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Abstract
Language constructs for defining abstract types commonly come
in two varieties: those that add and remove seals dynamically
as values cross the abstraction boundary, and those that define
the boundary statically using a type signature. Abstract types in
dynamically-typed languages are generally defined using seals
whereas statically-typed languages more typically use a signature;
two prominent exceptions are Haskell, which uses seals, andStan-
dard ML, which provides for both styles.

We show that the two styles are interconvertible, and give a
proof based on Pitts’ formulation of relational parametricity. In
the light of this equivalence we revisit the decision to use seals
for abstract types in Haskell and describe a library which extends
Haskell with a construct for defining abstract types using signatures
by a translation which inserts seals as necessary.

1. Introduction
Hiding in plain view Manufacturers sometimes try to prevent
customers investigating the inner workings of their products. There
are two common approaches. The manufacturer may seal the prod-
uct, offering no way of breaking the seal. In this case the customer
is free to investigate the product without risk of censure, but phys-
ically prevented from accessing its inner workings. Alternatively,
the manufacturer may require that customers assent to a license that
proscribes investigation. In this case the customer is legally obliged
not to pry, even though there is no physical barrier to investigation.
The goal, whether achieved by locks or laws, is the same: to allow
access to a subset of the product’s functionality while protecting
the underlying mechanism from external access.

We find a similar dichotomy when we turn to abstract types, the
topic of our paper. An abstract type definition creates a boundary
between the part of a program thatdefinesa type (the “manufac-
turer”), which acts on its representation, and the part thatusesthe
type (the “customer”), which acts on its interface. There are two
common mechanisms for defining this abstraction boundary. The
first involves tagging values of the type as they cross from the sec-
tion where the abstract type is defined to the section where itis
used. For example, in Standard ML we might define a type of com-
plex numbers as follows.
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local
datatype complex = Complex of (real × real)

in
fun make (x,y) = Complex (x,y)
fun real (Complex (x,y)) = x
fun imag (Complex (x,y)) = y
fun conj (Complex (x,y)) = Complex (x, ˜y)
fun plus (Complex(u,v), Complex (x,y))

= Complex (u+x, v+y)
end

This introduces a new type,complex, defined in terms of a pair
of reals. TheComplexdata constructor can be used to construct
and deconstruct values of the new type, but thelocal keyword
delimits the scope of theComplexdata constructor to the section
of the program betweenin andend; in other parts of the program
such values are “sealed”, and cannot be deconstructed. Values of
type complexare isomorphic to pairs of reals, but have a distinct
representation in the semantics. We dub this style of abstraction
sealing.

The second style of abstraction uses a type signature to distin-
guish between values of the abstract type and values of the type
with which it is implemented. Again, using Standard ML we might
choose to define a type of complex numbers as follows.

structure Complex =
struct

type complex = real × real
fun make (x,y) = (x,y)
fun real (x,y) = x
fun imag (x,y) = y
fun conj (x,y) = (x, ˜y)
fun plus ((u,v), (x,y) = (u+x, v+y)

end :>
sig

type complex
val make : real × real → complex
val real : complex→ real
val imag : complex→ real
val conj : complex→ complex
val plus : complex× complex→ complex

end

The type system enforces this distinction, rejecting attempts by
users of the type to conflate the abstract type with its representation.
With this style of abstraction values of typecomplexare not merely
isomorphic to pairs of reals; they are represented identically. We
dub this style of abstractionsigning.

Both signing and sealing appear in modern functional languages
as the preferred means of defining abstract types. Signing involves
drawing the abstraction boundary in the types, to be enforced stat-
ically; sealing draws the boundary in the terms, to be checked at
runtime, so it is no surprise that abstract types in Scheme are typ-
ically based on sealing (Matthews and Ahmed 2008). More sur-
prisingly, abstract types in Haskell use sealing, albeit a variant in



which the abstraction is enforced statically. While languages re-
lated to Haskell — Gofer/Hugs (Jones and Peterson 1999) and Mi-
randa (Turner 1985) — use signing, the designers of Haskell de-
cided in favour of sealing because it was not clear to them howto
define distinct instances of a type class for an abstract typeand its
representation with the signing style (Hudak, Hughes, Jones, and
Wadler 2007). In Standard ML both mechanisms are available,as
illustrated above; as in Haskell, seals are checked statically; there
is, however, no tag erasure, so abstraction violation is an error un-
der both static and dynamic semantics.

For the language designer, then, there may be ostensible reasons
to prefer one of these styles over the other. In fact, as we demon-
strate in this paper, the two styles are interconvertible: there is an
automatic translation between them preserving operational equiv-
alence with respect to a standard semantics. For example, aswe
show in Section 2, it is possible to extend Haskell with a construct
for signing by translation into the built-in constructs, avoiding the
need for the user to write tags; we could equally well add sucha
mechanism to Scheme. In short, the language designer can safely
offer either style as the means of defining abstract types with no
danger of losing the benefits of the other approach except insofar
as they pertain to human factors such as syntactic convenience.

Our proof that the two styles of abstract type are interconvertible
is based on relational parametricity (Reynolds 1983; Wadler 1989).
Pitts has developed a particularly appealing presentationof para-
metricity (Pitts 2000) in the presence of polymorphism and partial
functions in which the usual denotational characterization of ad-
missible relations is replaced by a purely syntactic approach. Our
proof consists of an application of the central result in a minor ex-
tension to Pitts’ system.

The work described in this paper treats a static variant of sealing
in which programs contain a fixed number of seals, known during
type-checking. This concords with the features provided byHaskell
and SML, but is less general than mechanisms used in Scheme,
where seals may be created dynamically. We plan to extend our
result to dynamic sealing in future work.
The contributions of this paper are as follows:

1. A characterization of the two essential styles of abstract type,
signingandsealing(Sections 1 and 3.1).

2. A proof that the two styles are interconvertible (Section 5) via
a type-indexed function (Section 4) in a higher-order language
with polymorphism and recursion, based on an extension of
Pitts’ PolyPCF (Section 3).

3. Anapplication of the result: a robust implementation of abstract
types usingsigning to Haskell (Section 2), by translation into
Haskell’ssealing-style construct,newtype.

