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Abstract
How to integrate static and dynamic types? Recent work focuses
on casts to mediate between the two. However, adding casts may
degrade tail calls into a non-tail calls, increasing space consumption
from constant to linear in the depth of calls.

We present a new solution to this old problem, based on the
notion of a threesome. A cast is specified by a source and a target
type—a twosome. Any twosome factors into a downcast from the
source to an intermediate type, followed by an upcast from the
intermediate to the target—a threesome. Any chain of threesomes
collapses to a single threesome, calculated by taking the greatest
lower bound of the intermediate types. We augment this solution
with blame labels to map any failure of a threesome back to the
offending twosome in the source program.

Herman, Tomb, and Flanagan (2007) solve the space prob-
lem by representing casts with the coercion calculus of Henglein
(1994). While they provide a theoretical limit on the space over-
head, there remains the practical question of how best to imple-
ment coercion reduction. The threesomes presented in this paper
provide a streamlined data structure and algorithm for represent-
ing and normalizing coercions. Furthermore, threesomes provide a
typed-based explanation of coercion reduction.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Procedures, functions, and subroutines

General Terms Languages, Theory

Keywords casts, coercions, blame tracking, lambda-calculus

1. Introduction
The old question of how to mix static and dynamic typing is attract-
ing renewed interest. On one side, Hejlsberg (2008) brings type
dynamic to C# 4.0, and on the other side, Tobin-Hochstadt and
Felleisen (2008) integrate static types into Scheme and Wall (2009)
adds optional static types to Perl 6. In these mixed settings, pro-
grammers and compilers should still be able to trust the results of
the static type checker, so run-time checks are needed to safeguard
the invariants established by the static type system. Recent work
mediates between static and dynamic regions using casts.
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Building on the higher-order contracts of Findler and Felleisen
(2002), Wadler and Findler (2009) design the blame calculus to
serve as an intermediate language that integrates static and dynamic
typing. The blame calculus earns its name by tracking blame:
it maps run-time type errors back to their origin in the source
program. The Blame Theorem asserts that statically typed regions
of a program can never be blamed for run-time type errors.

However, there is concern that the casts used in the blame
calculus impose too much run-time overhead. Findler and Felleisen
(2002) observed that contracts may degrade a tail call into a non-tail
call and Herman et al. (2007) noted that the same is true for casts.
This concern prompted the ECMAScript 4.0 committee (Hansen
2007) and the designers of Thorn (Wrigstad et al. 2009) to consider
compromises such as like types that do not require casts.

Herman et al. (2007) use the coercion calculus of Henglein
(1992, 1994) to represent and compress sequences of casts. Any
coercion normalizes to a coercion of bounded size, thereby limiting
the run-time space overhead to a constant factor. Siek et al. (2009)
augment the coercion calculus with blame tracking to obtain a
space-efficient implementation of the blame calculus.

In this paper we present a new solution to the space problem,
based on the notion of a threesome. Traditionally, a cast is specified
by a source and a target type—a twosome. We show that any
twosome factors into a downcast from the source to an intermediate
type, followed by an upcast from the intermediate to the target—a
threesome. We also show that any chain of threesomes collapses to
a single threesome, calculated by taking the greatest lower bound of
the intermediate types. We then augment this solution with blame
labels so as to map any failure of a threesome back to the offending
twosome in the source program.

Threesomes are designed to correspond to twosomes and two-
somes are designed to correspond to Henglein’s coercions. So it
is not surprising that threesomes correspond to Henglein’s coer-
cions. Nonetheless, it is a pleasant validation of our design that
threesomes turn out to be exactly isomorphic to Henglein’s coer-
cions in normal form. Coercion normalization is an iterative pro-
cess, whereas composition of threesomes is a direct recursive defi-
nition. Thus, we believe that the alternative view offered by three-
somes may make possible a more efficient implementation than one
based directly on the coercion calculus.

The rest of the paper begins with a review of the blame calcu-
lus (Section 2). Then, to factor the presentation of the threesome
calculus, we present a simplified version that captures the main in-
tuitions and detects cast failures appropriately, but does not track
blame (Section 3). We prove that the simplified version is correct
and space efficient. Section 4 presents the complete threesome cal-
culus with support for blame tracking and proves that it is correct
(equivalent to the blame calculus). Section 5 shows that the three-
some calculus is isomorphic to a coercion-based calculus of Siek
et al. (2009). Some of the proofs are in-line and the rest are in
the Appendix. We explain the relationship between our results and
prior work in Section 6.



2. Twosomes
The definition of the blame calculus (minus subset types) is shown
in Figure 1. This blame calculus is the simply-typed lambda calcu-
lus extended with the dynamic type, written ∗, and casts of the form
〈T l⇐S〉s. We sometimes elide the blame label l on a cast when the
label is not relevant. The meta-variable x ranges over variables, k
over constants, and B over base types (such as Int and Bool). We
give function application higher precedence than casts. The meta-
variables l,m and n range over blame labels. In an implementation,
blame labels would not be visible to the programmer, but would be
inserted automatically by the parser and would provide access to
information such as the location of the cast in the source program.

The dynamic semantics of the cast is straightforward in the case
of first-order values such as integers: the run-time check either
succeeds and the cast acts like the identity function, or the check
fails and the downcast is blamed.

〈Int m⇐∗〉〈∗ l⇐Int〉4 7−→ 〈Int m⇐Int〉4 7−→ 4

〈Bool m⇐∗〉〈∗ l⇐Int〉4 7−→ 〈Bool m⇐Int〉4 7−→ blame m

Higher-Order Casts The semantics of casts is more subtle in the
case of higher-order values such as functions. The complication is
that one cannot immediately check whether a function respects the
target type of the cast. In the example below, when the function f of
type Int→∗ is cast to Int→Int, there is no way to immediately
tell if the function will return an integer every time it is called.

let f = (λx:Int. if 0 ≤ x then 〈∗ m⇐Int〉2
else 〈∗ l⇐Bool〉true) in

let g = 〈Int→ Int
n⇐Int→ ∗〉f in . . .

So long as g is only called with non-negative numbers, the behavior
of f respects the cast. If g is ever called with a negative number, the
return value of f will induce a cast error.

The standard solution defers the check until the function is
applied to an argument. When a function passes through a cast, the
cast is not reduced but remains as a wrapper around the function.
When the cast-wrapped function is applied to a value, then the
cast is distributed to the argument and result as specified by the
following reduction rule. Note that the direction of the cast on the
argument is flipped, as usual. (Also the blame label of the cast on
the argument is negated; we discuss this further below.)

(〈S′→T ′
l⇐S→T 〉v) w −→ 〈T ′ l⇐T 〉 v(〈S l⇐S′〉w)

Blame Tracking Because a higher-order cast is not checked im-
mediately, it might fail at a location far removed from where it
was originally applied. Continuing the above example, the cast-
wrapped function bound to g may be applied at some point much
later in the program.

let g = 〈Int→ Int
n⇐Int→ ∗〉f in

· · · g (-1) · · ·

Blame tracking helps to diagnose such failures by mapping cast
failures back to their origin in the source program. The above
example reduces to blame n, indicating that the cast surrounding
f caused the failure. Figure 1 shows the reduction rules we use
in this paper. The formulation here differs in minor ways from
the rules of Wadler and Findler (2009) that will prove technically
convenient. The most significant changes are that we allow casts
between any two types, even if they are not compatible; and we
introduce an empty type ⊥, such that no value has type ⊥ and ⊥ is
incompatible with every type.

Blame labels come equipped with a negation operator that is an
involution. That is, if m is a blame label then m is its negation and

m = m. If a program halts with blame m, the term contained in-
side the cast labeled m failed to produce a value of the appropriate
type. If a program halts with blame m, the context surrounding the
cast labeled m misused the cast value, that is, applied it to a value
of an inappropriate type.

The blame calculus checks higher-order casts lazily, reporting
blame for an incompatible cast on a function only when the func-
tion is applied. For example,

let g = 〈Int→ Int
n⇐Bool→ Bool〉f in · · ·

will fail only if g is applied. This is achieved by testing for shallow
incompatibility between types. We write S#T to indicate shallow
incompatibility. Distinct base types are shallowly incompatible, a
function is shallowly incompatible with any base type, and the type
⊥ is shallowly incompatible with any type.

In the definition of values, we add a side condition on values of
the form 〈S′ → T ′

l⇐S → T 〉v. We require that not all S, T, S′,
and T ′ be ∗ because otherwise rule (3) would apply.

