
Smart Contracts

Philip Wadler
University of Edinburgh

IOHK, Lisbon
Wednesday 17 January 2018

(Thanks to Bruce Milligan)

Plutus,
Plutus Core,

and IELE

Plutus

factorial : Integer -> Integer
factorial n =
 if n < 1
 then 1
 else n * factorial (n - 1)

Plutus Core

(declare factorial (fun (integer) (integer)))
(define factorial (lambda n
 (case [lessThanInteger n 1]
 (Prelude.True () 1)
 (Prelude.False ()
 [multiplyInteger n
 [factorial [subtractInteger n 1]]])))

IELE
contract Factorial {
 define public @factorial(%n) {
 // ensure that %n is larger than or equal to 0.
 %lt = cmp lt %n, 0
 br %lt, throw
 %result = 1
 condition:
 %cond = cmp le %n, 0
 br %cond, after_loop
 loop_body:
 %result = mul %result, %n
 %n = sub %n, 1
 br condition
 after_loop:
 ret %result
 throw:
 call @iele.invalid()
 }
}

Premature optimisation

Most of the time in a smart contract will be spent
executing cryptographic primitives

Comparative resources
IELE
8 —> 19

(Grigore Rosu)

Plutus
1.2

(Darryl McAdams)

Three issues

1. Unbounded integers

A cool idea
• Erlang has unbounded

integers.

• Say one deploys a
successful phone switch
that runs for a long time.
Counter passes word size.

• Previously: overflow!

• Now: no problem!

Uh oh!

How do we allocate gas cost?

One-word integers
Addition: constant

Multiplication: constant

Unbounded integers
Addition: maximum of logarithm of values
Multiplication: sum of logarithm of values

RAML

Resource-Aware ML
(Jan Hoffman and others, www.raml.co)

Does a good job with one-word integers

Struggles to analyse multiword integers

http://www.raml.co

RAML: one-word integers
let iplus n m = let () = Raml.tick 1.0 in n+m
type nat = Z | S of nat
let sumorial n =
 let rec sumo n a =
 match n with
 | Z -> 0
 | S n' -> iplus a (sumo n' (iplus a 1))
 in
 sumo n 1

Resource Aware ML, Version 1.3.2, January 2017
== sumorial :

 Simplified bound:
 9.00 + 26.00*M
 where
 M is the number of S-nodes of the argument

RAML: multiword integers
type bigint = int list
let of_int n = [n]
let add b c = …
let sumorial n =
 let rec sumo n a =
 match n with
 | Z -> of_int 0
 | S n' -> add a (sumo n' (add a (of_int 1)))
 in
 sumo n (of_int 1)

Resource Aware ML, Version 1.3.2, January 2017
Analyzing function sumorial ...

 Simplified bound:
 21.00 + 125.33*M + 80.00*M^2 + 26.67*M^3
 where
 M is the number of S-nodes of the argument

RAML: multiword integers
type bigint = int list
let of_int n = [n]
let add b c = …
let mult b c = …
let factorial n =
 let rec fact n a =
 match n with
 | Z -> of_int 1
 | S n' -> mult a (fact n' (add a (of_int 1)))
 in
 fact n (of_int 1)

Resource Aware ML, Version 1.3.2, January 2017
Analyzing function factorial …

 A bound for factorial could not be derived.
 The linear program is infeasible.

My nightmare

• Say one deploys a successful
smart contract that runs for a long
time. Counter passes word size.

• Previously: overflow exception

• Now: out of gas

• And we’ve paid for it by making
it far harder to analyse gas cost!

2. Abstract data types

Abstract data types
in Haskell

module Stack(Stack, empty, isempty, push, pop, top) where

newtype Stack = MkStk [Int]

empty :: Stack
empty = MkStk []

isempty :: Stack -> Bool
isempty (MkStk x) = null x

push :: Int -> Stack -> Stack
push a (MkStk x) = MkStk (a:x)

pop :: Stack -> Stack
pop (MkStk (a:x)) = MkStk x

top :: Stack -> Int
top (MkStk (a:x)) = a

Abstract data types
in Miranda

abstype stack
with empty :: stack
 isempty :: stack->bool
 push :: num->stack->stack
 pop :: stack->stack
 top :: stack->num

stack == [num]
empty = []
isempty x = null x
push a x = a:x
pop (a:x) = x
top (a:x) = a

Trade offs

Haskell:
More familiar to some of our user base

Miranda:
Easier to read and write

3. Data constructors

Validator and Redeemer

validator :: A ! comp B

redeemer :: comp A

Validator and Redeemer

validator :: (∀x. A[x] ! comp B[x]) ! comp C

redeemer :: ∀x. A[x] ! comp B[x]

The validator may create a new abstract type,
which is used by the redeemer

Validator and Redeemer
validator :: (∀stack.
 stack
 (stack!bool) !
 (num!stack!stack) !
 (stack!num) !
 (stack!stack) !
 comp B[x]) !
 comp C
validator redeemer =
 let answer =
 redeemer stack
 empty
 isEmpty
 push
 pop
 top
 in … do stuff with answer …

What about data type
declarations?

data Nat = Zero | Suc Nat

plus Zero n = n
plus (Suc m) n = Suc (plus m n)

Constructors used in pattern matching are not just functions.
Needs a whole new model. Not standard.

Uh oh!

Church Encoding
abstype nat
 with zero :: nat
 suc :: nat ! nat
 ncase :: nat ! (∀x. x ! (x ! x) ! x)

nat == (∀x. x ! (x ! x) ! x)
zero x z s = s
suc x z s n = s (n x z s)
ncase n = n

plus :: nat ! nat ! nat
plus m n = ncase m n suc

Scott Encoding
abstype nat
 with zero :: nat
 suc :: nat ! nat
 ncase :: nat ! ∀x. x ! (nat ! x) ! x

nat == ∀x. x ! (nat ! x) ! x
zero z s = z
suc n z s = s n
ncase n = n

plus :: nat ! nat ! nat
plus m n = ncase m n (λm. suc (plus m n))

Plutus Core
Kinds J,K ::= Terms L,M,N ::=
 * x
 J ! K λx:A.N
 L M
Types A,B ::= ΛX:K.N
 X L A
 A ! B μx:A.N
 ∀X.B ρ
 μX.B
 ρ

Conclusion

Do you have opinions about programming languages?

We need your help!

