically the form of interpreter dovised by Morris and' Wadsworth, (15)
It is almost as concise as the meta-circular interpreter, yet it offers the advantages
of order~of-application independence and, as we will see in the next section, ex-
tensibility to accommodate imperative control features,

(The zealous rcader may wish to verify that defunctionalization and the introduction
of continuations are commutative, i.e., by replacing FUNVAL, ENV, and CONMT by apvropriate
non-functional representations, one can transform Interpreter IV into Interpretcr III,)

ESCAPl; EXPRESSTONS

We now turn to the problem of adding imperative features to the defined languago
(while kceping the defining language purcly applicative). These feakures may be
divided into two classes:

(1) Imperative control mechanisms, e.g., statcment sequencing,
labels and jumps.,
(2) Assignment,

734



We will first introduce control mechanisms and then consider assignment.
At first siant, this order of presentation seems facetious; In a languadge without

assignment, it scems pointless ta jump to a label,

since there is no significant way

for th¢ part of the computation before the jump to influence the part aftervards.
llowever, in Reference 22, Landin introduced an imperative control mechanism which is
more general than labels and jumps, and which significantly enhances the power of a

language without assignment. The specific mechani

a J-oparator, but in this paper we will develop a
an escape cxpression.

sm which he introduced was called
slightly simpler mechanism called

If (in the defined language) =z is a variable and r is an expression, then

escape x in r

is an escape expression, whose escape variable is

z and whose body is r. The evaluation

of an escape expression in an environment e proceeds as follows:
(1) The body r is evaluated in the environment which is the extension

of e which binds z to a function called the es
(2) If the escape function is never appli

capes funciion.,
ed during the evaluation of r,

then the value of r hccomes the value of the escape expression.

(3) If the escape function is applied to

an argument a, then the

evaluation of the body r is aborted, and a immediacely becomes the value

of the escape expression.
Essentially, an escape function is a kind of label
jump. The greater gencerality lies in the ability

, and its application is a kind of
to pass arguments while jumping.

(Landin's J-operator can be defined in terms of the escape expression by
regarding let g = J Azx. rg in rp as an abbreviation for escape h in let g = Az. hir;)

in ry, where h is a new variable not occurring in
rogard eccape g in r as an abbreviation for let g
In order to extend our interpreters to handle

ry or r;. Conversely, one can
=J Az. = in r.)
escape expressions, we begin by

extending the abstract syntax of expressions appropriately:

EXP = ... u ESCP
ESCP = [escv: VAR, body: EXP)

1t is evident that in each interpreter we must add a branch to eval which evaluates

the new kind of expression.

First consider Interpreter IV. Since an escap
evaluating its body in an extended environment whi
the escape function, and since the escape function
the set FUNVAL = VAL, CONT - VAL, we have

eval = A(r, e, c). ( ...
escp?(r) + eval(body(r), ext (escv{r), Ala,

where the value of Afa, ¢'). ... must be the membe
escape function.

e expression is evaluated by
ch binds the cscape variable to
must be represented by a member of

c'Ve vu. , €)Y, ) )

r of FUNVAL representing the

Since evel is a serious function, its result, which is obtained by applying

the continuation ¢ to the value of the escape expr
of the entire program being interpreted. This mea
which will accept the value of the escape expressi
of the remainder of the program. But the member o
function is also serious, and must therefore also

ession, must be the final result

ns that ¢ itself must be a function
on and carry out the interpretation
{ FUNV?L representing the escape
produce the firnal result of the

entire program. Thus to abort the evaluation of the body and treat the argument a

as the value of the escape expression, it is only
ignore its own continuation e¢', and to apply the h
we have:

eval = A(r, e, c}. ( ...

escp? (r) -+ eval(body(r), ext(escv(r), i(a,

necessary for the escape function to
igher-level continuation ¢ to a. Thus

c'). cla), e}, c) )

The extension of Inteorpreter TIT is essentially similar. In this case, we must

add to the set FUNVAL a new kind of record which r
FUNVAL = ,., v ESCF ’
ESCF = [cn: CONT]
These records are created in the new branch of eva
evalfi="M(rflefNc). 0 (fi. ..

eprecsents escape functions:

l:

escp?(r) -~ eval{body(r), mk-simp(cscv(r), mk-escf(c), e), c) )

and are interpreted by a new branch of apply:
apply = A(f, a, ). ( ...
escf? (f) ~ cont(cn(f), a) )

RS



From the viewpoint of this interpreter, it is clear that the escape expression is a
significant extension of the defined language, since it introduces the possibility of
enbedding continuations in values.

