
XML Query Languages:

Experiences and Exemplars

Editors
Mary Fernandez AT&T Labs – Research mff@research.att.com

Jérôme Siméon Bell Labs, Lucent Technologies simeon@research.bell-labs.com

Philip Wadler Bell Labs, Lucent Technologies wadler@research.bell-labs.com

Contributors
Sophie Cluet INRIA Roquencourt Sophie.Cluet@inria.fr

Alin Deutsch Univ. of Pennsylvania adeutsch@gradient.cis.upenn.edu

Daniela Florescu INRIA Rocquencourt, France Daniela.Florescu@inria.fr

Alon Levy University of Washington, Seattle alon@cs.washington.edu

David Maier Oregon Graduate Institute maier@cse.ogi.edu

Jason McHugh Stanford University mchughj@db.stanford.edu

Jonathan Robie Software AG jonathan.robie@sagus.com

Dan Suciu AT&T Labs – Research suciu@research.att.com

Jennifer Widom Stanford University widom@db.stanford.edu

Abstract
This paper identifies essential features of an XML query language

by examining four existing query languages: XML-QL, YATL, Lorel,
and XQL. The first three languages come from the database community
and possess striking similarities. The fourth comes from the document
community and lacks some key functionality of the other three.

This document:
http://www-db.research.bell-labs.com/user/simeon/xquery.html

http://www-db.research.bell-labs.com/user/simeon/xquery.ps

http://www-db.research.bell-labs.com/user/simeon/xquery.txt

1 Introduction

Over the years, the database community has learned a thing or two about
how to process queries. There has been an evolution from relational data-
bases through object-oriented databases to semistructured databases, but

1

many of the principles have remained the same. From the semistructured
community, three languages have emerged aimed at querying XML data:
XML-QL [?], YATL [?, ?], and Lorel [?, ?]. These languages were developed
independently by research groups thousands of miles apart, yet they show
striking similarities of approach.

Over the years, the document community has also learned a thing or
two about searching and formatting documents. The document processing
community has developed models of structured text and search techniques
such as region algebras [?]. From this community, one language that has
emerged for processing XML data is XQL [?, ?].

The two communities address different application areas. The database
community is concerned with large repositories of data, integrating data
from heterogenous sources, exporting new views of legacy data, and trans-
forming data into common data-exchange formats. The document com-
munity is concerned with full-text search, queries of structured documents,
integrating full-text and structured queries, and deriving multiple presenta-
tions from a single underlying document.

The majority of authors of this document come from the database camp.
This community has a great deal of experience studying what expressive
power is necessary to support the application areas listed above, and what
query language features provide this expressive power. We wish to argue
that what is known regarding the expressive power of query languages should
play a central role in the design of a query language for XML.

Of course, what the document community has learned is also relevant,
but we don’t feel competent to advance those lessons here, and hope they
will do so elsewhere. The database community also has learned about query
complexity, algebras, and techniques for implementing these query languages
efficiently, but these subjects are also outside the scope of this paper.

The database query languages listed above have several features that we
believe are especially important:

• Queries that consist of three parts: a pattern clause, a filter clause, and
a constructor clause. The information passed between these clauses
can be modeled as a relation, which has a flat and unordered structure.

• Constructs to impose nesting and order upon the relations. These
may retain the structure of the original document, or may allow com-
plete restructuring of the document — this is the key advantage of
this approach. These constructs include nested queries; grouping re-
lated data items together via Skolem functions or explicit grouping
operators; indexing and sorting.

2

• Use of a join operator to combine data from different portions of doc-
uments, corresponding to the join operation on relations.

• Use of tag variables or path expressions to support querying without
precise knowledge of the document structure and access to arbitrarily
nested data.

They also provide other useful features:

• Constructs to process alternatives in different ways and constructs to
check for the absence of information, e.g., missing fields.

• Use of arbitrary external functions, such as aggregation functions,
string comparison functions, etc.

• Use of navigation operators, which simplify handling data with refer-
ences.

We illustrate these points by a collection of exemplars: we consider typi-
cal queries for a database of books, and show how to express these in XML-
QL, YATL, Lorel, and XQL. The first three languages almost always use the
same structure for the same query, while XQL often uses a different struc-
ture. In some cases, the query may not be expressible in XQL. (Of course,
since XQL grew out of the needs of the document community, there are also
many queries that can be expressed in XQL but not in XML-QL, YATL, or
Lorel.)

We wrote this paper for the XML Query Working Group to highlight
the database research community’s experience designing and implementing
XML query languages. We are not suggesting that XML-QL, YATL, or Lorel
be adopted as the working group’s initial language. But in light of these
languages’ striking similarities, one cannot ignore the lessons learned by the
database research community. Therefore, we do suggest that the common
ideas and features of these languages be considered a starting point for the
working group. and serve as a yardstick against which the working group’s
recommended language is compared.

In this paper, we do not address several important but orthogonal is-
sues, such as the environment in which an XML query language will be
executed. Instead, we refer the reader to a comprehensive list of desir-
able language features and related issues [?]. We also refer the reader to a
substantial body of research, including the motivation for and typical ap-
plications of semistructured data, [?, ?, ?], data models for semistructured

3

data [?], query-language design [?, ?, ?], query processing and optimiza-
tion [?], schema languages [?, ?, ?], and schema extraction [?].

