
An Algebra for XML Query

Mary Fernandez1, Jerome Simeon2, and Philip Wadler3

1 ATT Labs, mff@research.att.com
2 Bell Labs, Lucent Technologies simeon@research.bell-labs.com

3 Avaya Labs, wadler@avaya.com

Abstract. This document proposes an algebra for XML Query. The
algebra has been submitted to the W3C XML Query Working Group. A
novel feature of the algebra is the use of regular-expression types, similar
in power to DTDs or XML Schemas, and closely related to Hasoya,
Pierce, and Vouillon’s work on Xduce. The iteration construct involves
novel typing rules not encountered elsewhere (even in Xduce).

1 Introduction

This document proposes an algebra for XML Query.
This work builds on long standing traditions in the database community. In

particular, we have been inspired by systems such as SQL, OQL, and nested
relational algebra (NRA). We have also been inspired by systems such as Quilt,
UnQL, XDuce, XML-QL, XPath, XQL, and YATL. We give citations for all
these systems below.

In the database world, it is common to translate a query language into an
algebra; this happens in SQL, OQL, and NRA, among others. The purpose of
the algebra is twofold. First, the algebra is used to give a semantics for the query
language, so the operations of the algebra should be well-defined. Second, the
algebra is used to support query optimization, so the algebra should possess a
rich set of laws. Our algebra is powerful enough to capture the semantics of
many XML query languages, and the laws we give include analogues of most of
the laws of relational algebra.

In the database world, it is common for a query language to exploit schemas
or types; this happens in SQL, OQL, and NRA, among others. The purpose of
types is twofold. Types can be used to detect certain kinds of errors at compile
time and to support query optimization. DTDs and XML Schema can be thought
of as providing something like types for XML. Our algebra uses a simple type
system that captures the essence of XML Schema [35]. The type system is close
to that used in XDuce [19]. Our type system can detect common type errors and
support optimization. A novel aspect of the type system (not found in Xduce)
is the description of projection in terms of iteration, and the typing rules for
iteration that make this viable.

The best way to learn any language is to use it. To better familiarize readers
with the algebra, we have implemented a type checker and an interpreter for the
algebra in OCaml[24]. A demonstration version of the system is available at

http://www.cs.bell-labs.com/~wadler/topics/xml.html#xalgebra

The demo system allows you to type in your own queries to be type checked and
evaluated. All the examples in this paper can be executed by the demo system.

This paper describes the key features of the algebra. For simplicity, we restrict
our attention to only three scalar types (strings, integers, and booleans), but we
believe the system will smoothly extend to cover the continuum of scalar types
found in XML Schema. Other important features that we do not tackle include
attributes, namespaces, element identity, collation, and key constraints, among
others. Again, we believe they can be added within the framework given here.

The paper is organized as follows. A tutorial introduction is presented in
Section 2. Section 3 explains key aspects of projection and iteration. A summary
of the algebra’s operators and type system is given in Section 4. We present some
equivalence and optimization laws of the algebra in Section 5. Finally, we give
the static typing rules for the algebra in Section 6. Section 7 discusses open
issues and problems.

Cited literature includes: SQL [16], OQL [4, 5, 13], NRA [8, 15, 21, 22],
Quilt [11], UnQL [3], XDuce [19], XML Query [33, 34], XML Schema [35, 36],
XML-QL [17], XPath [32], XQL [25], and YaTL [14].

2 The Algebra by Example

This section introduces the main features of the algebra, using familiar examples
based on accessing a database of books.

2.1 Data and Types

Consider the following sample data:

<bib>
<book>
<title>Data on the Web</title>
<year>1999</year>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>

</book>
<book>
<title>XML Query</title>
<year>2001</year>
<author>Fernandez</author>
<author>Suciu</author>

</book>
</bib>

Here is a fragment of a XML Schema for such data.

<xsd:group name="Bib">
<xsd:element name="bib">
<xsd:complexType>
<xsd:group ref="Book"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:complexType>
</xsd:element>

</xsd:group>

<xsd:group name="Book">
<xsd:element name="book">
<xsd:complexType>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="year" type="xsd:integer"/>
<xsd:element name="author" type="xsd:integer"
minOccurs="1" maxOccurs="unbounded"/>

</xsd:complexType>
</xsd:element>

</xsd:group>

This data and schema is represented in our algebra as follows:

type Bib =
bib [Book*]

type Book =
book [
title [String],
year [Integer],
author [String]+

]
let bib0 : Bib =
bib [
book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

],
book [
title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
]

The expression above defines two types, Bib and Book, and defines one global
variable, bib0.

The Bib type consists of a bib element containing zero or more value of type
Book. The Book type consists of a book element containing a title element
(which contains a string), a year element (which contains an integer), and one
or more author elements (which contain strings).

The Bib type corresponds to a single bib element, which contains a forest
of zero or more Book elements. We use the term forest to refer to a sequence of
(zero or more) elements. Every element can be viewed as a forest of length one.

The Book type corresponds to a single book element, which contains one
title element, followed by one year element, followed by one or more author
elements. A title or author element contains a string value and a year element
contains an integer.

The variable bib0 is bound to a literal XML value, which is the data model
representation of the earlier XML document. The bib element contains two book
elements.

The algebra is a strongly typed language, therefore the value of bib0 must
be an instance of its declared type, or the expression is ill-typed. Here the value
of bib0 is an instance of the Bib type, because it contains one bib element,
which contains two book elements, each of which contain a string-valued title,
an integer-valued year, and one or more string-valued author elements.

For convenience, we define a second global variable book0, also bound to a
literal value, which is equivalent to the first book in bib0.

let book0 : Book =
book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]

2.2 Projection

The simplest operation is projection. The algebra uses a notation similar in
appearance and meaning to path navigation in XPath.

The following expression returns all author elements contained in book0:

book0/author
==> author ["Abiteboul"],

author ["Buneman"],
author ["Suciu"]

: author [String]+

The above example and the ones that follow have three parts. First is an expres-
sion in the algebra. Second, following the ==>, is the value of this expression.

Third, following the :, is the type of the expression, which is (of course) also a
legal type for the value.

The following expression returns all author elements contained in book ele-
ments contained in bib0:

bib0/book/author
==> author ["Abiteboul"],

author ["Buneman"],
author ["Suciu"],
author ["Fernandez"],
author ["Suciu"]

: author [String]*

Note that in the result, the document order of author elements is preserved and
that duplicate elements are also preserved.

