Signed and sealed

Philip Wadler

Jeremy Yallop

University of Edinburgh

Abstract

Language constructs for defining abstract types commontyeco
in two varieties: those that add and remove seals dynamicall
as values cross the abstraction boundary, and those thatk defi
the boundary statically using a type signature. Abstragéesyin
dynamically-typed languages are generally defined usirasse
whereas statically-typed languages more typically usgrasire;
two prominent exceptions are Haskell, which uses sealsSéaa
dard ML, which provides for both styles.

We show that the two styles are interconvertible, and give a
proof based on Pitts’ formulation of relational paramaétyicin
the light of this equivalence we revisit the decision to usals
for abstract types in Haskell and describe a library whiciemots
Haskell with a construct for defining abstract types usiggaiures
by a translation which inserts seals as necessary.

1. Introduction

Hiding in plain view Manufacturers sometimes try to prevent
customers investigating the inner workings of their pradii€here
are two common approaches. The manufacturer may seal te pro
uct, dfering no way of breaking the seal. In this case the customer
is free to investigate the product without risk of censuré,ghys-
ically prevented from accessing its inner workings. Altively,

the manufacturer may require that customers assent tornsédbat
proscribes investigation. In this case the customer idlieghliged

not to pry, even though there is no physical barrier to irigasibn.
The goal, whether achieved by locks or laws, is the sameidwal
access to a subset of the product’s functionality while goiihg

the underlying mechanism from external access.

We find a similar dichotomy when we turn to abstract types, the
topic of our paper. An abstract type definition creates a daon
between the part of a program ttdgfinesa type (the “manufac-
turer”), which acts on its representation, and the part tisesthe
type (the “customer”), which acts on its interface. There @&vo
common mechanisms for defining this abstraction boundarg. T
first involves tagging values of the type as they cross froenstc-
tion where the abstract type is defined to the section wheee it
used. For example, in Standard ML we might define a type of com-
plex numbers as follows.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission gorta fee.

ICFP '08 22-24 September 2008, Victory, BC, Canada

Copyright© 2008 ACM [to be supplied]. .. $5.00

local
datatype complex= Complexof (real x real)

in
fun
fun
fun
fun
fun

make (x,y) = Complex (x,y)
real (Complex (x,y)) = X
imag (Complex (x,y)) =y
conj (Complex (x,y)) = Complex (X, “y)
plus (Complex (u,v), Complex (x,y))
= Complex (u+x, Vv+y)
end

This introduces a new typepmplex defined in terms of a pair
of reals. TheComplexdata constructor can be used to construct
and deconstruct values of the new type, but lbeal keyword
delimits the scope of th€omplexdata constructor to the section
of the program betweeim andend; in other parts of the program
such values are “sealed”, and cannot be deconstructeded/alu
type complexare isomorphic to pairs of reals, but have a distinct
representation in the semantics. We dub this style of atigira
sealing

The second style of abstraction uses a type signature fo-dist
guish between values of the abstract type and values of e ty
with which it is implemented. Again, using Standard ML we frtig
choose to define a type of complex numbers as follows.

structure Complex=
struct
type complex= real x real

fun make (x,y) = (X,y)

fun real (x,y) = x

fun imag (x,y) =y

fun conj (x,y) = (X, “y)

fun plus ((U,v), XY) = (U+X, V+Y)
end :>

sig

type complex

val make : real x real - complex

val real : complex — real

val imag : complex— real

val conj : complex— complex

val plus : complexx complex— complex
end

The type system enforces this distinction, rejecting aptsrby
users of the type to conflate the abstract type with its remtesion.
With this style of abstraction values of typemplexare not merely
isomorphic to pairs of reals; they are represented iddhtiod/e
dub this style of abstractiogigning.

Both signing and sealing appear in modern functional laggsia
as the preferred means of defining abstract types. Signiundvies
drawing the abstraction boundary in the types, to be enflostat-
ically; sealing draws the boundary in the terms, to be che:gke
runtime, so it is no surprise that abstract types in Scheméyar
ically based on sealing (Matthews and Ahmed 2008). More sur-
prisingly, abstract types in Haskell use sealing, albeia@awt in

which the abstraction is enforced statically. While largpsre-
lated to Haskell — Gof¢Hugs (Jones and Peterson 1999) and Mi-
randa (Turner 1985) — use signing, the designers of Haskell d
cided in favour of sealing because it was not clear to them taow
define distinct instances of a type class for an abstractdaypets
representation with the signing style (Hudak, Hughes, goaed
Wadler 2007). In Standard ML both mechanisms are availasle,
illustrated above; as in Haskell, seals are checked sligtitiaere

is, however, no tag erasure, so abstraction violation israr an-
der both static and dynamic semantics.

For the language designer, then, there may be ostensilslenga
to prefer one of these styles over the other. In fact, as weodem
strate in this paper, the two styles are interconvertililerd is an
automatic translation between them preserving operdtemaiv-
alence with respect to a standard semantics. For examplge as
show in Section 2, it is possible to extend Haskell with a tams
for signing by translation into the built-in constructspaling the
need for the user to write tags; we could equally well add sach
mechanism to Scheme. In short, the language designer ogly saf

module Complex (Complex conj, plus,
real, imag, make
where
newtype Complex= Complex (Float, Float)

make (x,y) = Complex (X,y)

real (Complex (x,y)) = X

imag (Complex (x,y)) =y

conj (Complexc) = Complex (real ¢, -(imag ©)

plus (Complex (u,v)) (Complex (x,y)) =
Complex (u+x, v+y)

The designers of Haskell chose to provide this style of defini
tion rather than the signing style because of concerns dimmwut
types defined with signing would interact with type classesn—
particular, about potential ambiguity between type-clastances
given for the representation and abstract types (Hudak 208r).