The next section presents what we consider to be ten essential queries.
Section ?? presents other useful, but less crucial, features.

2 Ten Essential Queries

Here, we present example queries that illustrate what we believe are ten
essential features of an XML query language. We illustrate our examples
using XML-QL, YATL, Lorel, and XQL. Whenever possible, the language
providing the most natural or simple formulation will be used first.

We use the following running example. The XML input is in the doc-
ument www.bn.com/bib.xml, containing bibliography entries described by
the following DTD.

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+),

publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

This DTD specifies that a book element contains one title, one or more
author elements or one or more editor elements, one publisher element and
one price element; it also has a year attribute. An author element contains
a last and a first name. An editor element also contains an affiliation. A
title, last name, first name, publisher, or price is text.

2.1 Selection and extraction

Our first example selects all titles of books published by Addison-Wesley
after 1991. To give a query evaluator maximum flexibility, no order is spec-
ified for the output. In Section ??, we will show how to sort the titles by
document or alphabetical order.

4

In XML-QL, YATL, and Lorel, a query consists of three parts: a pattern
clause, which matches nested elements in the input document and binds
variables; a filter clause, which tests the bound variables; and a constructor
clause, which specifies the result in terms of the bound variables. Nested
queries may appear in a constructor. XQL supports patterns and filters,
but not constructors. XQL can apply filters to elements and attributes, as
well as processing instructions, comments, and entity references. We note
that XML-QL, YATL, and Lorel all provide syntactic shorthands for common
idioms in queries, but for clarity, we write queries in their most general form.

We assume that queries specify a fixed data source (via one or more
URLs) and return a well-formed XML tree. Of course, queries might act on
other representations of XML trees, such as the DOM. For instance, XML-
QL has a graph interface, and some implementations of XQL interface with
the DOM.

XML-QL

CONSTRUCT <bib> {
WHERE
<bib>

<book year=$y>
<title>$t</title>
<publisher><name>Addison-Wesley</name></publisher>

</book>
</bib> IN "www.bn.com/bib.xml",
$y > 1991

CONSTRUCT <book year=$y><title>$t</title></book>
} </bib>

In an XML-QL query, patterns and filters appear in the WHERE clause,
and the constructor appears in the CONSTRUCT clause. The result of the
inner WHERE clause is a relation, that maps variables to tuples of values that
satisfy the clause. In this case, the result contains all pairs of year and title
values bound to ($y, $t) that satisfy the clause. The result of the complete
query is one <bib> element, constructed by the outer CONSTRUCT clause. It
contains one <book> element for each book that satisfies the WHERE clause
of the inner query, i.e., one for each pair ($y, $t).

YATL

make

5

bib [*book [@year [$y],
title [$t]]]

match "www.bn.com/bib.xml" with
bib [*book [@year [$y],

title [$t]],
publisher [name [$n]]]

where
$n = "Addison-Wesley" and $y > 1991

In a YATL query, the constructor appears in the make clause, patterns
appear in the match clause, and filters appear in the where clause. An
* precedes any repeated element. Thus, the pattern expresses that a bib
element may have many book elements, but that each book element has one
year attribute, one publisher element, and one title element. Here, no
nested query is necessary, because the constructor indicates there is one bib
element with multiple book elements, i.e., one for each pair ($y, $t) in the
result. As in XML-QL, the meaning of the match and where clauses is a
relation that maps variables to tuples of values that satisfy the clauses.

Lorel

select xml(bib:{
(select xml(book:{@year:y, title:t})
from bib.book b, b.title t, b.year y
where b.publisher = "Addison-Wesley" and y > 1991)})

In a Lorel query, the constructor appears in the select clause, patterns
appear in the from clause, and both patterns and filters appear in the where
clause. In this query, bib is used as the entry point for the data in the XML
document. The from clause binds variables to the element ids of elements
denoted by the given pattern, and the where clause selects those elements
that satisfy the given filters. As in XML-QL and YATL, the meaning of the
from and where clauses is a relation that maps variables to tuples of values
that satisfy the clauses. The select clause constructs a new XML book
element with a year attribute and a title element.

XQL

document("http://www.bn.com")/bib {
book[publisher/name="Addison-Wesley" and @year>1991] {

@year | title

6

}
}

In this XQL query, the pattern document("http://www.bn.com")/bib
selects all top-level bib elements from the input document and evaluates the
nested expression for each such element. The nested pattern book selects
the book elements that are children of a bib element and that satisfy the
filter clause in brackets. XQL does not have a constructor clause; instead the
pattern expressions determine the result of the query. In this case, the result
is one bib element that contains the selected book elements; the inner-most
expression projects only the book’s year attribute and title element.

2.2 Flattening

Our next query no longer filters on publisher or year, and returns a collec-
tion of all title-author pairs. The query flattens the nested structure, each
book contributing one pair for each author. Recall that in XML-QL, YATL,
and Lorel, the meaning of the patterns and filters is a relation, which is
the Cartesian product of all variable bindings that satisfy the patterns and
filters. This results in a flattening effect which, as we will see in the next
sections, provides the basis for further restructuring of the document.