2. Signed types in Haskell
To create an abstract type in Haskell the programmer defines a
datatype in a module which does not export the data constructors.
Haskell provides a special form of datatype definition, introduced
with the newtype keyword, for creating type isomorphisms with
a single, unary constructor and unlifted semantics. We can use
newtype within a module to define the abstract type of complex
numbers as follows.

module Complex(Complex, conj, plus,
real, imag, make)

where
newtype Complex = Complex(Float, Float)

make (x,y) = Complex(x,y)
real (Complex (x,y)) = x
imag (Complex (x,y)) = y
conj (Complex c) = Complex (real c, -(imag c))
plus (Complex (u,v)) (Complex (x,y)) =

Complex (u+x,v+y)

The designers of Haskell chose to provide this style of defini-
tion rather than the signing style because of concerns abouthow
types defined with signing would interact with type classes —in
particular, about potential ambiguity between type-classinstances
given for the representation and abstract types (Hudak et al. 2007).
In this section we describe a Haskell extension written using Tem-
plate Haskell (Sheard and Peyton Jones 2002) that translates ab-
stract type definitions written in the signing style into definitions in
the sealing style. With this extension the definition of the abstract
type of complex numbers may be written as follows:

$(signed
[d| type Complex = (Float, Float)

make :: (Float, Float) → Complex
make (x,y) = (x,y)

real :: Complex→ Float
real (x,y) = x

imag :: Complex→ Float
imag (x,y) = y

conj :: Complex→ Complex
conj c = (real c, -(imag c))

plus :: Complex→ Complex→ Complex
plus (u,v) (x,y) = (u+x,v+y) |])

The Template Haskell quote operation [d| . . . |] and unquote op-
eration $(. . .) convert between actual code and the abstract syntax
trees used to represent it. The functionsigned is the interface to
our library: it maps an abstract type definition in the signedstyle to
an equivalent definition in the sealed style. The type signatures are
mandatory, since they indicate at which points the representation
type should be made abstract; that is, at which points the gener-
ated code should wrap or unwrap values in a constructor. The code
generated for the above definition is as follows:



Syntax

d ::= declarations
p = ewhered1; . . .dn value
data T α1 . . . αn = c1 . . . cn datatype
newtypeT α1 . . . αn = C {x :: τ} newtype
type T α1 . . . αn = τ type synonym
x :: τ signature

τ ::= types
α variable
T τ1 . . . τn constructor appl.

c ::= C τ1 . . . τn constructor decl.
e ::= expressions

x variable
C constructor
e1 e2 application
λp1 . . . pn→ e abstraction
caseeof p1 → e1 . . . pn → en case match

p ::= patterns
x variable
C p1 . . . pn constructor

x, xi variables α, αi type variables
C, Ci constructors T, Ti type constructors

Signs to seals

signed
[d| type T α1 . . . α1 = τ

x1 :: τ1
x1 = e1
. . .
xn :: τn
xn = en |]

=

[d| newtypeT α1 . . . α1 = In { out :: τ }
(x1, . . . xn) = (y1, . . . yn)
(y1, . . . yn) = (H+In[τ1] x1, . . . H+In[τn] xn)

where x1 = e1; . . . xn = en

inT = in[newtypeT α1 . . . α1 = In { out :: τ }]
outT = out[newtypeT α1 . . . α1 = In { out :: τ }]

mapT1 = D[reify T1]

...

mapTm = D[reify Tm] |]

where{T1, . . .Tm } = tcs[τ] ∪ tcs[τ1] ∪ . . . ∪ tcs[τn]

Finding type constructors

In types
tcs r [α] = {}

tcs r [T] = {} if T ∈ r
{T} ∪ tcsD r [reify T] if T < r

tcs r [τ1 . . . τn] = tcs rτ1 ∪ tcs r τ2
In declarations

tcsD r [data T α1 . . . αn = c1 . . . cn] = tcsC r [c1] ∪ . . . tcsC r [cn]
tcsD r [newtypeT α1 . . . αn = C {x :: τ}] = tcs r [τ]
tcsD r [type T α1 . . . αn = τ = tcs r [τ]

In constructors
tcsC [C τ1 . . . τn] = tcs[τ1] . . . tcs[τn]

Translation functions

Hp
T [α] = id

Hp
T [T ′] = mapT′

H+T [T] = inT

H−T [T] = outT

Hp
T [τ1 τ2] = Hp

T [τ1] (Hp
T [τ2], H p̄

T [τ2])

“In” and “out” functions

in[newtypeT α1 . . . αn = C{unC :: τ}]
= λ f1 . . . fn x→ C(H+C[τ] f1 . . . fn x)

out[newtypeT α1 . . . αn = C{unC :: τ}]
= λ f1 . . . fn x→ H+C[τ] f1 . . . fn (unC x)

Map functions

For declarations

D[data T α1 . . . αn = c1 . . . cn]
= λ( f1,g1) . . . ( fn,gn) x→

casex o f Cp(
−−−−−→
( fi , gi)/

−→αi)[c1] . . .Cp(
−−−−−→
( fi ,gi)/

−→αi)[cn]
D[newtypeT α1 . . . αn = C{unC :: τ}]

= λ( f1,g1) . . . ( fn,gn) x→ C(T p(
−−−−−→
( fi ,gi)/

−→αi )[τn] (unC x))
D[type T α1 . . . αn = τ

= λ( f1,g1) . . . ( fn,gn) y→ T p(
−−−−−→
( fi ,gi)/

−→αi)[τn] y

For types

T+(
−−−−−→
( fi ,gi)/

−→αi)[αi ] = fi
T−(
−−−−−→
( fi ,gi)/

−→αi)[αi ] = gi

T p(
−−−−−→
( fi , gi)/

−→αi)[C] = mapC

T p(
−−−−−→
( fi , gi)/

−→αi)[τ1 τ2] = T p(
−−−−−→
( fi ,gi)/

−→αi )[τ1] (T p(
−−−−−→
( fi ,gi )/

−→αi)[τ2],

T p̄(
−−−−−→
( fi , gi)/

−→αi)[τ2])

For constructors

Cp(
−−−−−→
( fi ,gi)/

−→αi)[C τ1 . . . τn]

= C x1 . . . xn → C(T p(
−−−−−→
( fi ,gi)/

−→αi )[τ1] x1 . . .T p(
−−−−−→
( fi ,gi)/

−→αi )[τn] xn)

Standard map functions
mapFun :: (α → β, β → α) → (γ → δ, δ → γ)

→ (α → γ) → (β → δ)
mapFun (_, f) (g, _) h = g . h . f

mapList :: (α → β, β → α) → [α] → [β]
mapList (f,_) = map f

Polarity

p ∈ {+,−} +̄
def
= − −̄

def
= +

Figure 1. Translation from signing to sealing in Haskell



newtype Complex= In { out :: (Float, Float) }

(conj, imag, make, plus, real)
= (conj’, imag’, make’, plus’, real’)

mapFloat= id
mapComplex= λ(f1, _) (f2, _) (x1, x2) →

((f1 x1, f2 x2)
(mapFloat, mapFloat) (mapFloat, mapFloat))

map2 = (λ(f1, _) (f2, _) → λ(x1, x2) → (f1 x1, f2 x2))

inC = In . mapComplex
outC = mapComplex. out

(conj’, imag’, make’, plus’, real’)
= (mapFun (inC, outC) (inC, outC) conj,

mapFun (inC, outC) (mapFloat, mapFloat) imag,
mapFun
(map2 (mapFloat, mapFloat) (mapFloat, mapFloat),
map2 (mapFloat, mapFloat) (mapFloat, mapFloat))
(inC, outC)
make,

mapFun (inC, outC)
(mapFun (inC, outC) (inC, outC),
mapFun (outC, inC) (outC, inC))
plus,

mapFun (inC, outC) (mapFloat, mapFloat) real)
where

imag (x, y) = y
real (x, y) = x
conj c = (real c, -(imag c))
make (x, y) = (x, y)
plus (u, v) (x, y) = ((u + x), (v + y))

Names that appear infaint typeare fresh names generated by
Template Haskell and are not accessible outside the generated code.
In particular, this includes the constructor and destructor In andout
that witness the type isomorphism; thus there is no way to create
or examine values of typeComplexexcept via the five functions in
the interface.