In this section we describe a Haskell extension writtengi3iem-
plate Haskell (Sheard and Peyton Jones 2002) that trassihte
stract type definitions written in the signing style into défons in

offer either style as the means of defining abstract types with no the sealing style. With this extension the definition of thsteact

danger of losing the benefits of the other approach excepfans
as they pertain to human factors such as syntactic convamien

Our proof that the two styles of abstract type are intercrdible
is based on relational parametricity (Reynolds 1983; Wali&9).
Pitts has developed a particularly appealing presentatiqgrara-
metricity (Pitts 2000) in the presence of polymorphism aadipl
functions in which the usual denotational characterizeitib ad-
missible relations is replaced by a purely syntactic apgro®ur
proof consists of an application of the central result in agniex-
tension to Pitts’ system.

The work described in this paper treats a static variantaifreg
in which programs contain a fixed number of seals, known durin
type-checking. This concords with the features providetiagkell

and SML, but is less general than mechanisms used in Scheme,
where seals may be created dynamically. We plan to extend our

result to dynamic sealing in future work.
The contributions of this paper are as follows:

1. A characterization of the two essential styles of abstract type,
signingandsealing(Sections 1 and 3.1).

2. A proof that the two styles are interconvertible (Section 5) via
a type-indexed function (Section 4) in a higher-order laggu

with polymorphism and recursion, based on an extension of

Pitts’ PolyPCF (Section 3).

3. Anapplication of the result: a robust implementation of abstract
types usingsigning to Haskell (Section 2), by translation into
Haskell'ssealingstyle constructnewtype

2. Signed types in Haskell

To create an abstract type in Haskell the programmer defines a

datatype in a module which does not export the data constaict
Haskell provides a special form of datatype definition,ddtrced
with the newtype keyword, for creating type isomorphisms with
a single, unary constructor and unlifted semantics. We @ u
newtype within a module to define the abstract type of complex
numbers as follows.

type of complex numbers may be written as follows:

$ (signed
[d| type Complex= (Float, Float)

make :: (Float, Float) — Complex
make (x,y) = (X,y)

real :: Complex— Float
real (X,y) = X

imag :: Complex— Float
imag (x,y) =y
conj :: Complex— Complex

conj c = (real ¢, -(imag 0)

plus :: Complex— Complex— Complex
plus (u,v) X,y = WU, v+y) 11D

The Template Haskell quote operatial.[. . |] and unquote op-
eration $(..) convert between actual code and the abstract syntax
trees used to represent it. The functisignedis the interface to
our library: it maps an abstract type definition in the sigagde to
an equivalent definition in the sealed style. The type sigeatare
mandatory, since they indicate at which points the reptasen
type should be made abstract; that is, at which points thergen
ated code should wrap or unwrap values in a constructor. dtie c
generated for the above definition is as follows:

Syntax Translation functions

d = declarations
p = ewhered;;...d, value p _
dataTey...an=0C1...Cq datatype Hrle] = id
newtypeT ar...an=C{x:1} newtype HP[Tl = mapT
typeT ar...an =T type synonym Hi[T] = inT
) Xt signature Hi[T] = outT
T = types _
a variable Hilrital = HP[rd (Hil72], HY[72])
T71...7n constructor appl.
c = Crti...7n constructor decl.
e = expressions “In” and “out” functions
X variable
(o constructor in[newtypeT a3 ...an = C{unC:: 7}]
e & application =Af . Ty x> C(HE[T] f1... fa X)
Apy...pn— € abstraction
caseeof pp —> €;...py — € case match oufnewtypeT a;...an = C{unC:: 7}]
p = patterns =Afy oy x—= HE[T] fo.. f (UnC X
X variable
Cp...pn constructor Map functions
X, X; variables a,a; type variables]
C,Ci constructors T,T, type constructors For declarations
Signs to seals D[dataT a;...an=Cy...Cn]
signed = Afg)... (Fo, Gn) X —
al pelar oo = v casex of C((f,, /@)[cul ... CP(F.. 93 /@)[ca]
X = e D[newtypeT a1 ...a, = C{unC:: 7}]

= l(f1,91)~-~(fn,gn) x — C(TP((f, 63/@)[xa] (unC ¥)
Xn T DltypeTay...an=71

X = €[] SN
= = AfL) ... (Fo.g) y = TP((fi.@)/@)[ra] y
[d] newtypeTa; ... a1 = In{ out = 7}
(X, oo %) = (Y1, -+ Yn) For types
=(H ... HY[m + —S
(y]i/vhere {(r;_) = (ejl_r:[Tl] X;n = a1|n[T]Xn) T ((fi, Oi /E)I)[a’l] = fi
T-((F, ay/@)[ai] = G
inT = in[newtypeT a1 ... @1 = In{ out = 7 3] Tp((fi,gii/a)[c] = mapC
outT = outinewtypeT =In{ out : } — — —_
frenbpeT e - o (eI = TS (T e)/@ir,
mapT, = D[reify T1] T"((fi,giS/ET)[Tz])
mapTy = Dlreify Tl 1] For constructors
.where{Tl, T} =tes[r]utes[ri] U... Utcs[m] Cp(m/a)i)[c S
Finding type constructors = Cxi... % = CT((F. @y/@)lml ... TP((F 0 /@)l %)
In types
tesrla] = {} Standard map functions
tesr([T] = {} ifT er mapFun:: (¢ - B, B = a) - (y = 6, 6 = ¥)
(TYutcso r [reify T] ifT ¢r 2> (@-=>7 - -0
tesriry...7] = tecsrryutesr, mapFun (_,) (g,) h=9g . h.f

In declarations

maplList ::
tcprdataT ay...an=0C1...Cn] P @@= B = o~ e = 5]

tee 1 [C] U...tesc T [Cn] maplList (f,_) = map f

tcp r [newtypeT a;...an=C{x:1}] = tcsr7]
tcpritypeTar...an=1 = tesr[7]
In constructors Polarity
tcx [Cry...10] = tcs[ri]...tcs[rn] pef+. -} Id:ef_ :d§f+

