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1 Introduction

This document proposes an algebra for XML Query.
This work builds on long standing traditions in the database community. In particular, we have been

inspired by systems such as SQL, OQL, and nested relational algebra (NRA). We have also been inspired
by systems such as Quilt, UnQL, XDuce, XML-QL, XPath, XQL, and YaTL. We give citations for all
these systems below.

In the database world, it is common to translate a query language into an algebra; this happens in
SQL, OQL, and NRA, among others. The purpose of the algebra is twofold. First, the algebra is used to
give a semantics for the query language, so the operations of the algebra should be well-defined. Second,
the algebra is used to support query optimization, so the algebra should possess a rich set of laws. Our
algebra is powerful enough to capture the semantics of many XML query languages, and the laws we give
include analogues of most of the laws of relational algebra.

In the database world, it is common for a query language to exploit schemas or types; this happens
in SQL, OQL, and NRA, among others. The purpose of types is twofold. Types can be used to detect
certain kinds of errors at compile time and to support query optimization. DTDs and XML Schema can
be thought of as providing something like types for XML. Our algebra uses a simple type system that
captures the essence of XML Schema [34]. The type system is close to that used in XDuce [21]. Our type
system can detect common type errors and support optimization.

The best way to learn any language is to use it. To better familiarize readers with the algebra, we
have implemented a type checker and an interpreter for the algebra in OCaml[24]. A demonstration
version of the system is available at

http://www.cs.bell-labs.com/~wadler/topics/xml.html#xalgebra

The demo system allows you to type in your own queries to be type checked and evaluated. All the
examples in this paper can be executed by the demo system.

This paper describes the key features of the algebra, but does not address features such as attributes,
element identity, namespaces, collation, and key constraints, among others. We believe they can be added
within the framework given here.

The paper is organized as follows. A tutorial introduction is presented in Section 2. After reading
the tutorial, the reader will have seen the entire algebra and should be able to write example queries. A
summary of the algebra’s operators and type system is given in Section 3. We present some equivalence
and optimization laws of the algebra in Section 4. Finally, we give the static typing rules for the algebra
in Section 5. Although it contains the most challenging material, we have tried to make the content as
accessible as possible. Nonetheless, this section is not necessary for understanding or using the algebra,
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therefore the reader may skip this section. In Section 6, we discuss open issues and problems. In
Appendix A, we give a formal mapping relating the algebra to the XML Query Data Model.

Cited literature includes: SQL [16], OQL [4, 5, 13], NRA [8, 15, 20, 22], Quilt [11], UnQL [3],
XDuce [21], XML-QL[17], XPath [33], XQL [25], and YaTL [14].

2 The Algebra by Example

This section introduces the main features of the algebra, using familiar examples based on accessing a
database of books.

2.1 Data and Types

Consider the following sample data:

<bib>
<book>
<title>Data on the Web</title>
<year>1999</year>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>

</book>
<book>
<title>XML Query</title>
<year>2001</year>
<author>Fernandez</author>
<author>Suciu</author>

</book>
</bib>

Here is a fragment of a XML Schema for such data.

<xsd:group name="Bib">
<xsd:element name="bib">
<xsd:complexType>

<xsd:group ref="Book" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>

</xsd:element>
</xsd:group>

<xsd:group name="Book">
<xsd:element name="book">
<xsd:complexType>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="year" type="xsd:integer"/>
<xsd:element name="author" type="xsd:integer" maxOccurs="unbounded"/>

</xsd:complexType>
</xsd:element>

</xsd:group>

This data and schema is represented in our algebra as follows:

type Bib =
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bib [ Book{0,*} ]
type Book =
book [
title [ String ],
year [ Integer ],
author [ String ]{1,*}

]
let bib0 : Bib =
bib [
book [

title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

],
book [

title [ "XML Query" ],
year [ 2001 ],
author [ "Fernandez" ],
author [ "Suciu" ]

]
]

The expression above defines two types, Bib and Book, and defines one global variable, bib0.
The Bib type corresponds to a single bib element, which contains a forest of zero or more Book

elements. We use the term forest to refer to a sequence of (zero or more) elements. Every element can
be viewed as a forest of length one.

The Book type corresponds to a single book element, which contains one title element, followed by
one year element, followed by one or more author elements. A title or author element contains a
string value and a year element contains an integer.

The variable bib0 is bound to a literal XML value, which is the data model representation of the
earlier XML document. The bib element contains two book elements.

The algebra is a strongly typed language, therefore the value of bib0 must be an instance of its declared
type, or the expression is ill-typed. Here the value of bib0 is an instance of the Bib type, because it
contains one bib element, which contains two book elements, each of which contain a string-valued title,
an integer-valued year, and one or more string-valued author elements.

For convenience, we define a second global variable book0, also bound to a literal value, which is
equivalent to the first book in bib0.

let book0 : Book =
book [

title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

]

2.2 Projection

The simplest operation is projection. The algebra uses a notation similar in appearance and meaning
to path navigation in XPath. The following expression returns all author elements contained in book
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elements contained in bib0:

bib0/book/author
==> author [ "Abiteboul" ],

author [ "Buneman" ],
author [ "Suciu" ],
author [ "Fernandez" ],
author [ "Suciu" ]

: author [ String ] {0,*}

Note that in the result, the document order of author elements is preserved and that duplicate elements
are also preserved.

The above example and the ones that follow have three parts. First is an expression in the algebra.
Second, following the ==>, is the value of this expression. Third, following the :, is the type of the
expression, which is (of course) also a legal type for the value.

It may be unclear why the type of bib0/book/author contains zero or more authors, even though
the type of a book element contains one or more authors. Let’s look at the derivation of the result type
by looking at the type of each sub-expression:

bib0 : Bib
bib0/book : Book{0,*}
bib0/book/author : author [ String ]{0,*}

Recall that Bib, the type of bib0, may contain zero or more Book elements, therefore the expression
bib0/book might contain zero book elements, in which case, bib0/book/author would contain no authors.

This illustrates an important feature of the type system: the type of an expression depends only on
the type of its sub-expressions. It also illustrates the difference between an expression’s run-time value
and its compile-time type. Since the type of bib0 is Bib, the best type for bib0/book/author is one
listing zero or more authors, even though for the given value of bib0 the expression will always contain
exactly five authors.

2.3 Iteration

Another common operation is to iterate over elements in a document so that their content can be trans-
formed into new content. Here is an example of how to process each book to list the author before the
title, and remove the year.

for b <- bib0/book in
book [ b/author, b/title ]

==> book [
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ],
title [ "Data on the Web" ]

],
book [
author [ "Fernandez" ],
author [ "Suciu" ],
title [ "XML Query" ]

]
: book [

author[ String ]{1,*},
title[ String ]

]{0,*}
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The <- is pronounced ”drawn from”. The for expression iterates over all book elements in bib0 and
binds the variable b to each such element. For each element bound to b, the inner expression constructs
a new book element containing the book’s authors followed by its title. The transformed elements appear
in the same order as they occur in bib0.