The functionsmapFloatandmapComplexare equivalent to the
identity function, since the type constructorsFloat and Complex
are both nullary. For parameterized type constructors the map func-
tions are more interesting: a type constructorT with n parameters
results in a functionmapT which takes 2n functions, to be ap-
plied at positive and negative occurrences of each type parameter.
For example, the map function for the list type,mapListhas type
(α → β, β → α) → [α] → [β]. In this case only the first func-
tion passed tomapListis used, since the type parameter to the list
type only occurs positively in its definition. We must distinguish
between positive and negative occurrences, since at positive occur-
rences of the type constructorComplexwe will insert calls toIn to
convert from the representation to the abstract type, and atnegative
occurrences we will insert calls toout. In general the library will
generate a map function for each type constructor which is referred
to in the definition, including those which do not appear syntacti-
cally.

For each operationf in the interface, we generate a transforma-
tion function that converts from the signing-style versionof the op-
eration to the sealing-style version. For example, for the function
real, the generated transformation function, which uses the sup-
plied functionmapFun

mapFun (_, f) (g, _) h = g . h . f

is the following

mapFun (inC, outC) (mapFloat, mapFloat)

with the type

((Float, Float) → Float) → (Complex → Float)

The bindings in the generated code are carefully arranged so
that references to bindings from inside the abstraction resolve to
the untransformed versions, while references to the bindings from
outside resolve to the versions that have been transformed to use
seals. In particular, the call toreal in the definition ofconj resolves
to the function with type (Float,Float)→ Float, not to the version
function with typeComplex→ Float that we expose to the user.

Figure 1 gives the general scheme for generating map and trans-
lation functions. Several operations make use of polarity;we pa-
rameterize these by a superscriptp, which ranges over+ and−,
with an operationp for switching from one to the other. The func-
tions tcs, tcsD andtcsC find all type constructors used in the types,
type declarations and constructor declarations; when a type con-
structor is encountered the corresponding definition is retrieved
for examination using thereify operation provided by Template
Haskell. (The argumentr is used to keep track of recursive datatype
bindings in order to avoid infinite regress.) The functionD gen-
erates “map” functions for declarations; it makes use of auxiliary
definitionsT andC for generating sub-expressions corresponding
to types and to constructors, respectively. BothT and C take an
argument which maps type variables to pairs of functions. When
a type variable is encountered, one of these functions (depending
on the polarity) is returned as the generated term. At type appli-
cations (the last case of the functionT) we generate two terms
for the “argument” type, with positive and negative polarity; these
are both passed as arguments to the term generated by the “func-
tion” type, to be invoked at values corresponding to positive and
negative occurrences of the type argument. The functionin takes
a newtypedeclaration and generates a function that wraps values
of the representation type in the constructor, after traversing subex-
pressions; the functionoutgenerates a function that strips construc-
tors from values and traverses the result. The functionH generates
the translation functions described earlier, which convert functions
on the signed type to functions on the sealed type. Again, thepo-
larity switch occurs at type applications, where we generate terms
with both positive and negative polarity for the argument type. The
signedfunction, the interface to the library, examines the declara-
tion of the abstract type in signing style and generates an corre-
sponding definition in the sealing style, using the operations de-
scribed above.

3. PolyPCF with tags
In order to demonstrate the equivalence of the two styles of defining
abstract types we begin by defining a programming language in
which both styles can be expressed. Our language of choice is
an extension of Pitts’PolyPCF (Pitts 2000), which was designed
to investigate the operational behaviour of programs builtfrom
partial polymorphic functions. The signature style of abstract type
definition can be reduced to a use case of polymorphic types,
already present in PolyPCF. In order to capture the constructor style
we extend PolyPCF with “tags”, a sort of unary variant type with
a constructorinT , destructoroutT and type constructorT(−), for
eachT of an infinite set of tag namesTag.

It is convenient to establish the necessary results in termsof
polymorphic types and tag types, which are at once simpler and
more general than the constructs for abstract type definition with
which we are ultimately concerned. These latter forms, which we
introduce into the syntax with thesigntypeandsealtypekeywords,
are intended to capture the essence of signature-style and sealing-
style abstract type definitions; such a definition combines the oper-
ations of defining a fresh type, bringing it into scope in a particular
region of the program, and —in the case ofsealtype—associating



Sealing

sealtype α = C(number × number)
with make : number × number → α

= λp:number × number (inC p)

real : α → number
= λp:C(number × number)(fst (outC p))

imag : α → number
= λp:C(number × number)(snd(outC p))

conj : α → α
= λp:C(number × number)(inC (fst (outC p),

-(snd(outC p))))
plus : α → α → α

= λp:C(number × number)
(λq:C(number × number)
(inC(fst (outC p) + fst (outC q),

snd (outC p) + snd (outC q))))
in M

Sealing, desugared

(Λα(λmake:number × number → α
(λreal:α → number
(λimag:α → number
(λconj:α → α
(λplus:α → α → α
(M)))))))

(C(number × number))

(λp:number × number (inC p))

(λp:C(number × number)(fst (outC p)))
(λp:C(number × number)(snd (outC p)))
(λp:C(number × number)(inC (fst outC p, -snd (outC p))))
(λp:C(number × number)(λq:C(number × number)
(inC (fst (outC p) + fst (outC q),

snd (outC p) + snd (outC q)))))

Signing
signtype α = number × number

with make : number × number → α
= λp:number × number (p)

real : α → number
= λp:number × number(fst p)

imag : α → number
= λp:number × number(snd p)

conj : α → α
= λp:number × number((fst p, -snd p))

plus : α → α → α
= λp:number × number

(λq:number × number
((fst p + fst q,

snd p + snd q)))
in M

Signing, desugared
(Λα(λmake:number × number → α
(λreal:α → number
(λimag:α → number
(λconj:α → α
(λplus:α → α → α
(M)))))))

(number × number)

(λp:number × number(p))
(λp:number × number(fst p))
(λp:number × number(snd p))
(λp:number × number((fst p, -snd p)))
(λp:number × number(λq:number × number((fst p + fst q,

snd p + snd q))))

Figure 2. An abstract type of complex numbers in extended PolyPCF

a tag with the type. Investigating the properties of tag types and
polymorphic types allows us to separate these operations, resulting
in a simpler presentation.