It may be unclear why the type of bib0/book/author contains zero or more
authors, even though the type of a book element contains one or more authors.
Let’s look at the derivation of the result type by looking at the type of each
sub-expression:

bib0 : Bib
bib0/book : Book*
bib0/book/author : author [String]*

Recall that Bib, the type of bib0, may contain zero or more Book elements,
therefore the expression bib0/book might contain zero book elements, in which
case, bib0/book/author would contain no authors.

This illustrates an important feature of the type system: the type of an
expression depends only on the type of its sub-expressions. It also illustrates
the difference between an expression’s run-time value and its compile-time type.
Since the type of bib0 is Bib, the best type for bib0/book/author is one listing
zero or more authors, even though for the given value of bib0 the expression
will always contain exactly five authors.

2.3 Iteration

Another common operation is to iterate over elements in a document so that
their content can be transformed into new content. Here is an example of how
to process each book to list the authors before the title, and remove the year.

for b in bib0/book do
book [b/author, b/title]

==> book [
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"],
title ["Data on the Web"]

],
book [
author ["Fernandez"],
author ["Suciu"],
title ["XML Query"]

]
: book [

author[String]+,
title[String]

]*

The for expression iterates over all book elements in bib0 and binds the vari-
able b to each such element. For each element bound to b, the inner expression
constructs a new book element containing the book’s authors followed by its
title. The transformed elements appear in the same order as they occur in bib0.

In the result type, a book element is guaranteed to contain one or more
authors followed by one title. Let’s look at the derivation of the result type to
see why:

bib0/book : Book*
b : Book
b/author : author [String]+
b/title : title [String]

The type system can determine that b is always Book, therefore the type of
b/author is author[String]+ and the type of b/title is title[String].

In general, the value of a for loop is a forest. If the body of the loop itself
yields a forest, then all of the forests are concatenated together. For instance,
the expression:

for b in bib0/book do
b/author

is exactly equivalent to the expression bib0/book/author.
Here we have explained the typing of for loops by example. In fact, the

typing rules are rather subtle, and one of the more interesting aspects of the
algebra, and will be explained further below.

2.4 Selection

Projection and for loops can serve as the basis for many interesting queries. The
next three sections show how they provide the power for selection, quantification,
join, and regrouping.

To select values that satisfy some predicate, we use the where expression.
For example, the following expression selects all book elements in bib0 that
were published before 2000.

for b in bib0/book do
where value(b/year) <= 2000 do

b
==> book [

title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

The value operator returns the scalar (i.e., string, integer, or boolean) content
of an element.

An expression of the form

where e1 do e2

is just syntactic sugar for

if e1 then e2 else ()

where e1 and e2 are expressions. Here () is an expression that stands for the
empty sequence, a forest that contains no elements. We also write () for the
type of the empty sequence.

According to this rule, the expression above translates to

for b <- bib0/book in
if value(b/year) < 2000 then b else ()

and this has the same value and the same type as the preceding expression.

2.5 Quantification

The following expression selects all book elements in bib0 that have some author
named “Buneman”.

for b in bib0/book do
for a in b/author do
where value(a) = "Buneman" do
b

==> book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

In contrast, we can use the empty operator to find all books that have no
author whose name is Buneman:

for b in bib0/book do
where empty(for a in b/author do

where value(a) = "Buneman" do
a) do

b
==> book [

title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

The empty expression checks that its argument is the empty sequence ().
We can also use the empty operator to find all books where all the authors

are Buneman, by checking that there are no authors that are not Buneman:

for b in bib0/book do
where empty(for a in b/author do

where value(a) <> "Buneman" do
a) do

b
==> ()
: Book*

There are no such books, so the result is the empty sequence. Appropriate use
of empty (possibly combined with not) can express universally or existentially
quantified expressions.

Here is a good place to introduce the let expression, which binds a local
variable to a value. Introducing local variables may improve readability. For
example, the following expression is exactly equivalent to the previous one.

for b in bib0/book do
let nonbunemans = (for a in b/author do

where value(a) <> "Buneman" do
a) do

where empty(nonbunemans) do
b

Local variables can also be used to avoid repetition when the same subexpression
appears more than once in a query.

2.6 Join

Another common operation is to join values from one or more documents. To
illustrate joins, we give a second data source that defines book reviews:

type Reviews =
reviews [
book [
title [String],
review [String]

]*
]

let review0 : Reviews =
reviews [
book [
title ["XML Query"],
review ["A darn fine book."]

],
book [
title ["Data on the Web"],
review ["This is great!"]

]
]

The Reviews type contains one reviews element, which contains zero or more
book elements; each book contains a title and review.

We can use nested for loops to join the two sources review0 and bib0 on
title values. The result combines the title, authors, and reviews for each book.

for b in bib0/book do
for r in review0/book do
where value(b/title) = value(r/title) do
book [b/title, b/author, r/review]

==>
book [
title ["Data on the Web"],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]
review ["A darn fine book."]

],
book [
title ["XML Query"],
author ["Fernandez"],
author ["Suciu"]
review ["This is great!"]

]
: book [

title [String],
author [String]+
review [String]

]*

Note that the outer-most for expression determines the order of the result.
Readers familiar with optimization of relational join queries know that relational
joins commute, i.e., they can be evaluated in any order. This is not true for the
XML algebra: changing the order of the first two for expressions would pro-
duce different output. In Section 7, we discuss extending the algebra to support
unordered forests, which would permit commutable joins.

2.7 Restructuring

Often it is useful to regroup elements in an XML document. For example, each
book element in bib0 groups one title with multiple authors. This expression
regroups each author with the titles of his/her publications.

for a in distinct(bib0/book/author) do
biblio [
a,
for b in bib0/book do
for a2 in b/author do
where value(a) = value(a2) do
b/title

]
==> biblio [

author ["Abiteboul"],
title ["Data on the Web"]

],
biblio [
author ["Buneman"],
title ["Data on the Web"]

],
biblio [
author ["Suciu"],
title ["Data on the Web"],
title ["XML Query"]

],
biblio [
author ["Fernandez"],
title ["XML Query"]

]
: biblio [

author [String],
title [String]*

]*

Readers may recognize this expression as a self-join of books on authors. The
expression distinct(bib0/book/author) produces a forest of author elements
with no duplicates. The outer for expression binds a to each author element,

and the inner for expression selects the title of each book that has some author
equal to a.