In the result type, a book element is guaranteed to contain one or more authors followed by one title.
Let’s look at the derivation of the result type to see why:

bib0/book : Book{0,*}
b : Book
b/author : author [ String ]{1,*}
b/title : title [ String ]

The type system can determine that b is always Book, therefore the type of b/author is
author[ String ]{1,*} and the type of b/title is title[ String ].

2.4 Projection, revisited

The previous examples use the / operator liberally, but in fact we use / as a convenient abbreviation
for expressions built from two lower-level operators, project and children, possibly combined with for
expressions.

The children operator returns the children of an element. The project operator takes a tag name
and a forest and returns a new forest containing only elements with the given tag. For example, the
expression:

bib0/book

is equivalent to the expression:

project book (children(bib0))

To compose several expressions using /, we use for expressions. For example, the expression:

bib0/book/author

is equivalent to the expression:

for b <- project book (children(bib0)) in
project author (children(b))

The for expression iterates over all book elements in bib0 and binds the variable b to each such element.
For each element bound to b, the inner expression returns all the author elements in b, and the resulting
forests are concatenated together in order.

In general, an expression of the form e/a is converted to the form

for v <- e in
project a (children(v))

where e is an expression, a is a tag, and v is a fresh variable (one that does not appear in the expression
being converted).

According to this rule, the expression bib0/book translates to

for v <- bib0 in
project book (children(v))

In Section 4 we introduce laws of the algebra, which allow us to simplify this to the previous expression

project book (children(bib0))
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Similarly, the expression bib0/book/author translates to

for v2 <- (for v1 <- bib0 in
project book (children(v1))) in

project author (children(v2))

Again, the laws will allow us to simplify this to the previous expression

for b <- project book (children(bib0)) in
project author (children(b))

These examples illustrate an important feature of the algebra: high-level operators may be defined in
terms of low-level operators, and the low-level operators may be subject to algebraic laws that can be
used to further simplify the expression.

2.5 Selection

To select values that satisfy some predicate, we use the where expression. For example, the following
expression selects all book elements in bib0 that were published before 2000.

for b <- bib0/book in
where value(b/year) <= 2000 then

b
==> book [

title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

]
: Book{0,*}

The value operator returns the scalar (i.e., string, integer, or boolean) content of an element.
In general, an expression of the form

where e1 then e2

is converted to the form
if e1 then e2 else ()

where e1 and e2 are expressions. Here () is an expression that stands for the empty sequence, a forest
that contains no elements. We also write () for the type of the empty sequence.

According to this rule, the expression above translates to

for b <- bib0/book in
if value(b/year) < 2000 then b else ()

and this has the same value and the same type as the preceding expression.

2.6 Quantification

The following expression selects all book elements in bib0 that have some author named “Buneman”.

for b <- bib0/book in
for a <- b/author in
where value(a) = "Buneman" then

b
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==> book [
title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

]
: Book{0,*}

In contrast, we can use the empty operator to find all books that have no author whose name is
Buneman:

for b <- bib0/book in
where empty(for a <- b/author in

where value(a) = "Buneman" then
a) then

b
==> book [

title [ "XML Query" ],
year [ 2001 ],
author [ "Fernandez" ],
author [ "Suciu" ]

]
: Book{0,*}

The empty expression checks that its argument is the empty sequence ().
We can also use the empty operator to find all books where all the authors are Buneman, by checking

that there are no authors that are not Buneman:

for b <- bib0/book in
where empty(for a <- b/author in

where value(a) <> "Buneman" then
a) then

b
==> ()
: Book{0,*}

There are no such books, so the result is the empty sequence. Appropriate use of empty (possibly
combined with not) can express universally or existentially quantified expressions.

Here is a good place to introduce the let expression, which binds a local variable to a value. Introduc-
ing local variables may improve readability. For example, the following expression is exactly equivalent
to the previous one.

for b <- bib0/book in
let nonbunemans = (for a <- b/author in

where value(a) <> "Buneman" then
a) in

where empty(nonbunemans) then
b

Local variables can also be used to avoid repetition when the same subexpression appears more than once
in a query.
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2.7 Join

Another common operation is to join values from one or more documents. To illustrate joins, we give a
second data source that defines book reviews:

type Reviews =
reviews [
book [

title [ String ],
review [ String ]

]{0,*}
]

let review0 : Reviews =
reviews [
book [

title [ "XML Query" ],
review [ "A darn fine book." ]

],
book [

title [ "Data on the Web" ],
review [ "This is great!" ]

]
]

The Reviews type contains one reviews element, which contains zero or more book elements; each book
contains a title and review.

We can use nested for expressions to join the two sources review0 and bib0 on title values. The
result combines the title, authors, and reviews for each book.

for b <- bib0/book in
for r <- review0/book in
where value(b/title) = value(r/title) then

book [ b/title, b/author, r/review ]
==>

book [
title [ "Data on the Web" ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]
review [ "A darn fine book." ]

],
book [
title [ "XML Query" ],
author [ "Fernandez" ],
author [ "Suciu" ]
review [ "This is great!" ]

]
: book [

title [ String ],
author [ String ] {1,*},
review [ String ]

] {0,*}

Note that the outer-most for expression determines the order of the result. Readers familiar with
optimization of relational join queries know that relational joins commute, i.e., they can be evaluated in
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any order. This is not true for the XML algebra: changing the order of the first two for expressions
would produce different output. In Section 6, we discuss extending the algebra to support unordered
forests, which would permit commutable joins.

2.8 Restructuring

Often it is useful to regroup elements in an XML document. For example, each book element in bib0
groups one title with multiple authors. This expression regroups each author with the titles of his/her
publications.

for a <- unique(bib0/book/author) in
biblio [
a,
for b <- bib0/book in

for a2 <- b/author in
where value(a) = value(a2) then
b/title

]
==> biblio [

author [ "Abiteboul" ],
title [ "Data on the Web" ]

],
biblio [

author [ "Buneman" ],
title [ "Data on the Web" ]

],
biblio [

author [ "Suciu" ],
title [ "Data on the Web" ],
title [ "XML Query" ]

],
biblio [

author [ "Fernandez" ],
title [ "XML Query" ]

]
: biblio [

author [ String ],
title [ String ] {0,*}

] {0,*}

Readers may recognize this expression as a self-join of books on authors. The expression
unique(bib0/book/author) produces a forest of author elements with no duplicates. The outer for
expression binds a to each author element, and the inner for expression selects the title of each book
that has some author equal to a.

Here unique is an example of a built-in function. It takes a forest of elements and removes duplicates;
the order of the resulting forest is not defined.