Figure 1. Translation from signing to sealing in Haskell

newtype Complex= In { out :: (Float, Float) }

(conj, imag, make plus, real
= (conj’, imag’, make’, plus’, real)

mapFloat= id
mapComplex= A(f1, _) (2,) (x1, x2) —
((f1 x1, f2 x2)
(mapFloat mapFloa) (mapFloai mapFloa))
map2 = (A1,) (2, J) - a1, x2) —» (1 x1, f2 x2))

inC = In . mapComplex
outC = mapComplex. out

(conj’, imag’, make’, plus’, real)
= (mapFun (inC, out® (inC, outC) conj,
mapFun (inC, out® (mapFloaj mapFloa) imag,
mapFun
(map2 (mapFloaj mapFloa) (mapFloaj mapFloa),
map2 (mapFloai mapFloa) (mapFloai mapFloa))
(inC, outC)
make,
mapFun (inC, out®)
(mapFun (inC, out® (inC, out®,
mapFun (outC, inC) (outC, inC))
plus,
mapFun (inC, out® (mapFloaj mapFloa) real)
where
imag (x, y) =y
real (X, y) = x
conj ¢ = (real ¢, -(imag ©)
make (x, y) = (X,)
plus (u, V) (X,) = (U +x, (V+Y))

Names that appear imint type are fresh names generated by
Template Haskell and are not accessible outside the gederatie.

In particular, this includes the constructor and destmuctandout
that witness the type isomorphism; thus there is no way tatere
or examine values of typeomplexexcept via the five functions in
the interface.

The functionamapFloatandmapComplexare equivalent to the
identity function, since the type constructdfoat and Complex
are both nullary. For parameterized type constructors #ye fomc-
tions are more interesting: a type construckowith n parameters
results in a functiormapT which takes 8 functions, to be ap-
plied at positive and negative occurrences of each typempete.
For example, the map function for the list typeapListhas type
(@ — B,B = a) — [a] — [A]. In this case only the first func-
tion passed tonapListis used, since the type parameter to the list
type only occurs positively in its definition. We must digfirish
between positive and negative occurrences, since atymsitcur-
rences of the type construct@omplexwe will insert calls toln to
convert from the representation to the abstract type, andgstive
occurrences we will insert calls wut. In general the library will
generate a map function for each type constructor whicHesned
to in the definition, including those which do not appear agtit
cally.

For each operatioffi in the interface, we generate a transforma-
tion function that converts from the signing-style versidithe op-
eration to the sealing-style version. For example, for thecfion
real, the generated transformation function, which uses the sup
plied functionmapFun

mapFun(_, f) (g,) h=g . h.f

is the following
mapFun (inC, out®) (mapFloaj mapFloa)

with the type

((Float, Float) — Float) — (Complex — Float)

The bindings in the generated code are carefully arranged so
that references to bindings from inside the abstractionlvesto
the untransformed versions, while references to the bgsdfrom
outside resolve to the versions that have been transformede
seals. In particular, the call teal in the definition ofconjresolves
to the function with typeKloat, Float) — Float, not to the version
function with typeComplex— Float that we expose to the user.

Figure 1 gives the general scheme for generating map arst tran
lation functions. Several operations make use of polavity;pa-
rameterize these by a superschptwhich ranges ove# and —,
with an operatiorp for switching from one to the other. The func-
tionstcs tcs andtcs find all type constructors used in the types,
type declarations and constructor declarations; when @ tgm-
structor is encountered the corresponding definition igenetd
for examination using theeify operation provided by Template
Haskell. (The argumenmtis used to keep track of recursive datatype
bindings in order to avoid infinite regress.) The functiongen-
erates “map” functions for declarations; it makes use ofileuy
definitionsT andC for generating sub-expressions corresponding
to types and to constructors, respectively. Bétland C take an
argument which maps type variables to pairs of functionsekvh
a type variable is encountered, one of these functions (utpg
on the polarity) is returned as the generated term. At tygmi-ap
cations (the last case of the functidr) we generate two terms
for the “argument” type, with positive and negative polgrihese
are both passed as arguments to the term generated by tlee “fun
tion” type, to be invoked at values corresponding to positwd
negative occurrences of the type argument. The fundticiakes
anewtype declaration and generates a function that wraps values
of the representation type in the constructor, after tisimgrsubex-
pressions; the functiooutgenerates a function that strips construc-
tors from values and traverses the result. The fundtagenerates
the translation functions described earlier, which cotfterctions
on the signed type to functions on the sealed type. Againpthe
larity switch occurs at type applications, where we gemetaitms
with both positive and negative polarity for the argumepietyThe
signedfunction, the interface to the library, examines the declar
tion of the abstract type in signing style and generates are-co
sponding definition in the sealing style, using the openratide-
scribed above.

3. PolyPCF with tags

In order to demonstrate the equivalence of the two stylesfirfithg
abstract types we begin by defining a programming language in
which both styles can be expressed. Our language of choice is
an extension of PittsPolyPCF (Pitts 2000), which was designed
to investigate the operational behaviour of programs Huilin
partial polymorphic functions. The signature style of adst type
definition can be reduced to a use case of polymorphic types,
already presentin PolyPCF. In order to capture the cortsirstyle
we extend PolyPCF with “tags”, a sort of unary variant typéhwi
a constructolint, destructorouty and type constructor (-), for
eachT of an infinite set of tag naméag

It is convenient to establish the necessary results in t@fns
polymorphic types and tag types, which are at once simpldr an
more general than the constructs for abstract type definitioh
which we are ultimately concerned. These latter forms, whie
introduce into the syntax with treégntypeandsealtypekeywords,
are intended to capture the essence of signature-stylecafidg
style abstract type definitions; such a definition combihesoper-
ations of defining a fresh type, bringing it into scope in aipatar
region of the program, and —in the casesefltype—associating

Sealing

sealtype @ = C(number X number)

Signing

with make : number X number — « signtype @ = number X number
= Ap:number X number (inc p) with make : number X number — «
real : @ — number = Ap:number X number (p)
= Ap:C(number x number) (fst (outc p)) real : @ — number
imag : @ — number = Ap:number X number(fst p)
= Ap:C(number x number) (snd (outc p)) imag : @ — number
conj : a - «a = Ap:number X number(snd p)
= Ap:C(number X number) (inc (fst (outc p), conj : @ - «
-(snd (outc p)))) = Ap:number X number((fst p, -snd p))
plus : @ - a - «a plus : @ - a - «a
= Ap:C(number X number) = Ap:number X number
(1q:C(number X number) (Ag:number X number
(inc(fst (outc p) + fst (outc q), ((fst p + fst q,
snd (outc p) + snd (outc q)))) snd p + snd q)))
in M in M