(The reader should be warned that cither of the above interpreters is a more
precise definition of the escape expression than the informal English description given
betorchand,  For example, it is possible that the evaluation of the body of an escape
expression may not cause the application of the escape function, but may produce
the escape function (or some function which can call the escape function) as its value.
It i5 difficult to infer the conscquences of such a situation from our informal des-
cription, but it is precisely defincd by either of the interpreters. In fact, the
possibility that an escape function may propagate outside of the expression which
created it is a powerful facility which can be used to construct control-flow mechanisms
such as coroutines and non-deterministic algorithms.)

When we consider Interpreters I and II, we find an entirely different situation.
The ability to "jump" by switching continuations is no longer possible. An escape
function must still be represented by a member of FUNVAL, but now this implies that,
if the function terminates without an error stop, then its result must become the
value of the application expression which applied the function. As far as is known,
there is no way to define the escape expression by adding branches to Interpreter I or
IT (except by the "cheat" of adding imperative control mechanisms to the defining
language, as in Reference 14). The essential problem is that the information which was
explicitly available in the continuations of Interpreters III and IV is implicit in the
recursive structure of Interpreters I and II, and in this form it cannot be manipulated
with sufficient flexibility.

We have asserted that the escape mechanism encompasses less general control
mechanisms such as labels and jumps. The following description outlines the way in
which these more specialized operations can be expressed in terms of the cscape ex-
pression. (A more detailed exposition is given in Reference 22.)

(1) 1In the next section we will introduce assignment in such a way

that assignments can be executed during the evaluation of expressions. In

this situation it is unnecessary to make a semantic distinction between

expressions and statements; any statement can be regarded as an expression

whose evaluation produces a dummy value.

(2) A label-free sequence of statements 815 ++. 5 8, Can be regarded as an
abbreviation for the expression

( oeo (Ax3. ... xp. xn)(sy)) ... (sp))

The cffect is to evaluate the statements sequentially from left to right,
ignoring the value of all but the last.

(3) If sp, ... , §, are label-free statement sequences, and
LN S L, are labels, then a block of the form:

begin Sqo7 21: Sy1i eee i ln: sy end
can be regarded as an abbreviation for

escape g in letrec 21 = AX, g(sl; cee 3 sn) and 22 = AX. g(sz; eee 3 sn)

and ... and £ = Ax. g(s ) in (sgi +o0 i s.)

(where g and z are new variables not occurring in the original block).
The effect is that each label denotes a function which ignores its argument,
evaluates the appropriate sequence of statements, and then escapes out of the
enclosing block. ] ’

(4) An expression of the form goto r can be regarded as an abbreviation for
r(0), i.e., a jump to a label becomes an application of the function denoted by the
label to a dummy argument.

ASSIGNMENT

Although the basic concept of assignment is well understood by any competent pro-
grammer, a surprising degree of care is nceded to combine this concept with the language
features we have discussed previously. Intuitively, the notion of assignment presup-
poses that the operations which are performed during the evaluation of a program will
occur in a definite temporal order. Some of these operations will assign values to
"variablaes". Other opecrations may be affected by these assignments; specifically, an
operation may depend upon the value most recently assigned to each "variable", which
we will call the value currently possessed by the "variable".

This suggests that for cach instant during program execution, there should be an
entity which specifies the set of “"variables" which are present and the values which
they cnrrently possess. We will call such an entity a memory, and denote the set of
possible memories by MEM.

The main subtlety is to realize that the “"variables" discussed here are distinct

736



from the varia! les used in previous sections. This is nocessitated by the fact that
. " most programuing languages permit situnations (such as might arise from the use of
- "ecall-by-addrees") in which scveral varichles denote the same "variable", in the sense
that assignmoent to one of them will change the value possessed by all. This suquests
that. a "variable” is actually a new kind of object to which a varishle can be bound.
- Henceforth, we will call these new objects rcferences rather than "variables". (Other
terms used commonly in the literature arec l-value and name.) We will denote the set
— of references by REF.
Abstiractly, the nature of references and memorics can be characterized by specifying
an initial memory and four functions:
initmem: Contains no references,
nextref(m): Produces a reference not contained in the memory m.
augrent (e, a): Produces a memory containing the new refarence

nextrejir) plus the references alrcady in m, The new reference possessces
the value a, while the remaining references possoss the same values as
in m.

update(m, rf, a): Produces a memory containing the same refercences as
m. The reference rf (assuming it is present) posscsses the value a, while :
the remaining references possess the same valuc as in m.