The type of the result expression may seem surprising: each biblio element may contain zero or
more title elements, even though in bib0, every author co-occurs with a title. Recognizing such a
constraint is outside the scope of the type system, so the resulting type is not as precise as we would like.
We can, however, obtain the more precise type by re-expressing this query using the group operator,
which is described in Section 2.11.
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2.9 Querying Order

Often it is useful to query the order of elements in a forest. There are two kinds of order among elements.
Document or global order refers to the total order among all elements in a document and corresponds to
their sequential appearance. Local order refers to the order among sibling elements in a forest. Currently,
the algebra supports querying of local order, but not global order. We discuss global order in Section 6.

The index function pairs an integer index with each element in a forest:

index(book0/author)
==> pair [ fst [ 1 ], snd [ author [ "Abiteboul" ] ] ],

pair [ fst [ 2 ], snd [ author [ "Buneman" ] ] ],
pair [ fst [ 3 ], snd [ author [ "Suciu" ] ] ]

: pair [ fst [ Integer ], snd [ author [ String ] ] ] {1,*}

Note that the result type guarantees at least one pair exists in the result, because (book0/author) always
contains one or more authors.

Once we have paired authors with an integer index, we can select the first two authors:

for p <- index(book0/author) in
where (1 <= value(p/fst) and value(p/fst) <= 2) then
p/snd/author

==> author [ "Abiteboul" ],
author [ "Buneman" ]

: author [ String ] {0,*}

The for expression iterates over all pair elements produced by the index expression. It selects elements
whose index value in the fst element is between one and two inclusive, and it returns the original content
in the snd element.

Once again, the result type may be surprising, because the Book type guarantees that each book has
at least one author. However, the type system cannot determine that the conditional where clause will
always succeed, so the inner clause may produce zero results. (A sophisticated analysis might improve
type precision, but is likely to require much work for little benefit.)

2.10 Sorting

To sort a sequence of elements, we use a technique similar to that used above for index. Each element
in a sequence can be paired with a key value on which the sequence is sorted. The following expression
chooses a book’s title as a key and pairs the key with the book’s review:

for b <- review0/book in
pair [ fst [ b/title ], snd [ b ] ]

==> pair [
fst [ "XML Query" ],
snd [ book [ title ["XML Query" ], review [ "A darn fine book." ] ] ]

],
pair [
fst [ "Data on the Web" ],
snd [ book [ title [ "Data on the Web" ], review [ "This is great!" ] ] ]

]
: pair [

fst [ String ],
snd [ book [ title [String], review [String] ] ]

] {0,*}

Given a sequence of pairs, the sort operator sorts the pairs on the values of fst elements, which
contains the key:
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let pairs = (for b <- review0/book in
pair [ fst [ b/title ], snd [ b ] ]) in

sort(pairs)
==> pair [

fst [ "Data on the Web" ],
snd [ book [ title [ "Data on the Web" ], review [ "This is great!" ] ] ]

],
pair [
fst [ "XML Query" ],
snd [ book [ title ["XML Query" ], review [ "A darn fine book." ] ] ]

]
: pair [

fst [ String ],
snd [ book [ title [ String ], review [ String ] ] ]

] {0,*}

Finally, we can extract the sorted sequence by iterating over the sorted pairs and selecting out each
pair’s snd value:

let pairs = (for b <- review0/book in
pair [ fst [ b/title ], snd [ b ] ]) in

sort(pairs)/snd/book
==> book [ title [ "Data on the Web" ],

review [ "This is great!" ] ],
book [ title [ "XML Query" ],

review [ "This is pretty good too!" ] ]
: book [ title [ String ], review [ String ] ] ] {0,*}

This three-stage approach to sort a sequence may seem unusual and potentially inefficient. The advantage
of this approach, however, is that the sort operator is first order, that is, it does not take a function as
an argument. Often sort operators are higher order, that is, they may take as arguments a function to
compare two items in a sequence and possibly, a function to extract the key value from each item. Adding
higher-order functions to the algebra complicates typing so we have chosen a first-order approach. We
discuss adding higher-order functions in Section 6.

2.11 Grouping

We can group elements on a key value in the same way we sort on a key value. This expression chooses
a book’s author as a key and pairs the key with the book’s title; the group operator groups the pairs on
the values of the fst elements:

group(for b <- bib0/book in
for a <- b/author in
pair [ fst [ a ], snd [ b/title ] ])

==> pair [
fst [ author [ "Abiteboul" ] ],
snd [ title [ "Data on the Web" ] ]

],
pair [
fst [ author [ "Buneman" ] ],
snd [ title [ "Data on the Web" ] ]

],
pair [
fst [ author [ "Suciu" ] ],
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snd [ title [ "Data on the Web" ], title [ "XML Query" ] ]
],
pair [
fst [ author [ "Fernandez" ] ],
snd [ title [ "XML Query" ] ]

],
: pair [

fst [ author [ String ] ],
snd [ title [ String ]{1,*} ]

] {0,*}

Note that the result type is precise: each pair is guaranteed to include one title, therefore each grouped
pair contains at least one title.

This expression regroups each author with the titles of his/her publications.

for p <- group(for b <- bib0/book in
for a <- b/author in
pair [ fst [ a ], snd [ b/title ] ]) in

biblio [ p/fst/author, p/snd/title ]
==> biblio [

author [ "Abiteboul" ],
title [ "Data on the Web" ]

],
biblio [
author [ "Buneman" ],
title [ "Data on the Web" ]

],
biblio [
author [ "Suciu" ],
title [ "Data on the Web" ],
title [ "XML Query" ]

],
biblio [
author [ "Fernandez" ],
title [ "XML Query" ]

]
: biblio [

author [String ],
title [String] {1,*}

] {0,*}

The reader should compare this expression with the expression in Section 2.8, which yields the same
value but with a less precise type. Furthermore, the version using group can be implemented more
efficiently.

2.12 Aggregation

We have already seen several several built-in functions: index, unique, sort and group. In addition to
these functions, the algebra has five built-in aggregation functions: avg, count, max, min and sum.

This expression selects books that have more than two authors:

for b <- bib0/book in
where count(b/author) > 2 then
b
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==> book [
title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

]
: Book{0,*}

All the aggregation functions take a forest with repetition type and return an integer value; count returns
the number of elements in the forest.

2.13 Functions

Functions can make queries more modular and concise. Recall that we used the following query to find
all books that do not have “Buneman” as an author.

for b <- bib0/book in
where empty(for a <- b/author in

where value(a) = "Buneman" then
a) then

b
==> book [

title [ "XML Query" ],
year [ 2001 ],
author [ "Fernandez" ],
author [ "Suciu" ]

]
: Book{0,*}

A different way to formulate this query is to first define a function that takes a string s and a book b as
arguments, and returns true if book b does not have an author with name s.

fun notauthor (s : String; b : Book) : Boolean =
empty(for a <- b/author in

where value(a) = s then
a)

The query can then be re-expressed as follows.

for b <- bib0/book in
where notauthor("Buneman"; b) then
b

==> book [
title [ "XML Query" ],
year [ 2001 ],
author [ "Fernandez" ],
author [ "Suciu" ]

]
: Book{0,*}

We use semicolon rather than comma to separate function arguments, since comma is used to concatenate
forests.