XML-QL

CONSTRUCT <results> {
WHERE
<bib>

<book>
<title>$t</title>
<author>$a</author>

</book>
</bib> IN "www.bn.com/bib.xml"

CONSTRUCT
<result>

<title>$t</title>
<author>$a</author>

</result>
} </results>

The WHERE clause produces one tuple for each binding of $t and $a
that satisfies the pattern and filter. Each book has one title and possibly

7

multiple authors, therefore there is one tuple for each author of each book.
The CONSTRUCT clause produces one result element for each pair of values
bound to ($a, $t), i.e., the constructor’s free variables.

YATL

make
results [*result [title [$t],

author [$a]]]
match "www.bn.com/bib.xml" with

bib [*book [title [$t],
*author [$a]]]

When all pairs of titles and authors are unique, YATL produces the same
result elements as the XML-QL query. If the same title and author occurs
in different books, however, YATL would preserve these duplicates whereas
XML-QL would eliminate them. This is because YATL has a bag semantics,
which permits duplicates in the intermediate relation, but XML-QL has a
set semantics, which eliminates duplicates.

Lorel

select xml(results:
(select xml(result:{title: t,

author: a})
from bib.book b, b.title t, b.author a))

In this Lorel query, the from clause binds variable b to each book in the
input document. All title, author pairs for each book are bound to variables
t and a. We create a new element for each pair with the tag result using
the xml construct. This resulting element has two subelements, one for the
title and one for the author.

XQL

Flattening does not exist in XQL, because the results of patterns and filters
are not modeled by an intermediate relation. The result of an XQL query
must maintain the original nesting of the nodes in the input document.

8

2.3 Preserving structure

The previous example returns one result for each possible title-author pair.
The next one preserves the grouping of results by title.

XQL

In XQL, grouping is preserved automatically, because the result of a query
is always a projection of the original document.

document("http://www.bn.com")/bib->results {
book->result {

title | author
}

}

For each book element, the above query creates a result element using
the renaming operator ->. The children of this result element are all title
and author elements contained in the book element, with document order
preserved.

YATL

In YATL, this query is written as:

make
results [*result [title [$t],

$as]]
match "www.bn.com/bib.xml" with

bib [*book [title [$t],
*($as) author]]

This query uses two variables, $t and as, to extract the title and the
authors. Because of the *($as) author construct, $as is bound to the list
of all author elements in a book rather than successively to each author.

Lorel

This query can be expressed in Lorel as:

select xml(results:
select xml(result:{b.title, b.author})
from bib.book b)

9

The pattern expression b.author denotes the set of values for author;
similarly, b.title denotes the set of titles, if there are more than one. Each
binding for b produces a new book element with, as its sub-elements, the
set of titles and authors for that book.

XML-QL

In XML-QL, one way to preserve the original document structure is with a
nested query:

CONSTRUCT <results> {
WHERE
<bib>

<book>
<title>$t</title>

</book> CONTENT_AS $b
</bib> IN "www.bn.com/bib.xml"

CONSTRUCT
<result>

<title>$t</title>
{ WHERE <author>$a</author> IN $b

CONSTRUCT <author>$a</>
}

</result>
} </results>

Here, CONTENT_AS binds the variable b to the book element’s content, a
collection of elements. The inner WHERE clause selects the author elements
from $b. It is also possible to preserve structure in XML-QL without nested
queries by using an explicit grouping construct (see Section ??).

2.4 Changing structure by nesting

Sometimes the result of a query needs to have a structure different than
the original XML document. The next query illustrates restructuring by
grouping each author with the titles he or she has written. This requires
joining elements on their author values; the example query treats two au-
thors as equal when they have the same last and first names. We will see
more examples of joins in Section ??.

10

XML-QL

CONSTRUCT <results> {
WHERE

<bib>
<book>

<author><last>$l</last><first>$f</first></author>
</book>

</bib> IN "www.bn.com/bib.xml"
CONSTRUCT

<result>
<author><last>$l</last><first>$f</first></author>
{

WHERE
<bib>

<book>
<title>$t</title> // join on $l and $f
<author><last>$l</last><first>$f</first></author>

</book>
</bib> IN "www.bn.com/bib.xml"
CONSTRUCT <title>$t</title>

}
</result>

} </results>

In this XML-QL query, the occurences of $l and $f in the outer WHERE
clause causes them to be bound, while their occurrence in the inner WHERE
clause tests for equality. One result element is constructed for each last
name, first name pair and contains one author element and one or more
title elements, which are constructed by the nested query.

YATL

make
results [

*result [
author [last [$l], first [$f]],
(make

*title [$t]
match "www.bn.com/bib.xml" with

bib [*book [*author [last [$l], first [$f]],

11

title [$t]]])]]
match "www.bn.com/bib.xml" with

bib [*book [*author [last [$l], first [$f]]]]

Like XML-QL, YATL uses a nested query to join author elements on
their first and last names.

Lorel

select xml(results:
(select xml(result:{author: a,

(select xml(title: t)
from bib.book b, b.title t
where b.author.first = a.first and

b.author.last = a.last)})
from bib.book.author a))

Like XML-QL and YATL Lorel uses a nested query to join author ele-
ments on their first and last names.

XQL

Even though XQL can express joins (see Section ??), it cannot express this
query, which requires flattening multiple instances of an author’s name to
produce a single element for each author.

This query demonstrates the importance of the cross-product semantics
chosen by the other three languages. To restructure data completely, one
must first flatten the data and then reconstruct it in a new way.