In this paper we restrict our attention to lazy checking. Siek et al.
(2009) discuss other design points, such as eager checking (where
any incompatibility is reported as soon as possible). An initial
assessment indicates that it would be straightforward to apply the
techniques in this paper to the other designs.

Space Efficiency Herman et al. (2007) observe two circum-
stances where the wrappers used for higher-order casts can lead
to unbounded space consumption. First, some programs repeatedly
apply casts to the same function, resulting in a build-up of wrap-
pers. In the following example, a wrapper is added each time the
function bound to k is passed between even and odd, causing a
space leak proportional to n.

let rec even(n : Int, k : ∗→Bool) : Bool =
if (n = 0) then k(〈∗⇐Bool〉true)
else odd(n - 1, 〈Bool→Bool⇐∗→Bool〉k)

and odd(n : Int, k : Bool→Bool) : Bool =
if (n = 0) then k(false)
else even(n - 1, 〈∗→Bool⇐Bool→Bool〉k)

Second, some casts break tail recursion. Consider the following
example in which the return type of even is ∗ and odd is Bool.

let rec even(n : Int) : ∗ =
if (n = 0) then 〈∗⇐Bool〉true
else 〈∗⇐Bool〉odd(n - 1)

and odd(n : Int) : Bool =
if (n = 0) then false
else 〈Bool⇐∗〉even(n - 1)

Assuming tail call optimization, cast-free versions of the even
and odd functions require only constant space. However, with the
presence of casts, the calls to even and odd are not tail calls, so
the run-time stack grows with each call and space consumption is
proportional to n. The following reduction sequence for a call to
even shows the unbounded growth.

even(n)
7−→ 〈∗ ⇐ Bool〉odd(n− 1)
7−→ 〈∗ ⇐ Bool〉〈Bool⇐ ∗〉even(n− 2)
7−→ 〈∗ ⇐ Bool〉〈Bool⇐ ∗〉〈∗ ⇐ Bool〉odd(n− 3)
7−→ · · ·

Herman et al. (2007) recover space efficiency in a cast calculus
without blame by 1) using the coercion calculus (Henglein 1994)
to compactly represent sequences of casts, and 2) normalizing
sequences of coercions that appear in tail-position before making
function calls. Siek et al. (2009) extend this work by integrating
blame tracking into the coercion calculus, thereby achieving a



Syntax

types R,S, T, U ::= B | S→T | ∗ | ⊥
terms s, t ::= k | x | λx :S.t | s t |

〈T l⇐S〉s
ground types G,H ::= B | ∗→∗
values v, w ::= k | λx :S.t | 〈∗ l⇐G〉v |

〈S′ → T ′
l⇐S → T 〉v

contractums r ::= t | blame l

eval. contexts E ::= � | E t | v E | 〈T l⇐S〉E

Additional Typing Rules Γ ` t : T

Γ ` s : S

Γ ` 〈T l⇐S〉s : T

Shallow Incompatibility S # T

B 6= B′

B #B′ B # T→T ′ T→T ′ #B ⊥# T T #⊥

Reductions s −→ r

(λx : S. t) v −→ [x := v]t (1)

k k′ −→ δ(k, k′) (2)

〈G l⇐G〉v −→ v (3)

〈∗ l⇐∗〉v −→ v (4)

〈H m⇐∗〉〈∗ l⇐G〉v −→ 〈H m⇐G〉v (5)

〈∗ l⇐S→T 〉v −→ 〈∗ l⇐∗→∗〉〈∗→∗ l⇐S→T 〉v
if S → T 6= ∗→∗ (6)

〈S→T
l⇐∗〉v −→ 〈S→T

l⇐∗→∗〉〈∗→∗ l⇐∗〉v
if S→T 6= ∗→∗ (7)

(〈S′→T ′
l⇐S→T 〉v) w −→ 〈T ′ l⇐T 〉 v(〈S l⇐S′〉w)

if not S→T = S′→T ′ = ∗→∗ (8)

〈T l⇐S〉v −→ blame l if S # T (9)

Single-step evaluation s 7−→ r

t −→ t′

E[t] 7−→ E[t′]

t −→ blame l
E[t] 7−→ blame l

Figure 1. Twosomes

space-efficient implementation of the blame calculus. In this paper
we explore an alternative based on threesomes.

3. Threesomes Without Blame
The goal of the threesome calculus is to achieve space efficiency
while maintaining the high-level nature of the blame calculus, that
is, expressing casts with types. The key to space efficiency is to
compress sequences of casts while maintaining the same behav-
ior. There are two aspects to the behavior of a cast: 1) detecting
cast failures and 2) allocating blame to the appropriate cast in the
source program. In this section we describe a simplified version of
the threesome calculus that focuses on detecting cast failures. In
relating the simplified threesome calculus to the blame calculus,
we ignore all blame labels in the blame calculus. In Section 4 we
present the complete threesome calculus with blame tracking.

When discussing a sequence of casts, we abbreviate

〈Tn ⇐ Tn−1〉 · · · 〈T3 ⇐ T2〉〈T2 ⇐ T1〉
as follows to avoid repeating types.

〈Tn ⇐ Tn−1 · · ·T3 ⇐ T2 ⇐ T1〉
Towards understanding how to compress casts, consider the

following sequence:

〈∗→∗ ⇐ Bool→∗ ⇐ ∗→Int ⇐ ∗→∗〉
This sequence, when applied to a function, forces the function to
accept an argument of type Bool and to return a result of type Int;
any other argument or result induces an error. Thus, the above se-
quence of casts is equivalent to just two casts where the intermedi-
ate type is Bool→ Int.

〈∗→∗ ⇐ Bool→Int ⇐ ∗→∗〉
The type Bool→ Int represents a stronger cast, one that is more
likely to fail, than either of the two intermediate types in the original
sequence. This notion of stronger is captured by the naive subtyping
relation, written <:n, of Wadler and Findler (2007) (defined in
Figure 2); similar relations include the 6 ordering on coercions
of Henglein (1994) and the ◦6 ordering on retracts of Scott (1976).
Our idea is to compress a sequence of cast into just two casts where
the intermediate type is the greatest lower bound of the types in the
original sequence.

Naive subtyping is covariant in the domain of function types
instead of contravariant like ordinary subtyping. It is interesting
to compare taking the greatest lower bound with respect to naive
subtyping versus ordinary subtyping. In the above example, with
naive, covariant subtyping we have

Bool→ Int <:n ∗ → Int <:n ∗ → ∗
Bool→ Int <:n Bool→ ∗ <:n ∗ → ∗

and so the greatest lower bound of the original casts with regard to
<:n is Bool→ Int, which has the desired effect. In contrast, with
ordinary, contravariant subtyping (written <:) we have

∗ → Int <: ∗ → ∗ <: Bool→ ∗
So the greatest lower bound of the original casts with regard to <:
is ∗ → Int. Using this as the intermediate type gives a different
collapsed cast

〈∗→∗ ⇐ ∗→Int ⇐ ∗→∗〉
But this cast is too lenient; it correctly requires the result to be Int
but does not require the argument to be Bool.

We write S & T for the greatest lower bound of S and T
with respect to <:n; we also sometimes call this the meet of S
and T . In general, an arbitrary sequence of casts can collapse to a
contextually equivalent pair of casts where the intermediate type is
the meet of all the types in the sequence, so

〈Tn ⇐ Tn−1 ⇐ · · · ⇐ T2 ⇐ T1〉t
is equivalent to

〈Tn ⇐ Tn & Tn−1 & · · ·& T2 & T1 ⇐ T1〉t
We introduce a special notation for casts of this kind. For any three
types R,S, T with R <:n S and R <:n T , and any term t of type
S, we write

〈T R⇐=S〉t
and call it a threesome. It is equivalent to the pair of casts

〈T⇐R〉〈R⇐S〉t
The syntax of the threesome calculus without blame is given in Fig-
ure 2. Analogously to the side condition on values for twosomes,



we require that in a value of the form 〈T → T ′
R→R′
⇐= S → S′〉u,

not all of T, T ′, R,R′, S and S′ can be ∗.
Greatest lower bounds can be computed by the algorithm for

S & T defined in Figure 2. The algorithm is straightforward: the
meet of identical base types is that base type, of two function types
is a function from the meet of the domains to the meet of the
ranges, of any type with ∗ is the other type, and of any shallowly
incompatible types is ⊥. Note that the greatest lower bound always
exists thanks to the inclusion of the empty type ⊥. Since S & T is
symmetric, the reader may wonder why we write T&S in the clause
for function types; this is foreshadowing modifications required in
the next section for tracking blame.