Note that a function declaration includes the types of all its arguments and the type of its result.
This is necessary for the type system to guarantee that applications of functions are type correct.
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In general, any number of functions may be declared at the top-level. The order of function decla-
rations does not matter, and each function may refer to any other function. Among other things, this
allows functions to be recursive (or mutually recursive), which supports structural recursion, the subject
of the next section.

Functions make the algebra extensible. We have seen examples of built-in functions (sort, group, and
unique) and examples of user-defined functions (notauthor). In addition to built-in and user-defined
functions, the algebra could support externally defined functions, i.e., functions that are not defined in
the algebra itself, but in some external language. This would make special-purpose implementations of,
for example, full-text search functions available in the algebra. We discuss support for externally defined
functions in Section 6.

2.14 Structural Recursion

XML documents can be recursive in structure, for example, it is possible to define a part element that
directly or indirectly contains other part elements. In the algebra, we use recursive types to define
documents with a recursive structure, and we use recursive functions to process such documents. (We
can also use mutual recursion for more complex recursive structures.)

For instance, here is a recursive type defining a part hierarchy.

type Part =
basic [
cost [ Integer ]

]
| composite [

assembly_cost [ Integer ],
subparts [ Part{1,*} ]

]

And here is some sample data.

let part0 : Part =
composite [
assembly_cost [ 12 ],
subparts [

composite [
assembly_cost [ 22 ],
subparts [
basic [ cost [ 33 ] ]

]
],
basic [ cost [ 7 ] ]

]
]

Here vertical bar (|) is used to indicate a choice between types: each part is either basic (no subparts),
and has a cost, or is composite, and includes an assembly cost and subparts.

We might want to translate to a second form, where every part has a total cost and a list of subparts
(for a basic part, the list of subparts is empty).

type Part2 =
part [
total_cost [ Integer ],
subparts [ Part2{0,*} ]

]
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Here is a recursive function that performs the desired transformation. It uses a new construct, the
case expression.

fun convert(x : Part) : Part2 =
case x of
basic [ c ] =>

let p = basic [ c ] in
part [
total_cost [ value(p/cost) ],
subparts []

]
| q =>
let s = (for y <- children(q/subparts) in convert(y)) in

part [
total_cost [
value(q/assembly_cost) + sum(for v <- s/total_cost in value(v))

],
subparts[ s ]

]

The case expression checks whether the value of x has the form basic[c], that is whether x is a basic
element, and if so then c is bound to the children of x. The let expression binds p to an element
basic[c], so if this branch is taken then p is the same as x, but with a more precise type (it must be a
basic part, not a composite). This branch returns a part with total cost the same as the cost of x, and
with no subparts.

Otherwise, the case expression binds q to the value of x, so if this branch is taken, then q is the same
as x, but with a more precise type (it must be a composite, not a basic part). This branch recursively
applies the function to each subpart of q, giving a list of new subparts s. It returns a part containing the
total cost computed by adding the assembly cost of q to the sum of the total cost of each new subpart
in s, and containing the subparts s.

Applying the query to the given data gives the following result.

convert(part0)
==> part [

total_cost [ 74 ],
subparts [
part [

total_cost [ 55 ],
subparts [

part [
total_cost [ 33 ],
subparts []

]
]

],
part [

total_cost [ 7 ],
subparts []

]
]

]

Of course, a case expression may be used in any query, not just in a recursive one.
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2.15 Functions for all well-formed documents

Recursive types allow us to define a type that matches any well-formed XML document. This type is
called UrTree:

type UrTree =
UrScalar

| ~ [ UrTree{0,*} ]

Here UrScalar is a built-in scalar type. It stands for the most general scalar type, and all other scalar
types (like Integer or String) are subtypes of it. The tilde (~) is used to indicate a wild-card type. In
general, [̃t] indicates the type of elements that may have any tag, but must have children of type t. So
an UrTree is either an UrScalar or a wildcard element with zero or more children, each of which is itself
an UrTree. In other words, any single element or scalar has type UrTree.

The use of UrScalar is a small, but necessary, extension to XML Schema, since XML Schema provides
no most general scalar type. In contrast, the use of tilde is a significant extension to XML Schema, because
XML Schema has no type corresponding to [̃t], where t is some type other than UrTree {0,*}. It is not
clear that this extension is necessary, since the more restrictive expressiveness of XML Schema wildcards
may be adequate. Also, note that UrTree{0,*} is equivalent to the UrType in XML Schema.

In particular, our earlier data also has type UrTree.

book0 : UrTree
==> book [

title [ "Data on the Web" ],
year [ 1999 ],
author [ "Abiteboul" ],
author [ "Buneman" ],
author [ "Suciu" ]

]
: UrTree

A specific type can be indicated for any expression in the query language, by writing a colon and the
type after the expression.

As an example, we define a recursive function that converts any XML data into HTML. We first give
a simplified definition of HTML.

type HTML_body =
( UrScalar
| b [ HTML_body ]
| ul [ (li [ HTML_body ]){0,*} ]
) {0,*}

An HTML body consists of a sequence of zero or more items, each of which is either a scalar, or a b
element, where the content is an HTML body, or an ul element, where the children are li elements, each
of which has as content an HTML body.

Now, here is the function that performs the conversion.

fun html_of_xml( x : UrTree ) : Html_Body =
case x of
s : UrScalar =>

s
| e =>

b [ name(e) ],
ul [ for y <- children(e) in li [ html_of_xml(y) ] ]
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The case expression checks whether the value of x is a subtype of UrScalar, and if so then s is bound
to that value, so if this branch is taken then s is the same as x, but with a more precise type (it must be
a scalar, not an element). This branch returns the scalar.

Otherwise, the case expression binds e to the value of x, so if this branch is taken, then e is the same
as x, but with a more precise type (it must be an element, not a scalar). This branch returns a b element
containing the name of the element, and a ul element containing one li element for each child or the
element. The function is recursively applied to get the content of the li element.

Applying the query to the book element above gives the following result.

html_of_xml(book0)
==> b [ "book" ],

ul [
li [ b [ "title" ], ul [ li [ "Data on the Web" ] ] ],
li [ b [ "year" ], ul [ li [ 1999 ] ] ],
li [ b [ "author" ], ul [ li [ "Abiteboul" ] ] ],
li [ b [ "author" ], ul [ li [ "Buneman" ] ] ],
li [ b [ "author" ], ul [ li [ "Suciu" ] ] ]

]
: Html_Body

2.16 Top-level Queries

A query consists of a sequence of top-level expressions, or query items, where each query item is either a
type declaration, a function declaration, a global variable declaration, or a query expression. The order of
query items is immaterial; all type, function, and global variable declarations may be mutually recursive.