2.5 Changing structure by explicit grouping

In addition to grouping by nesting, XML-QL, YATL, and Lorel provide other
constructs to support grouping, which may sometimes be easier to use. YATL
has a grouping operator, while XML-QL and Lorel both provide Skolem
functions for this purpose. We show how to rewrite the query of the previous
section using these operators. As before, the query groups each author with
the titles he or she has written.

12

YATL

make
results [*($l,$f) result [author [last [$l],

first [$f]],
*title [$t]]]

match "www.bn.com/bib.xml" with
bib [*book [title [$t],

*author [last [$l],
first [$f]]]]

As before, the match clause produces one tuple for each binding of $t,
$l, and $f that satisfies the pattern. Previously, this led to a flattening
effect. Here, the results are nested again by grouping over the last and
first name, as indicated by writing ($l,$f) between * and result in the
make clause. This expresses more compactly the same result as the previous
nested query.

XML-QL

CONSTRUCT <results> {
WHERE

<bib>
<book>

<title>$t</title>
<author><last>$l</last><first>$f</first></author>

</book>
</bib> IN "www.bn.com/bib.xml"

CONSTRUCT
<result ID=author($l,$f)>

<title>$t</title>
<author><last>$l</last><first>$f</first></author>

</result>
} </results>

In XML, attributes with type ID uniquely identify the elements which
bear them: only one element in the document can have an ID attribute with
the given value. In XML-QL, the distinguished attribute ID is taken to have
type ID and is used to control grouping. Here the value of the attribute is
author($l,$f), which denotes some unique function of the last and first
name, called a Skolem function. This causes all of the separate result

13

elements with the same last and first names to be grouped together, the
result being a single element with one author and multiple titles.

Lorel

select Root()->result->Author(l,f),
Author(l,f)->author->a,
Author(l,f)->title->t

from bib.book b, b.author a, a.first f, a.last l, b.title t

The syntax for Skolem functions in Lorel reflects its underlying data
model and is somewhat different from that presented in earlier queries. This
query uses two Skolem functions to create the desired structure. The Root
Skolem function, which accepts no parameters, creates a single element,
with multiple result sub-elements. One result sub-element is created by
the Author Skolem function for each distinct pair of bindings of l and f.
The elements created by Author have sub-elements for the authors and titles
of their books.

XQL

XQL does not support an explicit grouping operator.

2.6 Combining data sources

Now, we will see how to combine information collected from different por-
tions of documents, which is necessary to merge information from multiple
documents. For the next query, assume that we have a second data source at
www.amazon.com/reviews.xml that contains book reviews and prices, with
the following DTD:

<!ELEMENT reviews (entry*)>
<!ELEMENT entry (title, price, review)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT review (#PCDATA)>

The example query lists all books with their prices from both sources.

14

XML-QL

CONSTRUCT <books-with-prices> {
WHERE

<bib>
<book>

<title>$t</title>
<price>$pb</price>

</book>
</bib> IN "www.bn.com/bib.xml",
<reviews>
<entry>

<title>$t</title>
<price>$pa</price>

</entry>
</reviews> IN "www.amazon.com/reviews.xml"

CONSTRUCT
<book-with-prices>
<title>$t</title>
<price-amazon>$pa</price-amazon>
<price-bn>$pb</price-bn>

</book-with-prices>
} </books-with-prices>

Note that the use of the same variable $t for both titles causes a join
between the two data sources.

Even though this join operation may look expensive, numerous tech-
niques have been developed to evaluate joins efficiently [?].

YATL

make
books-with-prices

*book-with-prices [title [$t],
price-amazon [$pa],
price-bn [$pb]]

match "www.bn.com/bib.xml" with
bib [*book [title [$t],

price [$pb]]],
"www.amazon.com/reviews.xml" with

reviews [*entry [title [$t],

15

price [$pa]]]

Again, this query is almost identical to the one in XML-QL.

Lorel

For the corresponding Lorel query, we will use the entry point reviews to
access the data in the second XML document.

select xml(books-with-prices:
(select xml(book-with-prices: { title: t,

price-amazon: pa,
price-bn: pb }

from bib.book b, b.title tb, b.price pb,
reviews.entry e, e.title ta, e.price pa

where tb = ta)))

Note that Lorel uses an explicit equality predicate on book titles to
perform the join.

XQL

The XQL query is:

document("www.bn.com/bib.xml")/bib -> books-with-prices {
book->book-with-prices[$t:=title] {
title | price -> price-bn |
document("www.amazon.com/reviews.xml")/reviews

/entry[title=$t] {
price -> price-amazon

}
}

}

In XQL, a join is performed by assigning and using variables. First, the
variable assignment $t:=title binds the variable $t to book titles, then the
predicate title=$t selects the corresponding titles from the reviews. This
explicit assignment followed by its use in a selection suggests an evaluation
strategy.

Indeed, the more symmetric syntax of the other languages preserves the
tradition of well-known query languages, such as SQL and OQL [?], which
separate a query’s semantics from the mechanics of its evaluation.

16

2.7 Indexing

Elements in an XML document are ordered. In some cases, it might be
important to refer to the order in which elements appear, to preserve the
order in the output, or to impose a new order. Our next query returns each
book with its title and the first two authors, and an <et-al/> element if
there are more than two authors.

