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Explicit Weakening

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

I present a novel formulation of substitution, where facts about substitution that previously required
tens or hundreds of lines to justify in a proof assistant now follow immediately—they can be justified
by writing the four letters "refl". The paper is an executable literate Agda script, and source of the
paper is available as an artifact in the file

Weaken.lagda.md

Not all consequences of the pandemic have been awful. For the last three years, I've had the great
pleasure of meeting with Peter Thiemann and Jeremy Siek for a couple of hours every week, via
Zoom, exploring topics including core calculi, gradual typing, and formalisation in Agda. The work
reported here arose from those discussions, and is dedicated to Peter on the occasion of his 60th
birthday.

1 Introduction

Every user of a proof assistant has suffered the plague of lemmas: sometimes a fact that requires zero
lines of justification for a pen-and-paper proof may require tens or hundreds of lines of justification when
using a proof assistant.

Properties of substitution often give rise to such an inundation of lemmas. To give one example—
the one which motivated this work—I recall a proof formalised in Agda of the gradual guarantee for a
simply-typed gradual cast calculus. The calculus uses lambda terms with de Bruijn indices, and the proof
depends crucially on the following equivalence.

(N I[MI = N (*)

Here N [ M Jo substitutes term M for de Bruijn index zero in term N, while N 1 increments by one
every free de Bruijn index in term N. Hence N 1 will not contain de Bruijn index zero, and the equation
appears obvious. However, my formal proof required eleven lemmas and 96 non-comment lines of code
to establish the above fact.

Here I present a novel formulation of substitution where equation (*) is obvious to the proof assistant
as well as to the person conducting the proof: it holds by definitional equality. Further, many other
equations that one needs also hold by definition and much of the remaining work can be handled by
automatically applied rewrites. As a result, the facts about substitution that we need can be proved
trivially. In my proof assistant of choice, Agda, one needs to write just four letters, ref1, denoting proof
by reflexivity.

Since a single example may fail to convince, I give two more.

First, in the proof of the gradual guarantee mentioned earlier, it is not just the above equation but
every property of substitution in the proof that is rendered trivial by the new formulation given here.

Second, consider an example from the textbook Programming Language Foundations in Agda, by
Kokke, Siek, and Wadler [11, 7], henceforth PLFA. Chapter Substitution is devoted to proving the fol-
lowing equation, for terms using de Bruijn indexes.

Bieniusa, Degen, Wehr (Eds.). A Second Soul: © Philip Wadler
Celebrating the Many Languages of Programming This work is licensed under the
EPTCS 413, 2024, pp. 15-26, doi:10.4204/EPTCS.413.2 Creative Commons Attribution License.


http://dx.doi.org/10.4204/EPTCS.413.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

16 Explicit Weakening

NLCMI[LJo=NLLIJLMLLJe Jo

Here N [ M Jo, as before, substitutes term M for de Bruijn index zero in term N, while N [ L Ts
substitutes term L for de Bruijn index one in term N. The equation states that we can substitute in either
order: we can first substitute M into N and then substitute L into the result, or we can first substitute L
into N and then substitute M (adjusted by substituting L into M) into the result. The chapter takes several
hundred lines to achieve the above result, and was considered so long and tedious that it was relegated to
an appendix. With the new formulation, the result becomes immediate.

My formulation is inspired by the explicit substitutions of Abadi, Cardelli, Curien, and Levy [1, 2],
henceforth ACCL, one of the seminal works in the area. ACCL wished to devise a calculus that could
aid in the design of implementations, while we focus on support for automated reasoning; and ACCL
considered applications to untyped, simply-typed, and polymorphic lambda calculus (System F), while
we focus on simply-typed lambda calculus. A vast body of literature is devoted to explicit substitution.
Helpful surveys include Kesner [6] and Rose, Bloo, and Lang [9]. Another inspiration for this work is
the Autosubst system of Schafer, Tebbi, and Smolka [10].

Despite the large number of variations that have been considered, I have not found a formulation that
matches the one given here. The closest are David and Guillaume [4] and Hendricks and van Oostrom [5]
both of whom use an explicit weakening, but with quite different goals. In particular, both used named
variables and single substitution, whereas de Bruijn variables and simultaneous substitution are crucial
to both ACCL and the approach taken here.