Here distinct is an example of a built-in function. It takes a forest of ele-
ments and removes duplicates.

The type of the result expression may seem surprising: each biblio element
may contain zero or more title elements, even though in bib0, every author
co-occurs with a title. Recognizing such a constraint is outside the scope of
the type system, so the resulting type is not as precise as we might like.

2.8 Aggregation

We have already seen several several built-in functions, such as children,
distinct, and value. In addition to these, the algebra has five built-in ag-
gregation functions: avg, count, max, min and sum.

This expression selects books that have more than two authors:

for b in bib0/book do
where count(b/author) > 2 do
b

==> book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

All the aggregation functions take a forest with repetition type and return an
integer value; count returns the number of elements in the forest.

2.9 Functions

Functions can make queries more modular and concise. Recall that we used the
following query to find all books that do not have “Buneman” as an author.

for b in bib0/book do
where empty(for a in b/author do

where value(a) = "Buneman" do
a) do

b
==> book [

title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

A different way to formulate this query is to first define a function that takes a
string s and a book b as arguments, and returns true if book b does not have
an author with name s.

fun notauthor (s : String; b : Book) : Boolean =
empty(for a in b/author do

where value(a) = s do
a)

The query can then be re-expressed as follows.

for b in bib0/book do
where notauthor("Buneman"; b) do
b

==> book [
title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

We use semicolon rather than comma to separate function arguments, since
comma is used to concatenate forests.

Note that a function declaration includes the types of all its arguments and
the type of its result. This is necessary for the type system to guarantee that
applications of functions are type correct.

In general, any number of functions may be declared at the top-level. The
order of function declarations does not matter, and each function may refer to
any other function. Among other things, this allows functions to be recursive
(or mutually recursive), which supports structural recursion, the subject of the
next section.

2.10 Structural Recursion

XML documents can be recursive in structure, for example, it is possible to define
a part element that directly or indirectly contains other part elements. In the
algebra, we use recursive types to define documents with a recursive structure,
and we use recursive functions to process such documents. (We can also use
mutual recursion for more complex recursive structures.)

For instance, here is a recursive type defining a part hierarchy.

type Part =
Basic | Composite

type Basic =
basic [
cost [Integer]

]
type Composite =
composite [
assembly_cost [Integer],
subparts [Part+]

]

And here is some sample data.

let part0 : Part =
composite [
assembly_cost [12],
subparts [
composite [
assembly_cost [22],
subparts [
basic [cost [33]]

]
],
basic [cost [7]]

]
]

Here vertical bar (|) is used to indicate a choice between types: each part is either
basic (no subparts), and has a cost, or is composite, and includes an assembly
cost and subparts.

We might want to translate to a second form, where every part has a total
cost and a list of subparts (for a basic part, the list of subparts is empty).

type Part2 =
part [
total_cost [Integer],
subparts [Part2*]

]

Here is a recursive function that performs the desired transformation. It uses
a new construct, the case expression.

fun convert(p : Part) : Part2 =
case p of
b : basic =>
part[
total_cost[value(b/cost)],
subparts[]

]
| c : composite =>

let s = (for q in children(c/subparts) do convert(q)) in
part[

total_cost[
value(c/assembly_cost) +

sum(for t in s/total_cost do value(t))
],
subparts[s]

]
end

Each branch of the case is labeled with an element name, basic or composite,
and with a corresponding variable, b or c. The case expression checks whether
the value of p is a basic or composite element, and evaluates the corresponding
branch. If the first branch is taken then b is bound to the value of p, and the
branch retuns a new part with total cost the same as the cost of b, and with no
subparts. If the second branch is taken then c is bound to the value of p. The
function is recursively applied to each of the subparts of c, giving a list of new
subparts s. The branch returns a new part with total cost computed by adding
the assembly cost of c to the sum of the total cost of each subpart in s, and
with subparts s.

One might wonder why b and c are required, since they have the same value
as p. The reason why is that p, b, and c have different types.

p : Part
b : Basic
c : Composite

The types of b and c are more precise than the type of p, because which branch
is taken depends upon the type of value in p.

Applying the query to the given data gives the following result.

convert(part0)
==> part [

total_cost [74],
subparts [
part [
total_cost [55],
subparts [
part [
total_cost [33],
subparts []

]
]

],
part [
total_cost [7],
subparts []

]
]

]
: Part2

Of course, a case expression may be used in any query, not just in a recursive
one.

2.11 Processing any well-formed document

Recursive types allow us to define a type that matches any well-formed XML
document. This type is called UrTree:

type UrTree =
UrScalar

| ~ [UrTree*]

Here UrScalar is a built-in scalar type. It stands for the most general scalar
type, and all other scalar types (like Integer or String) are subtypes of it. The
tilde (~) is used to indicate a wild-card type. In general, ~[t] indicates the type
of elements that may have any tag, but must have children of type t. So an
UrTree is either an UrScalar or a wildcard element with zero or more children,
each of which is itself an UrTree. In other words, any single element or scalar
has type UrTree.

The use of UrScalar is a small, but necessary, extension to XML Schema,
since XML Schema provides no most general scalar type. In contrast, the use of
tilde is a significant extension to XML Schema, because XML Schema has no
type corresponding to ~[t], where t is some type other than UrTree*. It is not
clear that this extension is necessary, since the more restrictive expressiveness of
XML Schema wildcards may be adequate. Also, note that UrTree* is equivalent
to the UrType in XML Schema.

In particular, our earlier data also has type UrTree.

book0 : UrTree
==> book [

title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: UrTree

A specific type can be indicated for any expression in the query language, by
writing a colon and the type after the expression.

As an example, we define a recursive function that converts any XML data
into HTML. We first give a simplified definition of HTML.

type HTML =
(UrScalar

| b [HTML]
| ul [(li [HTML])*]
)*

An HTML body consists of a sequence of zero or more items, each of which is
either: a scalar; or a b element (boldface) with HTML content; or a ul element
(unordered list), where the children are li elements (list item), each of which
has HTML content.