In this section we illustrate by example how abstract types may
be defined in PolyPCF, leaving the formal development of the
language to the next section and the definition of the derivedforms
sealtypeandsigntypeto Section 5.

3.1 Example
The four programs in Figure 2 illustrate the encoding of the two
styles of type abstraction. Our examples make use of types for
pairs and numbers which are not directly supported by PolyPCF,
but which can be Church-encoded in the usual way. We will use
pairs and numbers as though PolyPCF supported them directly.

The top-left program gives a constructor-style definition of a
complex number type usingsealtype. Since PolyPCF is explicitly
typed —unlike, say, ML— we must give type signatures for each
exported value. The second example gives the same definition
written in plain PolyPCF withoutsealtype.

The top-right program gives a signature-style definition ofa
complex number type usingsigntype. The fourth example gives
the same definition written in plain PolyPCF withoutsigntype.

The remainder of this section is a straightforward recapitulation
of (Pitts 2000). Most figures and definitions are quotes from this
work, the key difference being the addition of tags. Adding tags is
straightforward: no new insight or style of proof is required. The
parenthesised numbers accompanying each definition and figure
refer to the corresponding definition or figure in Pitts’ work.

3.2 Syntax
Fig. 3 defines the syntax of our extension of PolyPCF. We retain
the usual conventions: for example, application is left associative
and we omit parentheses where possible.

PolyPCF augments the familiar polymorphic lambda calculus
with fixpoint recursion and polymorphic lists, which serve the role
of a ground type.

3.3 Typing
Figure 4 gives the typing relationΓ ⊢ M : τ between typing
environmentsΓ, terms M and typesτ. As the judgements are
entirely standard we refrain from commenting further.

3.4 Evaluation
Definition 1. (Values).The setV of values is drawn from the set of
closed terms of closed type generated by the following grammar:

V::=λx : τ(M) | Λα(M) | nil τ | M :: M | inT M

Figure 5 gives the evaluation relation for extended PolyPCF.
The rules are mostly determined by the definition of values. Func-
tion application is call-by-name.

3.5 Relations
Our proof of equivalence hinges on the properties of a particular
binary relation on terms, to be defined in Section 3.8. We wishto
show that pairs of programs that are syntactically related in a partic-
ular way have equivalent behaviour in a precise sense. We first es-
tablish what is meant by “equivalent behaviour” (Theorem 3), then



τ ::= (Types)

α type variable

τ→ τ function type

∀α(τ) ∀ − type

τ list list type

T(τ) tagged type

M ::= (Terms)

x variable

λx : τ(M) function abstraction

M M function application

Λα(M) type generalisation

M τ type specialisation

fix(M) fixpoint recursion

nil τ empty list

M :: M non-empty list

caseM of {nil ⇒ M

| x :: x⇒ M} case expression

inT M tagged constructor

outT M tag destructor

Notes

(i) α and x range over disjoint countably infinite setsTyVar and
Var of type variables and variables respectively.

(ii) The constructions ∀α(−), λx : τ(−), Λα(−), and
caseM of {nil ⇒ M′ | x :: x′ ⇒ (−)} are binders. We will
identify types and terms up to renaming of bound variables
and bound type variables.

(iii) We write ftv(e) for the finite set of free type variables of an
expressione(be it a type or a term) andfv(M) for the finite set
of free variables of a termM.

(iv) The result of capture-avoiding substitution of a typeτ for
all free occurrences of a type variableα in e (a type or a
term) will be denotede[τ/α]. Similarly, M[M′/x] denotes the
result of capture-avoiding substitution of a termM′ for all free
occurrences of the variablex in M.

Figure 3. Syntax of the PolyPCF language extended with tags
(Fig. 1)

develop a framework in which programs that are suitably syntac-
tically related way are also semantically related, and finally show
that the classes of programs with which we are concerned are syn-
tactically related, and so behave equivalently.

Definition 2. (Properties of relations).(2.2) SupposeE is a set of
4-tuples (Γ,M,M′, τ) satisfying

Γ ⊢ MEM′ : τ⇒ (Γ ⊢ M : τ & Γ ⊢ M′ : τ)

where we writeΓ ⊢ MEM′ : τ instead of (Γ,M,M′, τ) ∈ E.

(i) E is compatibleif it is closed under the axioms and rules in
Fig. 6. It issubstitutiveif it is closed under the rules in Fig. 7.

(ii) Compatible relations are automaticallyreflexive. A PolyPCF
precongruenceis a compatible, substitutive relation which is

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ M : τ2
Γ ⊢ λx : τ1(M) : τ1 → τ2

Γ ⊢ F : τ1 → τ2 Γ ⊢ A : τ1
Γ ⊢ F A : τ2

Γ, α ⊢ M : τ

Γ ⊢ Λα(M) : ∀α(τ)

Γ ⊢ G : ∀α(τ1)

Γ ⊢ G τ2 : τ1[τ2/α]
Γ ⊢ F : τ→ τ

Γ ⊢ fix(F) : τ

Γ ⊢ nil τ : τ list Γ ⊢ H : τ Γ ⊢ T : τ list

Γ ⊢ H :: T : τ list

Γ ⊢ L : τ1 list Γ ⊢ M1 : τ2 Γ,h : τ1, t : τ1 list ⊢ M2 : τ2
Γ ⊢ caseL of {nil ⇒ M1 | h :: t ⇒ M2} : τ2

Γ ⊢ M : τ

Γ ⊢ inT M : T(τ)

Γ ⊢ M : T(τ)

Γ ⊢ outT M : τ
Notes

(i) Typing judgements take the formΓ ⊢ M : τ where

— the typing environmentΓ is a pair A,∆ with A a finite
subset ofTyVarand∆ a function defined on a finite subset
dom(∆) of Var and mapping eachx ∈ dom(∆) to a type
with free type variables in A;

— M is a term withftv(M) ⊆ A andfv(M) ⊆ dom(∆);;

— τ is a type withftv(τ) ⊆ A.

(ii) The notationΓ, x : τ indicates the typing environment ob-
tained from the typing environmentΓ = A,∆ by properly ex-
tending the function∆ by mappingx < dom(∆) toτ. Similarly,
Γ, α is the typing environment obtained by properly extending
A with anα < A.

(iii) The explicit type information included in the syntax of func-
tion abstractions and empty lists ensures that, givenΓ andM,
there is at most oneτ for whichΓ ⊢ M : τ holds.

