
The RPC Calculus
Symmetrical RPC in an Asymmetrical World

Ezra Cooper Philip Wadler

September 8, 2009

Dream of unified web programming

What we want

Dream of unified web programming

What we want

Reality of web programming

It’s a bit more fiddly.

Here’s why:

Reality of web programming

It’s a bit more fiddly.

Here’s why:

Reality of web programming

It’s a bit more fiddly.

Here’s why:

Traditional program

Traditional program

Traditional web program

.

Traditional web program

.

Unified program

Simplifies the work of web programming

The Links language:
http://groups.inf.ed.ac.uk/links

Unified program

Simplifies the work of web programming

The Links language:
http://groups.inf.ed.ac.uk/links

Unified program

Simplifies the work of web programming

The Links language:
http://groups.inf.ed.ac.uk/links

Dream of a unified language

Waking up:

I Desire to control location explicitly, with a light touch;

I Need control for performance and security reasons;

I Tricky because of asymmetrical client/server relationship.

Roadblock: Asymmetrical client/server relationship

Roadblock: Asymmetrical client/server relationship

Stateless server

Web applications should not store control state at the server.

Server should encode all state and give it to client.

For this talk, state = call stack.

Stateless server

Web applications should not store control state at the server.

Server should encode all state and give it to client.

For this talk, state = call stack.

Stateless server

Web applications should not store control state at the server.

Server should encode all state and give it to client.

For this talk, state = call stack.

Example program

fun checkPassword(name, password) {
load this user’s row from database & check password
var u = lookupUser(name);
u.password == password

}

fun validate() {
var auth = checkPassword(fieldValue(”name”),

fieldValue(”password”)));
if (auth)

displaySecretDocument();
else

displayErrorMessage();
}

Example located program

fun checkPassword(name, password) server {
load this user’s row from database & check password
var u = lookupUser(name);
u.password == password

}

fun validate() client {
var auth = checkPassword(fieldValue(”name”),

fieldValue(”password”)));
if (auth)

displaySecretDocument();
else

displayErrorMessage();
}

Example located program: server push

fun findFlights(flightQuery) server {
Query each vendor for its own matching flights
for (vendor ← airlines()) {

var flights = queryVendor(vendor , flightQuery);
Send this vendor’s flights to the browser
displayFlights(flights);

}
}

fun displayFlights(flights) client {
Add each flight to the page
for (flight ← flights)

addToPage(flight);
}

Example: higher-order functions

How should this code behave?

fun usernameMap(f) server {
var users = getUsersFromDatabase();
for (u ← users)[f (u.name)]

}

fun userNameFirstThree() client {
usersMap(fun(name){take(3, name)});
}

. Functions in lexical client-context
execute on client.

Example: higher-order functions

How should this code behave?

fun usernameMap(f) server {
var users = getUsersFromDatabase();
for (u ← users)[f (u.name)]

}

fun userNameFirstThree() client {
usersMap(fun(name){take(3, name)});
}

. Functions in lexical client-context
execute on client.

What I want to show you

I How to compile this language for the asymmetrical
client-server model,

I How the compilation factors into standard techniques,

I How these these techniques can be presented formally and
concisely.

What I want to show you

I How to compile this language for the asymmetrical
client-server model,

I How the compilation factors into standard techniques,

I How these these techniques can be presented formally and
concisely.

What I want to show you

I How to compile this language for the asymmetrical
client-server model,

I How the compilation factors into standard techniques,

I How these these techniques can be presented formally and
concisely.

How it’s done

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g

Getting technical

Source language: the located lambda calculus

L,M,N ::= LM | λax .N | λx .N | x | c
a, b ::= c | s

We eliminate un-located forms λx .N by explicitly copying the
location of their lexical context.

So λcx .L(λy .N) becomes λcx .L(λcy .N)

Source language: the located lambda calculus

L,M,N ::= LM | λax .N | λx .N | x | c
a, b ::= c | s

We eliminate un-located forms λx .N by explicitly copying the
location of their lexical context.

So λcx .L(λy .N) becomes λcx .L(λcy .N)

Source language: the located lambda calculus

L,M,N ::= LM | λax .N | λx .N | x | c
a, b ::= c | s

We eliminate un-located forms λx .N by explicitly copying the
location of their lexical context.

So λcx .L(λy .N) becomes λcx .L(λcy .N)

Source language: the located lambda calculus

L,M,N ::= LM | λax .N | x | c
a, b ::= c | s

We eliminate un-located forms λx .N by explicitly copying the
location of their lexical context.

So λax .L(λy .N) becomes λcx .L(λcy .N)

Semantics

Read M ⇓a V as ”M evaluates, starting at a, to V .”

V ⇓a V (Value)

L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V

LM ⇓a V
(Beta)

L ⇓a c M ⇓a W δa(c ,W) ⇓a V

LM ⇓a V
(Delta)

Translation to a client-server system

Three techniques:

I CPS translation:
reifies the control state

I Defunctionalization:
turns higher-order functions into data (serializable)

I Trampolining:
inverts control, so state resides at client.