Our first result is to confirm that the algorithm in Figure 2
computes greatest lower bounds.

Proposition 1 (Meet algorithm returns the greatest lower bound).

1. S & T <:n S and S & T <:n T
2. If R <:n S and R <:n T , then R <:n S & T .

The operational semantics of the threesome calculus is given in
Figure 2. Most of the reduction rules are a straightforward adapta-
tion from twosomes to threesomes. For example, rule (13) is equiv-
alent to two applications of rule (3) from the blame calculus. The
main difference is the addition of rule (16), which is responsible for
compressing a pair of threesomes into a single threesome by taking
the meet of the two intermediate types. The source and target types
of a threesome do not play a role in the reduction rules and could
be erased but their presence streamlines the meta-theory by giving
us unicity of types.

To make sure that sequences of casts do not accumulate in tail
position, we change evaluation contexts to recognize sequences of
casts that need to be compressed. Our evaluation strategy reduces
sequences outside-in, repeatedly compressing the two outermost
casts in a sequence. An F context represents a location that is not
immediately inside a cast (F is for “cast free”), which indicates an
appropriate location to apply a cast-reducing rule. The context E
includes both the F contexts and contexts containing sequences of
casts with length at most one.

This formulation of evaluation contexts differs from the con-
texts used in Herman et al. (2007). Unique decomposition does not
hold for their contexts, for example, in a sequence of three casts,
either the outer two or the inner two can be merged. However, be-
cause the coercion calculus is confluent, the lack of unique decom-
position does not pose a serious problem. Nevertheless, we prefer
to use evaluation contexts that ensure a unique decomposition.

Proposition 2 (Unique Decomposition). For a well-typed closed t,
either t is a value or there is a unique decomposition into a redex
t′ and an evaluation context E such that t = E[t′].

The values of the threesome calculus differ in an important way
from the blame calculus, which reflects the improved space effi-
ciency. In the blame calculus, a value of type T → T ′ may contain
an arbitrary number of outermost casts. In the threesome calculus,
a value of type T → T ′ may contain at most one outermost cast.

Lemma 1 (Canonical Forms).

1. If ∅ ` v : B, then v is a constant.
2. If ∅ ` v : T → T ′, then v has one of the following forms: k,

λx :S.t, or 〈T → T ′
R→R′
⇐= S → S′〉u.

3. If ∅ ` v : ∗, then v has the form 〈∗ R⇐=S〉u.
4. No value has type ⊥.

Proof. The proofs are by case analysis on v and inversion on the
typing rules.

Syntax

terms s, t ::= k | x | λx :S.t | s t | 〈T R⇐=S〉s
uncoerced val. u ::= k | λx :S. t

values v, w ::= u | 〈∗ R⇐=S〉u |
〈T → T ′

R→R′
⇐= S → S′〉u

contractums r ::= t | blame
cast-free contexts F ::= � | E[� t] | E[v �]

eval. contexts E ::= F | F [〈T R⇐=S〉�]

Naive subtyping S <:n T

B <:n B S <:n ∗ ⊥ <:n T
S <:n T S′ <:n T

′

S → S′ <:n T → T ′

Additional typing rules Γ ` t : T

Γ ` s : S R <:n S R <:n T

Γ ` 〈T R⇐=S〉s : T

Meet algorithm (computes the greatest lower bound) S & T

∗& T = T

S & ∗ = S

B &B = B

(S → S′) & (T → T ′) = (T & S) → (S′ & T ′)

S & T = ⊥ if S # T

Reductions t −→ t

(λx : S.t) v −→ [x := v]t (10)

k k′ −→ δ(k, k′) (11)

(〈T→T ′
R→R′
⇐= S→S′〉u) w −→ 〈T ′ R′

⇐=S′〉u (〈S R⇐=T 〉w)

if not T→T ′ = R→R′ = S→S′ = ∗→∗ (12)

Cast reductions t −→c r

〈G G⇐=G〉u −→c u (13)

〈∗ ∗⇐=∗〉u −→c u (14)

〈T ⊥⇐=S〉u −→c blame (15)

〈T R′
⇐=S′〉〈S′ R⇐=S〉s −→c 〈T

R′&R⇐= S〉s (16)

Single-step evaluation t 7−→ r

t −→ t′

E[t] 7−→ E[t′]

t −→c t
′

F [e] 7−→ F [t′]

t −→c blame

F [t] 7−→ blame

Figure 2. Threesomes without blame

3.1 Correspondence Between Twosomes and Threesomes
We translate from the blame calculus to the threesome calculus by
mapping casts of the form 〈T ⇐ S〉s to 〈T T&S⇐= S〉s. The def-
initions for compiling twosomes to threesomes, and decompiling
threesomes to twosomes, written 〈〈t〉〉 and 〈〈t〉〉−1 respectively, are
given in Figure 3.

The proof that the threesomes calculus without blame is equiv-
alent to the blame calculus (ignoring blame labels) hinges on two
facts. First, the cast 〈T ⇐ S〉 is equivalent to 〈T ⇐ T & S ⇐ S〉.
This is necessary to justify the compilation from twosomes to three-
somes. Second, 〈T ⇐ R′ ⇐ S′ ⇐ R ⇐ S〉 is equivalent to



Compilation from twosomes to threesomes 〈〈t〉〉 = t

〈〈x〉〉 = x 〈〈k〉〉 = k

〈〈λx : S. t〉〉 = λx : S. 〈〈t〉〉 〈〈t s〉〉 = 〈〈t〉〉 〈〈s〉〉

〈〈〈T⇐S〉s〉〉 = 〈T T&S⇐=S〉〈〈s〉〉

Decompilation from threesomes to twosomes 〈〈t〉〉−1 = t

〈〈x〉〉−1 = x 〈〈k〉〉−1 = k

〈〈λx : S. t〉〉−1 = λx : S. 〈〈t〉〉−1 〈〈t s〉〉−1 = 〈〈t〉〉−1 〈〈s〉〉−1

〈〈〈T R⇐=S〉s〉〉
−1

= 〈T⇐R〉〈R⇐S〉〈〈s〉〉−1

Figure 3. From twosomes to threesomes and back again.

〈T ⇐ R′ & R ⇐ S〉 provided R′ <:n T , R′ <:n S
′, R <:n S

′,
and R <:n S. This fact is necessary to justify the threesome re-
duction rule (16), which compresses two threesomes. Both of these
facts are corollaries of the following fundamental lemma. In a se-
quence 〈T ⇐ R⇐ S〉, it is safe to bypass R if going from S & T
to R is an upcast.

Towards formalizing this in terms of contextual equivalence, we
define contexts and results as follows.

contexts C ::= � | C t | t C | λx :S. C | 〈T⇐S〉C
results f ::= v | blame

A program t is said to converge, written t ↓, if ∃f. t 7−→∗ f , where
7−→∗ is the reflexive, transitive closure of 7−→. These definitions
for twosomes carry over easily to the threesome calculus.

Definition 1. A term t is contextually equivalent to another term
t′, written t =ctx t

′, if for any context C, C[t] ↓ iff C[t′] ↓.

Lemma 2 (Fundamental Property of Casts).
If T & S <:n R, then 〈T ⇐ R⇐ S〉t =ctx 〈T ⇐ S〉t.

The proof of the fundamental property of casts is in the Ap-
pendix. With this property in hand we can prove the two key facts.

Corollary 1.

1. 〈T ⇐ S〉s =ctx 〈T ⇐ T & S ⇐ S〉s, and
2. 〈T ⇐ R′ ⇐ S′ ⇐ R ⇐ S〉s =ctx 〈T ⇐ R′ & R ⇐ S〉

provided R′ <:n T , R′ <:n S
′, R <:n S

′, and R <:n S.

Proof.

1. Note that subtyping is reflexive and then apply the fundamental
property of casts.

2. To prove the second part, we apply the fundamental property of
casts several times as follows.

〈T ⇐ R′ ⇐ S′ ⇐ R⇐ S〉s
=ctx 〈T ⇐ R′ ⇐ R⇐ S〉s
=ctx 〈T ⇐ R′ ⇐ R′ &R⇐ R⇐ S〉s
=ctx 〈T ⇐ R′ &R⇐ R⇐ S〉s
=ctx 〈T ⇐ R′ &R⇐ S〉s

We need a few more facts before proving the correctness theorem.

Lemma 3. t =ctx 〈〈〈〈t〉〉〉〉−1.