Sealing, desugared

(Aa(Amakenumber X number — «
(Areal:a — number
(limag:a@ — number
(Aconj:a — «a
(plus:a » a — «
(€:5DDDDD))
(C(number X number))
(Ap:number X number (inc p))
(Ap:C(number x number) (fst (outc p)))
(Ap:C(number X number) (snd (outc p)))
(Ap:C(number X number) (inc (fst outc p, -snd (outc p))))
(Ap:C(number X number) (Aq:C(number X number)
(inc (fst (outc p) + fst (outc q),
snd (outc p) + snd (outc q)))))

Signing, desugared
(Aa(Amakenumber X number — «
(Areal:@ — number
(dimag:a@ — number
(Aconj:a — «a
(Aplus:a —» a — «

aniiIN
(number X number)
(Ap:number X number(p))
(Ap:number X number(fst p))
(Ap:number X number(snd p))
(Ap:number X number((fst p, -snd p)))
(Ap:number X number (Aq:number X number((fst p + fst q,

snd p + snd q))))

Figure 2. An abstract type of complex numbers in extended PolyPCF

a tag with the type. Investigating the properties of tag sypad
polymorphic types allows us to separate these operatiessiting
in a simpler presentation.

In this section we illustrate by example how abstract typag m
be defined in PolyPCF, leaving the formal development of the
language to the next section and the definition of the deffiveds
sealtypeandsigntypeto Section 5.

3.1 Example

The four programs in Figure 2 illustrate the encoding of te t
styles of type abstraction. Our examples make use of types fo
pairs and numbers which are not directly supported by PdiyPC
but which can be Church-encoded in the usual way. We will use
pairs and numbers as though PolyPCF supported them directly
The top-left program gives a constructor-style definitidrao
complex number type usinggaltype Since PolyPCF is explicitly
typed —unlike, say, ML— we must give type signatures for each

exported value. The second example gives the same definition

written in plain PolyPCF withousealtype

The top-right program gives a signature-style definitionaof
complex number type usingigntype The fourth example gives
the same definition written in plain PolyPCF witha@igintype

The remainder of this section is a straightforward recégtitn
of (Pitts 2000). Most figures and definitions are quotes frbia t
work, the key diference being the addition of tags. Adding tags is
straightforward: no new insight or style of proof is reqdirdhe
parenthesised numbers accompanying each definition an figu
refer to the corresponding definition or figure in Pitts’ work

3.2 Syntax

Fig. 3 defines the syntax of our extension of PolyPCF. We metai
the usual conventions: for example, application is lefoaisgive
and we omit parentheses where possible.

PolyPCF augments the familiar polymorphic lambda calculus
with fixpoint recursion and polymorphic lists, which serhe trole
of a ground type.

3.3 Typing

Figure 4 gives the typing relatioh + M : 7 between typing
environmentsl', terms M and typesr. As the judgements are
entirely standard we refrain from commenting further.

3.4 Evaluation

Definition 1. (Values).The set of values is drawn from the set of
closed terms of closed type generated by the following gramm

Vi=ax:t(M) | Aa(M) | nil, | MM | inf M

Figure 5 gives the evaluation relation for extended PolyPCF
The rules are mostly determined by the definition of valuesi.ck
tion application is call-by-name.

3.5 Relations

Our proof of equivalence hinges on the properties of a padic
binary relation on terms, to be defined in Section 3.8. We wash
show that pairs of programs that are syntactically relateddartic-
ular way have equivalent behaviour in a precise sense. We§irs
tablish what is meant by “equivalent behaviour” (Theorenti3n

T = (Types)
a type variable
ToT function type
Ya(r) Y —type
7 list list type
T(7) tagged type
M = (Terms)

X variable
X (M) function abstraction
M M function application
Aa(M) type generalisation
Mt type specialisation
fix(M) fixpoint recursion
nil . empty list
M: M non-empty list
caseM of {nil = M

| X x= M} case expression
int M tagged constructor
outr M tag destructor

Notes

(i) @ andx range over disjoint countably infinite sefgVarand
Var of type variables and variables respectively.

(i) The constructions Ya(-), Ax 7(-), Aa(-), and
caseM of {nil = M’ | x :: X = (=)} are binders. We will

identify types and terms up to renaming of bound variables

and bound type variables.

(i) We write ftv(e) for the finite set of free type variables of an

expressiore (be it a type or a term) anfd(M) for the finite set
of free variables of a terrivl.

(iv) The result of capture-avoiding substitution of a typdor
all free occurrences of a type variahiein e (a type or a
term) will be denote@|r/a]. Similarly, M[M’/x] denotes the
result of capture-avoiding substitution of a teki for all free
occurrences of the variablein M.

Figure 3. Syntax of the PolyPCF language extended with tags

(Fig. 1)

develop a framework in which programs that are suitably aynt
tically related way are also semantically related, and lfjrsthiow

that the classes of programs with which we are concernedyare s

tactically related, and so behave equivalently.

Definition 2. (Properties of relations).(2.2) Supposé€ is a set of
4-tuples ', M, M’, 7) satisfying

I'- MM :tr=T+M:7&THM :7)
where we writd + MEM’ : tinstead of [, M, M’, 1) € E.

(i) & is compatibleif it is closed under the axioms and rules in

Fig. 6. It issubstitutivef it is closed under the rules in Fig. 7.
(i) Compatible relations are automaticaligflexive A PolyPCF

precongruencés a compatible, substitutive relation which is

IX:treEX:T

ILx:mm+rM:1 I'tF:t1—> 1 I'rA:7y
Frax:ti(M) 11— 1 'rFA:n
larM:r 't G:VYa(r)

FFGT2:T1[T2/Q]
'rFit—>r~

'+ Aa(M) : Ya(r)

I'Fnil, :7list 'rH:7 I'rT:7list
FrH:T:rlist
CrL:7ylist M1, hit,t:rliste My

I'+caseLof (nil = My [h:t= My} :1p
rerM:r 't M:T(7)
Crint M:T(7) Frouty M: 7
Notes
(i) Typing judgements take the forin- M : r where

— the typing environment is a pair A, A with A a finite
subset offyVarandA a function defined on a finite subset
dom(A) of Var and mapping eaclk € dom(A) to a type
with free type variables in A;

— M is a term withfty(M) € A andfv(M) C dom(A);;
— 7 is a type withftv(r) € A.