The formulation given here is couched in terms of de Bruijn indices and intrinsic types, as first
proposed by Altenkirch and Reus [3]. Lambda calculus is typically formulated using named variables and
extrinsic typing rules, but when using a proof assistant it is often more convenient to use de Bruijn indices
and intrinsic typing rules. With named variables the Church numeral two is written As.Az. (s(sz)),
whereas with de Bruijn indices it is written AA (1(10)). In the latter variables names do not appear at
point of binding, and instead each variable is replaced by a count (starting at zero) of how many binders
outward one must step over to find the one that binds this variable. With extrinsic typing, one first gives a
syntax of pre-terms and then gives rules assigning types to terms, while with intrinsic typing the syntax of
terms and the type rules are defined together. Reynolds [8] introduced the names intrinsic and extrinsic;
the distinction between the two is sometimes referred to as Curry-style (terms exist prior to types) and
Church-style (terms make sense only with their types). A textbook development in Agda of both the
named-variable/extrinsic and the de Bruijn/intrinsic style can be found in PLFA.

The calculus in ACCL is called explicit substitution, or Ao. Our calculus is called explicit weaken-
ing, or At. In ACCL, substitutions are constructed with four operations (id, shift, cons, compose) and
substitution is an explicit operator on terms. Here, substitutions are constructed with three operations
(id, weaken, cons, where weaken is a special case combining shift with composition) and weakening is
an explicit operator on terms, while substitution and composition become meta operations. For ACCL
it is important that substitution is explicit, as this is key in using the calculus to design efficient imple-
mentations. Conversely, for us it is important that only weakening is explicit and that substitution and
composition are meta operations, as this design supports the proof assistant in automatically simplifying
terms—so that equations which were previously difficult to prove become trivial.

The remainder of this paper develops the new formulation as a literate Agda script. Every line of
Agda code is included in this paper, and the source is provided as an artifact. Since the paper is a literate
Agda script, when you see code in colour that means it has been type-checked by the Agda system,
providing assurance that it is correct. The paper is intended to be accessible to anyone with a passing
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knowledge of proof assistants. Additional detail on how to formalise proofs in Agda can be found in
PLFA [11, 7].

2 Formal development

2.1 Module and imports

We begin with bookkeeping: an option pragma that enables rewriting, the module header, and imports
from the Agda standard library. The first two imports are required by the pragma, and the others import
equality and related operations. Agda supports mixfix syntax, so _=_ names infix equality.

{-# OPTIONS -rewriting #-}

module Weaken where

open import Agda.Builtin.Equality

open import Agda.Builtin.Equality.Rewrite

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_=_; refl; cong; congtiny 2)

open Eq.=-Reasoning using (begin_; step-=-|; _H)

(As of agda-stdlib-2.1, one imports step-=-| to define the operator ~=<)_ used to display chains of
equalities.)

2.2 Operator priorities

We declare in advance binding priorities for infix, prefix, and postfix operators. A higher priority indi-
cates tighter binding, and letters 1 or r indicate left or right associativity.

infix 4_+_ |
infixl 5 _>__g
infix 5A_

infix| 7 _._

infixr 7 _=_
infix 8_7

2.3 Types

A type is either the natural number type (" N) or a function type (_=-_).

data Type : Set where
‘N Type
_=_: Type — Type — Type

We let A, B, C range over types.

variable

ABC: Type

Agda universally quantifies over any free variables named in variable declarations
Here is a function from naturals to naturals.

_: Type
_='N='N

In Agda, one may use _ as a dummy name that is convenient for examples.
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2.4 Contexts

A context is a list of types. The type corresponding to de Bruijn index zero appears at the right end of
the list. The empty context is written &, and _I>_ adds a type to the end of the list.

data Con : Set where
@ Con
_>_: Con — Type — Con

WeletI', A, ®, & range over environments.

variable
I'A® Z: Con

Here is an environment in which de Bruijn index zero has type natural, and de Bruijn index one is a
function from naturals to naturals.

