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Dream of a unified language

Waking up:

I Desire to control location explicitly, with a light touch;

I Need control for performance and security reasons;

I Tricky because of asymmetrical client/server relationship.
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Example program

fun checkPassword(name, password) {
# load this user’s row from database & check password
var u = lookupUser(name);
u.password == password

}

fun validate() {
var auth = checkPassword(fieldValue(”name”),

fieldValue(”password”)));
if (auth)

displaySecretDocument();
else

displayErrorMessage();
}



Example located program

fun checkPassword(name, password) server {
# load this user’s row from database & check password
var u = lookupUser(name);
u.password == password

}

fun validate() client {
var auth = checkPassword(fieldValue(”name”),

fieldValue(”password”)));
if (auth)

displaySecretDocument();
else

displayErrorMessage();
}



Example located program: server push

fun findFlights(flightQuery) server {
# Query each vendor for its own matching flights
for (vendor ← airlines()) {

var flights = queryVendor(vendor , flightQuery);
# Send this vendor’s flights to the browser
displayFlights(flights);

}
}

fun displayFlights(flights) client {
# Add each flight to the page
for (flight ← flights)

addToPage(flight);
}



Example: higher-order functions

How should this code behave?

fun usernameMap(f ) server {
var users = getUsersFromDatabase();
for (u ← users)[f (u.name)]

}

fun userNameFirstThree() client {
usersMap(fun(name){take(3, name)});
}

. Functions in lexical client-context
execute on client.
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I How the compilation factors into standard techniques,

I How these these techniques can be presented formally and
concisely.
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How it’s done

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g



Getting technical



Source language: the located lambda calculus

L,M,N ::= LM | λax .N | λx .N | x | c
a, b ::= c | s

We eliminate un-located forms λx .N by explicitly copying the
location of their lexical context.

So λcx .L(λy .N) becomes λcx .L(λcy .N)
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Semantics

Read M ⇓a V as ”M evaluates, starting at a, to V .”

V ⇓a V (Value)

L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V

LM ⇓a V
(Beta)

L ⇓a c M ⇓a W δa(c ,W ) ⇓a V

LM ⇓a V
(Delta)



Translation to a client-server system

Three techniques:

I CPS translation:
reifies the control state

I Defunctionalization:
turns higher-order functions into data (serializable)

I Trampolining:
inverts control, so state resides at client.



CPS translation
(due to Fischer, 1972, via Sabry and Wadler, 1997)

Source:

L,M,N ::= LM | V
V ::= λx .N | x

CPS translation:

(LM)†K = L†(λf .M†(λx .fxK ))

V †K = KV ◦

(λx .N)◦ = λx .λk.N†k

x◦ = x



Defunctionalization



Defunctionalization target

D ::= letrecD and · · · and D

D ::= f (~x) = case x of A
A ::= a set of A items

A ::= F (~c)⇒ M

M ::= f ( ~M) | F ( ~M) | x | c

function names f , g

constructor names F ,G
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Defunctionalization (orig. Reynolds, 1972)

[[M]]top = letrec apply(fun, arg) = case fun of [[M]]fun∗

in [[M]]

[[λx .N]]fun = pλx .Nq(~y)⇒ [[N]]{arg/x}
where ~y = fv(λx .N)

[[LM]] = apply([[L]], [[M]])

[[V ]] = V ◦

(λx .N)◦ = pλx .Nq(~y) where ~y = fv(λx .N)

x◦ = x

The operation pMq gives an opaque identifier for the term M.



Trampolining (due to Ganz, Friedman and Wand)

I Continually returns control to a top-level trampoline;

I Works on any tail-form program,
including CPS programs;

I Choice of the trampoline modifies the behavior.



Trampolining

(LM)T = Bounce(λz .LtMt)

(where z is a dummy)

V T = Return(V t)

(λx .N)t = λx .NT

x t = x

Behavior depends on our choice of tramp.



Example trampolines

Trivial trampoline:

tramp(x) = case x of
Bounce(thunk)⇒ tramp(thunk())
| Return(x)⇒ x

Step-counting trampoline:

tramp(n, x) = case x of
Bounce(thunk)⇒ print(n); tramp(n + 1, thunk())
| Return(x)⇒ x
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Our trampoline

Since the control state is reified, tramp can split the computation
into a client- and a server-side piece.

tramp(x) = case x of

| Bounce(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

(This shouldn’t make sense yet; don’t worry.)



Our trampoline

Since the control state is reified, tramp can split the computation
into a client and a server-side piece.

tramp(x) = case x of

| Call(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

(This shouldn’t make sense yet; don’t worry.)



The Big Transformation



First, the target: first-order client-server calculus



The client-server calculus

Syntax

configurations K ::= (M; ·) | (E ; M)

terms L,M,N ::= x | c | F ( ~M) | f ( ~M) | req f ( ~M)
definition set D, C,S ::= letrecD and · · · and D

function definitions D ::= f (~x) = case M of A
alternative sets A a set of A items

case alternatives A ::= F (~x)⇒ M
function names f , g

constructor names F ,G



Configurations of the machine



Semantics

Client:

(E [f (~V )]; ·) −→C,S (E [M{~V /~x}]; ·)
if (f (~x) = M) ∈ C

(E [case (F (~V )) of A]; ·) −→C,S (E [M{~V /~x}]; ·)
if (F (~x)⇒ M) ∈ A

Server:

(E ; E ′[f (~V )]) −→C,S (E ; E ′[M{~V /~x}])
if (f (~x) = M) ∈ S

(E ; E ′[case (F (~V )) of A]) −→C,S (E ; E ′[M{~V /~x}])
if (F (~x)⇒ M) ∈ A

Communication:

(E [req f (~V )]; ·) −→C,S (E ; f (~V ))

(E ; V ) −→C,S (E [V ]; ·)



Now, the translation



Transformation on terms

(λax .N)◦ = pλax .Nq(~y) ~y = fv(λax .N)

x◦ = x

c◦ = c

V ∗ = V ◦

(LM)∗ = apply(L∗, M∗)

V †[ ] = cont([ ], V ◦)

(LM)†[ ] = L†(pMq(~y , [ ])) where ~y = fv(M)



Transformation to definitions (client-side)

[[M]]c,top = letrec apply(fun, arg) = case fun of [[M]]c,fun

and tramp(x) = case x of

| Call(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

[[λcx .N]]c,fun = pλcx .Nq(~y)⇒ N∗{arg/x}
where ~y = fv(λx .N)

[[λsx .N]]c,fun =

pλsx .Nq(~y)⇒ tramp(req apply (pλsx .Nq(~y), arg , Fin()))

where ~y = fv(λx .N)



Transformation to definitions (server-side)

[[M]]s,top = letrec apply(fun, arg , k) = case fun of [[M]]s,fun

and cont(k, arg) = case k of

[[M]]s,cont

| App(fun, k)⇒ apply(fun, arg , k)

| Fin()⇒ Return(arg)

[[λsx .N]]s,fun = pλsx .Nq(~y)⇒ (N†k){arg/x}
where ~y = fv(λx .N)

[[λcx .N]]s,fun = pλcx .Nq(~y)⇒ Call(pλcx .Nq(~y), arg , k)

where ~y = fv(λx .N)

[[LM]]s,cont = pMq(~y , k)⇒ M†(App(arg , k))

where ~y = fv(M)



Correctness: Bisimulation

M
⇓

- V

M ′ −�
- V ′

M
⇓

- V

M ′ −�
- V ′



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you



Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you