Ltookup(m, rf): Produces the value possessed by the reference rf in
the memory m.

-A simple "implementation” can be obtained hy numbering references in the order of
their creation: (25)

REF = [number: INTEGER])
MEM = [count: INTEGER, possess: INTEGER -+ VAL]
initmem = mk~mem {0, An. 0)
nextref = Am. mk-ref (count (m)+1)
augment = A(m, a). mk-mem(count(m)+1,
An. if n = count(m)+l then a else (possess(m)) (n))
update = A(m, rf, a). mk-mem(count(m),
An. if n = number(rf) then a else (possess(m)) (n))
lookup = X(m, rf). (possess(m)) (number(rf))

Our next task is to introduce memories into our interpreters. Al though any of our
interpreters could be so extended, we will limit our consideration to Interpreter IV,
. It is evident that the operation of cvaluating a defined-language expression will
now depend upon a memory m and will produce a (possibly) altered memory m'’., Thus the
’33 function eval will accept m as an additional argument. However, because of the use of
o continuations, m' will not he part of the result of evel. Instead, m' will be passed
on as an additional argument to Lhe continuation which is applied by eval to perform
the remainder of program execution.
In a similar manner, the application of a defined-language function will depend
upon and produce memories. Thus each function in the set FUNVAL will accept a memory
as an additional argument, and will also pass on a memory to its continuation.
On the other hand, there are particular kinds of expressions, specifically constants,
variables, and lanbda expressions, whose evaluation cannot cause assignments., YFor
this recason, the functions c¢veon and evlambda, and the functions in the set ENV, will
not accept or produce memories. R
These considerations lead to the following interpreter, in which memories prooagate

through the various operations in a manner which correctly reflects the temporal order
of execution:

VAL = INTEGER v BOOLEAN u FUNVAL

FUNVAL = VAL, MEM, CONT -+ VAL

ENV = VAR =+ VAL

CONT = MEM, VAL =+ VAL

interpret = Ar. eval(r, initenv, initmcm, X(m, a). a)

cval = A(r, e, m, c). )
(const?(r) =+ c(m, evcon(r)),
var?(r) + c(m, e(r)),

A appl?(r) - eval(opr(r), e, m,
Afm', £). eval(opnd(r), e, m', A(m", a). f(a, m", c))),

lambda?(r) + c(m, evlambda(r, e)),

) 737

. © .
.

> N TRTT e raLIL SEZR - - - oeme - oy v rhys ¥

> :"T‘ ~ e et _ i Tl 51 A T I S v St 3 e e e LT T Y N TN TS e I % S AT T iy g



cond?(r) + eval(prem(r), e, m, A(m', b). if b !

then eval(conc(r), e, m', c¢) else cval(altr(r), e, m', c)),
letrec?(r) -+ letrec e' = .
Ax. if x = dvar(r) then evlambda(dexp(z), e') eclse e(x)
in eval(body(r), e', m, c),
escp?(r) + eval(body(r),
ext{escv(r), A(a, m', c¢'). c(m', a), e), m, c))
cvlambda = A(L, e). A(a, m, c). eval(body (L), ext(fp(L), a, e), m, c)
ext = A(z, a, e). Ax. if x =z then a elsec e(x)
initenv = Ax. (x = "succ" ~+ A(a, m, c). c(m, succ(a)),
x = "equal" »+ A(a, m, ¢). ci{m, A(b, m', c').c'(m', equal(a, b))))

At this stage, although we have “"thrcaded" memories through the operations of our
interpreter, we have not yet introduced references, nor any operations which alter or
depend upon memories. To proceed further, however, we must distinguish between two
approaches to assignment, each of which characterizes certain programming languages.,

In the "L-valuc" approach, in each context of the evaluation process where a value
would occur, a reference (i.e., L-value) possessing that value occurs instead. Thus
for example, expressions evaluate to references, functional arguments and results are
references, and environments bind -variables to-references. (In richer languages, ref-
rcences would occur instead of values in still other contexts, such as array elements.)
This approach is used in the languages PAL(3)and ISWIM, (2)and in somewhat modified form
(i.e., references always occur in certain kinds of contexts, while values always occur
in others) in_such languages as FORTRAN, ALGOL 60, and PL/I. 1Its formalization is due
to Strachey, 25) and is used extensively in the Vienna definition of PL/I. )

In the "reference" approach, references are introduced as a new kind of value, so
that either references or "normal" values can occur in any meaningful context. This
approach is used in ALGOL 68, '23) pasiL, (27) and GEDANKEN, (4)

The relative merits of these approaches are discussed briefly in Reference 4. Al-
though cither approach can be accommodated by the various styles of interpreter
discussed in this paper, we will limit ourselves to incorporating the refecrence approach
into the above extension of Interpreter IV. We Ffirst augment the set of values ;
appropriately:

VAL = INTEGER v BOOLEAN u FUMVAL u REF .