A query can be evaluated by the query interpreter. Each query expression is evaluated in the en-
vironment specified by all of the declarations. (Typically, all of the declarations will precede all of the
query expressions, but this is not required.) We have already seen examples of type, function, and global
variable declarations. An example of a query expression is:

query html_of_xml(book0)

To transform any expression into a top-level query, we simply precede the expression by the query
keyword.

3 Summary of the algebra

In this section, we summarize the algebra and present the grammars for expressions and types.

3.1 Expressions

Figure 1 contains the grammar for the algebra, i.e., the convenient concrete syntax in which a user may
write a query. A few of these expressions can be rewritten as other expressions in a smaller core algebra;
such reducible expressions are labeled with “*”. We define the algebra’s typing rules on the smaller core
algebra. In Section 4, we give the laws that relate a user expression with its equivalent expression in the
core algebra. Typing rules for the core algebra are defined in Section 5.

We have seen examples of most of the expressions, so we will only point out details here. We define
a subset of expressions that correspond to data values. An expression is a data value if it consists only
of scalar constant, element, sequence, and empty sequence expressions.

We have not defined the semantics of the binary operators in the algebra. It might be useful to define
more than one type of equality over scalar and element values. We leave that to future work.

Figure 2 summarizes the built-in functions of the algebra.
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tag a
function f
variable v
integer cint ::= · · · | −1 | 0 | 1 | · · ·
string cstr ::= "" | "a" | "b" | · · · | "aa" | · · ·
boolean cbool ::= false | true
constant c ::= cint | cstr | cbool

operator op ::= + | - | and | or
| = | != | < | <= | >= | >

expression e ::= c scalar constant
| v variable
| a[e] literal tag constructor
| ẽ[e] computed tag constructor
| e, e sequence
| () empty sequence
| project a e projection
| if e then e else e conditional
| let v = e in e local variable
| for v <- e in e iteration
| case e of a[v] => e | v => e literal tag destructor
| case e of v[v] => e | v => e computed tag destructor
| case e of v : s => e | v => e scalar destructor
| f(e; . . . ; e) function application
| e : t explicit type
| empty(e) emptiness predicate
| error error
| e op e binary operator
| e/a projection ∗
| value(e) scalar content ∗
| children(e) children ∗
| name(e) element name ∗
| where e then e conditional ∗
| let v : t = e in local variable with type ∗

query item q ::= type x = t type declaration
| fun f(v : t; . . . ; v : t) : t = e function declaration
| let v : t = e global variable declaration
| query e query expression

data d ::= c scalar constant
| a[d] element
| d, d sequence
| () empty sequence

Figure 1: Algebra

3.2 Types

Figure 3 contains the grammar for the algebra’s type system. We have already seen many examples of
types. Here, we point out some details.

Our algebra uses a simple type system that captures the essence of XML Schema [34]. The type
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avg, count, min, max, sum Aggregation functions
index Pairs each element of a forest with integer index.
group Groups pair elements on key in fst element.
sort Sorts pair elements on key in fst element.
unique Removes duplicates from a forest.

Figure 2: Built-In Functions

system is close to that used in XDuce [21].
In the type system of Figure 3, a scalar type may be a UrScalar, Boolean, Integer, or String. In

XML Schema, a scalar type is defined by one of fourteen primitive datatypes and a list of facets. A type
hierarchy is induced between scalar types by containment of facets. The algebra’s type system can be
generalized to support these types without much increase in its complexity. We added UrScalar, because
XML Schema does not support a most general scalar type.

A type is either: a type variable; a scalar type; an element type with literal tag a and content type t;
a wildcard type with an unknown tag and content type t; a sequence of two types, a choice of two types; a
repetition of a type with minimum and maximum bounds; the empty sequence type; or the empty choice
type.

The bounds on a repetition type will be either a natural number (that is, either a positive integer or
zero) or the special value *, meaning unbounded. We extend arithmetic to include * in the obvious way:

m+ * = * +m = *
0 · * = * · 0 = 0

m · * = * ·m = *, if m 6= 0
mmin * = * minm = m
mmax * = * maxm = *

m ≤ * = true
* < m = false

For technical reasons, we allow the lower bound of a repetition to be *. A repetition t{m,n} is equivalent
to the empty choice ∅ if m > n or if m is *.

The algebra’s external type system, that is, the type definitions associated with input and output
documents, is XML Schema. The internal types are in some ways more expressive than XML Schema,
for example, XML Schema has no type corresponding to UrScalar {0,*}, or corresponding to [̃t] where
t is some type other than UrTree {0,*}. In general, mapping XML Schema types into internal types
will not lose information, however, mapping internal types into XML Schema may lose information.

3.3 Relating values to types

Recall that data is the subset of expressions that consists only of scalar constant, element, sequence, and
empty sequence expressions. We write ` d : t if data d has type t. The following type rules define this
relation.

` cint : Integer

` cstr : String

` cbool : Boolean

19



tag a
type variable x
scalar type s ::= Integer

| String
| Boolean
| UrScalar

type t ::= x type variable
| s scalar type
| a[t] element
| [̃t] wildcard
| t, t sequence
| t | t choice
| t{m,n} repetition
| () empty sequence
| ∅ empty choice

bound m,n ::= natural number or *
prime type p ::= s

| a[t]
| [̃t]
| p | p
| ∅

Figure 3: Type System

` c : UrScalar

` d : t

` a[d] : a[t]

` d : t

` a[d] : [̃t]

` d1 : t1 ` d2 : t2

` (d1, d2) : (t1, t2)

` () : ()

` d : t1

` d : (t1 | t2)

` d : t2

` d : (t1 | t2)
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` d1 : t ` d2 : t{m,n}

` (d1, d2) : t{m+ 1, n+ 1}

` d1 : t ` d2 : t{0, n}

` (d1, d2) : t{0, n+ 1}

` () : t{0, n}

We write t1 <: t2 if for every data d such that ` d : t1 it is also the case that ` d : t2, that is t1 is a
subtype of t2. It is easy to see that <: is a partial order, that is it is reflexive, t <: t, and it is transitive,
if t1 <: t2 and t2 <: t3 then t1 <: t3. We also have that ∅ <: t for any type t, and a[t] <: [̃t]. We have
s<: UrScalar for every scalar type s. We have t1<: (t1 | t2) and t2<: (t1 | t2) for any t1 and t2. If t<: t′,
then a[t]<: a[t′]. If t <: t′ and m ≥ m′ and n ≤ n′ then t{m,n}<: t{m′, n′}. And if t1 <: t′1 and t2 <: t′2
then t1, t2 <: t′1, t

′
2.