(ii) The notationTI', x : 7 indicates the typing environment ob-
tained from the typing environmeiit= A, A by properly ex-
tending the functior\ by mappingx ¢ dom(A) to r. Similarly,

T, a is the typing environment obtained by properly extending
Awith ana ¢ A.

(iif) The explicit type information included in the syntax func-
tion abstractions and empty lists ensures that, givandM,
there is at most onefor whichT' + M : 7 holds.

Figure 4. Typing assignment relation for PolyPCF with tags (Fig.
2)

also transitive. A PolyPCEongruenceis a precongruence

which is also symmetric.
(i) & is adequatsf for all closed types € Typand closed terms

M, M’ € Tern(z list)

. ., def .
OrMEM :7list= (M| nil, & M’ | nil,)

Theorem 3. (PolyPCF observational congruence). (2.3) There is
a largest adequate, compatible and substitutive relatiois an
equivalence relation and hence is the largest adequateFfy
congruence relation. We call it PolyPCF observational car@nce
and write it as=gps.

3.6 Frame stacks

Definition 4. (Frame Stacks)(3.2) Frame stackgrovide a way to
denote evaluation contexts. The grammar for PolyPCF fraacks
is

S:=ld|SoF
whereF ranges oveframes
F:i=(-M) | (-7) | (case- of{nil = M | x:: x= M}) | outy —

Theorem 5. (A structural induction principle for PolyPCF termi-
nation). (3.6) For all closed types, 7' € Typ, for all frame stacks

ViV
FUuax:z(M) MIA/XIUV GlAa(M) Mr/a] IV
FALV GrlV
F fix(F) || V
fix(F) L V
Linil, MUV

caseLof (nil = My | hi:t= M} |V
LJH=T M[H/h, T/t] | V
caseL of {(nil = My |h:t= My} |V
M’ | int M M|V
outr M | V

Figure 5. PolyPCF evaluation relation (Fig. 3)

IXx:tEXEX:T

I'x:mqy-MEM 1,
F'FAX: 1 (M)Eax: (M) 111 — 12

T+FEFT 51, TrAEA Ty
T+H(FAEFA)

aIl'r MEM @ 1
'+ Aa(M) E Aa(M’) : Va(T)

I+ GEG: Va(ry)
I'r (GTz)(S(G,Tz):Tl[Tz/CI]

''FEF 17> 1
I+ fix(F)Efix(F) :

I+ nil; Enil, : list

r-HEH @7 FrTET :rlist
F'r(H:T)EH = T):7list

FFL(SL/:T]_"St Fl—Ml(SM:’l:TZ
F,h:Tl,t:TlliStl- M, & Mél—Tz

'+ (caseL of {nil = My | h:it= My})
& (casel’ of {nil = M{ [h:t= M) 7,

r- M& M7
FrintM & int M :T(7)

rrMé&M :T(r)
I'toutr M & outy M’ @ 7

Figure 6. Compatibility properties (Fig. 4)

S e StacKr, 7’ list), and for all closed terms M Tern(z), we have
SMlnl, & STM

where the relation(-) T (-) is inductively defined by the rules in
Figure 9.

3.7 Term and stack relations

Definition 6. (Term- and stack-relations).(3.8) A PolyPCF term-
relation is a binary relation between (typeable) closethseiGiven
closed PolyPCF types ' € Typ, we write

Relr, ")

for the set of term-relations that are subset3af(r) x Tern(7’).
A PolyPCFstack-relationis a binary relation between (typeable)

a,TFMEM i1y
[[r2/a] + M[r2/a] & M'[T2/a] : T1[72/a]
I'x:mm-rMEM 1, I'tNEN 1
'+ M[N/X] E M'[N’/X] : T2

Figure 7. Substitutivity properties (Fig. 5)

I'rld:to> 1

I'rS:tvoo 1 r'-A:r
F'+So(-A):(t—> 1) 1"

I'+S:t[r/a]o—> 1" a not free inl’
't So(-7):VYa(t')o> 1"

I'rS:7o> 1 I'rM;: 7 Lh:rt:zlistr My: 7
I'+So(case— of (nil = My |h:t= My}): rlistos 7”7

'-S:to> 7
'+ Soouty —: T(r)o> 7’

Figure 8. Typing frame stacks (Fig. 6)

S=S0o(-A) S’ T M[A/X] So(-A)TF
ST Ax: (M) T STFA
S=S0(-1) S’ T M[r/a] So(-7) TG
S T Aa(M) T STGr
So(-fix(F)) TF
" So Tfix(F)
S=1Id
S T nil,
S =S o(case— of {nil = M; |h::t= M,})
ST M
S T nil,

S =S o (case— of {nil = M; |h::t= M,})
S’ T Ma[H/h, T/1]})

STH:T

So(case— of (nil=M;|h:t=M}) TM
S T caseM of {nil = My |h: t = My}
S =S o (outy -) SSTM So(outr =) TM
STint M ~ SToutr M

Figure 9. Structural termination relation (Fig. 7)

frame stacks whose result types are list types. We write
StRe{r,)
for the set of stack-relations that are subsetStatkr) x StacKr’).

Using the ¢) T (<) relation we can manufacture a stack-relation
from a term-relation and vice versa, as follows:

Definition 7. (The (=)™ operation on relations).(3.9) Given any
7,7 € Typandr € Relr, 7’), definer™ € StRe{r, 7') by

def
(S.S)er" S VM M) er(STM o S TM);

and given anys € StRe{r, 7’) defines™ € Relr, 7’) by

def
(Mm)es S V(S,S)es(STM e S TM)
The ()T operator gives us a Galois connection with respect to
inclusion, i.e.

rcs' o scr’

Definition 8. (TT-Closed term-relations).(3.10) A term-relation
ris TT-closedif r =r™T, or equivalently ift 7T C r, or equivalently
if r = s™ for some stack-relatios, or equivalently ifr = (r’)™" for
some term-relation’.