Next we introduce hasic operations for creating, assigning, and evaluating ref-
erences. For simplicity, we will make these operations basic functions, denoted by
the predefined identifiers ref, set, and val. The following is an informal description:

ref(a): NAccepts a value a and returns a new reference which is

initialized to possess a.

(set(rf))(a): Accepts a reference rf and a value a. The value q is

assigned to rf and also returned as the result. (Because of our restriction

to functions of a single argument, this function is Curried, i.e., set

accepts rf and returns a function which accepts aq.)

i val(rf): MANccepts a reference rf and returns its currently possessed value.

To introduce these new functions into our interpreter, we extend the initial
environment as follows:

initenv = Ax., ( ...

x = "ref" + A(a, m, c). c(augﬁent(m, a), nextref(m)),
x = "set" + A(rf, m, ). c{m, A(a, m', c*).

c' (update(m', xf, a), a)),
x = "val" =+ A(cf, m, c). c(m,.lookup(m, rf)))

The main shortcoming of the reference approach is the incessant necessity of using
the function val. This problem can be alleviated by introducing coercion conventions,
as discussed in Reference 4, which cause references to be replaced by their possessed
values in appropriate contexts. However, since these conventions can be treated as
abbreviations, they do not affect the basic structure of the definitional interpreters.

DIRRCTTONS OF FUTURE RESEARCH

Within this paper we have tried to present a systematic, self-contained, and
reasonably complete description of the current state of the art of definitional inter-
preters. We conclude with a brief (and hopeful) list of possible future developments:

738



‘4,

(1)

It would s5till be very desirable to be able to define higher-order

languages logically rather than interpretively, particularly if such an

approach can lcad to practical correctnoss nproors for programs,
in this direction, bascd on the work of Scott, (11} nas heon

A major step

taken by R, Hi]ncr.(74)

Eowever, Milner's work csscntially treats a language using call-by-name rather

than call-by-value.

(2)
or other features that involve
work of the IBM Vienna Laborat:ory,(13
machine.

(3}

with a highly refined syntactic type structure.

It should be possible to trecat languages with multiprocessing features,
"contr?lled ambiguity."

An initial step is the

using a non-deterministic state-transition

It should also be possible to define languages, such as ALGOL 68,(23)

Ideally, such a treatment

should be meta-circular, in the sense that the type structure used in the
defined language should be adequate for the defining language.

(4)

The conciseness of definitional interpreters makes them powerful tools

for language design, particularly when one wishes to add new capabilitiecs to a

language with a minimum of increased complexity.

Of particdular interest (at

least to the author) are the problems of devising better type systems and
of generalizing assignment (for example, by permitting memories to be embedded

in values.)

l, McCarthy, J., Recursive Functions of
Symbolic Expressions and Their Computa-
tion by Machine, Part I. Comm ACM 3
(April 1960), 184-195

2, Landin, P.J., The Next 700 Program-
ming Languages. Comm ACM 9 (March 1966) ,
157-166

3.  Evans, A., PAL - A Language Designed
for Teaching Programming Linguistics.
Proc. ACM 23rd Natl. Conf., 1968, Brandin
Systems Press, Princeton, W, J., 395~403

Reynolds, J. C., GEDANKEN - A
Simple Typeless Language Based on the
Principle of Completeness and the
Reference Concept. Commn ACM 13

(May 1970), 308-319

5. Church, A., The Calculi of Lambda-
Conversion. Ann. of Math. Studies 6,
Princeton University Press, 1941,

2nd ed. 1951

6. Curry, H. B., and Feys, R;,
Combinatory Logic, Vol. I, North-
Holland, Amstcrdam, 1058

7. Landin, P. J., A Lambda-Calculus
Approach. Advances in Programming
and Non-Numerical Computation,
Pergamon Press, 1966, 97-141