XQL

document("www.bn.com/bib.xml")/bib/book {
title | author[1 to 2] | author[3]->et-al { }

}

XQL uses subscripts to indicate indexes. A subscript can contain single
numbers, ranges, or any combination of these. For instance, the expression
author[1 to 2] selects the first two authors. The third author element is
renamed to an empty et-al element.

Lorel

select xml(bib:
(select xml(book:{ title: t,

(select b.author[1-2]),
(select xml(et-al {})
where exists b.author[3]) })

from bib.book b, b.title t))

Lorel uses two nested queries to construct the result. The first selects
authors with index one or two. The second produces an <et-al/> element
if there exists an author of index three.

XML-QL

CONSTRUCT <bib> {
WHERE

<bib>
<book>

<title>$t</title>
<author[$i]>$a</author>

</book>
</bib> IN "www.bn.com/bib.xml",

17

CONSTRUCT
<book ID=title($t)>

<title>$t</title>
{ WHERE $i <= 2 CONSTRUCT <author>$a</author> }
{ WHERE $i = 3 CONSTRUCT <et-al/> }

</book>
} </bib>

For this query, XML-QL uses index variables. The pattern binds three
variables: the title $t and author $a are as before, and the index $i is bound
to the position of the author element in the list of all its siblings. Indexing
starts from zero, and there is always a title element before the authors, so
the first author gets index one, the second gets index two, and so on. The
constructor contains two nested queries. The first selects authors with index
one or two. The second produces an <et-al/> element if and only if there
exists an author of index three.

YATL

make
bib *book [title [$t],

(make *author [$a]
match $as with *($$i) author [$a]
where $$i <= 2),

(make [et-al]
match $as with *($$i) author
where $$i = 3)]

match "www.bn.com/bib.xml" with
bib [*book [title [$t],

*($as) author]]

In YATL, the index variable is denoted by $$. We start by retrieving
the title and the list of authors in variables $t and $as respectively. The
make clause contains two nested queries: the first one returns the first two
authors by selecting those whose index in $$i is less than 2, the second one
creates an element et-al whenever a third author exists.

2.8 Sorting

Our first example selected all titles of books published by Addison-Wesley
after 1991. In that example, output order was not specified. Here we go back

18

and show how to modify the query so that the titles are listed alphabetically.

XML-QL

CONSTRUCT <bib> {
WHERE

<bib>
<book year=$y>

<title>$t</title>
<publisher><name>Addison-Wesley</name></publisher>

</book>
</bib> IN "www.bn.com/bib.xml",
$y > 1991

ORDER-BY $t
CONSTRUCT

<book year=$y>
<title>$t</title>

</book>
} </bib>

This query is identical to the one in Section ??, except for the new
ORDER-BY clause, which specifies that the resulting elements should be sorted
by their titles (as opposed to, say, their years).

YATL

make
bib [*o($t) book [@year [$y],

title [$t]]]
match "www.bn.com/bib.xml" with

bib [*book [@year [$y],
title [$t]],
publisher [name [$n]]]

where
$n = "Addison-Wesley" and $y > 1991

This is identical to the YATL query in Section ??, except for the new
phrase o($t), which specifies that the resulting elements should be sorted
by their titles.

19

Lorel

select xml(bib:
(select xml(book:{@year:y, title:t})
from bib.book b, b.title t, b.year y
where b.publisher = "Addison-Wesley" and y > 1991
order by t))

The order by clause sorts the elements satisfying the from and where
clause by book titles before creating the output document in the select
clause.

XQL

XQL does not currently have a sorting construct. Several proposals are
being considered.

Combining sorting with the indexes of the previous section can be used
to list the titles in the same order as the input document. Unlike XQL, which
always preserves document order, ordering in XML-QL, YATL and Lorel is
explicit. This is a deliberate choice, because ordering is usually expensive.

2.9 Tag variables

Because an XML document does not always come with a DTD, we need
some means to query documents without a priori knowledge of its structure
or the tags of its elements.

The next query selects books in which some element tag matches the
regular expression ’*or’ (e.g. author, editor, author) and whose value is
”Suciu”. The result of the query preserves the original tag.

XML-QL

CONSTRUCT <bib> {
WHERE
<bib>
<book>

<title>$t</title>
<$a>Suciu</>

</book>
</bib> IN "www.bn.com/bib.xml",
$a LIKE ’*or’

20

CONSTRUCT
<book>

<title>$t</title>
<$a>Suciu</>

</book>
} </bib>

In XML-QL, tag variables are used to query document structure. Here,
the variable $a is bound to the tag of each sub-element of book. The tag must
match the regular expression ’*or’. The constructor produces elements
with the same tag names. Note that the element expressions beginning with
tag variables are closed by </>, since the opening tag is not known.

YATL

make
bib [* book [title [$t].

$$a ["Suciu"]]]
match "www.bn.com/bib.xml" with
bib [* book [title [$t],

*$$a [$l]]]
where $l = "Suciu" and

$$a like "*or"

In YATL, tag variables are denoted by a $$ symbol.

Lorel

select xml(bib:
(select xml(book: {title: t, xml(LabelOf(a)): l})
from bib.book b, b.%or@a l , b.title t))

This query uses the path variable a, which is bound to the paths from b
to l that match the regular expression %or. The LabelOf function returns
the string representation of the a path. Path variables are more general
than tag variables and can be bound to an arbitrary path in the document.