We write t1 = t2 if t1 <: t2 and t2 <: t1. Here are some of the equations that hold.

UrScalar = Integer | String | Boolean
(t1, t2), t3 = t1, (t2, t3)
t, () = t
(), t = t
t1 | t2 = t2 | t1
(t1 | t2) | t3 = t1 | (t2 | t3)
t | ∅ = t
∅ | t = t
t1, (t2 | t3) = (t1, t2) | (t1, t3)
(t1 | t2), t3 = (t1, t3) | (t2, t3)
t, ∅ = ∅
∅, t = ∅
a[t1 | t2] = a[t1] | a[t2]
[̃t1 | t2] = [̃t1] | [̃t2]
a[t] | [̃t] = [̃t]
t{m+ 1, n+ 1} = t, (t{m,n})
t{0, n+ 1} = () | t, (t{0, n})
t{0, 0} = ()
t{m,n} = ∅, if m > n or m = *

We also have that t1 <: t2 if and only iff t1 | t2 = t2.

4 Equivalences and Optimization

4.1 Equivalences

Figure 4 contains the laws that relate the reducible expressions (i.e., those labeled with “*” in Figure 1) to
equivalent expressions. In these definitions, e1

{
e2/v

}
denotes the expression e1 in which all occurrences

of v are replaced by e2.
In Rule 1, the projection expression e/a is rewritten into a for expression, which binds v to each

element in the forest e, and returns the children elements of v that have tag a. Rule 2 rewrites value(e)
as a case expression, which returns e’s children if e contains a singleton scalar value. If e is a scalar
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e/a ⇒ for v <- e in project a (children(v)) (1)

value(e) ⇒ case e of
v1[v2] => case v2 of

v3 : UrScalar => v3

| v4 => v4 : ∅
| v5 => v5 : ∅

(2)

children(e) ⇒ case e of ṽ1[v2] => v2 | v3 => v3 : ∅ (3)

name(e) ⇒ case e of ṽ1[v2] => v1 | v3 => v3 : ∅ (4)

where e1 then e2 ⇒ if e1 then e2 else () (5)

let v : t = e1 in e2 ⇒ let v = (e1 : t) in e2 (6)

Figure 4: Definitions

value, its value is returned with the empty choice type, which may indicate an error. Similarly, if e’s child
is not a singleton scalar value, its children are returned with the empty choice type. Rule 3 rewrites the
children expression as a case expression that matches any singleton element and return the element’s
children bound to v2. Rule 4 is similar, but it returns the singleton’s tag name. In Rules 3 and 4, if e is
not a singleton element, a value with the empty choice type is returned. Rule 5 simply rewrites a where
expression by an if − then − else expression. Rule 6 rewrite the let expression with a type as a let
expression without a type by moving the type constraint into the expression.

4.2 Optimizations

Figure 5 contains a dozen algebraic simplification laws. In a relational query engine, algebraic simplifi-
cations are often applied by a query optimizer before a physical execution plan is generated; algebraic
simplification can often reduce the size of the intermediate results computed by a query interpreter. The
purpose of our laws is similar – they eliminate unnecessary for or case expressions, or they enable other
optimizations by reordering or distributing computations. The set of laws given is suggestive, rather than
complete.

Rules 7, 8, and 9 simplify iterations. Rule 7 rewrites an iteration over the empty sequence as the
empty sequence. Rule 8 distributes iteration through sequence: iterating over the sequence (e1, e2) is
equivalent to the sequence of two iterations, one over e1 and one over e2. Rule 9 eliminates an iteration
over a single element or scalar. If e1 is a prime type, then e1 can be substituted for occurrences of v in
e2.

Rules 10 and 11 eliminate trivial case expressions.
Rule 12 eliminates an iteration when the result expression is simply the iteration variable v.
Rules 13–18 are used to commute expressions. Each rule actually abbreviates a number of other rules,

since the context variable E stands for a number of different expressions. The notation E[e] stands for one
of the six expressions given with expression e replacing the hole [] that appears in each of the alternatives.
For instance, one of the expansions of Rule 15 is the following, when E is taken to be for v <- [] in e.

for v2 <- (for v1 <- e1 in e2) in e3 ⇒ for v1 <- e1 in (for v2 <- e2 in e3)

In Section 2.4 we claimed that the expression bib0/book translates to
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E ::= if [] then e1 else e2

| let v = [] in e
| for v <- [] in e
| case [] of a[v1] => e1 | v2 => e2

| case [] of ṽ1[v2] => e1 | v3 => e2

| case [] of v1 : s => e1 | v2 => e2

for v <- () in e ⇒ () (7)

for v <- (e1, e2) in e3 ⇒ (for v <- e1 in e3), (for v <- e2 in e3) (8)

for v <- e1 in e2 ⇒ e2

{
e1/v

}
, if e : p (9)

case a[e1] of a[v1] => e2 | v2 => e3 ⇒ e2

{
e1/v1

}
(10)

case a′[e1] of a[v1] => e2 | v2 => e3 ⇒ e3

{
a′[e1]/v2

}
, if a 6= a′ (11)

for v <- e in v ⇒ e (12)

E[if e1 then e2 else e3] ⇒ if e1 then E[e2] else E[e3] (13)

E[let v = e1 in e2] ⇒ let v = e1 in E[e2] (14)

E[for v <- e1 in e2] ⇒ for v <- e1 in E[e2] (15)

E[case e1 of a[v1] => e2 | v2 => e3] ⇒ case e1 of a[v1] => E[e2] | v2 => E[e3] (16)

E[case e1 of ṽ1[v2] => e2 | v3 => e3] ⇒ case e1 of ṽ1[v2] => E[e2] | v3 => E[e3] (17)

E[case e1 of v1 : s => e2 | v2 => e3] ⇒ case e1 of v1 : s => E[e2] | v2 => E[e3] (18)

Figure 5: Optimization Laws

for v <- bib0 in
project book (children(v))

and that this simplifies to

project book (children(bib0))

We can now see that the translation happens via Rule 1, and the simplification happens via Rule 9.
In that Section, we also claimed that the expression bib0/book/author translates to

for v2 <- (for v1 <- bib0 in
project book (children(v1))) in

project author (children(v2))

and that this simplifies to

for b <- project book (children(bib0)) in
project author (children(b))
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We can now see that the translation happens via two applications of Rule 1, and the simplification
happens via Rule 9 and the above instance of Rule 15.

To reiterate, these examples illustrate an important feature of the algebra: high-level operators may
be defined in terms of low-level operators, and the low-level operators may be subject to algebraic laws
that can be used to further simplify the expression.

5 Type Rules

We explain our type system in the form commonly used in the programming languages community. For
a textbook introduction to type systems, see, for example, Mitchell [23].