_: Con
_=0>(N='N)>'N

2.5 Terms

We write I A for the type of terms in context I" with type A. A term is either de Bruijn variable zero
(o), the weakening of a term (M 1), a lambda abstraction (A N), an application (L - M), the number zero,
the successor of a number suc M. (We omit case expressions and recursion, as they add nothing to the
exposition.) Any line beginning with two dashes is a comment What is typeset here as a rule is a line
of dashes in the source. We take advantage of this to make our term declarations closely resemble the
corresponding type rules.

data _F_: Con — Type — Set where

I'>AFA
1

(M:T'+B)
_)

I'>AFB
A_:

(N:T'>AFB)
%

I'FA=1B

(L:T+A= B)

(M:T'EA)
_>

I'-B

Zero .
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I't'N
suc:
(M:T'+"N)
_)
'E'N

We let L, M, N, P, Q range over terms.

variable
LMNPQ:THA

Here is the increment function for naturals.

inc: @+ 'N="'N
inc =1 (suce)

Here is the term for the Church numeral two.

two: IFH(A=A)=A=A
two=A (A (o1 (s7-9)

Here e corresponds to de Bruijn index zero, and e 1 corresponds to de Bruijn index one.
Crucially, weakening can be applied to any term, not just a variable. The following two open terms
are equivalent.

MOM1:@>(A:>B:>C)>AI>B|—C
Me=eT7T 070
Mi=(eT-0)T e

Here o t 1 corresponds to de Bruijn index two.

2.6 Substitutions

We write I’ |= A for the type of a substitution that replaces variables in environment A by terms in
environment I". A substitution is either the identity substitution id, the weakening of a substitution & t,
or the cons of a substitution and a term ¢ > P. We take advantage of overloading to permit weakening on
both terms M 1 and substitutions ¢ 1, and to permit cons on both environments I" [> A and substitutions
o > P

data _=_: Con — Con — Set where

id :

AEA
T

(c:I'E=A)
%

'>AEA
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(c:T=A4)
(M:T'tA)
%

r=A>A
We let 0, 7, v range over substitutions.

variable
ctv:I'EA

We can think of a substitution I |= A built with repeated uses of cons as a list of terms in context I,
with one term for each type in A. For example, here is a substitution that replaces de Bruijn index zero
by the number zero, and de Bruijn index one by the increment function on naturals. Each term in the
substitution is a closed term, as indicated by the source of the substitution being the empty environment.
Here id has type @ |= &, as there are no other free variables.

_t@E@>(N='N)>'N
_=1id > inc > zero

Here is a substitution that replaces de Bruijn index one by the weakening of the increment function,
and leaves de Bruijn index zero unchanged.

i @>'NE@>'N='N>'N
_=(id>inc) T > e

If we omitted the weakening, the substitution would not be well typed. This is an advantage of the
intrinsic approach: correctly maintaining de Bruijn indices is notoriously tricky, but with intrinsic typing
getting a de Bruijn index wrong usually leads to a type error.

Finally, here is a substitution that flips two variables, making the outermost innermost and vice versa.

_O>A>BEOJ>B>A
_=idfTT>er>e]

Hereid T+ t : @ > A > B = O, as required by the type rules for cons. Again, the types keep us
straight. If we accidentally add or drop an 1 the term will become ill-typed.

Often, we will need to know that a substitution is a cons, but will want to refer to the whole substitu-
tion. For this purpose, it is convenient to use a pattern declaration to declare A as a shorthand for _ >

pattern A = _ > _
We can then pattern match against (¢ @ /\), which binds ¢ to a substitution, but only if it is in the
form of a cons.
2.7 Instantiation

We write M [ o ] to instantiate term M with substitution o. Instantiation is contravariant: substitution &
: I' = AtakesatermM : A - AintoatermM [ ¢ ] : ' - A.

_[]:
(M: AL A)
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(c:T'=A4)
A

I'HA
M [id] =M - M
Mo (o1l =M[eDT - @
. [6>P] =P - (3)
M71) [o-P]=M[o] - ()
(AN) [6QA]=A(N[o15e])- (5)
(L-M) [cCA]=L[c] - M[c] - (6)
zero [0 Q@A]=zero -
(suceM)[c@A]l=suc(M[o]) - (8)

Instantiation is defined by case analysis. It is crucial that we first perform case analysis on the
substitution, since if it is identity or weakening we can compute the result easily without considering the
structure of a term—that is the whole point of representing identity and weakening explicitly! Only if
the substitution is a cons do we need to perform a case analysis on the term.