Tag variables allow manipulation of tags as values. For example, as-
sume that both our data sources contain information about various types of
products, e.g., books, cds, etc. In www.bn.com/bib.xml, a product type is
modeled by an element, but in www.amazon.com/reviews.xml, a product
type is modeled by the value of a type element. Using tag variables, we can

21

generalize the join query from Section ?? over all item types by joining ele-
ment tags and element values. In the XML-QL version below, $e is bound
to the tag of product elements in one source and to the value of the type
element in the other source. The Lorel and YATL formulations are similar.

CONSTRUCT <items-with-prices> {
WHERE

<bib>
<$e>

<title>$t</title>
<price>$pb</price>

</>
</bib> IN "www.bn.com/bib.xml",
<reviews>
<entry>

<title>$t</title>
<type>$e</type>
<price>$pa</price>

</entry>
</reviews> IN "www.amazon.com/reviews.xml"

CONSTRUCT
<$e>
<title>$t</title>
<price-amazon>$pa</price-amazon>
<price-bn>$pb</price-bn>

</>
} </items-with-prices>

This query is particularly powerful, because it can be applied to the
sources without knowing all the product types (i.e., element tags or values
of the type element) a priori. If a new product type is added to either
source, this query still works without modification.

XQL

XQL does not support tag variables and therefore cannot express these
queries.

22

2.10 Regular-path expressions

Some queries may be conveniently specified by constraining the path through
the tree, via the use of a regular-path expression. For example, the following
DTD defines a self-recursive element section.

<!ELEMENT chapter (title, section*)>
<!ELEMENT section (title, section*)>
<!ELEMENT title (#PCDATA)>

A section element may contain other nested section elements to an ar-
bitrary depth. Regular-path expressions are used to match paths of arbitrary
depth. The next query retrieves all section or chapter titles containing
the word “XML”, regardless of the nesting level at which it occurs.

XML-QL

CONSTRUCT <results> {
WHERE

<chapter.(section)*>
<title>$t</title>

</> IN "books.xml",
$t LIKE ’*XML*’
CONSTRUCT

<title>$t</title>
} </results>

Here, chapter.(section)* is a regular-path expression, and matches
a chapter element followed by a sequence of zero or more nested section
elements. Regular-path expressions are combined with the alternation (|),
concatenation (.), and Kleene-star (*) operators.

Lorel

select xml(results:
(select xml(title:t)
from chapter(.section)* s, s.title t
where t like "*XML*"))

The path expression component chapter(.section)* s binds the vari-
able s to all elements reachable by following a chapter and a sequence of
section elements.

23

XQL

XQL does not support regular-path expressions but it does support access
to immediate children and descendants using the / and // operators respec-
tively. This allows queries of arbitrary depth over unconstrained paths.

The following query selects the title of chapters and sections that that
contain the string ’XML’, but does not require section elements to be con-
tained within a chapter.

document("books.xml")->results {
chapter[title contains "XML"] { title } |
.//section[title contains "XML"] { title }

}

YATL

YATL does not currently provide regular-path expressions.

With regular-path expressions, it is possible to write queries that potentially
are expensive to evaluate, e.g., one that returns the entire document. Tech-
niques exist, however, to evaluate certain classes of regular-path expressions
efficiently [?, ?].

3 Additional Features

We believe all the examples in the previous section illustrate the essential
features of an XML query language. In this section, we present several other
useful, but less crucial, features.

3.1 External functions and aggregation

Different application domains often require specialized operations. For in-
stance, decision support applications need aggregate functions and integra-
tion applications require approximate comparison between string values [?].

For instance, the following XML-QL query accesses a price list collected
from multiple bibliographies and returns the minimum price for each book.

24

XML-QL

CONSTRUCT <results> {
WHERE <book>

<title>$t</title>
<price>$p</price>

</book> IN "books.yahoo.com/prices.xml"
CONSTRUCT <minprice ID=title($t)>MIN($p)</minprice>

} </results>

This query extracts all title and price pairs, then it groups prices for
the same book together via a Skolem function. Finally the MIN aggregate
function returns the corresponding minimal price.

YATL

The following YATL query computes the average number of authors for all
books.

make
avg([*count($as)])

match "www.bn.com/bib.xml" with
bib [* book [*($as) author]]

YATL uses a functional approach in which aggregate functions are simply
functions on collections. This query uses two aggregate functions: count
returns the size of its input collection (here the list of authors in each book)
and avg for the average.

3.2 Processing of alternatives

XML DTDs provide constructs to describe alternative structure. For in-
stance, the books in our bibliography have either authors or editors. In the
next query, we want to extract from each book, either the full content of
author elements or the affiliation of the editors.

This can be written in YATL as:

YATL

make
bib * (match $b with

| *($as) author

25

make
book [title [$t],

$as]
| * editor [affiliation [$af]]
make

reference [title [$t],
org [$af]])

match "www.bn.com/bib.xml" with
bib [* book($b)]

The nested query matches each book from the bibliography with two dif-
ferent patterns separated by the alternative construct |. This is similar to
pattern-matching in functional programming languages or case statements
in imperative languages. If the book matches *($as) author then the first
make clause is applied, keeping the book title and its authors. If it matches
the * editor [affiliation [$af]] pattern, then a reference con-
taining the title and the organization is created.