5.1 Prime types and factoring

We begin by explaining prime types and factoring, which are important to the type system.
Many of the operations in the algebra have an operator that should be of a repetition type. This

is true for the built-in operators index, sort, unique, and group, and it is also true for the expression
iterated over in a for expression.

For example, consider the following.

index (children (book0))
==> pair [ fst [ 1 ], snd [ title [ "Data on the Web" ] ],

pair [ fst [ 2 ], snd [ author [ "Abiteboul" ] ] ],
pair [ fst [ 3 ], snd [ author [ "Buneman" ] ] ],
pair [ fst [ 4 ], snd [ author [ "Suciu" ] ] ],
pair [ fst [ 5 ], snd [ year [ 1999 ] ]

How should we describe the type of the result? What we need to do is find p, m, and n such that

children(book0) : p{m,n}

and then the type is given by

index(children(book0)) : pair [ fst [ String ], snd [ p ] ] {m,n}

In the case of books, the values of p are:

title [ String ] | author [ String ] | year [ Integer ]

the value of m is 3 (because there will be one title, at least one author, and one year element) and the
value of n is * (because there may be any number of author elements).

We call a type like p a prime type. It general, it may contain scalar, element, wildcard, choice,
and empty choice types, but it will not contain repetition, sequence, or empty sequence types (except,
perhaps, within an element or wildcard type). The definition of prime types appears in Figure 3.

We want to be able to convert any type t to a type of the form p{m,n}, where t <: p{m,n}, so that
any value that has type t also has type p{m,n}. This is done by the function factor, shown in Figure 6.
For example,

factor( title[String], author[String]{1,*}, year[Integer] )
= ( title[String] | author[String] | year[Integer] ){3,*}

For mnemonic convenience we write p{m,n} = factor(t), but one should actually think of the function
as returning a triple consisting of a prime type p and two bounds m and n.

Just as factoring a number yields a product of prime numbers, factoring a type yields a repetition
of prime types. Further, the result yielded by factoring is in some sense optimal. If p{m,n} = factor(t)
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factor(s) = s{1, 1}
factor(a[t]) = a[t]{1, 1}
factor(̃ [t]) = [̃t]{1, 1}
factor(t1, t2) = (p1 | p2){m1 +m2, n1 + n2} where pi{mi, ni} = factor(ti)
factor(t1 | t2) = (p1 | p2){m1 minm2, n1 max n2} where pi{mi, ni} = factor(ti)
factor(t{m,n}) = p{m′ ·m,n′ · n} where p{m′, n′} = factor(t)
factor(()) = ∅{0, 0}
factor(∅) = ∅{∗, 0}

projecta(s) = ∅
projecta(a[t]) = a[t]{1, 1}
projecta(a′[t]) = ∅{0, 0} if a 6= a′

projecta(̃ [t]) = a[t]{1, 1}
projecta(t1, t2) = (p1 | p2){m1 +m2, n1 + n2} where pi{mi, ni} = projecta(ti)
projecta(t1 | t2) = (p1 | p2){m1 minm2, n1 max n2} where pi{mi, ni} = projecta(ti)
projecta(t{m,n}) = p{m′ ·m,n′ · n} where p{m′, n′} = projecta(t)
projecta(()) = ∅{0, 0}
projecta(∅) = ∅{∗, 0}

splita(s) = a[∅] | s
splita(a[t]) = a[t] | ∅
splita(a′[t]) = a[∅] | a′[t] if a 6= a′

splita(̃ [t]) = a[t] | a[t]
splita(p1 | p2) = a[t1 | t2] | (p′1 | p′2) where a[ti] | p′i = splita(pi)
splita(∅) = a[∅] | ∅

split˜(s) = [̃∅] | s
split˜(a[t]) = [̃t] | ∅
split˜(̃ [t]) = [̃t] | ∅
split˜(p1 | p2) = [̃t1 | t2] | (p′1 | p′2) where [̃ti] | p′i = split˜(pi)
split˜(∅) = [̃∅] | ∅

splits(s′) = s′ <: s | ∅ if s′ <: s
= ∅<: s | s′ otherwise

splits(a[t]) = ∅<: s | a[t]
splits(̃ [t]) = ∅<: s | [̃t]
splits(p1 | p2) = (s1 | s2)<: s | (p′1 | p′2) where si <: s | p′i = splits(pi)
splits(∅) = ∅<: s | ∅

Figure 6: Definitions of auxiliary functions

then t <: p{m,n} and furthermore for any p′, m′, and n′ such that t <: p′{m′, n′} we have that p <: p′

and m ≥ m′ and n ≤ n′. Also, if t = t′, then factor(t) = factor(t′). In particular, the choice of the lower
bound * for factor(∅) guarantees that factor(t) = factor(t | ∅), since mmin * = m.

Several other useful auxiliary functions are also shown in Figure 6.
To determine the type of a project expression, we use the function projecta(t), which is similar to

factor, except it removes all elements with a label different from a. For mnemonic convenience we write
p{m,n} = projecta(t), but one should think of the function as returning a triple consisting of a prime
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type p and two bounds m and n.
To determine the types in a case expression, we use the function splita(p) or split˜(p) or splits(p),

depending on whether the form matched is a[v] or ṽ1[v2] or v : s. For mnemonic convenience we write
a[t] | p′ = splita(p) or [̃t] | p′ = split˜(p) or s′ <: s | p′ = splits(p) but one should think of the function as
returning a pair consisting of a type t and a prime type p′, or in the last instance a scalar type s′ and a
prime type p′.

5.2 Environments

The type rules make use of an environment that specifies the types of variables and functions. The
type environment is denoted by Γ, and is composed of a comma-separated list of variable types, v : t
or function types, f : (t1; . . . ; tn) → t. We retrieve type information from the environment by writing
(v : t) ∈ Γ to look up a variable, or by writing (f : (t1; . . . ; tn)→ t) ∈ Γ to look up a function.

The type checking starts with an environment that contains all the types declared for functions and
global variables. For instance, before typing the first query of Section 2.2, the environment contains:
Γ = bib0 : Bib, book0 : Book. While doing the type-checking, new variables will be added in the
environment. For instance, when typing the query of section 2.3, variable b will be typed with Book, and
added in the environment. This will result in a new environment Γ′ = Γ, b : Book.

5.3 Type rules

*** The following would benefit from a more detailed explanation! ***
We write Γ ` e : t if in environment Γ the expression e has type t.