Now, here is the function that performs the conversion.

fun html_of_xml(t : UrTree) : HTML =
case t of
s : UrScalar =>
s

| e =>
b [name(e)],
ul [for c in children(e) do li [html_of_xml(c)]]

end

The case expression checks whether the value of x is a subtype of UrScalar or
otherwise, and evaluates the corresponding branch. If the first branch is taken,
then s is bound to the value of t, which must be a scalar, and the branch returns
the scalar. If the second branch is taken, then e is bound to the value of t, which
must not be a scalar, and hence must be an element. The branch returns the
name of the element in boldface, followed by a list containing one item for each
child of the element. The function is recursively applied to get the content of
each list item.

Applying the query to the book element above gives the following result.

html_of_xml(book0)
==> b ["book"],

ul [
li [b ["title"], ul [li ["Data on the Web"]]],
li [b ["year"], ul [li [1999]]],
li [b ["author"], ul [li ["Abiteboul"]]],
li [b ["author"], ul [li ["Buneman"]]],
li [b ["author"], ul [li ["Suciu"]]]

]
: Html_Body

2.12 Top-level Queries

A query consists of a sequence of top-level expressions, or query items, where each
query item is either a type declaration, a function declaration, a global variable
declaration, or a query expression. The order of query items is immaterial; all
type, function, and global variable declarations may be mutually recursive.

A query can be evaluated by the query interpreter. Each query expression
is evaluated in the environment specified by all of the declarations. (Typically,

all of the declarations will precede all of the query expressions, but this is not
required.) We have already seen examples of type, function, and global variable
declarations. An example of a query expression is:

query html_of_xml(book0)

To transform any expression into a top-level query, we simply precede the ex-
pression by the query keyword.

3 Projection and iteration

This section describes key aspects of projection and iteration.

3.1 Relating projection to iteration

The previous examples use the / operator liberally, but in fact we use / as
a convenient abbreviation for expressions built from lower-level operators: for
expressions, the children function, and case expressions.

For example, the expression:

book0/author

is equivalent to the expression:

for c in children(book0) do
case c of
a : author => a

| b => ()
end

Here the children function returns a forest consisting of the children of the
element book0, namely, a title element, a year element, and three author elements
(the order is preserved). The for expression binds the variable v successively to
each of these elements. Then the case expression selects a branch based on the
value of v. If it is an author element then the first branch is evaluated, otherwise
the second branch. If the first branch is evaluated, the variable a is bound to the
same value as x, then the branch returns the value of a. If the second branch
is evaluated, the variable b is bound to the same value as x, then then branch
returns (), the empty sequence.

To compose several expressions using /, we again use for expressions. For
example, the expression:

bib0/book/author

is equivalent to the expression:

for c in children(bib0) do
case c of
b : book =>
for d in children(b) do
case d of
a : author => d

| e => ()
end

| f => ()
end

The for expression iterates over all book elements in bib0 and binds the variable
b to each such element. For each element bound to b, the inner expression returns
all the author elements in b, and the resulting forests are concatenated together
in order.

In general, an expression of the form e / a is converted to the form

for v1 in e do
for v2 in children(v1) do
case v2 of
v3 : a => v3

| v4 => ()
end

where e is an expression, a is a tag, and v1, v2, v3, v4 are fresh variables (ones
that do not appear in the expression being converted).

According to this rule, the expression bib0/book translates to

for v1 in bib0 do
for v2 in children(v1) do
case v2 of
v3 : book => v3

| v4 => ()
end

In Section 5 we introduce laws of the algebra, which allow us to simplify this to
the previous expression

for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end

Similarly, the expression bib0/book/author translates to

for v5 in (for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end) do

for v6 in children(v5) do
case v6 of
v7 : author => v7

| v8 => ()
end

Again, the laws will allow us to simplify this to the previous expression

for v2 in children(bib0) do
case v2 of
v3 : book =>
for v6 in children(v3) do
case c of
v7 : author => d

| v8 => ()
end

| v4 => ()
end

These examples illustrate an important feature of the algebra: high-level opera-
tors may be defined in terms of low-level operators, and the low-level operators
may be subject to algebraic laws that can be used to further simplify the ex-
pression.

3.2 Typing iteration

The typing of for loops is rather subtle. We give an intuitive explanation here,
and cover the detailed typing rules in Section 6.

A unit type is either an element type a[t], a wildcard type ~[t], or a scalar
type s. A for loop

for v in e1 do e2

is typed as follows. First, one finds the type of expression e1. Next, for each unit
type in this type one assumes the variable v has the unit type and one types
the body e2. Note that this means we may type the body of e2 several times,
once for each unit type in the type of e1. Finally, the types of the body e2 are
combined, according to how the types were combined in e1. That is, if the type
of e1 is formed with sequencing, then sequencing is used to combine the types
of e2, and similarly for choice or repetition.

For example, consider the following expression, which selects all author ele-
ments from a book.

for c in children(book0) do
case c of
a : author => a

| b => ()
end

The type of children(book0) is

title[String], year[Integer], author[String]+

This is composed of three unit types, and so the body is typed three times.

assuming c has type title[String] the body has type ()
” year[Integer] ” ()
” author[String] ” author[String]

The three result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

(), (), author[String]+

as the type of the iteration, and simplifying yields

author[String]+

as the final type.
As a second example, consider the following expression, which selects all

title and author elements from a book, and renames them.

for c in children(book0) do
case c of
t : title => titl [value(t)]

| y : year => ()
| a : author => auth [value(a)]
end

Again, the type of children(book0) is

title[String], year[Integer], author[String]+

This is composed of three unit types, and so the body is typed three times.

assuming c has type title[String] the body has type titl[String]
” year[Integer] ” ()
” author[String] ” auth[String]

The three result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

titl[String], (), auth[String]+

as the type of the iteration, and simplifying yields

titl[String], auth[String]+

as the final type. Note that the title occurs just once and the author occurs one
or more times, as one would expect.

As a third example, consider the following expression, which selects all basic
parts from a sequence of parts.

for p in children(part0/subparts) do
case p of
b : basic => b

| c : composite => ()
end

The type of children(part0/subparts) is

(Basic | Composite)+

This is composed of two unit types, and so the body is typed two times.

assuming p has type Basic the body has type Basic
” Composite ” ()

The two result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

(Basic | ())+

as the type of the iteration, and simplifying yields

Basic*

as the final type. Note that although the original type involves repetition one
or more times, the final result is a repetition zero or more times. This is what
one would expect, since if all the parts are composite the final result will be an
empty sequence.