3.8 Action of type constructors on term relations

We are now ready to define the central logical relationEach
type constructor in PolyPCF has an associated “action” am te
relations. The combination of these gives the definition lobical
relation, parameterized by a tuple of term-relations.

Definition 9. (Action of — on term-relations). (4.1) Givenr; €
Relr,, 7)) andr, € Relr, 7)), we definer; — r, € Relr; —
T2, Ty = 15) by:

def
(FF) et —rh S VAA)en((FAF A)er,).

Definition 10. (Action of ¥ on term-relations). (4.2) Letr; and
7, be PolyPCF types with at most a single free type variabkagy.
SupposeR is a function mapping term-relatior® € Relr, 7))
(anyt,, 7, € Typ to term-relationdR(r) € Relry[72/a], 71[15/a]).
Then we can form a term-relatiofr (R(r)) € Re(Ya(r1), V(7))
as follows:
def
(G.G') € VI(R() & Vrz.7) € Typ(¥r € Relr,75)
(G 72,6 1) € R()).
Definition 11. (Action of (list—) on term-relations). (4.3) Given
7,77 € Typ r1 € Relr,7’) andr, € Relr list,7" list), define
1+ (ry xrp) € Relr list, 7’ list) by:
1+ (I']_ X |'2) d:ef
{(nil,nil) U{H = T,H =T) | (HH)er, &(T,T") €ry}
Note that the subset relation makeelr list,7’ list) into a com-

plete lattice and that, for eachthe functionr, — (1+ (ro xr2))™"
is monotone. Therefore we can form its greatest (post-)fpanit:

(r) list 1,1+ (roxra) ™.
Thus ;) list is the unique term-relation satisfying
(ry) list = (L + (ry x (ry) list))™™
Vro(ra C (L + (r xr2))"" = 1y C (rq) list
Definition 12. (Action of T(-) on term relations). Givenr €
Relr,7’) defineT(r) € RelT(r), T(')) by
T(r) (M, M| (outy M, outy,) € 1)

Definition 13. (The logical relation A). For each PolyPCF type
tauand each lis# = a1, . .., a;, of distinct type variables containing
the free type variables af, we define a function from tuples of
term-relations to term-relations

r; € Relry, 1), ..., € Relmy, 7)) = A(F/d) € Rel«[7/d], 7[7' /a’]).
whereA is defined as in Figure 10.

Definition 14. (Logical relation on open terms).(4.5) Suppose
I'rM:7andl'+ M’ : 7 hold, withl' = a4, ..., @m, X1 : T1, ..., %n :

Ard) Lo
Ao (1d) LT Ar@) - A (1)
Aver (1) T (AT 0, 7/@))
As(/d) %1 (/@) list

def

Ar(P/@d) = T(A(F/@))

Figure 10. Definition of the logical relation (Fig. 8)

7, say. Write
' MAM' : 7 (2)

to mean: given any, o € Typandr; € Reloy, o) (fori = 1.m)
with eachr; TT-closed, then for anyNj,NJf) € Ay (/@) (for
i =1.n)itis the case that

(M[¢*/&@, NX], M’[¢7 /&, N'R]) € A (P/@)

3.9 Fundamental Property

Proposition 15. (‘ Fundamental Property’ of thelogical relation).
(4.6) The relation (1) between open PolyPCF terms is corbfeati
and substitutive, in the sense of Definition 2.

The proof of Proposition 15 depends on the following Lemma:

Lemma 16. (4.11) For each open type with free type variables
in @ say, if the rem-relations are T T-closed, then so is the term-
relationA, (F/@) defined in Figure 10. In particular for each closed
typer, A.() € Relr, 1) is TT-closed.

Pitts’ proof of this lemma proceeds by induction on the dtrces
of types, showing that the action of each type construct@asaT-
closed relations tor T-closed relations. We have added a family
of type constructors for tagged typ&$—) and therefore need the
following lemma to extend this theorem to our augmentedesyst

Lemma 17(T(-) preservesr T-closure) Suppose € Relr, 7).
(i) Suppose given valueistr M andint M’ of typesT(r) and
T (') respectively, satisfyinghl, M’) e r.
If ris TT-closed thenift M,int M) € T(r).
(i) If (S,S) erT then Soouty —, S’ couty =) € T(r)".
(iii) If r is TT-closed then so i$(r).

Proof.
(i) The statement in (i) follows from the equivalence

outrintM |V &< M|V
(ii) Suppose §,S’) er™. For any (N, N’) € T(r) we have

Soouty -TN & SToutr N
(by definition of ¢) T (-))
& S Touty N
(since puty N,outr N’) e r
and §,S") er")
S’ oouty — T N’
(by definition of) T (-))

Thus S o outy —, S’ o outy =) € T(r)".

(i) Suppose §,S) er™, (N,N) er, (M, M) e T(r)"". We must
show that M, M") € T(r).
By (ii) we have § o outy —, S’ o outy =) € T(r)", and hence

=4

Sooutr —-TM& S oouty - T M

Therefore

SToutt M e S Touty M’
Thus, by the definition o)™, (outy M,outr M) € (r")" =,
and so M, M’) € T(r) by the definition ofT (-). ThusT(r) is
TT-closed.

]

Proposition 18. (4.15) The logical relation (1) coincides with
PolyPCF observational congruence:

MW iroTrMAM : T @)

Having established the necessary preliminaries to thevaqui

lence proof, we now turn to the development of the converbimn
tween the two styles of abstract type.