CPS translation
(due to Fischer, 1972, via Sabry and Wadler, 1997)

Source:

L,M,N ::= LM | V
V ::= λx .N | x

CPS translation:

(LM)†K = L†(λf .M†(λx .fxK))

V †K = KV ◦

(λx .N)◦ = λx .λk.N†k

x◦ = x

Defunctionalization

Defunctionalization target

D ::= letrecD and · · · and D

D ::= f (~x) = case x of A
A ::= a set of A items

A ::= F (~c)⇒ M

M ::= f (~M) | F (~M) | x | c

function names f , g

constructor names F ,G

Defunctionalization target

D ::= letrecD and · · · and D

D ::= f (~x) = case x of A
A ::= a set of A items

A ::= F (~c)⇒ M

M ::= f (~M) | F (~M) | x | c

function names f , g

constructor names F ,G

Defunctionalization (orig. Reynolds, 1972)

[[M]]top = letrec apply(fun, arg) = case fun of [[M]]fun∗

in [[M]]

[[λx .N]]fun = pλx .Nq(~y)⇒ [[N]]{arg/x}
where ~y = fv(λx .N)

[[LM]] = apply([[L]], [[M]])

[[V]] = V ◦

(λx .N)◦ = pλx .Nq(~y) where ~y = fv(λx .N)

x◦ = x

The operation pMq gives an opaque identifier for the term M.

Trampolining (due to Ganz, Friedman and Wand)

I Continually returns control to a top-level trampoline;

I Works on any tail-form program,
including CPS programs;

I Choice of the trampoline modifies the behavior.

Trampolining

(LM)T = Bounce(λz .LtMt)

(where z is a dummy)

V T = Return(V t)

(λx .N)t = λx .NT

x t = x

Behavior depends on our choice of tramp.

Example trampolines

Trivial trampoline:

tramp(x) = case x of
Bounce(thunk)⇒ tramp(thunk())
| Return(x)⇒ x

Step-counting trampoline:

tramp(n, x) = case x of
Bounce(thunk)⇒ print(n); tramp(n + 1, thunk())
| Return(x)⇒ x

Example trampolines

Trivial trampoline:

tramp(x) = case x of
Bounce(thunk)⇒ tramp(thunk())
| Return(x)⇒ x

Step-counting trampoline:

tramp(n, x) = case x of
Bounce(thunk)⇒ print(n); tramp(n + 1, thunk())
| Return(x)⇒ x

Our trampoline

Since the control state is reified, tramp can split the computation
into a client- and a server-side piece.

tramp(x) = case x of

| Bounce(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

(This shouldn’t make sense yet; don’t worry.)

Our trampoline

Since the control state is reified, tramp can split the computation
into a client and a server-side piece.

tramp(x) = case x of

| Call(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

(This shouldn’t make sense yet; don’t worry.)

The Big Transformation

First, the target: first-order client-server calculus

The client-server calculus

Syntax

configurations K ::= (M; ·) | (E ; M)

terms L,M,N ::= x | c | F (~M) | f (~M) | req f (~M)
definition set D, C,S ::= letrecD and · · · and D

function definitions D ::= f (~x) = case M of A
alternative sets A a set of A items

case alternatives A ::= F (~x)⇒ M
function names f , g

constructor names F ,G

Configurations of the machine

Semantics

Client:

(E [f (~V)]; ·) −→C,S (E [M{~V /~x}]; ·)
if (f (~x) = M) ∈ C

(E [case (F (~V)) of A]; ·) −→C,S (E [M{~V /~x}]; ·)
if (F (~x)⇒ M) ∈ A

Server:

(E ; E ′[f (~V)]) −→C,S (E ; E ′[M{~V /~x}])
if (f (~x) = M) ∈ S

(E ; E ′[case (F (~V)) of A]) −→C,S (E ; E ′[M{~V /~x}])
if (F (~x)⇒ M) ∈ A

Communication:

(E [req f (~V)]; ·) −→C,S (E ; f (~V))

(E ; V) −→C,S (E [V]; ·)

Now, the translation

Transformation on terms

(λax .N)◦ = pλax .Nq(~y) ~y = fv(λax .N)

x◦ = x

c◦ = c

V ∗ = V ◦

(LM)∗ = apply(L∗, M∗)

V †[] = cont([], V ◦)

(LM)†[] = L†(pMq(~y , [])) where ~y = fv(M)

Transformation to definitions (client-side)

[[M]]c,top = letrec apply(fun, arg) = case fun of [[M]]c,fun

and tramp(x) = case x of

| Call(f , x , k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

[[λcx .N]]c,fun = pλcx .Nq(~y)⇒ N∗{arg/x}
where ~y = fv(λx .N)

[[λsx .N]]c,fun =

pλsx .Nq(~y)⇒ tramp(req apply (pλsx .Nq(~y), arg , Fin()))

where ~y = fv(λx .N)

Transformation to definitions (server-side)

[[M]]s,top = letrec apply(fun, arg , k) = case fun of [[M]]s,fun

and cont(k, arg) = case k of

[[M]]s,cont

| App(fun, k)⇒ apply(fun, arg , k)

| Fin()⇒ Return(arg)

[[λsx .N]]s,fun = pλsx .Nq(~y)⇒ (N†k){arg/x}
where ~y = fv(λx .N)

[[λcx .N]]s,fun = pλcx .Nq(~y)⇒ Call(pλcx .Nq(~y), arg , k)

where ~y = fv(λx .N)

[[LM]]s,cont = pMq(~y , k)⇒ M†(App(arg , k))

where ~y = fv(M)

Correctness: Bisimulation

M
⇓

- V

M ′ −�
- V ′

M
⇓

- V

M ′ −�
- V ′

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

Summary

We can

I Enrich a functional programming language with location
annotations,

I which designate execution location of their contents lexically,

I and whose semantics are straightforward,

I and we can execute these programs on an asymmetrical
client-server system with a “stateless server”

I using a combination of classic transformations.

Thank you