Figure 4. Typing assignment relation for PolyPCF with tags (Fig.
2)

also transitive. A PolyPCFcongruenceis a precongruence
which is also symmetric.

(iii) E is adequateif for all closed typesτ ∈ Typand closed terms
M,M′ ∈ Term(τ list)

∅ ⊢ M E M′ : τ list ⇒ (M ⇓ nil τ
def
⇔ M′ ⇓ nil τ)

Theorem 3. (PolyPCF observational congruence). (2.3) There is
a largest adequate, compatible and substitutive relation.It is an
equivalence relation and hence is the largest adequate PolyPCF
congruence relation. We call it PolyPCF observational congruence
and write it as=obs.

3.6 Frame stacks
Definition 4. (Frame Stacks).(3.2)Frame stacksprovide a way to
denote evaluation contexts. The grammar for PolyPCF frame stacks
is

S::=Id | S ◦ F

whereF ranges overframes:

F::=(− M) | (− τ) | (case− of{nil ⇒ M | x :: x⇒ M}) | outT −

Theorem 5. (A structural induction principle for PolyPCF termi-
nation). (3.6) For all closed typesτ, τ′ ∈ Typ, for all frame stacks



V ⇓ V

F ⇓ λx : τ(M) M[A/x] ⇓ V

F A ⇓ V

G ⇓ Λα(M) M[τ/α] ⇓ V

G τ ⇓ V
F fix(F) ⇓ V

fix(F) ⇓ V

L ⇓ nil τ M1 ⇓ V

caseL of {nil ⇒ M1 | h :: t⇒ M2} ⇓ V

L ⇓ H :: T M2[H/h,T/t] ⇓ V

caseL of {nil ⇒ M1 | h :: t⇒ M2} ⇓ V

M′ ⇓ inT M M ⇓ V

outT M′ ⇓ V

Figure 5. PolyPCF evaluation relation (Fig. 3)

Γ, x : τ ⊢ xE x : τ

Γ, x : τ1 ⊢ M E M′ : τ2
Γ ⊢ λx : τ1(M) E λx : τ1(M′) : τ1 → τ2

Γ ⊢ F E F′τ1 → τ2 Γ ⊢ AE A′ : τ1
Γ ⊢ (FA) E (F′A′) : τ2

α, Γ ⊢ M E M′ : τ

Γ ⊢ Λα(M) E Λα(M′) : ∀α(τ)

Γ ⊢ G EG : ∀α(τ1)

Γ ⊢ (G τ2) E (G′ τ2) : τ1[τ2/α]

Γ ⊢ F E F′ : τ→ τ

Γ ⊢ fix(F) E fix(F′) : τ

Γ ⊢ nil τ E nil τ : τ list

Γ ⊢ H E H′ : τ Γ ⊢ T E T ′ : τ list

Γ ⊢ (H :: T) E (H′ :: T ′) : τ list

Γ ⊢ L E L′ : τ1 list Γ ⊢ M1 E M′1 : τ2
Γ,h : τ1, t : τ1 list ⊢ M2 E M′2 ⊢ τ2

Γ ⊢ (caseL of {nil ⇒ M1 | h :: t ⇒ M2})
E (caseL′ of {nil ⇒ M′1 | h :: t ⇒ M′2}) : τ2

Γ ⊢ M E M′ : τ

Γ ⊢ inT M E inT M′ : T(τ)

Γ ⊢ M E M′ : T(τ)

Γ ⊢ outT M E outT M′ : τ

Figure 6. Compatibility properties (Fig. 4)

S ∈ Stack(τ, τ′ list), and for all closed terms M∈ Term(τ), we have

S M⇓ nilτ′ ⇔ S ⊤ M

where the relation(−) ⊤ (−) is inductively defined by the rules in
Figure 9.

3.7 Term and stack relations
Definition 6. (Term- and stack-relations).(3.8) A PolyPCF term-
relation is a binary relation between (typeable) closed terms. Given
closed PolyPCF typesτ, τ′ ∈ Typ, we write

Rel(τ, τ′)

for the set of term-relations that are subsets ofTerm(τ) × Term(τ′).
A PolyPCFstack-relationis a binary relation between (typeable)

α, Γ ⊢ M E M′ : τ1
Γ[τ2/α] ⊢ M[τ2/α] E M′[τ2/α] : τ1[τ2/α]

Γ, x : τ1 ⊢ M E M′ : τ2 Γ ⊢ N E N′ : τ1
Γ ⊢ M[N/x] E M′[N′/x] : τ2

Figure 7. Substitutivity properties (Fig. 5)

Γ ⊢ Id : τ◦→ τ

Γ ⊢ S : τ′◦→ τ′′ Γ ⊢ A : τ

Γ ⊢ S ◦ (−A) : (τ→ τ′)◦→ τ′′

Γ ⊢ S : τ′[τ/α]◦→ τ′′ α not free inΓ

Γ ⊢ S ◦ (−τ) : ∀α(τ′)◦→ τ′′

Γ ⊢ S : τ′◦→ τ′′ Γ ⊢ M1 : τ′ Γ,h : τ, t : τ list ⊢ M2 : τ′

Γ ⊢ S ◦ (case− of {nil ⇒ M1 | h :: t ⇒ M2}) : τ list◦→ τ′′

Γ ⊢ S : τ◦→ τ′

Γ ⊢ S ◦ outT − : T(τ)◦→ τ′

Figure 8. Typing frame stacks (Fig. 6)

S = S′ ◦ (− A) S′ ⊤ M[A/x]

S ⊤ λx : τ(M)

S ◦ (− A) ⊤ F

S ⊤ F A

S = S′ ◦ (− τ) S′ ⊤ M[τ/α]

S ⊤ Λα(M)

S ◦ (− τ) ⊤ G

S ⊤ G τ
S ◦ (− fix(F)) ⊤ F

S ◦ ⊤ fix(F)

S = Id

S ⊤ nil τ

S = S′ ◦ (case− of {nil ⇒ M1 | h :: t ⇒ M2})
S′ ⊤ M1

S ⊤ nil τ

S = S′ ◦ (case− of {nil ⇒ M1 | h :: t ⇒ M2})
S′ ⊤ M2[H/h,T/t]})

S ⊤ H :: T

S ◦ (case− of {nil ⇒ M1 | h :: t ⇒ M2}) ⊤ M

S ⊤ caseM of {nil ⇒ M1 | h :: t ⇒ M2}

S = S′ ◦ (outT −) S′ ⊤ M

S ⊤ inT M

S ◦ (outT −) ⊤ M

S ⊤ outT M

Figure 9. Structural termination relation (Fig. 7)

frame stacks whose result types are list types. We write

StRel(τ, τ′)

for the set of stack-relations that are subsets ofStack(τ)×Stack(τ′).