In XML-QL, alternatives are handled using parallel, nested queries. Each
nested query handles one alternative, but they are not mutually exclusive.

XML-QL

WHERE <bib>
<book>

<title>$t</title>
</book> CONTENT_AS $b
</bib> in "www.bn.com/bib.xml"

CONSTRUCT <bib> {
{ WHERE <author>$a</author> in $b
CONSTRUCT <book ID=Book($t)><title>$t</title>

<author>$a</author></book>
}
{ WHERE <editor><affiliation>$af</affiliation>

</editor> in $b
CONSTRUCT <reference><title>$t</title>

<org>$af</org></reference>
}

} </bib>

26

3.3 Universal quantification

In some queries, it might be useful to check whether a property holds for all
elements of a collections. For instance, the next query asks for all couples
of books having exactly the same set of authors. This query requires the
ability to compare sets of values.

This can be done in Lorel with the following query:

Lorel

select xml(original: x, copy: y)
from bib.book x, bib.book y
where for all z in x.author: exists w in y.author: z = w and

for all t in y.author: exists s in x.author: t = s;

The first filter verifies that the authors of x are also authors of book y,
and the second filter checks for the opposite set inclusion. The predicate
for all is used to universally quantify over all authors.

In YATL, one can use directly set equality for the same purpose:

YATL

make
* [original [$b1],

copy [$b2]]
match URL with

*book($b1) { *($a1) author },
URL with

*book($b2) { *($a2) author },
where $a1 = $a2

The variables $a1 and $a2 contain the sets of authors for each book $b1
and $b2. The filter $a1 = $a2 tests for the set equality.

XML-QL can express this with a rather complex, nested query, which
uses negation and the isEmpty predicate. This predicate returns true if its
sub-query evaluates to an empty answer. By checking whether there does
not exist an author which is in one book and not in the other, XML-QL
can provide functionalities similar to universal quantification. XQL cannot
express this query.

27

3.4 Data models and navigation

Now imagine a slight change to our database. For each author, we maintain
not only the name, but also an affiliation and an e-mail address. To avoid
duplicating this information, we assign a unique ID to each author, and
change the book elements to refer to the authors by their ID. Here is the
revised DTD. (We omit the title, editor, publisher,price, first, last,
affiliation, and e-mail elements, which just contain text.)

<!ELEMENT bib (book*, person*)>
<!ELEMENT book (title, publisher, price)>
<!ATTLIST book year CDATA>
<!ATTLIST book author IDREFS>
<!ATTLIST book editor IDREFS>
<!ELEMENT person (last, first, affiliation?, e-mail?)>
<!ATTLIST person ID ID>

Now, author is an attribute of type IDREFS, which refers to the corre-
sponding person elements. This example illustrates that the same data can
be represented in XML in various ways. A complex value can be represented
directly by a sub-element or indirectly by a reference. An atomic value can
be represented by a sub-element or by an attribute.

Typically, query languages are defined with respect to a data model, not
the data’s physical representation. A data model can be used to unify these
different representations. XQL supports a document-based model which
distinguishes between representations. XML-QL and YATL both support
a graph data model, which unifies embedded components and references.
Lorel supports both models and can unify attributes and sub-elements.

The advantage of a unifying data model is that queries can be written
independently of the underlying representation.

Lorel

For example, with the graph-based model, the following query from Sec-
tion ?? can be used unchanged:

select xml(results:
(select xml(result:{title: t,

author: a})
from bib.book b, b.title t, b.author a))

28

However, with the document-based model, the queries must be changed
completely. The modified query requires an explicit join to access the refer-
enced elements:

select xml(results:
(select xml(result:{title: t, author: p})
from bib.book b, b.title t, b.author a, bib.person p
where p.ID = a))

The from clause binds a to author attribute and binds p to the content
of person elements. The where clause selects the person whose ID attribute
equals a, i.e., it is a join on bib.book.author and bib.person.ID. The out-
put document constructs an author element whose contents is the contents
of the corresponding person.

XML-QL

Because XML-QL uses the graph-based model, the query from Section ??
still applies to the newly reorganized data:

CONSTRUCT <results> {
WHERE
<bib>

<book>
<title>$t</title>
<author>$a</author>

</book>
</bib> IN "www.bn.com/bib.xml"

CONSTRUCT
<result>

<title>$t</title>
<author>$a</author>

</result>
} </results>

YATL

make
results [*result [title [$t]

author [$a]]]
match "www.bn.com/bib.xml" with

29

bib [*book [title [$t],
@author [*$a]]]

The YATL query requires a small modification to access the author at-
tribute. The variable $a is bound to the referenced element.

XQL

Suppose we wish to modify the following query to make it work on the new
document:

document("http://www.bn.com")/bib->results {
book->result {

title | author
}

}

Even those XQL uses a document-based model, it provides an explicit
indirection operation, the id() function, which takes a string and returns
the element whose id matches the parameter:

document("www.bn.com/bib.xml")/bib/book {
title | author/id(@IDREF)

}

4 Conclusion

In this paper, we have presented features from four XML query languages
that support the requirements of various applications that will process, in-
tegrate, and transform XML data sources.