4. Tagging and untagging

4.1 Anexample

The conversion between signed and sealed definitions ofaabst
types is performed by a pair of type-indexed functions wislert
and remove tags as necessary. For example, to convert the fun
tion plusin the signed implementation of the complex type given
in Section 3.1 into a function that can be used in the seal@teim
mentation we generate a function of type

(@ = a - a) - (C(a) - C(a) — C(a))

whereq is the type variable denoting the abstract type of complex
numbers andC is the tag used in the sealed representation. The
conversion function we generate based on the typplw$in the
sealed representation is

Ah: (@ > a—a)
(Ax: C(a)
Qj:a—>a
(Ay : C(e) ((1z: a(inc 2))
(i ((1z: C(a) (outc 2) ¥)))))
(h((4z: C(«) (outc 2)) x))))

or, after performing some “administrative reductions” ofRin
1975),

Ah: (@ > a—>a)
(Ax: C(@) (Ay : C(a) (inc (h (outc x) (outc ¥)))))

Conversely, to move from the sealed to the signed represamta
we generate a function of type

(C(a) » C(a) » C(a)) = (@ » a -)
The generated term, after administrative reductions, is
Ah: (C(a) — C(a) — C(a))
(Ax: a(2y : a(outc (h(inc X) (inc ¥)))))

4.2 Definition

We now give functions that translate between tagged andjgath
representations of abstract types.

For each a type with a free variablexr and no occurrences of
the tagT we will define function<Cy [7] andC; ,[7] with types

Cy,l7l 7 - 1[T(a)/a]
CrolTl fT(@)/a] =7

and define operations; , and-7 , on types:
Ty = T

T ()/a]

TT,ry

As the types suggest, these operations may be obtained ypea t
Ya(7) in the following manner: Let magbe the map of the bifunc-
tor corresponding te, with type

VB(Vy(By,y = B) > T8> Ty

(In general, ifr hasn free type variables, mapwill take 2n func-
tions, since each may occur positively or negatively).iheindout
be defined as follows.

in = ax:a(int X)
out def AX: T(a)(outr X)
Then
i def L .
Cr.lrl = ax:itr,(map, a(T(e))inout)
Crld %" ax: i, (map, (T(@) @ outin)

We now give a precise definition &[] andCs [7] by cases
ont. Let prange ovef+, -} and writep for the operation that flips
the polarity, so that

—def
+

—def
= - —:+

To avoid excessive clutter we leave the subscripimplicit. (The
subscript remains constant throughout the transformation

CPLYB(M)] = Ax:VB(T)P(AB(CP[T] (xB))
Clri—> 1] = ah:(r— 2)P(Ax: T5(CPlr2] (h (CP[r1] X))
CPlrlist] = maplList ¢P) (zP) (CP[7])
CP[T'(r)] = ax:T'(r)P(int (CP[7](outr X))
CPlal = ax:B(¥
C'la] = ax:a(int X)
Cla] = ax:T(a)(outr X)

where mapList ¥Ya(VB((e — B) — (« list — 3 list))) is defined
in the usual way.

Proposition 19. The functions G [7] and Ci [7] are mutual
inverses. That is,

obs

Crolrl o Cr,lT] AX 1 7(X) ®)

(4)

Proof. Either directly using the standag} and - equalities that
follow from the evaluation rules, or indirectly via map fasi O

obs

Craltl o Cr,lal] Ax T[T ()/a)(X)

5. Signing and sealing

In Section 3.1 we introduced the construstaltypeandsigntype
for creating abstract types. We now give formal definitiohearh
construct, both directly and via desugaring into the conglmage.

Syntax

M= ...
| sealtypea = T(r)with X3 : 79 = M;... % : 7 = Mpin M
| signtype a= 7 with X711 =Mi... % :7Th=Myin M

As we noted in the introduction, the distinction between the
two constructs is somewhat obscured in PolyPCF by the need to
supply type signatures for each exported component in bwth t
signtype and sealtypevariants. In a language with type inference
the signatures can be omittedsealtypedefinitions.

Typing

CrM :7i[T()/a] (Yi.l<i<n)
Fa, Xy :71,..., % :Tah - M2 77 a ¢ fv(t”)

I+ sealtypea = T(r)with X; 71 =My... % 7h : Mpin M :

kM :tifr/a] (Yi.l<i<n)
Foa, X1 :T1,. s Xn i ThF M 77 a ¢ fv(r”)

Pl

I+ signtypea = twith Xy : 71 = M1... X i th : Myin M @ 77

Evaluation

M[T(7)/a,M1/X1, ... My/%] L V

sealtypea = T(r)with X3 : 71 = M1... Xy i Th s Mpin M | V

M[7/a, M1/Xa, ... Mu/X%] UV
signtypea =twith X3 : 71 = My... X, i Th - Mpin M L V

Desugaring

Thesealtypeandsigntypeare derived forms; there is a straightfor-
ward translation into core PolyPCF terms as shown by thewisll

ing lemma.

Lemma 20 (Desugaring) Let |, J, K andL be defined as follows
for some non-negative integer, terms M, My, ... M,, and types

,T1,...Th-

def

I = sealtypea =T(r)with x; 71 =M1... X, i : Mpin M

J def signtypea = twith X3 : 11 = My... %, i 7 Mpin M
def

K T (Ae(x: 71 W s ta(M))..) (T(@) My ... M,
def

L Z (Ae(xi: il % ta(M)..) () My ... My

Then the following hold:

IV < K|V
JJV < LV
'el:7 < T+rK:7
r{+J:7”7 < T+rL:7

wherea ¢ fv(r”).

Proof. The statements 5 and 6 follow directly from the definition

of the evaluation relatiogp above and in Figure 5.

The statements 7 and 8 follow directly from the definitionhaf t

typing relation|— : above and in Figure 4.

5.1 Equivalence

Proposition 21. Abstract type definitions with sealtype may be
converted to observationally-equivalent signtype deéding and

conversely as shown below.