Proof. The proof is by induction on t. The case for casts relies on
Corollary 1 (part 1).

Lemma 4.

1. If t =ctx 〈〈t3〉〉−1 and t3 7−→∗ t′3, then t =ctx 〈〈t′3〉〉
−1.

2. If t3 =ctx 〈〈t〉〉 and t 7−→∗ t′, then t3 =ctx 〈〈t′〉〉.

Proof. 1. The proof is by induction on t3 7−→∗ t′3 and by cases on
−→. The case for rule (16) relies on Corollary 1 (part 2). The
other cases rely on the fact t 7−→ t′ implies t =ctx t

′.
2. The proof is by induction on t 7−→∗ t′ and by cases on −→.

The cases rely on Lemma 2 and the fact t3 7−→ t′3 implies
t3 =ctx t

′
3.

Applying compilation or decompilation to results produces terms
that converge.

Lemma 5. 〈〈f〉〉 ↓ and 〈〈f3〉〉−1 ↓.

Proof. The proofs are by induction on f and f3.

We can now state and prove the correctness theorem.

Theorem 1 (Correctness of the threesome calculus without blame).
〈〈t〉〉 ↓ if and only if t ↓.

Proof. By Lemma 3 we have t =ctx 〈〈〈〈t〉〉〉〉−1.

1. (=⇒) We have an f3 such that 〈〈t〉〉 7−→∗ f3. Then by Lemma 4
(part 1) we have t =ctx 〈〈f3〉〉−1. Then by Lemma 5, t ↓.

2. (⇐=) We have an f such that t 7−→∗ f . Then by Lemma 4
(part 2) we have 〈〈t〉〉 =ctx 〈〈f〉〉. Then by Lemma 5, 〈〈t〉〉 ↓.

3.2 Space Efficiency
The main task in bounding the size of casts during execution is to
put a bound on the result of merging two casts. The approach taken
by Herman et al. (2007) for the coercion calculus is to show that the
height of a composed coercion is no greater than the height of the
two coercions. Then, because normalized coercions are trees with
limited branching, it follows that the size of the composed coercion
is bounded by roughly 2h where h is the height.

We obtain a tighter bound for the threesome calculus that takes
into account that when two casts are composed, there is often con-
siderable overlap between the two intermediate types, and there-
fore the resulting size of the new intermediate type is not much
larger. (We take the size of a type to be the number of nodes in
the type when considered as an abstract syntax tree.) A strawman
for the bound is the size of the greatest lower bound of all the
types that occur in the program. The problem with this strawman
is that the greatest lower bound of two types can sometimes be
smaller, thereby not providing an upper bound on size. For exam-
ple, Int & (∗ → ∗) = ⊥. Instead we need to take the maximum
of the structure of the two types. To accomplish this we map types
to their shadow, written dT e, and then compute the greatest lower
bound. We define the shadow of a type as follows.

dBe = ∗
dS → T e = dSe → dT e

d∗e = ∗
d⊥e = ∗

With the previous example, we have dInte& d∗ → ∗e = ∗ → ∗.

Proposition 3 (Properties of shadows).

1. size(T ) = size(dT e).
2. If R <:n dSe and R <:n dT e then R <:n dS & T e.
3. If dSe <:n dT e, then size(dT e) ≤ size(dSe).



We prove that the sizes of types in the program during reduction
are bounded above by the greatest lower bound of the shadows of
the types in the original program. The main lemma below shows
that the greatest lower bound remains a lower bound during reduc-
tion. We can then apply the above property 3 to show that the size
of the greatest lower bound is an upper bound on the size of any
type in the program. Towards formally stating these properties, we
give the following definitions.

T ∈ t ≡ type T syntactically occurs in term t

dte ≡ {dT e | T ∈ t}
S <:n T ≡ ∀T ∈ T . S <:n T

&{T1, . . . , Tn} ≡ T1& · · ·&Tn

Lemma 6 (Preservation of lower bounds).
If T <:n dte, and t −→ t′, then T <:n dt′e.
Lemma 7 (Preservation of compilation).
If T <:n dte, then T <:n d〈〈t〉〉e.
Theorem 2 (Bound on size of types and therefore casts).
If 〈〈t〉〉 −→∗ t′, then for any T ∈ t′, size(T ) ≤ size(&dte).

Let |t| be the term t with all the casts erased. The size of a
threesome program during execution does not differ by more than
a constant factor compared to itself with all the casts erased.

Theorem 3 (Space efficiency).
For any program t, if t −→∗ t′, then

size(t′) ≤ size(&dte) · size(|t′|).

Proof. The proof is essentially the same as in Herman et al. (2007),
except we use Theorem 2 for the bound on the size of types.

4. Threesomes with Blame
In the previous section we showed that a simplified threesome
calculus implements the blame calculus ignoring blame labels. We
now turn our attention to adding correct blame allocation to the
threesome calculus. Consider what would happen if we were to
naively add blame labels to threesome casts, say, writing the blame
label next to the intermediate type. When merging two casts, we
would need to choose between label m and l.

〈T U,m⇐=S′〉〈S′ R,l⇐=S〉s −→ 〈T U&R,n⇐= S〉s
Should n be m or l? Unfortunately, either choice is wrong. Con-
sider the following example in which different casts within the
same sequence are allocated blame.

g ≡ λf : ∗→ ∗ . 〈∗→∗ l⇐ Bool→∗ n⇐ ∗→Bool
m⇐ ∗→∗〉f

g (λx : ∗. 〈∗ o⇐Int〉1) 〈∗ p⇐Bool〉true −→∗ blame m

g (λx : ∗. x) 〈∗ o⇐Int〉1 −→∗ blame l

Having just one blame label per cast is not enough.
The solution we propose is to incorporate blame labels into the

intermediate type of a threesome. The above function g is then
represented in the threesome calculus as follows.

g = λf : ∗ → ∗. 〈∗→∗ Booll→εBoolm

⇐= ∗ → ∗〉f
The label on the codomain of the intermediate type is m because
cast m is the first (from right to left) to project from ∗ to Bool
in the codomain. The label on the domain is l because cast l is the
first (from left to right) to project from ∗ to Bool. The function type
itself is given the empty label ε because in this sequence of casts,
the function type cannot induce blame.

The definition of the threesome calculus with blame is given in
Figure 4. The erasure of a labeled type P to a type is written |P |.

Syntax

optional labels p, q ::= l | ε
labeled types P,Q ::= Bp | P →p Q | ∗ | ⊥lGp

terms s, t ::= k | x | λx :S.t | s t |
〈T P⇐=S〉s

values v, w ::= u | 〈∗ P⇐=S〉u |
〈S′ → T ′

P→εQ⇐= S → T 〉u
contractums r ::= t | blame l
cast-free contexts F ::= � | E[� t] | E[v �]

evaluation contexts E ::= F | F [〈T P⇐=S〉�]

Additional typing rules Γ ` t : T

Γ ` s : S |P | <:n S |P | <:n T

Γ ` 〈T P⇐=S〉s : T

Composition Q ◦ P

Bq ◦Bp = Bp

P ◦ ∗ = P

∗ ◦ P = P

QHm ◦ PGp = ⊥mGp if G 6= H

Q ◦ ⊥mGp = ⊥mGp

⊥mGq ◦ PGp = ⊥mGp

⊥mHl ◦ PGp = ⊥lGp if G 6= H

(P ′→qQ′) ◦ (P→pQ) = (P ◦ P ′) →p (Q′ ◦Q)

Reductions s −→ r

(λx :S.t) v −→ [x := v]t (17)

k k′ −→ δ(k, k′) (18)

(〈T→T ′
P→εP ′
⇐= S→S′〉u) w −→ 〈T ′ P ′

⇐=S′〉u (〈S P⇐=T 〉w)

if not T→T ′ = |P→εP ′| = S→S′ = ∗→∗ (19)

Cast reductions t −→c r

〈G Gε

⇐=G〉u −→c u (20)

〈∗ ∗⇐=∗〉u −→c u (21)

〈T ⊥lGε

⇐= S〉u −→c blame l (22)

〈T Q⇐=S′〉〈S′ P⇐=S〉s −→c 〈T
Q◦P⇐=S〉s (23)

Single-step evaluation t 7−→ r

t −→ t′

E[t] 7−→ E[t′]

t −→c t
′

F [e] 7−→ F [t′]

t −→c blame l

F [t] 7−→ blame l

Figure 4. Threesomes with blame

We require that in a value of the form 〈S′ → T ′
P→εQ⇐= S → T 〉u,

not all of S′, T ′, P,Q, S, and T can be ∗.
Next we discuss the semantics of the threesome calculus. With

the addition of blame labels, we must replace the meet operator
with something that takes blame into account. The order of failure
becomes observable so the operator is no longer symmetric. Thus,
we call the new operator “composition” and use the symbol ◦.