Γ ` cint : Integer

Γ ` cstr : String

Γ ` cbool : Boolean

(v : t) ∈ Γ

Γ ` v : t

Γ ` e : t

Γ ` a[e] : a[t]

Γ ` e1 : String Γ ` e2 : t

Γ ` ẽ1[e2] : [̃t]

Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1, e2 : t1, t2

Γ ` () : ()

Γ ` e : t p{m,n} = projecta(t)

Γ ` project a e : p{m,n}

26



Γ ` e1 : Boolean Γ ` e2 : t2 Γ ` e3 : t3

Γ ` if e1 then e2 else e3 : (t2 | t3)

Γ ` e1 : t1 Γ, v : t1 ` e2 : t2

Γ ` let v = e1 in e2 : t2

Γ ` e1 : t1 p1{m1, n1} = factor(t1) Γ, v : p ` e2 : t2 p2{m2, n2} = factor(t2)

Γ ` for v <- e1 in e2 : p2{m1 ·m2, n1 · n2}

Γ ` e1 : t1 p{1, 1} = factor(t1) a[t] | p′ = splita(p)
Γ, v1 : t ` e2 : t2 Γ, v2 : p′ ` e3 : t3

Γ ` case e1 of a[v1] => e2 | v2 => e3 : t2 | t3

Γ ` e1 : t1 p{1, 1} = factor(t1) [̃t] | p′ = split˜(p)
Γ, v1 : String, v2 : t ` e2 : t2 Γ, v3 : p′ ` e3 : t3

Γ ` case e1 of ṽ1[v2] => e2 | v3 => e3 : t2 | t3

Γ ` e1 : t1 p{1, 1} = factor(t1) s′ <: s | p′ = splits(p)
Γ, v1 : s′ ` e2 : t2 Γ, v2 : p′ ` e3 : t3

Γ ` case e1 of v1 : s => e2 | v2 => e3 : t2 | t3

(f : (t1; . . . ; tn)→ t) ∈ Γ
Γ ` e1 : t′1 t′1 <: t1

· · ·
Γ ` en : t′n t′n <: tn

Γ ` f(e1; . . . ; en) : t

Γ ` e : t

Γ ` empty e : Boolean

Γ ` error : ∅

Γ ` e : t′ t′ <: t

Γ ` (e : t) : t

5.4 Operators and built-in Functions

Γ ` e1 : Integer Γ ` e2 : Integer

Γ ` e1 id+ e2 : Integer

Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1 id= e2 : Boolean
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Γ ` e : t p{m,n} = factor(t)

Γ ` index e : pair [fst [Integer], snd [p]]{m,n}

Γ ` e : pair [fst [t1], snd [t2]]{m,n}

Γ ` sort e : pair [fst [t1], snd [t2]]{m,n}

Γ ` e : pair [fst [t1], snd [t2]]{m,n}

Γ ` group e : pair [fst [t1], snd [t2{1, n}]]{mmin 1, n}

Γ ` e : t Integer{m,n} = factor(t)

Γ ` agg e : Integer

agg is one of avg, max, min, sum.

Γ ` e : t

Γ ` count e : Integer

Γ ` e : t p{m,n} = factor(t)

Γ ` unique e : p{mmin 1, n}

Γ ` error : ∅

5.5 Top-level expressions

We write Γ ` q if in environment Γ the query item q is well-typed.

Γ ` type x = t

Γ, v1 : t1, . . . , vn : tn ` e : t′ t′ <: t

Γ ` fun f(v1 : t1; . . . ; vn : tn) : t = e

Γ ` e : t′ t′ <: t

Γ ` let v : t = e

Γ ` e : t

Γ ` query e
We extract the relevant component of a type environment from a query item q with the function

environment(q).

environment(type x = t) = ()
environment(fun f(v1 : t1; . . . ; vn : tn) : t) = f : (t1; . . . ; tn)→ t
environment(let v : t = e) = v : t

We write ` q1 . . . qn if the sequence of query items q1 . . . qn is well typed.

Γ = environment(q1), . . . , environment(qn)
Γ ` q1 · · · Γ ` qn

` q1 . . . qn
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6 Discussion

The algebra has several important characteristics: its operators are orthogonal, strongly typed, and they
obey laws of equivalence and optimization.

There are many issues to resolve in the completion of the algebra. We enumerate some of these here.

Data Model. Currently, all forests in the data model are ordered. It may be useful to have unordered
forests. The unique operator, for example, produces an inherently unordered forest. Unordered forests
can benefit from many optimizations for the relational algebra, such as commutable joins.

The data model and algebra do not define a global order on documents. Querying global order is
often required in document-oriented queries.

Currently, the algebra does not support reference values, which are defined in the XML Query Data
Model. The algebra’s type system should be extended to support reference types and the data model
operators ref and deref should be supported.

Type System. As discussed, the algebra’s internal type system is the type system of XDuce. A
potentially significant problem is that the algebra’s types may lose information when converted into
XML Schema types, for example, when a result is serialized into an XML document and XML Schema.

The type system is currently first order: it does not support function types nor higher-order functions.
Higher-order functions are useful for specifying, for example, sorting and grouping operators, which take
other functions as arguments.

The type system is currently monomorphic: it does not permit the definition of a function over
generalized types. Polymorphic functions are useful for factoring equivalent functions, each of which
operate on a fixed type.

Operators. We intentionally did not define equality or relational operators on element and scalar types
undefined. These operators should be defined by consensus.

It may be useful to add a fixed-point operator, which can be used in lieu of recursive functions to
compute, for example, the transitive closure of a collection.

Functions. There is no explicit support for externally defined functions.
The set of builtin functions may be extended to support other important operators.

Recursion. Currently, the algebra does not guarantee termination of recursive expressions. In order
to ensure termination, we might require that a recursive function take one argument that is a singleton
element, and any recursive invocation should be on a descendant of that element; since any element has
a finite number of descendants, this avoids infinite regress. (Ideally, we should have a simple syntactic
rule that enforces this restriction, but we have not yet devised such a rule.)
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and Efficient XML Integration. Proceedings of ACM SIGMOD Conference on Management of
Data, Dallas, Texas, May 2000.

[13] S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on Database Programming
Languages, pages 226–242, New York, August 1993.
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A XML Query Data Model

The XML algebra uses the XML Query data model [32]. Because the XML examples in this document
do not use many of the features of the data model, such as attributes, declared namespaces, comments,
the algebra uses an abbreviated notation. Here, we give the mapping from the abbreviated algebraic
expressions to complete expressions in the XML Query Data Model:

s = ref (stringValue (s, ref Def_string, ref []));
i = ref (integerValue(i, ref Def_integer));
a[ kids ] = ref (elemNode (qnameValue (null, a, ref Def_string), {}, {}, kids, (ref Def_t)));

For example, the string s constructs a string value and the integer i constructs an integer value. The
term a[ kids ] constructs an ElemNode with the tag a, an empty set of namespaces, an empty set of
attributes, the forest of children nodes kids, and the XML Schema type t, where t is the type of the
expression a[ kids ].

Again, to simplify presentation, types do not include attributes, but they can be added easily. Sub-
typing or containment relationships exist between types. We discuss subtyping in Section 5.
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