In this way, we see that for loops can be combined with case expressions
to select and rename elements from a sequence, and that the result is given a
sensible type.

In order for this approach to typing to be sensible, it is necessary that the unit
types can be uniquely identified. However, the type system given here satisfies
the following law.

a[t1 | t2] = a[t1] | a[t2]

This has one unit type on the left, but two distinct unit types on the right, and so
might cause trouble. Fortunately, our type system inherits an additional restric-
tion from XML Schema: we insist that the regular expressions can be recognized
by a top-down deterministic automaton. In that case, the regular expression
must have the form on the left, the form on the right is outlawed because it
requires a non-deterministic recognizer. With this additional restriction, there is
no problem.

4 Summary of the algebra

In this section, we summarize the algebra and present the grammars for expres-
sions and types.

4.1 Expressions

Figure 1 contains the grammar for the algebra, i.e., the convenient concrete
syntax in which a user may write a query. A few of these expressions can be
rewritten as other expressions in a smaller core algebra; such reducible expres-
sions are labeled with “*”. We define the algebra’s typing rules on the smaller
core algebra. In Section 5, we give the laws that relate a user expression with its
equivalent expression in the core algebra. Typing rules for the core algebra are
defined in Section 6.

We have seen examples of most of the expressions, so we will only point out
details here. We define a subset of expressions that correspond to data values.
An expression is a data value if it consists only of scalar constant, element,
sequence, and empty sequence expressions.

We have not defined the semantics of the binary operators in the algebra. It
might be useful to define more than one type of equality over scalar and element
values. We leave that to future work.

4.2 Types

Figure 2 contains the grammar for the algebra’s type system. We have already
seen many examples of types. Here, we point out some details.

Our algebra uses a simple type system that captures the essence of XML
Schema [35]. The type system is close to that used in XDuce [19].

In the type system of Figure 2, a scalar type may be a UrScalar, Boolean,
Integer, or String. In XML Schema, a scalar type is defined by one of fourteen
primitive datatypes and a list of facets. A type hierarchy is induced between
scalar types by containment of facets. The algebra’s type system can be general-
ized to support these types without much increase in its complexity. We added
UrScalar, because XML Schema does not support a most general scalar type.

A type is either: a type variable; a scalar type; an element type with literal
tag a and content type t; a wildcard type with an unknown tag and content type
t; a sequence of two types, a choice of two types; a repetition type; the empty
sequence type; or the empty choice type.

The algebra’s external type system, that is, the type definitions associated
with input and output documents, is XML Schema. The internal types are in
some ways more expressive than XML Schema, for example, XML Schema has no
type corresponding to Integer* (which is required as the type of the argument
to an aggregation operator like sum or min or max), or corresponding to ~[t]
where t is some type other than UrTree*. In general, mapping XML Schema
types into internal types will not lose information, however, mapping internal
types into XML Schema may lose information.

tag a
function f
variable v
integer cint ::= · · · | −1 | 0 | 1 | · · ·
string cstr ::= "" | "a" | "b" | · · · | "aa" | · · ·
boolean cbool ::= false | true
constant c ::= cint | cstr | cbool

operator op ::= + | - | and | or
| = | != | < | <= | >= | >

expression e ::= c scalar constant
| v variable
| a[e] element
| ~e[e] computed element
| e , e sequence
| () empty sequence
| if e then e else e conditional
| let v = e do e local binding
| for v in e do e iteration
| case e of v:p => e | v => e end case
| f(e;. . .;e) function application
| e : t explicit type
| empty(e) emptiness predicate
| error error
| e + e plus
| e = e equal
| children(e) children
| name(e) element name
| e / a projection ∗
| where e then e conditional ∗
| value(e) scalar content ∗
| let v : t = e do e local binding ∗

pattern p ::= a element
| ~ wildcard
| s scalar

query item q ::= type x = t type declaration
| fun f(v:t;...;v:t):t = e function declaration
| let v : t = e global declaration
| query e query expression

data d ::= c scalar constant
| a[d] element
| d , d sequence
| () empty sequence

Fig. 1. Algebra

tag a
type name x
scalar type s ::= Integer

| String

| Boolean

| UrScalar

type t ::= x type name
| s scalar type
| a[t] element
| ~[t] wildcard
| t , t sequence
| t | t choice
| t* repetition
| () empty sequence
| ∅ empty choice

unit type u ::= a[t] element
| ~[t] wildcard
| s scalar type

Fig. 2. Type System

4.3 Relating values to types

Recall that data is the subset of expressions that consists only of scalar constant,
element, sequence, and empty sequence expressions. We write ` d : t if data d
has type t. The following type rules define this relation.

` cint : Integer

` cstr : String

` cbool : Boolean

` c : UrScalar

` d : t
` a[d] : a[t]

` d : t
` a[d] : ~[t]

` d1 : t1 ` d2 : t2
` d1 , d2 : t1 , t2

` () : ()

` d : t1
` d : t1 | t2

` d : t2
` d : (t1 | t2)

` d1 : t ` d2 : t*
` (d1, d2) : t*

` () : t*

We write t1 <: t2 if for every data d such that ` d : t1 it is also the case
that ` d : t2, that is t1 is a subtype of t2. It is easy to see that <: is a partial
order, that is it is reflexive, t <: t, and it is transitive, if t1 <: t2 and t2 <: t3
then t1 <: t3. We also have that ∅ <: t for any type t, and a[t] <: ~[t]. We have
s <: UrScalar for every scalar type s. We have t1 <: (t1 | t2) and t2 <: (t1 | t2)
for any t1 and t2. If t <: t′, then a[t] <: a[t′] and t ∗ <:t′∗. And if t1 <: t′1 and
t2 <: t′2 then t1, t2 <: t′1, t

′
2.

We write t1 = t2 if t1 <: t2 and t2 <: t1. Here are some of the equations that
hold.