Before giving the definition of the composition operator, we
establish some auxiliary notation. We write gnd(P ) = Gp, where



G is the ground type that is shallowly compatible with |P |, and p
is the topmost blame label in P .

gnd(Bp) = Bp gnd(P →p Q) = (∗→∗)p

In patterns, we write PGp to indicate that P is a labeled type with
gnd(P ) = Gp.

The composition of labeled types is defined in Figure 4. In
general, the label on the right-hand type takes precedence over
the left-hand type. This is because the right-hand type induces
a cast error before the left-hand side. The composition of two
function types is a function type whose blame label is taken from
the right-hand function type, whose range is the composition of the
ranges of the two function types and whose domain is the reverse
composition of the domains. This reversal mimics the contravariant
behavior of function casts in the blame calculus; see rule (8).

Our treatment of the labeled bottom type ⊥lGp deserves some
explanation. We initially tried to label bottom types with a single
label, as in ⊥l. However, that approach fails to capture the correct
blame tracking behavior. Consider the following examples.

〈Int l⇐ ∗ m⇐ Bool
n⇐ ∗ o⇐ Int〉1 −→ blame n

〈Int l⇐ ∗ m⇐ Bool
n⇐ ∗ o⇐ Bool〉true −→ blame l

Recall that in the threesome calculus, casts are merged outside-in.
The two outermost casts would be merged into cast with middle
type ⊥l. For the next merge, we could choose to produce either
⊥l or ⊥n. However, either choice would be wrong for one of the
above examples. Our solution is to label bottom types with not only
a label, but also with a labeled ground type. So in this case, the
second merge results in ⊥lBooln.

One might wonder why the bottom type only needs to remem-
ber two labels and not more. A close inspection of the composition
rules dealing with bottom reveals why this is the case. When com-
posing ⊥mHq with a labeled type PGp on the right, either H is
equal G, so p overshadows q and the result is ⊥mGp, or H is not
equal to G, and we have a new cast failure that needs to blame q.
So we can forget the label m and the result is ⊥qGp

The following proposition expresses the relationship between
composition and meet.

Proposition 4. |Q ◦ P | = |Q|& |P |

The main difference between the reduction rules for the three-
some calculus, shown in Figure 4, and the rules for the simplified
calculus is the use of the composition operator ◦ in place of the
meet operator & in rule (23).

4.1 Correspondence Between Twosomes and Threesomes
The compilation of the blame calculus to the threesome calculus,
written 〈〈t〉〉, is given in Figure 5. The case for casts is a bit more
complicated than for the simplified calculus in that we must also
define how to propagate labels into the intermediate type; function
〈〈T l⇐ S〉〉 performs this duty and is defined in Figure 5. Its
definition is straightforward, though two things are worth pointing
out. The label is negated when going under the left-hand side of a
function type and we put the empty label ε on types in situations
where the cast could not produce blame, such as identity casts and
injections. The following is the relationship between 〈〈T l⇐ S〉〉
and meet.

Proposition 5. |〈〈T l⇐ S〉〉| = T & S.

With the addition of blame labels, it is not as straightforward to
establish the equivalence between the threesome calculus and the
blame calculus because we can no longer merge casts in the blame
calculus itself. However, we are able to construct a bisimulation

Compile casts to labeled types 〈〈T l⇐ S〉〉 = P

〈〈B l⇐ B〉〉 = Bε 〈〈∗ l⇐ ∗〉〉 = ∗ 〈〈B l⇐ ∗〉〉 = Bl 〈〈∗ l⇐ B〉〉 = Bε

〈〈T l⇐ S〉〉 = ⊥lGε if S # T, where G = gnd(S)

〈〈S′→T ′
l⇐ S → T 〉〉 = 〈〈S l⇐ S′〉〉 →ε 〈〈T ′ l⇐ T 〉〉

〈〈S → T
l⇐ ∗〉〉 = 〈〈∗ l⇐ S〉〉 →l 〈〈T l⇐ ∗〉〉

〈〈∗ l⇐ S → T 〉〉 = 〈〈S l⇐ ∗〉〉 →ε 〈〈∗ l⇐ T 〉〉

Compile blame terms to threesome terms 〈〈t〉〉 = t

〈〈x〉〉 = x 〈〈k〉〉 = k 〈〈λx :S. t〉〉 = λx : S. 〈〈t〉〉 〈〈t s〉〉 = 〈〈t〉〉 〈〈s〉〉

〈〈〈T l⇐S〉s〉〉 = 〈T R⇐=S〉〈〈s〉〉 where R = 〈〈T l⇐ S〉〉

Figure 5. Compilation of twosomes to threesomes (with blame)

k ≈ k x ≈ x
s2 ≈ s3 t2 ≈ t3
s2 t2 ≈ s3 t3

s2 ≈ s3
λx : S. s2 ≈ λx : S. s3

blame l ≈ blame l

s2 ≈ s3 P = 〈〈T l⇐ S〉〉

〈T l⇐S〉s2 ≈ 〈T P⇐=S〉s3
(24)

s2 ≈ 〈T P⇐=S〉s3 Q = 〈〈U l⇐ T 〉〉

〈U l⇐T 〉s2 ≈ 〈U Q◦P⇐=S〉s3
(25)

t2 ≈ (〈T1→T2
P⇐=S〉s3) (〈T1

〈〈T1
l⇐U1〉〉⇐= U1〉t3)

Q = 〈〈U1→U2
l⇐ T1→T2〉〉 ¬(T1 → T2 = |P | = S)

〈U2
l⇐T2〉t2 ≈ (〈U1→U2

Q◦P⇐=S〉s3) t3
(26)

t2 ≈ s3 (〈S1
〈〈S1

l⇐U1〉〉⇐= U1〉t3) Q = 〈〈U1→U2
l⇐ S1→S2〉〉

〈U2
l⇐S2〉t2 ≈ (〈U1→U2

Q⇐=S1→S2〉s3) t3
(27)

Figure 6. Bisimulation relating twosomes and threesomes

relation, shown in Figure 6, linking reduction in the two systems.
The bisimulation relates a sequence of twosomes with a single
threesome. To accomplish this, rule (25) peels off a twosome from
the sequence and recursively relates a modified threesome with the
rest of the sequence. The modification removes the contribution of
the one twosome from the threesome’s intermediate type.

Rule (26) is necessary to relate states during the application of
a cast-wrapped function to a value. On the blame calculus side, the
function is wrapped in a sequence of casts and there is a sequence
of reductions via rule (8). On the threesome side, there is only one
cast and one reduction via rule (19). Rule (26) therefore relates the
intermediate steps of the blame calculus back to the state of the
threesomes before the reduction via rule (19). Rule (27) is similar
to rule (26) but handles the special case when T1→T2 = |P | = S.

Lemma 8 (Bisimulation between the blame and threesome calculi).
If s2 ≈ s3 and both s2 and s3 are well typed, then

1. if s2 7−→ r2, then s3 7−→∗ r3 and r2 ≈ r3 for some r3.
2. if s3 7−→ r3, then s2 7−→∗ r2 and r2 ≈ r3 for some r2.



Towards proving the correctness of the threesome calculus, we
show that compilation returns a threesome calculus program that is
bisimilar to the source program.

Lemma 9 (Compilation returns a bisimilar program.). t ≈ 〈〈t〉〉

Also, we show that the bisimulation is sound with respect to ob-
servable behavior.

Lemma 10. If t2 ≈ t3, then t2 ↓ if and only if t3 ↓.

The correctness of the threesome calculus is a straightforward
consequence of these lemmas.

Theorem 4 (Correctness of the threesome calculus).
〈〈t〉〉 ↓ if and only if t ↓.

4.2 Space Efficiency
The addition of labels to the intermediate types of the threesomes
only adds a constant factor increase in space, so the proof of
space efficiency from Section 3.2 carries over to the full threesome
calculus in a straightforward manner.

5. Relation to the Coercion Calculus
Henglein (1994) introduces a sub-language named the coercion
calculus to express casts. Instead of casts of the form 〈T ⇐ S〉s,
Henglein uses casts of the form 〈c〉s where c is a term of the coer-
cion calculus. The coercion calculus is not intended to be directly
used by programmers, but instead casts of the form 〈T ⇐S〉s are
compiled into casts of the form 〈c〉s. The coercion calculus pre-
dates blame tracking, but Siek et al. (2009) augment the coercion
calculus with blame, obtaining the calculus shown in Figure 7.