Thus, we first do case analysis on the substitution. (1) For identity the definition is obvious. (2)
Weakening of a substitution becomes weakening of a term—this is why we defined explicit weakening
in the first place. If the substitution is a cons, we then do a case analysis on the term. (3) If the term is
de Bruijn variable zero we take the term from the cons. (4) If the term is a weakening we drop the term
from the cons and apply recursively. Otherwise, we push the substitution into the term. (5) If the term
is a lambda abstraction, the substitution o becomes o 1t > e as it is pushed under the lambda. Bound
variable zero is left unchanged, while variables one and up now map to the terms bound by &, weakened
to account for the newly intervening lambda binder. Our notation neatly encapsulates all renumbering
of de Bruijn indexes, which is usually considered tricky. (6—8) Otherwise, the substitution is unchanged
and applied recursively to each part. This completes the definition of instantiation.

Beta reduction is written as follows.

AN M — N[LidD> M]

Substution id > M maps variable zero to M, and maps variable one to zero, two to one, and so on,
as required since the surrounding lambda binder has been removed. Once again, our notation neatly
encodes the tricky renumbering of de Bruijn indexes.

Consider an application of the Church numeral two to the increment function.
two - inc

Beta reduction yields an application of a substitution, which we compute as follows. Each equality
is labelled with its justifying line from the definition.

(A (eT-(e7-9)))[id>inc]=2 (incT-(incT-e))

A (e[ (id>inc) 11)- (o 1-#) [(id & inc) T > o)
=)~ @
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A((e[id>inc])T-((o1-0)[(id>inc) | e]))

_7<L>(inc T ((o1-0)[(id>inc) 1> e]))
_7L (inc .T'-.(inc 1))

Since inc is a closed term, it must be weakened to appear underneath a lambda, and this is accom-
plished by the rule that converts o to 6 T > e when pushing a substitution under a lambda abstraction.
The end of the computation adds nothing new, so some details are omitted. Indeed all the detail can be
omitted, as Agda can confirm the result simply by normalising both sides.

(A (eT-(e7-9)))[id>inc]=2 (incT-(incT-e))

_=refl

2.8 Composition

We write o § T for composition of substitutions. If 6 : ® = Aandt : I' = Othen(c § 1) : I
= A.

o -

(0:0A4)

(z: I'E=0)
N

r=A
o gid =0c - (D
o §(t1) =(o80)1 - @
id s(t@A)="1 -3
(1) s(t=Q)=o037 - ®
(oxP)g(r@A)=(og7)> (P[T])- (5)

The case analysis for instantiation goes right-to-left: first we analyse the substitution, and only if it
is a cons do we analyse the term. Hence, composition is also defined right-to-left: first we analyse the
right substitution 7, and only if it is a cons do we analyse the left substitution o. Each of the equations
should be familiar by now.

2.9 Composition and instantiation

A key result relates composition and instantiation.

0 :

(M:AFA)
(c:0E=A4)
(t:T'=0)

—

Mlc]|[z]=M[og7]

The only tricky step is to recognise that case analysis of the arguments must proceed right-to-left, to
match the definitions of application and composition. Hence, first we perform case analysis on 7, and
only if 7 is a cons do we perform case analysis on ¢, and only if both are conses do we perform case
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analysis on M. Below we use the operator cong, short for congruence. If eq proves x = vy, then cong f
eqproves f x = f y. Similarly for congtiny 2.

[nm c id = refl - (D
M o (c) =cong 1 (JIMo7) - @
(N m id (@A) =refl - (3
[0 M (c1) (r=Q)=[lMor -
[ e (c>P) (@A) =refl - (5
Qi (M7) (c=P) (r@A)=[[Mor - (6
I (AN) (6@A) (0 A)=congi (IIN (1o e)(c1me) - (1)
00 (L M) (6@ 1) (t© A) = congtiny 2 (N[ Lo 7) (Mo 1)~ (&
[l zero (0 @A) (0@ A)=refl - (9
[I[] (suc M) (6 @ A) (1 @ A) = cong suc ([][| M o 1) - (10)

For instance, for (2) the two sides simplify to
MLoll7rlt = M[ogT]H?

and the equation follows by an application of the induction hypothesis. Similarly, for (8) the two
sides simplify to
Llollzl) MLollrzH)=ClLogt]) r M[LogtD

and the equation follows by two applications of the induction hypothesis. For (7), we push substitu-
tions underneath a lambda, giving
AN[ot>el[TtT>e])=N[(cTD>e®)3(tTT>e)]1=N[((0§7T)T>e]

where the first equivalence follows by the induction hypothesis, but applied to the substitutions ¢ *+
> eand T T > e. Itis fine under structural induction for the substitutions to get larger so long as the
term is getting smaller. The second equivalence follows by straightforward computation.