Using the (−)⊤(−) relation we can manufacture a stack-relation
from a term-relation and vice versa, as follows:

Definition 7. (The (−)⊤ operation on relations).(3.9) Given any
τ, τ′ ∈ Typandr ∈ Rel(τ, τ′), definer⊤ ∈ StRel(τ, τ′) by

(S,S′) ∈ r⊤
def
⇔ ∀(M,M′) ∈ r(S⊤ M ⇔ S′ ⊤ M′);



and given anys∈ StRel(τ, τ′) defines⊤ ∈ Rel(τ, τ′) by

(M,m′) ∈ s⊤
def
⇔ ∀(S,S′) ∈ s(S⊤ M ⇔ S′ ⊤ M′)

The (−)⊤ operator gives us a Galois connection with respect to
inclusion, i.e.

r ⊆ s⊤ ⇔ s⊆ r⊤

Definition 8. (⊤⊤-Closed term-relations).(3.10) A term-relation
r is⊤⊤-closedif r = r⊤⊤, or equivalently ifr⊤⊤ ⊆ r, or equivalently
if r = s⊤ for some stack-relations, or equivalently ifr = (r ′)⊤⊤ for
some term-relationr ′.

3.8 Action of type constructors on term relations
We are now ready to define the central logical relation∆. Each
type constructor in PolyPCF has an associated “action” on term
relations. The combination of these gives the definition of alogical
relation, parameterized by a tuple of term-relations.

Definition 9. (Action of → on term-relations). (4.1) Givenr1 ∈

Rel(τ1, τ′1) and r2 ∈ Rel(τ2, τ′2), we definer1 → r2 ∈ Rel(τ1 →
τ2, τ

′
1 → τ

′
2) by:

(F, F′) ∈ r1 → r2
def
⇔ ∀(A,A′) ∈ r1((F A,F′ A′) ∈ r2).

Definition 10. (Action of ∀ on term-relations). (4.2) Letτ1 and
τ′1 be PolyPCF types with at most a single free type variable,α say.
SupposeR is a function mapping term-relationsR ∈ Rel(τ2, τ′2)
(anyτ2, τ′2 ∈ Typ) to term-relationsR(r) ∈ Rel(τ1[τ2/α], τ′1[τ

′
2/α]).

Then we can form a term-relation∀r(R(r)) ∈ Rel(∀α(τ1),∀α(τ′1))
as follows:

(G,G′) ∈ ∀r(R(r))
def
⇔ ∀τ2, τ

′
2 ∈ Typ(∀r ∈ Rel(τ2, τ

′
2)

((G τ2,G
′ τ′2) ∈ R(r))).

Definition 11. (Action of ( list−) on term-relations). (4.3) Given
τ, τ′ ∈ Typ, r1 ∈ Rel(τ, τ′) and r2 ∈ Rel(τ list, τ′ list), define
1+ (r1 × r2) ∈ Rel(τ list, τ′ list) by:

1+ (r1 × r2)
def
=

{(nilτ,nil τ′ )} ∪ {(H :: T,H′ :: T ′) | (H,H′) ∈ r1 & (T,T ′) ∈ r2}

Note that the subset relation makesRel(τ list, τ′ list) into a com-
plete lattice and that, for eachr1 the functionr2 7→ (1+ (r1× r2))⊤⊤

is monotone. Therefore we can form its greatest (post-)fixedpoint:

(r1) list
def
= νr2(1+ (r1 × r2))

⊤⊤.

Thus (r1) list is the unique term-relation satisfying

(r1) list = (1+ (r1 × (r1) list))⊤⊤

∀r2(r2 ⊆ (1+ (r1 × r2))
⊤⊤ ⇒ r2 ⊆ (r1) list

Definition 12. (Action of T(−) on term relations). Given r ∈
Rel(τ, τ′) defineT(r) ∈ Rel(T(τ),T(τ′)) by

T(r)
def
= {(M,M′|(outT M,outM′ ) ∈ r}

Definition 13. (The logical relation ∆). For each PolyPCF type
tauand each list~α = α1, . . . , αn of distinct type variables containing
the free type variables ofτ, we define a function from tuples of
term-relations to term-relations

r1 ∈ Rel(τ1, τ
′
1), . . . , rn ∈ Rel(τn, τ

′
n) 7→ ∆τ(~r/~α) ∈ Rel(τ[~τ/~α], τ[~τ′/ ~α′]).

where∆ is defined as in Figure 10.

Definition 14. (Logical relation on open terms).(4.5) Suppose
Γ ⊢ M : τ andΓ ⊢ M′ : τ hold, withΓ = α1, . . . , αm, x1 : τ1, . . . , xn :

∆αi (~r/~α)
def
= r i

∆τ→τ′ (~r/~α)
def
= ∆τ(~r/~α)→ ∆τ′ (~r/~α)

∆∀α(τ)′ (~r/~α)
def
= ∀r(∆τ(r

⊤⊤/α,~r/~α))

∆τ list(~r/~α)
def
= (∆τ(~r/~α)) list

∆T(τ)(~r/~α)
def
= T(∆τ(~r/~α))

Figure 10. Definition of the logical relation∆ (Fig. 8)

τn say. Write

Γ ⊢ M∆M′ : τ (1)

to mean: given anyσi , σ
′
i ∈ Typandr i ∈ Rel(σi , σ

′
i ) (for i = 1..m)

with each r i ⊤⊤-closed, then for any (Nj ,N′j ) ∈ ∆r j (~r/~α) (for
i = 1..n) it is the case that

(M[~σ/~α, ~N~x],M′[ ~σ′/~α, ~N′~x]) ∈ ∆τ(~r/~α)

3.9 Fundamental Property
Proposition 15. (‘Fundamental Property’ of the logical relation).
(4.6) The relation (1) between open PolyPCF terms is compatible
and substitutive, in the sense of Definition 2.

The proof of Proposition 15 depends on the following Lemma:

Lemma 16. (4.11) For each open typeτ, with free type variables
in ~α say, if the rem-relations~r are⊤⊤-closed, then so is the term-
relation∆r (~r/~α) defined in Figure 10. In particular for each closed
typeτ, ∆τ() ∈ Rel(τ, τ) is⊤⊤-closed.

Pitts’ proof of this lemma proceeds by induction on the structure
of types, showing that the action of each type constructor takes⊤⊤-
closed relations to⊤⊤-closed relations. We have added a family
of type constructors for tagged typesT(−) and therefore need the
following lemma to extend this theorem to our augmented system.

Lemma 17(T(−) preserves⊤⊤-closure). Supposer ∈ Rel(τ, τ′).

(i) Suppose given valuesinT M and inT M′ of typesT(τ) and
T(τ′) respectively, satisfying (M,M′) ∈ r.
If r is⊤⊤-closed then (inT M, inT M′) ∈ T(r).

(ii) If ( S,S′) ∈ r⊤ then (S ◦ outT −,S′ ◦ outT −) ∈ T(r)⊤.
(iii) If r is⊤⊤-closed then so isT(r).