The coercionG! injects a value into ∗ whereas the coercionG?l

projects a value out of ∗, blaming location l in the case of a type
mismatch. The identity coercion ιT behaves like the identity func-
tion. The type annotation T on the identity coercion is always either
a ground type or ∗. A function coercion c→d applies coercion c to
a function’s argument and d to its return value. Coercion composi-
tion d◦c applies coercion c then coercion d. We consider coercions
equal up to associativity of composition. In addition to Henglein’s
coercions, there is the Faill

T⇐S coercion of Herman et al. (2007),
which compactly represents coercions that are destined to fail but
have not yet been applied to a value.

The coercion reduction system we present here corresponds to
Henglein’s notion of φ-reduction: G?l ◦ G! −→ ιG. Henglein
also studied ψ-reduction: G! ◦ G?l −→ ιG. While ψ-reduction
is useful when considering how best to compile dynamically typed
languages (as in Henglein’s work), ψ-reduction is not suitable in
our setting as it would allow some errors to go uncaught.

Rule (34) for composing failures on the left is subtle. Herman
et al. (2007) instead use the reduction

Fail ◦ c −→ Fail

However, with the addition of blame tracking, that rule would
make the calculus non-deterministic. Siek et al. (2009) restrict c
to injections.

Fail
l
T⇐S ◦G! −→ Fail

l
T⇐G

But that rule is useless because failure coercions never have ∗ as
a source type. To see why this is the case, first consider rule (29)
which introduces failures: the source type isG. Next, the only other
way to obtain a failure with source type ∗ would be to have a rule
of the form

Fail
l
T⇐S ◦G?p −→ Fail

l
T⇐∗ (Hypothetical!)

but we certainly don’t want such a rule because that would intro-
duce non-determinism. (The presence of the useless rule in the se-
mantics of Siek et al. (2009) does not invalidate any of their results.)

In this paper, because we are using lazy cast checking, we can
allow the coercion on the right to be a function coercion. With lazy
checking, any errors in the domain or codomain of a cast appear
after errors concerning the function type itself, even if the error
concerning the function type appears later in a series of casts. For
example, the following program allocates blame to l4 even though
there is also a potential error at l2.

〈Bool l4⇐ ∗ l3⇐ Int→Bool
l2⇐ ∗ l1⇐ Int→Int〉λx : Int. x

7−→ blame l4

We give an inductive characterization of the φ-normal forms of
the coercion calculus in Figure 7, writing nm c for this inductive
predicate.

Proposition 6.
Suppose ` c : T ⇐ S. nm c if and only if 6 ∃c′. c 7−→ c′.

Figure 9 gives the definition of a coercion-based calculus with
blame tracking similar to that of Siek et al. (2009). In this presen-
tation we choose to keep coercions in normal form and perform
coercion normalization in rule (39).

The correspondence between the threesome calculus and the
coercion-based calculus is quite strong: threesome casts are iso-
morphic to well-typed coercions in normal form. Figure 8 defines
the function and its inverse that witnesses this isomorphism.

Proposition 7 (L·M produces a coercion in normal form.).
If P <:n T and P <:n S, then nm LT P⇐= SM.

Lemma 11 (Bijection between threesomes and coercions).
If |P | <:n S and |P | <:n T and nm c, then LLT P⇐= SMM−1 =

〈T P⇐= S〉, and LLcM−1M = c.

The isomorphism is structure-preserving with respect to reduc-
tion. To prove that the coercion-based reduction rule (39) is equiv-
alent to the threesome rule (23), we need to establish that

LT Q⇐= S′M ◦ LS′ P⇐= SM 7−→∗ LT Q◦P⇐= SM

To prove this, we need to establish that mapping from coercions
back to threesomes is invariant with respect to coercion reduction.

Lemma 12 (Coercion reduction preserves L·M−1.).
Suppose c is well-typed. If c 7−→∗ c′, then LcM−1 = Lc′M−1.

Corollary 2. LT Q⇐= RM ◦ LR P⇐= SM 7−→∗ LT Q◦P⇐= SM

Proof. First, we have LLT Q⇐= RM ◦ LR P⇐= SMM−1 = T
Q&P⇐= S.

Then because coercion reduction is strongly normalizing, there is
a c′ such that LT Q⇐= RM ◦ LR P⇐= SM 7−→∗ c′ and nm c.
Then by Lemma 12 we have Lc′M−1 = T

Q&P⇐= S and therefore
c′ = LT Q&P⇐= SM.

Putting these results together, we have an isomorphism between
the threesome calculus and the coercion-based calculus of Figure 7.

Theorem 5 (Isomorphism between the threesome calculus and the
coercion-based calculus).

1. L·M is bijective, that is LLt3MM−1 = t3 and LLtcM−1M = tc given
that t3 and tc are well-typed.

2. L·M is structure (reduction) preserving, that is, t3 7−→ t′3 if and
only if Lt3M 7−→ Lt′3M.



Syntax

coercions c, d ::= ιT | G! | G?l | d ◦ c | c→d | Faill
T⇐S

contexts C ::= C ◦ c | d ◦ C | C→d | c→C

Well-typed coercions c : T ⇐ S

ιT : T ⇐ T Faill
T⇐S : T ⇐ S G! : ∗ ⇐ G

G?l : G⇐ ∗
c : S ⇐ T d : T ′ ⇐ S′

c→d : (T→T ′) ⇐ (S→S′)

d : U ⇐ T ` c : T ⇐ S
d ◦ c : U ⇐ S

Additional typing rules Γ ` t : T

Γ ` s : S c : T ⇐ S
Γ ` 〈c〉s : T

Compile casts to coercions 〈〈T l⇐ S〉〉 = c

〈〈B l⇐ B〉〉 = ιB 〈〈∗ l⇐ ∗〉〉 = ι∗

〈〈∗ l⇐ B〉〉 = B! 〈〈B l⇐ ∗〉〉 = B?l

〈〈∗ l⇐ S → T 〉〉 = (∗→∗)! ◦ (〈〈S l⇐ ∗〉〉→〈〈∗ l⇐ T 〉〉)

〈〈S → T
l⇐ ∗〉〉 = (〈〈∗ l⇐ S〉〉→〈〈T l⇐ ∗〉〉) ◦ (∗→∗)?l

〈〈S′ → T ′
l⇐ S → T 〉〉 = 〈〈S l⇐ S′〉〉→〈〈T ′ l⇐ T 〉〉

Coercion reductions c −→ c

G?l ◦G! −→ ιG (28)

H?l ◦G! −→ Fail
l
H⇐G if G 6= H (29)

(d1→d2) ◦ (c1→c2) −→ (c1 ◦ d1)→(d2 ◦ c2) (30)

ιT ◦ c −→ c (31)

d ◦ ιT −→ d (32)

d ◦ Faill
T⇐S −→ Fail

l
U⇐S if d : U ⇐ T (33)

Fail
l
U⇐T ◦ (c→d) −→ Fail

l
U⇐S if c→d : T ⇐ S (34)

Single-step evaluation c 7−→ c

c = C[c0] c0 −→ c1 c′ = C[c1]

c 7−→ c′

Normal forms nm c

nm ιT nm G?l nm G! nm G! ◦G?l

nm Fail
l
T⇐S nm Fail

l
T⇐G ◦G?m

nm c nm d
nm (∗→∗)! ◦ (c→d)

nm c nm d
nm c→d

nm c nm d

nm (c→d) ◦ (∗→∗)?l

nm c nm d

nm (∗→∗)! ◦ (c→d) ◦ (∗→∗)?l

Figure 7. Coercion calculus with blame

6. Related Work
The integration of static and dynamic typing has roots in the
1970’s and 1980’s, with the any type and force expression in
CLU (Liskov et al. 1979) and the Dynamic type and coerce ex-

Map threesomes to coercions LT P⇐= SM = c

LG Gε

⇐= GM = ιG

L∗ ∗⇐= ∗M = ι∗

LG Gl

⇐= ∗M = G?l

L∗ Gε

⇐= GM = G!