©)
(6)
@)
8)

O

sealtypea = T(r)with X3 i 71 = My... %, i 7 = Mpin M obs

signtypea = twith x; : 71 = C5, [711] M1.. . %y 1 7 = C, [Tn] Mpin M

signtypea = twithx; i 71 = M1... X, i 7h = Mpin M obs
sealtypea = T(r) With g : 71 = C7, [11] M1... Xy - 7n = Gy, [Tn] Mpin M

Proof. Let
Rr[r] = (M, TM))| +M:7}77
and
ak Mi LT
foreach 1<i < n.
Comparing the definitions af, C* andC™ reveals that

(Mi, C7,[7i] Mi) € A (Rr[7]/a) ©)

(Cr.[mi] Mi, Mi) € Ay (Rr[7]/a) (10)
By Theorem 15 (“Fundamental Property) is compatible, and
hence reflexive. We can instantiate the relation (1) to give

@, X1 Tl ... % i Tn F MAM : 77
From (9) and (10) it follows that

(M[t/a, Mi/X], MT(@)/a,Ci[1] Mi/R]) € A (Re[7]/)

(M[t/a,Cy [Mi/R], MIT(@)/a, Mi/R]) € A (Re[7]/)
and so (sincer ¢ fv(7”)),

(M[z/a, Mi/X], M[T()/a,C[m] Mi/R]) € A ()
(M[/a,Cy o [1i] Mi/X], M[T(0)/a, Mi/X]) € A ()

and hence (by Theorem 18),

M[r/e, Mi/R] 2EMIT (1) /e, Ci [a] Mi/X]

MIT (2)/e, M /R] 25 M[r/a. C;] Mi/R]

and hence (by the evaluation rules &altypeandsigntype),

sealtypea = T(r) with X3 : 71 = My... X i 7 = Mpyin M obs

signtypea = twith X3 : 71 = C7, [T1] M1... X, 7y = CT, [Ta] Mpin M

signtypea = twith X3 : 71 = M1... X i Th = Mpin M 025
sealtypea = T(r) with X, : 71 = C7, [11] M1... X : 7q = Cy, [Tn] Mpin M

6. Related work

The sealing style for creating abstract types dates backdwi$/
(James H. Morris 1973), who informally outlines the conimtt
with the signing style. More recently, several authors hgiven

formal translations between static and dynamic schemeprsr
serving types. It is not surprising that the translatioressamilar in

each case, although their motivations (and consequerlgrétise
properties that they investigatei@ir considerably.

Sumii and Pierce (Pierce and Sumii 2000) have examined the PLAN Haskell Workshop Q®ages 1-16. ACM Press, October
relationship between type abstraction and cryptograpbyeldp- 2002.

ing a theory of relational parametricity for their cryptaghic 1- Eijiro Sumii and Benjamin C. Pierce. Logical relations foceyp-

calculus. They give an encoding of type abstraction intaygitmon tion. Journal of Computer Securityl1(4):521-554, 2003. Ex-

(but not vice _/ersa);_their enc_ryp_ti_on primitives, whichvgia vari- tended abstract appearedliith IEEE Computer Security Foun-
ant of dynamic sealing, are significantly more expressies thur dations Workshappp. 256-269, 2001

tags, so the inverse translation is not straightforward.) i))
Matthews and Findler (Matthews and Findler 2007) investiga D. A. Turner. Miranda: a non-strict functional language fwit

the semantics of programs written in multiple languages +thpa polymorphic types. InProc. of a conference on Functional
in Scheme and partly in ML. They investigate two ways to elecod programming languages and computer architectpages 1-16,

foreign values: as opaque “lumps” that must be explicitiggeal New York, NY, USA, 1985. Springer-Verlag New York, Inc.

to the language which created them each time they are used, or philip Wadler. Theorems for free! IRPCA '89, pages 347—359,
values that have been wrapped using a type-directed syrateg New York, NY, USA, 1989. ACM. ISBN 0-89791-328-0.

that they can be used directly. The wrappings, which dynalfyic
check that the values they wrap have the appropriate shapes,
an instance of higher-order contracts (Findler and Felle002);
the type-directed scheme for inserting guards is analogmasir
translation from signing-style to sealing-style absttgpes.

Matthews and Ahmed (Matthews and Ahmed 2008) extend
Matthews and Findler's system with polymorphism, and prove
a parametricity property. In order to such prevent violasiof
parametricity as can arise from dynamic inspection of \&log
the Scheme portion of a program, they dynamically seal gatdie
abstract type before passing them to Scheme.

Acknowledgments

We thank Sam Lindley and Ezra Cooper for comments on a draft
of this paper.

References

Robert Bruce Findler and Matthias Felleisen. Contract$ifgier-
order functions. IHCFP '02: Proceedings of the seventh ACM
SIGPLAN international conference on Functional program-
ming pages 48-59, New York, NY, USA, 2002. ACM. ISBN 1-
58113-487-8. doi: httfydoi.acm.or@l0.1143581478.581484.

Paul Hudak, John Hughes, Simon Peyton Jones, and PhilipgWadl
A history of Haskell: being lazy with class. HOPL IIl, New
York, NY, USA, 2007. ACM.

Jr. James H. Morris. Types are not setsPIOPL '73 pages 120—
124, New York, NY, USA, 1973. ACM.

Mark P. Jones and John Petersthe Hugs 98 User Manual 999.
httpy/cvs.haskell.orHuggdownloadghugs.pdf.

Jacob Matthews and Amal Ahmed. Parametric Polymorphism
Through Run-Time Sealing, or, Theorems for Low, Low Prices!
In ESOP March 2008.

Jacob Matthews and Robert Bruce Findler. Operational sécsan
for multi-language program&IGPLAN Not.42(1):3-10, 2007.

Benjamin Pierce and Eijiro Sumii. Relating cryptographyd an
polymorphism, July 2000. Some parts superseded by (Sumii
and Pierce 2003).

Andrew M. Pitts. Parametric polymorphism and operatioqaiie
alence.Mathematical. Structures in Comp. Sdi0(3):321-359,
2000.

Gordon Plotkin. Call-by-name, call-by-value and the lamlodl-
culus. Theoretical Computer Science125-159, 1975.

John C. Reynolds. Types, abstraction and parametric patymo
phism. Information Processing '83ages 513-523, 1983.

Tim Sheard and Simon Peyton Jones. Template metaprogrgmmin
for Haskell. In Manuel M. T. Chakravarty, editohCM SIG-