UrScalar = Integer | String | Boolean
(t1, t2), t3 = t1, (t2, t3)
t, () = t
(), t = t
t1 | t2 = t2 | t1
(t1 | t2) | t3 = t1 | (t2 | t3)
t | ∅ = t
∅ | t = t
t1, (t2 | t3) = (t1, t2) | (t1, t3)
(t1 | t2), t3 = (t1, t3) | (t2, t3)
t, ∅ = ∅
∅, t = ∅
a[t] | ~[t] = ~[t]
t∗ = () | t, t∗

We also have that t1 <: t2 if and only iff t1 | t2 = t2.
We define t? and t+ as abbreviations, by the following equivalences.

t? = () | t
t+ = t, t∗

e/a
⇒ for v1 in e do

for v2 in children(v1) do

case v2 of

v3 : a => v3

| v4 => ()

(1)

where e1 then e2

⇒ if e1 then e2 else () (2)

value(e)
⇒ case children(e) of

v1 : UrScalar => v1

| v2 => v2 : ∅

(3)

let v : t = e1 do e2

let v = (e1 : t) do e2 (4)

Fig. 3. Definitions

5 Equivalences and Optimization

5.1 Equivalences

Figure 3 contains the laws that relate the reducible expressions (i.e., those labeled
with “*” in Figure 1) to equivalent expressions. In these definitions, e1

{
e2/v

}
denotes the expression e1 in which all occurrences of v are replaced by e2.

In Rule 1, the projection expression e/a is rewritten as described previously.
Rule 2 rewrites a where expression as a conditional, as described previously.
Rule 3 rewrites value(e) as a case expression which checks whether the content
of e is a scalar value, and if so, returns it. If e is not scalar value, its value
is returned with the empty choice type, which may indicate an error. Rule 4
rewrites the let expression with a type as a let expression without a type by
moving the type constraint into the expression.

5.2 Optimizations

Figure 4 contains a dozen algebraic simplification laws. In a relational query
engine, algebraic simplifications are often applied by a query optimizer before
a physical execution plan is generated; algebraic simplification can often reduce
the size of the intermediate results computed by a query interpreter. The purpose
of our laws is similar – they eliminate unnecessary for or case expressions, or
they enable other optimizations by reordering or distributing computations. The
set of laws given is suggestive, rather than complete.

E ::= if [] then e1 else e2

| let v = [] do e
| for v in [] do e
| case [] of v1:p => e1 | v2 => e2 end

for v in () do e⇒ () (5)

for v in (e1 , e2) do e3

⇒ (for v in e1 do e3) , (for v in e2 do e3) (6)

for v in e1 do e2

⇒ e2

{
e1/v

}
, if e : u (7)

case a[e0] of v1:a => e1 | v2 => e2 end

⇒ e1

{
a[e0]/v1

}
(8)

case a′[e0] of v1:a => e1 | v2 => e2 end

⇒ e2

{
a′[e0]/v2

}
, if a 6= a′ (9)

for v in e do v ⇒ e (10)

E[if e1 then e2 else e3]
⇒ if e1 then E[e2] else E[e3] (11)

E[let v = e1 do e2]
⇒ let v = e1 do E[e2] (12)

E[for v in e1 do e2]
⇒ for v in e1 do E[e2] (13)

E[case e0 of v1:p => e1 | v2 => e2 end]
⇒ case e0 of v1:p => E[e1] | v2 => E[e2] end (14)

Fig. 4. Optimization Laws

Rules 5, 6, and 7 simplify iterations. Rule 5 rewrites an iteration over the
empty sequence as the empty sequence. Rule 6 distributes iteration through
sequence: iterating over the sequence e1 , e2 is equivalent to the sequence of
two iterations, one over e1 and one over e2. Rule 7 eliminates an iteration over
a single element or scalar. If e1 is a unit type, then e1 can be substituted for
occurrences of v in e2.

Rules 8 and 9 eliminate trivial case expressions.
Rule 10 eliminates an iteration when the result expression is simply the

iteration variable v.
Rules 11–16 commute expressions. Each rule actually abbreviates a number

of other rules, since the context variable E stands for a number of different
expressions. The notation E[e] stands for one of the six expressions given with
expression e replacing the hole [] that appears in each of the alternatives. For
instance, one of the expansions of Rule 13 is the following, when E is taken to
be for v in [] do e.

for v2 in (for v1 in e1 do e2) do e3

⇒ for v1 in e1 do (for v2 in e2 do e3)

Rules 7 and 10 together with the above expansion of Rule 13 are exactly
analogous to the three monad laws used with list, bag, and set comprehensions
in nested relational algebra [6, 8, 22, 21] algebra, and derived from a similar use
in functional programming [28]. In effect, these three laws show that the for
loop introduced here is the analogue of a monad for semi-structured data.

Note that the sophisticated type rule for for loops ensures that the left side of
Rule 10 is well typed whenever the right side is. (Originally, a less sophisticated
type rule was used, for which this is not the case.)

In Section 3.1 we claimed that the expression bib0/book translates to

for v1 in bib0 do
for v2 in children(v1) do
case v2 of
v3 : book => v3

| v4 => ()
end

and that this simplifies to

for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end

We can now see that the translation happens via Rule 1, and the simplification
happens via Rule 7.

In that Section, we also claimed that the expression bib0/book/author
translates to

for v5 in (for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end) do

for v6 in children(v5) do
case v6 of
v7 : author => v7

| v8 => ()
end

and that this simplifies to

for v2 in children(bib0) do
case v2 of

v3 : book =>
for v6 in children(v3) do

case c of
v7 : author => d

| v8 => ()
end

| v4 => ()
end

We can now see that the translation happens via two applications of Rule 1, and
the simplification happens via Rule 7 and the above instance of Rule 13.

To reiterate, these examples illustrate an important feature of the algebra:
high-level operators may be defined in terms of low-level operators, and the low-
level operators may be subject to algebraic laws that can be used to further
simplify the expression.

6 Type Rules

We explain our type system in the form commonly used in the programming
languages community. For a textbook introduction to type systems, see, for
example, Mitchell [23].

6.1 Environments

The type rules make use of an environment that specifies the types of variables
and functions. The type environment is denoted by Γ , and is composed of a
comma-separated list of variable types, v : t or function types, f : (t1; . . . ; tn)→
t. We retrieve type information from the environment by writing (v : t) ∈ Γ to
look up a variable, or by writing (f : (t1; . . . ; tn)→ t) ∈ Γ to look up a function.