L∗ Gl

⇐= ∗M = G! ◦G?l

LT ⊥lHε

⇐= SM = Faill
T⇐S if S 6= ∗

LT ⊥lGm

⇐= ∗M = Faill
T⇐G ◦G?m

LT1→T2
P1→εP2⇐= S1→S2M = LS1

P1⇐= T1M→LT2
P2⇐= S2M

LT1→T2
P1→lP2⇐= ∗M = LT1→T2

P1→εP2⇐= ∗→∗M ◦ (∗→∗)?l

L∗ P1→lP2⇐= ∗M = (∗→∗)! ◦ L∗→∗ P1→εP2⇐= ∗→∗M ◦ (∗→∗)?l

L∗ P1→εP2⇐= S1→S2M = (∗→∗)! ◦ L∗→∗ P1→P2⇐= S1→S2M

Map coercions to threesomes LcM−1 = 〈S P⇐= T 〉

LιGM−1 = 〈G Gε

⇐= G〉

Lι∗M−1 = 〈∗ ∗⇐= ∗〉

LG!M−1 = 〈∗ Gε

⇐= G〉

LG?lM−1 = 〈G Gl

⇐= ∗〉

LFaill
T⇐SM−1 = 〈T ⊥lGε

⇐= S〉 where gnd(S) = G

Lc→dM−1 = 〈T1→T2
P1→εP2⇐= S1→S2〉

where 〈T1
P1⇐= S1〉 = LcM, 〈T2

P2⇐= S2〉 = LdM

Ld ◦ cM−1 = 〈T Q◦P⇐= S〉

where 〈R P⇐= S〉 = LcM, 〈T Q⇐= R〉 = LdM

Figure 8. Isomorphism between threesomes and coercions

pression in Amber (Cardelli 1986). Similar constructs appear in
Cedar (Lampson 1983), Modula-2 (Rovner 1986), and Modula-
3 (Cardelli et al. 1989). Casts are generalized to typecase in
Modula-2 and 3 their semantics is formalized by Abadi et al. (1989,
1991). In this early work on casts and the Dynamic type, run-time
checks are based on type equality. Thatte (1990) observes that
type equality requires programmers to explicitly reason about the
run-time tags on values. To relax this restriction he proposes that
casts succeed whenever the value can be coerced to the target type,
similar to the coercion based models of subtyping (Mitchell 1984,
Breazu-Tannen et al. 1989). Thatte’s work includes upcasts and
downcasts, with Dynamic as top.

In studying the compilation of dynamically typed languages
to statically typed languages, Henglein (1992, 1994) develops the
coercion calculus, a sub-language for expressing casts involving the
type Dynamic. We notice similarities between Henglein’s coercion
calculus and the retracts of Scott (1976) but we are not aware of
any work that formally connects retracts and the coercion calculus.

Henglein shows that his coercions factor: any coercion is φ-
reducible to a sequence consisting of a negative, neutral, and posi-
tive coercion: c+ ◦ c∗ ◦ c−. A negative coercion is a downcast with



Syntax

terms s, t ::= k | x | λx :S.t | s t |
〈c〉s where nm c

uncoerced values u ::= k | λx : S.t
values v, w ::= u | 〈c〉u where nm c
contractums r ::= t | blame l
cast-free contexts F ::= � | E[� t] | E[v �]
evaluation contexts E ::= F | F [〈c〉�]

Additional typing rules Γ ` t : T

Γ ` s : S ` c : T ⇐ S
Γ ` 〈c〉s : T

Compile blame calculus to coercion-based calculus 〈〈t〉〉 = t

〈〈x〉〉 = x 〈〈k〉〉 = k 〈〈λx : S. t〉〉 = λx : S. 〈〈t〉〉

〈〈t s〉〉 = 〈〈t〉〉 〈〈s〉〉 〈〈〈T l⇐S〉s〉〉 = 〈〈〈T l⇐ S〉〉〉〈〈s〉〉

Reductions s −→ r

(λx : S.t) v −→ [x := v]t (35)

k k′ −→ δ(k, k′) (36)

(〈c→ d〉u) w −→ 〈d〉 u(〈c〉w) (37)

Cast reductions t −→c r

〈ιT 〉u −→c u (38)

〈d〉〈c〉s −→c 〈c′〉s if d ◦ c 7−→∗ c′ and nm c′ (39)

〈Faill
T⇐S〉u −→ blame l (40)

Single-step evaluation t 7−→ r

t −→ t′

E[t] 7−→ E[t′]

t −→c t
′

F [e] 7−→ F [t′]

t −→c blame l

F [t] 7−→ blame l

Figure 9. Coercion-based lambda calculus with blame

respect to <:n, a positive coercion is an upcast, and a neutral coer-
cion represents failure. We conjecture that a threesome 〈T R⇐=S〉,
where R does not contain ⊥, is equivalent to a cast with factoring
c+ ◦ c∗ ◦ c− where c− is a downcast from S to R, and c∗ is the
identity coercion on R, and c+ is an upcast from R to T .

The primary goal of Henglein’s work was to minimize the num-
ber of casts inserted during compilation, which explains his use of
the ψ-reduction to remove projection-injection pairs. In contrast,
the focus of this paper is on integrating static and dynamic typing,
and the boundary between static and dynamic regions require cer-
tain run-time checks to maintain the integrity of the static region. To
maintain the integrity of the static types, we only use φ-reduction.
That being said, an interesting direction for future work would be
to try and reduce the number of inserted casts using Henglein’s
techniques while remaining sound.

Gray et al. (2005) propose adding the type Dynamic to Java and
apply the technology of contract checking to casts. Towards for-
malizing the ideas of Gray et al. (2005), Siek and Taha (2006) and
Gronski et al. (2006) generalize Thatte’s up and down-casts to a
single cast capable of up, down, and cross casts. Furthermore, Siek
and Taha (2006) observe that subtyping is not suitable for stati-
cally characterizing casts involving type Dynamic and propose the
compatibility relation, written ∼, to fill this role. These generalized
casts play an important role in the intermediate languages of grad-

ual typing (Siek and Taha 2006, 2007) and hybrid typing (Gronski
et al. 2006, Flanagan 2006, Flanagan et al. 2006).

Tobin-Hochstadt and Felleisen (2006) formalize the interaction
between static and dynamic typing at the granularity of modules
and develop a precursor to the Blame Theorem. Wadler and Find-
ler (2007, 2009) design the blame calculus, adding blame track-
ing to the generalized casts of Siek and Taha (2006) and Gronski
et al. (2006), drawing on the blame tracking of higher-order con-
tracts (Findler and Felleisen 2002). Wadler and Findler (2009) for-
mulate and prove the Blame Theorem: statically typed regions of
a program can’t be blamed for a cast error. Gronski and Flanagan
(2007) show that casts with a single blame label are just as expres-
sive as casts with two blame labels or labels with polarity.

Herman et al. (2007) observe that in a straightforward imple-
mentation of the generalized casts, there can be unbounded run-
time space overhead. To solve this problem, Herman et al. (2007)
perform stack inspection to find sequences of casts and use the co-
ercion calculus of Henglein (1994) to compress those sequences.
Siek and Taha (2007) describe a partial solution to the space effi-
ciency problem using a merge operator that is a precursor to the
meet algorithm given in this paper. Siek et al. (2009) show how to
augment the coercion calculus with blame tracking, thereby obtain-
ing a theoretical bound on space consumption for blame calculus
implementations.

7. Conclusion
In this paper we present threesomes, a typed-based solution to the
space-efficiency problem of higher-order casts. We first present a
simplified threesome calculus where sequences of casts are com-
pressed by taking the greatest lower bound with respect to naive
subtyping. We prove that the simplified threesome calculus is
equivalent to the blame calculus (ignoring blame allocation) and
we prove that the simplified threesome calculus is space efficient.
We then present the threesome calculus with full support for blame
tracking and prove that it is equivalent to the blame calculus. We
prove that threesomes are isomorphic to Henglein’s coercions in
normal form and that threesome composition is equivalent to coer-
cion composition followed by normalization.
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Appendix
7.1 Correctness of Simplified Threesomes
Proof of Proposition 1. The proof is by strong induction on the sum
of the height of S and T .

We define the append operation @ for contexts as follows.

E@� = E

E@E′[� t] = (E@E′)[� t]

E@E′[v �] = (E@E′)[v �]

E@F [〈T R⇐=S〉l�] = (E@F )[〈T R⇐=S〉l�]

if E@F 6= F ′[〈T ′ R′
⇐=S′〉l�]

Proof of Unique Decomposition 2. The proof is by induction on
the typing derivation ∅ ` t : T .

1. ∅ ` k : typeof (k): k is a value.
2. ∅ ` x : T : vacuously true.
3. ∅ ` λx : S.s: λx : S.s is a value.