Proof.

(i) The statement in (i) follows from the equivalence

outT inT M ⇓ V ⇐⇒ M ⇓ V

(ii) Suppose (S,S′) ∈ r⊤. For any (N,N′) ∈ T(r) we have

S ◦ outT − ⊤ N ⇔ S ⊤ outT N
(by definition of (−) ⊤ (−))

⇔ S′ ⊤ outT N′

(since (outT N, outT N′) ∈ r
and (S,S′) ∈ r⊤)

⇔ S′ ◦ outT − ⊤ N′

( by definition of (−) ⊤ (−))

Thus (S ◦ outT −,S′ ◦ outT −) ∈ T(r)⊤.
(iii) Suppose (S,S′) ∈ r⊤, (N,N′) ∈ r, (M,M′) ∈ T(r)⊤⊤. We must

show that (M,M′) ∈ T(r).
By (ii) we have (S ◦ outT −,S′ ◦ outT −) ∈ T(r)⊤, and hence

S ◦ outT − ⊤ M ⇔ S′ ◦ outT − ⊤ M′



Therefore
S ⊤ outT M ⇔ S′ ⊤ outT M′

Thus, by the definition of (−)⊤, (outT M,outT M′) ∈ (r⊤)⊤ = r,
and so (M,M′) ∈ T(r) by the definition ofT(−). ThusT(r) is
⊤⊤-closed.

�

Proposition 18. (4.15) The logical relation (1) coincides with
PolyPCF observational congruence:

Γ ⊢ M
obs
= M′ : τ⇔ Γ ⊢ M∆M′ : τ (2)

Having established the necessary preliminaries to the equiva-
lence proof, we now turn to the development of the conversionbe-
tween the two styles of abstract type.

4. Tagging and untagging
4.1 An example
The conversion between signed and sealed definitions of abstract
types is performed by a pair of type-indexed functions whichinsert
and remove tags as necessary. For example, to convert the func-
tion plus in the signed implementation of the complex type given
in Section 3.1 into a function that can be used in the sealed imple-
mentation we generate a function of type

(α→ α→ α)→ (C(α)→ C(α)→ C(α))

whereα is the type variable denoting the abstract type of complex
numbers andC is the tag used in the sealed representation. The
conversion function we generate based on the type ofplus in the
sealed representation is

λh : (α→ α→ α)
(λx : C(α)

((λ j : α→ α
(λy : C(α) ((λz : α (inC z))

( j ((λz : C(α) (outC z)) y)))))
(h ((λz : C(α) (outC z)) x))))

or, after performing some “administrative reductions” (Plotkin
1975),

λh : (α→ α→ α)

(λx : C(α) (λy : C(α) (inC (h (outC x) (outC y)))))

Conversely, to move from the sealed to the signed representation
we generate a function of type

(C(α)→ C(α)→ C(α))→ (α→ α→ α)

The generated term, after administrative reductions, is

λh : (C(α)→ C(α)→ C(α))

(λx : α (λy : α (outC (h (inC x) (inC y)))))

4.2 Definition
We now give functions that translate between tagged and untagged
representations of abstract types.

For each a typeτ with a free variableα and no occurrences of
the tagT we will define functionsC+T,α[τ] andC−T,α[τ] with types

C+T,α[τ] : τ→ τ[T(α)/α]

C−T,α[τ] : τ[T(α)/α] → τ

and define operations−+T,α and−−T,α on types:

τ+T,α = τ

τ−T,α = τ[T(α)/α]

As the types suggest, these operations may be obtained for a type
∀α(τ) in the following manner: Let mapτ be the map of the bifunc-
tor corresponding toτ, with type

∀β(∀γ(β→γ, γ→ β)→ τ β→ τ γ

(In general, ifτ hasn free type variables, mapτ will take 2n func-
tions, since each may occur positively or negatively). Letin andout
be defined as follows.

in
def
= λx : α(inT x)

out
def
= λx : T(α)(outT x)

Then

C+T,α[τ]
def
= λx : τ+T,α(mapτ′ α (T(α)) in out)

C−T,α[τ]
def
= λx : τ−T.α(mapτ′ (T(α)) α out in)

We now give a precise definition ofC+T,α[τ] andC−T,α[τ] by cases
onτ. Let p range over{+,−} and writep̄ for the operation that flips
the polarity, so that

+̄
def
= − −̄

def
= +

To avoid excessive clutter we leave the subscriptT,α implicit. (The
subscript remains constant throughout the transformation.)

Cp[∀β(τ)] = λx : ∀β(τ)p(Λβ(Cp[τ] (x β)))

Cp[τ1 → τ2] = λh : (τ1 → τ2)p(λx : τp̄
1(Cp[τ2] (h (Cp̄[τ1] x))))

Cp[τ list] = mapList (τp) (τp̄) (Cp[τ])

Cp[T ′(τ)] = λx : T ′(τ)p(inT (Cp[τ](outT x))

Cp[β] = λx : β(x)

C+[α] = λx : α(inT x)

C−[α] = λx : T(α)(outT x)

where mapList :∀α(∀β((α → β) → (α list → β list))) is defined
in the usual way.

Proposition 19. The functions C−T,α[τ] and C+T,α[τ] are mutual
inverses. That is,

C−T,α[τ] ◦C+T,α[τ]
obs
= λx : τ(x) (3)

C+T,α[τ] ◦C−T,α[τ]
obs
= λx : τ[T(α)/α](x) (4)

Proof. Either directly using the standardβ- andη- equalities that
follow from the evaluation rules, or indirectly via map fusion. �

5. Signing and sealing
In Section 3.1 we introduced the constructssealtypeandsigntype
for creating abstract types. We now give formal definitions of each
construct, both directly and via desugaring into the core language.

Syntax
M ::= . . .
| sealtypeα = T(τ) with x1 : τ1 = M1 . . . xn : τn = Mn in M
| signtype α = τ with x1 : τ1 = M1 . . . xn : τn = Mn in M

As we noted in the introduction, the distinction between the
two constructs is somewhat obscured in PolyPCF by the need to
supply type signatures for each exported component in both the
signtypeandsealtypevariants. In a language with type inference
the signatures can be omitted insealtypedefinitions.