Having proved the lemma, we can now instruct Agda to apply it as a left-to-right rewrite whenever
possible when simplifying a term. This will play a key role in reducing equations of interest to a triviality.

{-# REWRITE [][] #-}

2.10 Composition has a left identity.

Composition has id as a right identity by definition. It is easy to show that it is also a left identity.

left-id :
(z:T'EA)
%
dgt=1
left-id id = refl - (1
left-id (t 1) = cong 7 (left-id 7) = (2)
left-id (T > Q) = refl - (3)

Obviously, the case analysis is on 7. (1, 3): Both sides simplify to the same term. (2): The two sides
simplify to
(idgt) t = 71

and the result follows by the induction hypothesis.

We direct Agda to apply left identity as a rewrite.

{-# REWRITE left-id #-}
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2.11 Composition is associative

We can also show that composition is associative.

assoc :

(c:0FA)

(t:2E0)

(v:I'EE)

%

(og7)sv=08(13V)

assoc ¢ T id = refl - (1)
assoc o T (v1) =cong_T (assoc o T ) - (2
assoc o id (v > R) = refl - (3
assoc ¢ (1) (v>R)=assoco TV - (4
assoc id (t> Q) (v>R) =refl - (5
assoc (0 1) (70> Q) (v>R)=assoco T (v>R) - (6)
assoc (o > P) (7> Q) (v > R) = congtiny 2 _>_(assoc ¢ (T > Q) (v > R)) refl = (7)

Again, the only tricky step is to recognise that case analysis on the arguments must proceed right-to-
left. First we perform case analysis on v, and only if v is a cons do we perform case analysis on 7, and
only if both are conses do we perform case analysis on . For instance, in (6) the two sides simplify to

((cg s (>R = (35 (rg (V>R

and the equation follows by the induction hypothesis on o, 7,and v > R.
We direct Agda to apply associativity as a rewrite.

{-# REWRITE assoc #-}

3 Applications

3.1 Special cases of substitution

We define three special cases of substitution.
Substitute for the last variable in the environment (de Bruijn index zero).

I'B
N[M]o=N[ideM]

This is exactly what we need for beta reduction.
Substitute for the last but one variable in the environment (de Bruijn index one).

[
(N:I'>Ar>BFC)
(M:T'+A)
4>

I'>BFC
N[Mi=N[(id>M)T>e]
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3.2 An example
The first equation given in the introduction holds trivially.

introduction : (N T) [MJe=N
introduction = refl

It is straightforward to see that the left-hand side simplifies to the right-hand side. Recall that this
took nearly a hundred lines to prove in the formulation that we used previously!

3.3 A challenging exercise
The following exercise appears in PLFA. It is marked “stretch” meaning it is intended to be challenging.
double-subst : N[M 1 [L]Je=N[LT]e[M]e

PLFA uses a very different formulation of substitution than the one given here, and under that for-
mulation the exercise appears quite challenging—indeed, so far as I know, no one has solved it!
However, with the formulation given here, the exercise becomes trivial.

double-subst = refl

Both sides simplify by an automatic rewrite with lemma-§ and then normalising the compositions
yields identical terms.

3.4 A second challenge
The following result is the culmination of Chapter Substitution of PLFA.
commute-subst : N[M Je[L]Je=N[L]i[M[L]e]e

In effect, the entire chapter is devoted to proving it. A theory similar to that of ACCL is developed
at length, requiring a few hundred lines of Agda. Even once the theory is developed, the key lemma,
subst-commute, requires a chain of thirteen equations to prove, eleven of which required justification.

However, with the formulation given here, the result becomes trivial.

commute-subst = refl

Both sides simplify by an automatic rewrite with lemma-$ and then normalising the compositions
yields identical terms.

4 Conclusion

A drawback of this technique is that it distinguishes terms that in traditional notation must be equivalent,
suchasthetermse + + - @ + - eand (e T - @) T - e mentioned previously. As a result, identifying
when terms are equivalent may become more difficult. On the other hand, if equivalence is important
we are often concerned with normal forms (such as  and 1 normal forms) and in that case pushing *
to the inside as part of normalisation would cause the second term to normalise to the first, removing the
problem of determining equivalence.

Further experience is required. Is explicit weakening useful in practice? Time will tell.
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