4. ∅ ` s : T → S ∅ ` t : T

∅ ` s t : S
: Either s is a value, or not.

(a) Suppose s is a value. Either t is a value, or not.
i. Suppose t is a value. By the canonical forms lemma, s is

either a function or a functional cast. In either case s t is
a redex. Furthermore, the only context that decomposes
s t into a redex is �.

ii. Suppose t is not a value. Then we apply the induction
hypothesis to get a unique context E and redex t′ where
t = E[t′]. The unique context for s t is therefore
�[s�]@E.

(b) Suppose s is not a value. Then we apply the induction
hypothesis to get a unique contextE and redex s′ where s =
E[s′]. The unique context for s t is therefore �[�t]@E.

5. ∅ ` s : S

∅ ` 〈T R⇐=S〉s : T
: Either s is a value, or not.

(a) Suppose s is a value. Then either 〈T R⇐=S〉s is also a value
or it is a redex. If it is a redex, then the unique context is �.

(b) Suppose s is not a value. We have two cases to consider.
If s is a cast, then 〈T R⇐= S〉s is a redex and the unique
context is �. (Any other context that puts the hole inside
s would contain adjacent casts, which is impossible.) If s
is not a cast, we apply the induction hypothesis to get a
unique contextE and redex s′ where s = E[s′]. The unique
context for 〈T R⇐= S〉s is therefore �[〈T R⇐= S〉�]@E.
Because s is not a cast, the top of E is not a cast and
appending �[〈T R⇐=S〉�] withE will not result in adjacent
casts and therefore produces a well-formed context.

Towards proving the fundamental property of casts, we define
the bisimulation relation ≈̇ by closing the following two rules with
respect to contexts. The second rule is necessary for ≈̇ to be a
bisimulation.

t ≈̇ t′ T&S <:n R

〈T ⇐ S〉t ≈̇ 〈T ⇐ R⇐ S〉t′
t ≈̇ t′

t ≈̇ 〈S → T ⇐ S → T 〉t′

Lemma 13 (Substitution preserves ≈̇). If s ≈̇ t and vs ≈̇ vt, then
[x := vs]s ≈̇ [x := vt]t.

Proof. The proof is by induction on the derivation of s ≈̇ t.

Lemma 14 (≈̇ is a weak bisimulation.). Suppose s ≈̇ t.

1. If s 7−→ rs, then there exists rt where t 7−→∗ rt and rs ≈̇ rt.



2. If t 7−→ rt, then there exists rs where s 7−→∗ rs and rs ≈̇ rt.

Proof.

1. The proof is by a lengthy case analysis on s 7−→ rs. The case
for function application uses Lemma 13.

2. The proof is by a lengthy case analysis on t 7−→ rt. The case
for function application uses Lemma 13.

Lemma 15. If s ≈̇ t, then s ↓ if and only if t ↓.

Proof.

1. (=⇒) The proof is by induction on the reduction s 7−→∗ f .
(a) Case s = f : From s ≈̇ t and Lemma 14 we have t 7−→∗ f ′

and therefore t ↓.
(b) Case s 7−→ s′ and s′ 7−→∗ f : From s ≈̇ t and Lemma 14

we have t 7−→∗ t′ with s′ ≈̇ t′. Then by the induction
hypothesis, t ↓.

2. (⇐=) The proof is symmetric to the above case.

Lemma 16. If s ≈̇ t, then C[s] ≈̇ C[t].

Proof. The proof by induction on C.

Lemma 17. If s ≈̇ t, then s =ctx t.

Proof. We fix C and need to show that C[s] ↓ if and only if C[t] ↓.
By Lemma 16 we have C[s] ≈̇ C[t]. We conclude by applying
Lemma 15.

Lemma 18. t ≈̇ t

Proof. By induction on t.

Proof of Lemma 2. Assuming T&S <:n R, we need to show that
〈T ⇐ S〉t =ctx 〈T ⇐ R ⇐ S〉t. We have t ≈̇ t and therefore
〈T⇐S〉t ≈̇ 〈T ⇐ R⇐ S〉t. We conclude by Lemma 17.

7.2 Proof of Space Efficiency
Proof of Proposition 3.

1. The proof is a straightforward induction on the type T .
2. The proof is by strong induction on the sum of the heights of S

and T .
3. The proof is by induction on type T with case analysis on S.

Proof of Lemma 6. The proof is by inversion on t 7−→ t′ and cases
on −→. The case for rule (16) uses Proposition 3 (part 2).

Proof of Lemma 7. The proof is by induction on t. The only inter-
esting case is for casts. We have T <:n d〈R⇐S〉se and therefore
T <:n dRe and T <:n dSe. Then by Proposition 3 (part 2) we
have that T <:n dR&Se. By the induction hypothesis we have
T <:n 〈〈s〉〉. Therefore T <:n d〈RR&S⇐=S〉〈〈s〉〉e.

Proof of Theorem 2. First, we have &dte <:n dte by Proposition 1.
We have &dte <:n d〈〈t〉〉e by Lemma 7. We then proceed by
induction on 〈〈t〉〉 7−→∗ t′.

1. In the base case we have t′ = 〈〈t〉〉. So &dte <:n dt′e and
then by Proposition 3 (part 3) we can conclude that size(T ) ≤
size(&dte) for any T in t′.

2. For the induction step, we have 〈〈t〉〉 7−→ t1 and t1 7−→∗ t′.
By Lemma 6 we have &dte <:n t1. Then by the induction
hypothesis we have &dte <:n t

′. We conclude that size(T ) ≤
size(&dte) for any T in t′ by applying Proposition 3 (part 1
and 3).

7.3 Correctness of Threesomes
Proof of Proposition 5. The proof is by induction on the sum of the
heights of S and T .

Proof of Proposition 4. The proof is by induction on the sum of the
heights of Q and P .

Lemma 19. Suppose s2 ≈ 〈T ⊥lGε

⇐= S〉u. Then s2 7−→∗ blame l.

Proof of Lemma 8.
1. The proof is by case analysis on t2 7−→ r2.
2. The proof is by case analysis on t3 7−→ r3. In the case

F [〈T ⊥lGε

⇐= S〉u] 7−→ blame l, we apply Lemma 19 to show
that t2 7−→∗ blame l.

Proof of Lemma 9. The proof is by induction on the term t, using
rule (24) for relating casts.

Proof of Lemma 19. The proof is by induction on the derivation of

s2 ≈ 〈T ⊥lGp

⇐= S〉v.

Proof of Lemma 10. We need to show that if t2 ≈ t3, then t2 ↓ if
and only if t3 ↓.

1. (=⇒) The proof is by induction on the reduction t2 7−→∗ f2.
2. (⇐=) The proof is by induction on the reduction t3 7−→∗ f3.

Proof of Theorem 4. We need to show that 〈〈t〉〉 ↓ iff t ↓. By
Lemma 9 we have t ≈ 〈〈t〉〉. We conclude by Lemma 10.

7.4 Isomorphism Between Threesomes and Coercions
Proof of Proposition 6.

1. To show that nm c implies 6 ∃c′. c 7−→ c′, perform induction
on the derivation of nm c.

2. We need to show that 6 ∃c′. c 7−→ c′ implies nm c. Towards a
contradiction, we assume ¬nm c. We proceed by induction on
c. Each of the base cases is vacuously true. In the case where
c = c1 → c2, we apply the induction hypothesis to get a
reduction in c1 or c2 and therefore a contradiction. In the case
where c = c2 ◦ c1, there are many cases to consider, but in each
case there is a reduction.

Proof of Proposition 7. The proof is by induction on P .

Proof of Lemma 11.

1. We prove LLT P⇐= SMM−1 = 〈T P⇐= S〉 by induction on P .
2. We prove LLcM−1M = c by induction on the derivation of c.

Proof of Lemma 12. The proof is by induction on the reduction
sequence, with case analysis on each reduction.

Proof of Theorem 5.

1. The proof of LLt3MM−1 = t3 is by induction on the typing
derivation for t3 and the proof of LLtcM−1M = tc is by induction
on the typing derivation of tc.

2. We prove that t3 7−→ t′3 if and only if Lt3M 7−→ Lt′3M.
(a) We show that t3 7−→ t′3 implies Lt3M 7−→ Lt′3M. The proof is

by cases on reduction, using Corollary 2 for rule (23).
(b) We show that Lt3M 7−→ Lt′3M implies t3 7−→ t′3. The proof is

by cases on reduction, using Corollary 2 for rule (39).