Typing

Γ ⊢ Mi : τi [T(τ)/α] (∀i.1 ≤ i ≤ n)
Γ, α, x1 : τ1, . . . , xn : τn ⊢ M : τ′′ α < fv(τ′′)

Γ ⊢ sealtypeα = T(τ) with x1 : τ1 = M1 . . . xn : τn : Mn in M : τ′′

Γ ⊢ Mi : τi [τ/α] (∀i.1 ≤ i ≤ n)
Γ, α, x1 : τ1, . . . , xn : τ′n ⊢ M : τ′′ α < fv(τ′′)

Γ ⊢ signtypeα = τ with x1 : τ1 = M1 . . . xn : τn : Mn in M : τ′′

Evaluation

M[T(τ)/α,M1/x1, . . .Mn/xn] ⇓ V

sealtypeα = T(τ) with x1 : τ1 = M1 . . . xn : τn : Mn in M ⇓ V

M[τ/α,M1/x1, . . .Mn/xn] ⇓ V

signtypeα = τ with x1 : τ1 = M1 . . . xn : τn : Mn in M ⇓ V

Desugaring
Thesealtypeandsigntypeare derived forms; there is a straightfor-
ward translation into core PolyPCF terms as shown by the follow-
ing lemma.

Lemma 20 (Desugaring). Let I , J, K andL be defined as follows
for some non-negative integern, terms M,M1, . . .Mn and types
τ, τ1, . . . τn.

I
def
= sealtypeα = T(τ) with x1 : τ1 = M1 . . . xn : τn : Mn in M

J
def
= signtypeα = τ with x1 : τ1 = M1 . . . xn : τn : Mn in M

K
def
= (Λα(λx1 : τ1(. . . λxn : τn(M)) . . .)) (T(τ)) M1 . . . Mn

L
def
= (Λα(λx1 : τ1(. . . λxn : τn(M)) . . .)) (τ) M1 . . . Mn

Then the following hold:

I ⇓ V ⇐⇒ K ⇓ V (5)

J ⇓ V ⇐⇒ L ⇓ V (6)

Γ ⊢ I : τ′′ ⇐⇒ Γ ⊢ K : τ′′ (7)

Γ ⊢ J : τ′′ ⇐⇒ Γ ⊢ L : τ′′ (8)

whereα < f v(τ′′).

Proof. The statements 5 and 6 follow directly from the definition
of the evaluation relation⇓ above and in Figure 5.

The statements 7 and 8 follow directly from the definition of the
typing relation |− : above and in Figure 4. �

5.1 Equivalence
Proposition 21. Abstract type definitions with sealtype may be
converted to observationally-equivalent signtype definitions and
conversely as shown below.

sealtype α = T(τ) with x1 : τ1 = M1 . . . xn : τn = Mn in M
obs
=

signtype α = τ with x1 : τ1 = C−T,α [τ1] M1 . . . xn : τn = C−T,α [τn] Mn in M

signtype α = τ with x1 : τ1 = M1 . . . xn : τn = Mn in M
obs
=

sealtype α = T(τ) with x1 : τ1 = C+T,α [τ1] M1 . . . xn : τn = C+T,α [τn] Mn in M

Proof. Let

RT [τ] = {〈M, T(M)〉 | ⊢ M : τ}⊤⊤

and

α ⊢ Mi : τi
for each 1≤ i ≤ n.

Comparing the definitions of∆, C+ andC− reveals that

〈Mi , C+T,α[τi ] Mi〉 ∈ ∆τi (RT [τ]/α) (9)

〈C−T,α[τi ] Mi , Mi〉 ∈ ∆τi (RT [τ]/α) (10)

By Theorem 15 (“Fundamental Property”)∆ is compatible, and
hence reflexive. We can instantiate the relation (1) to give

α, x1 : τ1, . . . xn : τn ⊢ M∆M : τ′′

From (9) and (10) it follows that

〈M[τ/α,
−→
Mi/
−→xi ], M[T(τ)/α,

−−−−−−−−−→
C+T,α[τi ] Mi/

−→xi ]〉 ∈ ∆τ′′ (RT [τ]/α)

〈M[τ/α,
−−−−−−−−−→
C−T,α[τi ] Mi/

−→xi ], M[T(τ)/α,
−→
Mi/
−→xi ]〉 ∈ ∆τ′′ (RT [τ]/α)

and so (sinceα < fv(τ′′)),

〈M[τ/α,
−→
Mi/
−→xi ], M[T(τ)/α,

−−−−−−−−−→
C+T,α[τi ] Mi/

−→xi ]〉 ∈ ∆τ′′ ()

〈M[τ/α,
−−−−−−−−−→
C−T,α[τi ] Mi/

−→xi ], M[T(τ)/α,
−→
Mi/
−→xi ]〉 ∈ ∆τ′′ ()

and hence (by Theorem 18),

M[τ/α,
−→
Mi/
−→xi ]

obs
= M[T(τ)/α,

−−−−−−−−−−→
C+T,α[τ1] Mi/

−→xi ]

M[T(τ)/α,
−→
Mi/
−→xi ]

obs
= M[τ/α,

−−−−−−−−−→
C−T,α[τi ] Mi/

−→xi ]

and hence (by the evaluation rules forsealtypeandsigntype),

sealtypeα = T(τ) with x1 : τ1 = M1 . . . xn : τn = Mn in M
obs
=

signtypeα = τ with x1 : τ1 = C−T,α [τ1] M1 . . . xn : τn = C−T,α [τn] Mn in M

signtypeα = τ with x1 : τ1 = M1 . . . xn : τn = Mn in M
obs
=

sealtypeα = T(τ) with x1 : τ1 = C+T,α [τ1] M1 . . . xn : τn = C+T,α [τn] Mn in M

�

6. Related work
The sealing style for creating abstract types dates back to Morris
(James H. Morris 1973), who informally outlines the connection
with the signing style. More recently, several authors havegiven
formal translations between static and dynamic schemes forpre-
serving types. It is not surprising that the translations are similar in
each case, although their motivations (and consequently the precise
properties that they investigate) differ considerably.



Sumii and Pierce (Pierce and Sumii 2000) have examined the
relationship between type abstraction and cryptography, develop-
ing a theory of relational parametricity for their cryptographicλ-
calculus. They give an encoding of type abstraction into encryption
(but not vice versa); their encryption primitives, which give a vari-
ant of dynamic sealing, are significantly more expressive than our
tags, so the inverse translation is not straightforward.

Matthews and Findler (Matthews and Findler 2007) investigate
the semantics of programs written in multiple languages — partly
in Scheme and partly in ML. They investigate two ways to encode
foreign values: as opaque “lumps” that must be explicitly passed
to the language which created them each time they are used, oras
values that have been wrapped using a type-directed strategy, so
that they can be used directly. The wrappings, which dynamically
check that the values they wrap have the appropriate shapes,are
an instance of higher-order contracts (Findler and Felleisen 2002);
the type-directed scheme for inserting guards is analogousto our
translation from signing-style to sealing-style abstracttypes.

Matthews and Ahmed (Matthews and Ahmed 2008) extend
Matthews and Findler’s system with polymorphism, and prove
a parametricity property. In order to such prevent violations of
parametricity as can arise from dynamic inspection of values by
the Scheme portion of a program, they dynamically seal values of
abstract type before passing them to Scheme.
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