Based on our experience designing, implementing, and using database
query languages, we think these languages provide a good compromise be-
tween expressive power, simplicity and performance. We believe an XML
query language should take advantage of this experience.

Although this paper emphasizes the expressive power and declarativity
of these languages, we are confident that these features can be evaluated
efficiently. Many well-known optimization techniques exist for the most
expensive features described, such as joins [?], nested queries [?], path ex-
pressions [?, ?], and aggregation functions [?].

30

References

[1] S. Abiteboul. Querying semi-structured data. In Proceedings of the Inter-
national Conference on Database Theory, pages 1–18, Deplhi, Greece, 1997.
Springer-Verlag.
http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=103

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query
language for semistructured data. International Journal on Digital Libraries,
1(1):68–88, April 1997.
ftp://db.stanford.edu/pub/papers/lorel96.ps

[3] C. Beeri and T. Milo Schemas for Integration and Translation of Structured
and Semi-Structured Data. In Proceedings of the International Conference on
Database Theory, Jerusalem, Israel, 1999. Springer Verlag.
ftp://ftp.math.tau.ac.il/pub/milo/icdt99-2.ps.Z

[4] P. Buneman. Tutorial: Semistructured data. In Proceedings of ACM Sympo-
sium on Principles of Database Systems, pages 117–121, 1997.
http://www.acm.org/pubs/citations/proceedings/pods/263661/p117-buneman/

[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to
unstructured data. In Proceedings of the International Conference on Database
Theory, pages 336–350, Deplhi, Greece, 1997. Springer Verlag.
http://www.research.att.com/~mff/files/icdt97.ps.gz

[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language
and optimization techniques for unstructured data. In Proceedings of ACM-
SIGMOD International Conference on Management of Data, pages 505–516,
1996.

[7] R. G. Cattell The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
1997.

[8] S. Chaudhuri and K. Shim An Overview of Cost-based Optimization of Queries
with Aggregates. In Data Engineering Bulletin 18(3), 1995.
http://www-db-in.research.bell-labs.com/~shim/bulletine95.ps.gz

[9] V. Christophides, S. Cluet and G. Moerkotte Evaluating Queries with Gen-
eralized Path Expressions. In Proceedings of ACM-SIGMOD International
Conference on Management of Data, 1996.
http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=080

[10] C. L. A. Clarke, G. V. Cormack and F. J. Burkowski An algebra for structured
text search and a framework for its implementation. In The Computer Journal,
38(1), 1995.

[11] S. Cluet, C. Delobel, J. Siméon and K. Smaga Your Mediators Need Data
Conversion! In Proceedings of ACM-SIGMOD International Conference on
Management of Data, 177-188, 1998.
http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=138

31

[12] S. Cluet, S. Jacqmin and J. Siméon The New YATL: Design and Specifications.
Working draft.

[13] S. Cluet and G. Moerkotte Nested Queries in Object Bases In Proceedings of
International Workshop on Database Programming Languages, 1993.
http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=064

[14] W. W. Cohen: Integration of Heterogeneous Databases Without Common
Domains Using Queries Based on Textual Similarity. In Proceedings of ACM-
SIGMOD International Conference on Management of Data, 1998.

[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. In International World Wide Web Conference, 1999.
http://www.research.att.com/~mff/files/final.html

[16] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat
with Strudel: experience with a web-site management system. In Proceedings
of ACM-SIGMOD International Conference on Management of Data, 1998.
http://www.research.att.com/~mff/files/sigmod98.ps.gz

[17] M. Fernandez and D. Suciu Optimizing Regular Path Expressions Using Graph
Schemas. In Proceedings of International Conference on Data Engineering,
1998.
http://www.research.att.com/~mff/files/icde98.ps.gz

[18] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:
Migrating the Lore data model and query language. In Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB ’99), Philadel-
phia, Pennsylvania, June 1999.

[19] R. Goldman and J. Widom. DataGuides: enabling query formulation and
optimization in semistructured databases. In Proceedings of Very Large Data
Bases, pages 436–445, September 1997.

[20] G. Graefe Query Evaluation Techniques for Large Databases. In Computing
Surveys 25(2), 1993.

[21] D. Maier. Database Desiderata for an XML Query Language. In W3C Work-
shop on Query Languages for XML.
http://www.w3.org/TandS/QL/QL98/pp/maier.html

[22] J. McHugh and J. Widom. Query Optimization for XML. In Proceedings of
VLDB, Edinburgh, UK, September 1999.
http://www-db.stanford.edu/~mchughj/publications/qo short.ps

[23] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring structure in semistruc-
tured data. In Proceedings of the Workshop on Management of Semi-structured
Data, 1997.
http://www.research.att.com/~suciu/workshop-papers.html

32

[24] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. In IEEE International Conference
on Data Engineering, pages 251–260, March 1995.
http://www.db.ucsd.edu/publications/icde95.ps

[25] J. Robie. The design of XQL, 1999.
http://www.texcel.no/whitepapers/xql-design.html

[26] J. Robie, editor. XQL ’99 Proposal, 1999.
http://metalab.unc.edu/xql/xql-proposal.html

[27] D. Suciu. An overview of semistructured data. SIGACT News, 29(4):28–38,
December 1998.
http://www.research.att.com/~suciu/strudel/external/files/ F242554565.ps

33