The type checking starts with an environment that contains all the types
declared for functions and global variables. For instance, before typing the first

query of Section 2.2, the environment contains: Γ = bib0 : Bib, book0 : Book.
While doing the type-checking, new variables will be added in the environment.
For instance, when typing the query of section 2.3, variable b will be typed
with Book, and added in the environment. This will result in a new environment
Γ ′ = Γ, b : Book.

6.2 Type rules

We write Γ ` e : t if in environment Γ the expression e has type t.
The definition of for uses an auxiliary type judgement, given below, and the

definition of case uses an auxiliary function, given below.

Γ ` cint : Integer

Γ ` cstr : String

Γ ` cbool : Boolean

(v : t) ∈ Γ
Γ ` v : t

Γ ` e : t
Γ ` a[e] : a[t]

Γ ` e1 : String Γ ` e2 : t
Γ ` ~e1[e2] : ~[t]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` e1 , e2 : t1 , t2

Γ ` () : ()

Γ ` e1 : Boolean Γ ` e2 : t2 Γ ` e3 : t3
Γ ` if e1 then e2 else e3 : (t2 | t3)

Γ ` e1 : t1 Γ, v : t1 ` e2 : t2
Γ ` let v = e1 do e2 : t2

Γ ` e1 : t1 Γ ; for v : t1 ` e2 : t2
Γ ` for v in e1 do e2 : t2

Γ ` e0 : u u′ | t′ = splitp(u) Γ, v1 : u′ ` e1 : t1 Γ, v2 : t′ ` e2 : t2
Γ ` case e0 of v1:p => e2 | v2 => e3 end : (t1 if u′ 6= ∅) | (t2 if t′ 6= ∅)

(f : (t1; . . . ; tn)→ t) ∈ Γ
Γ ` e1 : t′1 t′1 <: t1

· · ·
Γ ` en : t′n t′n <: tn
Γ ` f(e1; . . . ; en) : t

Γ ` e : t
Γ ` empty(e) : Boolean

Γ ` error : ∅

Γ ` e : t′ t′ <: t
Γ ` (e : t) : t

Γ ` e1 : Integer Γ ` e2 : Integer

Γ ` e1 + e2 : Integer

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` e1 = e2 : Boolean

Γ ` e : Integer*

Γ ` sum e : Integer

Γ ` e : t
Γ ` count e : Integer

Γ ` error : ∅

The definition of for uses the following auxiliary judgement. We write Γ `
v : tet′ if in environment Γ where the bound variable of an iteration v has type
t1 that the body e of the iteration hast type t2.

Γ, v : u ` e : t′

Γ ; for v : u ` e : t′

Γ ; for v : () ` e : ()

Γ ; for v : t1 ` e : t′1 Γ ; for v : t2 ` e : t′2
Γ ; for v : t1 , t2 ` e : t′1 , t

′
2

Γ ; for v : ∅ ` e : ∅

Γ ; for v : t1 ` e : t′1 Γ ; for v : t2 ` e : t′2
Γ ; for v : t1 | t2 ` e : t′1 | t

′
2

Γ ; for v : t ` e : t′

Γ ; for v : t* ` e : t′*

To determine the types in a case expression, we use the function splitp(t),
where p is a pattern (either an element a, or a wildcard ~, or a scalar s) and t
is a type. For mnemonic convenience we write a[t′] | t′′ = splita(t) or ~[t′] | t′′ =
split~(t) or s′<:s | t′ = splits(t) but one should think of the function as returning
a pair consisting of two types t and t′, or in the last instance a scalar type s′

and a type t′. The function splitp(t) is undefined if type t involves sequencing,
since a case expression acts on elements or scalars, not sequences.

splita(s) = a[∅] | s
splita(a[t]) = a[t] | ∅
splita(a′[t]) = a[∅] | a′[t] if a 6= a′

splita(~[t]) = a[t] | a[t]
splita(t1 | t2) = a[t′1 | t′2] | (t′′1 | t′′2) where a[t′i] | t′′i = splita(ti)
splita(∅) = a[∅] | ∅

split~(s) = ~[∅] | s
split~(a[t]) = ~[t] | ∅
split~(~[t]) = ~[t] | ∅
split~(t1 | t2) = ~[t′1 | t′2] | (t′′1 | t′′2) where ~[t′i] | t′′i = split~(ti)
split~(∅) = ~[∅] | ∅

splits(s′) = s′ <: s | ∅ if s′ <: s
= ∅<: s | s′ otherwise

splits(a[t]) = ∅<: s | a[t]
splits(~[t]) = ∅<: s | ~[t]
splits(t1 | t2) = (s1 | s2)<: s | (t′1 | t′2) where si <: s | t′i = splits(ti)
splits(∅) = ∅<: s | ∅

6.3 Top-level expressions

We write Γ ` q if in environment Γ the query item q is well-typed.

Γ ` type x = t

Γ, v1 : t1, . . . , vn : tn ` e : t′ t′ <: t
Γ ` f(v1:t1;...;vn:tn):t = e

Γ ` e : t′ t′ <: t
Γ ` let v : t = e

Γ ` e : t
Γ ` query e

We extract the relevant component of a type environment from a query item
q with the function environment(q).

environment(type x = t) = ()
environment(fun f(v1:t1;...; vn:tn):t) = f : (t1; . . . ; tn)→ t
environment(let v : t = e) = v : t

We write ` q1 . . . qn if the sequence of query items q1 . . . qn is well typed.

Γ = environment(q1), . . . , environment(qn)
Γ ` q1 · · · Γ ` qn

` q1 . . . qn

7 Discussion

The algebra has several important characteristics: its operators are orthogonal,
strongly typed, and they obey laws of equivalence and optimization.

There are many issues to resolve in the completion of the algebra. We enu-
merate some of these here.

Data Model. Currently, all forests in the data model are ordered. It may be
useful to have unordered forests. The distinct operator, for example, produces
an inherently unordered forest. Unordered forests can benefit from many opti-
mizations for the relational algebra, such as commutable joins.

The data model and algebra do not define a global order on documents.
Querying global order is often required in document-oriented queries.

Currently, the algebra does not support reference values, which are defined
in the XML Query Data Model. The algebra’s type system should be extended
to support reference types and the data model operators ref and deref should
be supported.