8., Floyd, R. W., Assigning Meaning

to Programs. Proc. Sym., Applied ’
Math. 19, Amer. Math. Soc. 1967, 19-32

The Correctness of
J. Computer Svstem Sci. 3
119-127

9. Manna, 2.,
Programs.
(May 1969),

10. Hoare,
for Computer Programming.
(October 1969), 576-580,

C. A. R., An Axiomatic Basis
Comm, ACM 12
583

739

e Adis 1 oad 1 riaa 2aot e a0 e GO AL LTS Y ey LAY W en

11. Scott, D., Outline of a Mathematical
Theory of Computation, Proc. Fourth
Annual Princeton Conf. on Information
Sciences and Systems (1970), 160-176

. Lattice Theory, Data Types,
and Scmantics. Neow York University
Symposia in Areas of Current Interest in
Computer Science, ed. R. Randoll (19717,

. Lattice-theoretic Models for
Various Type-frece Calculi. Proc. Fourth
International Congress for Logic,
Methodology, and the Philosophy of
Science, Bucharest (1672)

. Continuous Lattices. Proc.
197) Dalhousie Conf., Springer Lecture
Note Series, Springer-Verlag, Heidelbury

12. pRBurstall, R. M., Formal Description
of Program Structure and Semantics in
First Order Logic. Machine Intelligence
5, ed. B. Meltzer and D. Michic, Edin-
burgh University Press, (1969) 79-98

13. Lucas, P., Lauer, P., and P
Stigleitner, H., Method and Notation for
Formal Definition of Programming Languages
TR 25.087, IBM Laboratory, Vienna,

June 1968

14. Reynolds, J. C., GEDANKEN - A

Simple Typeless Lanquade Which DParmits
Functional Data Structures and Coroutines.
ANL-762), Argonnc National Laboratory,
Argonne, Ill., September 1969

15. Morris, L., The Next 700 Progfamming
Language Descriptions. Unpublished

16. Park, D., Fixpoint Induction angd

Proofs of Program Properties. Machjne
Intelligence 5, ed. B. Meltzer and

D. Michie, Idirburgh University Press

(1969), s9-7¢

- -

Al Mary 4l oot

TP NS T TSIy 1 R T 0 Y ORI A e 8 MOU R B8 M i $-00 68 SORen



L TR TRy T TNV PO W OV S TN, O B y

17. Feldmnn, J. and Gries, D., Trans-~
lator Writing Systems. Comm ACM 11
(February 1968), 77-113

18. McCarthy, J., Towards a Mathematical
Science of Computation. Proc. IFIP
Congress 1962, 21-28

19. Van Wijngaarden, A., Recursive
Definition of Syntax and Semantics.
Formal Language Description Languages
for Computer Programming, ed. T. B.
Stueel, North-Holland, 1966, 13-24

20. Morris, J. H., A Bonus from Van
Wijngaarden's Device. To be published
in Conm ACM

21. Fischer, M. J., Lambda Calculus
Schemata. Proc. ACM Conference on
Proving Assertions about Programs, Las
Cruces, January 1972, 104-109

22. Landin, P. J., A Correspondence
Between ALGOL 60 and Church's Lambda-
Notation. Comm ACM 8 (February-March

1965), 89-101 and I58-165

23. Van Wijngaarden, Aa., Mailloux,

B. J., Peck, J. E. L., and Koster,

C. H. A., Report on the Algorithmic
Language ALGOL 68. MR 101 Mathematisch
Centrum, Amsterdam, October 1969. Also
Numerische Mathematik 14 (1969) 79-218

24, Milner, R., Implementation and
Applications of Scott's Logic for
Computable Functions. Proc. ACM Conf.
on Proving Assertions about Programs,
Las Cruces, January 1972, 1-6

25, Wozencraft, J. M., and Evans, A.,
Notes on Programming Linquistics,

M. I. T., Cambridge, Mass., February
1971

7

26. Darron, D. W., Buxton, J. N.,
Hartley, D. F., Nixon, E., and Strachey,
C., The Main Features of CPL, Comput.
3.6 (July 1963), 134-143

27, Cheatham, T, E., Fischer, A.,

and Jorrand, P. On the Basis for ELF -
An Extensible Language Facility. Proc.
AFIPS 1968 FJCC 33, pt. 2, MDI Publica-
tions, Wayne, Pa., 937-948

28. decBakker, J. W., Semantics of
Programming Languages. Advances in
Information Systems Science 2, ed.

J. T. Tou, Plenum Press, New York, 1969