Type System. As discussed, the algebra’s internal type system is closely related to
the type system of XDuce. A potentially significant problem is that the algebra’s
types may lose information when converted into XML Schema types, for example,
when a result is serialized into an XML document and XML Schema.

The type system is currently first order: it does not support function types
nor higher-order functions. Higher-order functions are useful for specifying, for
example, sorting and grouping operators, which take other functions as argu-
ments.

The type system is currently monomorphic: it does not permit the definition
of a function over generalized types. Polymorphic functions are useful for fac-
toring equivalent functions, each of which operate on a fixed type. The lack of
polymorphism is one of the principal weaknesses of the type system.

Operators. We intentionally did not define equality or relational operators on
element and scalar types undefined. These operators should be defined by con-
sensus.

It may be useful to add a fixed-point operator, which can be used in lieu of
recursive functions to compute, for example, the transitive closure of a collection.

Functions. There is no explicit support for externally defined functions.
The set of builtin functions may be extended to support other important

operators.

Recursion. Currently, the algebra does not guarantee termination of recursive
expressions. In order to ensure termination, we might require that a recursive
function take one argument that is a singleton element, and any recursive invo-
cation should be on a descendant of that element; since any element has a finite
number of descendants, this avoids infinite regress. (Ideally, we should have a
simple syntactic rule that enforces this restriction, but we have not yet devised
such a rule.)

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison Wesley,
1995.

2. Richard Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

3. P. Buneman, M. Fernandez, D. Suciu. UnQL: A query language and algebra for
semistructured data based on structural recursion. VLDB Journal, to appear.

4. Catriel Beeri and Yoram Kornatzky. Algebraic Optimization of Object-
Oriented Query Languages. Theoretical Computer Science 116(1&2):59–94,
August 1993.

5. Francois Bancilhon, Paris Kanellakis, Claude Delobel. Building an Object-
Oriented Database System. Morgan Kaufmann, 1990.

6. Peter Buneman, Leonid Libkin, Dan Suciu, Van Tannen, and Limsoon Wong.
Comprehension Syntax. SIGMOD Record, 23:87–96, 1994.

7. David Beech, Ashok Malhotra, Michael Rys. A Formal Data Model and Alge-
bra for XML. W3C XML Query working group note, September 1999.

8. Peter Buneman, Shamim Naqvi, Val Tannen, Limsoon Wong. Principles of
programming with complex object and collection types. Theoretical Computer
Science 149(1):3–48, 1995.

9. Catriel Beeri and Yariv Tzaban, SAL: An Algebra for Semistructured Data
and XML, International Workshop on the Web and Databases (WebDB’99),
Philadelphia, Pennsylvania, June 1999.

10. R. G. Cattell. The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
1997.

11. Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML
Query Language for Heterogeneous Data Sources. International Workshop on
the Web and Databases (WebDB’2000), Dallas, Texas, May 2000.

12. Vassilis Christophides and Sophie Cluet and Jérôme Siméon. On Wrapping
Query Languages and Efficient XML Integration. Proceedings of ACM SIG-
MOD Conference on Management of Data, Dallas, Texas, May 2000.

13. S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on
Database Programming Languages, pages 226–242, New York, August 1993.

14. S. Cluet, S. Jacqmin and J. Siméon The New YATL: Design and Specifications.
Technical Report, INRIA, 1999.

15. L. S. Colby. A recursive algebra for nested relations. Information Systems
15(5):567–582, 1990.

16. Hugh Darwen (Contributor) and Chris Date. Guide to the SQL Standard: A
User’s Guide to the Standard Database Language SQL Addison-Wesley, 1997.

17. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. In International World Wide Web Conference, 1999.
http://www.research.att.com/~mff/files/final.html

18. J. A. Goguen, J. W. Thatcher, E. G. Wagner. An initial algebra approach
to the specification, correctness, and implementation of abstract data types.
In Current Trends in Programming Methodology, pages 80–149, Prentice Hall,
1978.

19. Haruio Hosoya, Benjamin Pierce, XDuce : A Typed XML Processing Language
(Preliminary Report) WebDB Workshop 2000.

20. M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. Proceed-
ings of ACM SIGMOD Conference on Management of Data, pages 393–402,
San Diego, California, June 1992.

21. Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate
functions. Journal of Computer and Systems Sciences, 55(2):241–272, October
1997.

22. Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multi-
dimensional arrays: Design, implementation, and optimization techniques.
SIGMOD 1996.

23. John C. Mitchell Foundations for Programming Languages. MIT Press, 1998.
24. The Caml Language. http://pauillac.inria.fr/caml/.
25. J. Robie, editor. XQL ’99 Proposal, 1999.

http://metalab.unc.edu/xql/xql-proposal.html.
26. H.-J. Schek and M. H. Scholl. The relational model with relational-valued

attributes. Information Systems 11(2):137–147, 1986.
27. S. J. Thomas and P. C. Fischer. Nested Relational Structures. In Advances in

Computing Research: The Theory of Databases, JAI Press, London, 1986.
28. Philip Wadler. Comprehending monads. Mathematical Structures in Computer

Science, 2:461-493, 1992.
29. Philip Wadler. A formal semantics of patterns in XSLT. Markup Technologies,

Philadelphia, December 1999.
30. Limsoon Wong. An introduction to the Kleisli query system and a commentary

on the influence of functional programming on its implementation. Journal of
Functional Programming, to appear.

31. World-Wide Web Consortium XML Query Data Model, Working Draft, May
2000. http://www.w3.org/TR/query-datamodel.

32. World-Wide Web Consortium, XML Path Language (XPath): Version 1.0.
November, 1999. /www.w3.org/TR/xpath.html

33. World-Wide Web Consortium, XML Query: Requirements, Working Draft.
August 2000. http://www.w3.org/TR/xmlquery-req

34. World-Wide Web Consortium, XML Query: Data Model, Working Draft. May
2000. http://www.w3.org/TR/query-datamodel/

35. World-Wide Web Consortium, XML Schema Part 1: Structures, Working
Draft. April 2000. http://www.w3.org/TR/xmlschema-1

36. World-Wide Web Consortium, XML Schema Part 2: Datatypes, Working
Draft, April 2000. http://www.w3.org/TR/xmlschema-2.

37. World-Wide Web Consortium, XSL Transformations (XSLT), Version 1.0.
W3C Recommendation, November 1999. http://www.w3.org/TR/xslt.

