
Two semantics for XPath

Philip Wadler, wadler@research.bell-labs.com

26 July 1999, revised 4 January 2000

This note presents two semantics for XPath, devised by Phil Wadler after conversations with
James Clark at the 19–21 July XSL Face-to-Face meeting. The semantics are somewhat simplified,
focussing on the role of axes in selection and on the special functions position() and last(). Some
cases are omitted, and we ignore the coercions between nodesets, numbers, strings, and booleans.
The first semantics is given in Figure 1, the second in Figure 2, and both semantics use some
auxiliary functions on axes, given in Figure 3. (I consider the second semantics superior, but I
gather that James disagrees, so I have presented both.) For a tutorial introduction to denotational
semantics and its application to XSL, please see [1].

The first semantics has the advantage of being uniform, in that the three main semantic functions
all have the same additional parameters: an axis a, a context node x, and a context node set S;
furthermore, it is always the case that x ∈ S. We write Sa[[p]](x, S) for the set of nodes selected by
pattern p, and Qa[[q]](x, S) for boolean value of the qualifier q, and Ea[[e]](x, S) for the numerical
value of the expression e. However, the uniformity may obscure more than it reveals: note that the
S parameter is always ignored by S, as the line for p[q] always computes a fresh context node set
S1 to pass in to the semantics of q. Also, the line for p1/p2 is complicated by the need to introduce
S1 in order to satisfy the invariant that the context node is always in the context node set. In any
event, using a context node set is overkill, in that the only values that are relevant are the position
of the context node in the context node set computed by the call to position(), and the size of
the context node set computed by the call to last().

The second semantics is simplified in three ways. First, since the context node set is ignored, it
is dropped as a parameter to S. Second, the context node set is replaced as a parameter to Q and E
by the position of the context node (call this k) and size of the context node set (call this n). Third,
since the position is computed at the first call to Q, it is no longer necessary for Q or E to take an
axis parameter. Hence we write Sa[[p]]x for the set of nodes selected by pattern p, and Q[[q]](x, k, n)
for boolean value of the qualifier q, and E [[e]](x, k, n) for the numerical value of the expression e.

There are three auxiliary semantic functions on axes. We write A[[a]]x for the set of nodes
generated by axis a from context node x, and P[[a]] for the principal node type associated with axis
a, and D[[a]] for the direction (forward or reverse node order) associated with axis a. The last two
of these can be computed at compile time, as they are independent of the context node.

Comments on either this note or [1] would be much appreciated.

Acknowledgements Thanks to Michael Dyck and Mat́ıas Giovannini for spotting, and to Joe
English for spotting a significant error.

References

[1] P. Wadler, A formal semantics of patterns in XSL, submitted to Markup Technologies 99.
http://www.cs.bell-labs.com/~wadler/topics/xml#xsl-semantics

1



S : Axis → Pattern → (Node,Set(Node))→ Set(Node)
Sa[[p1|p2]](x, S) = Sa[[p1]](x, S) ∪ Sa[[p2]](x, S)
Sa[[/p]](x, S) = Sa[[p]](root(x), {x })
Sa[[p1/p2]](x, S) = let S1 = Sa[[p1]](x, S) in {x2 | x1 ∈ S1, x2 ∈ Sa[[p2]](x1, S1) }
Sa[[a1::p1]](x, S) = Sa1 [[p1]](x, S)
Sa[[n]](x, S) = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = P[[a]], name(x1) = n }
Sa[[*]](x, S) = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = P[[a]] }
Sa[[text()]](x, S) = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = Text }
Sa[[p[q]]](x, S) = let S1 = Sa[[p]](x, S) in {x1 | x1 ∈ S1, Qa[[q]](x1, S1) }

Q : Axis → Qualifier → (Node,Set(Node))→ Boolean
Qa[[q1 and q2]](x, S) = Qa[[q1]](x, S) ∧Qa[[q2]](x, S)
Qa[[q1 or q2]](x, S) = Qa[[q1]](x, S) ∨Qa[[q2]](x, S)
Qa[[not(q)]](x, S) = ¬Qa[[q]](x, S)
Qa[[p]](x, S) = Sa[[p]](x, S) 6= ∅
Qa[[e1=e2]](x, S) = Ea[[e1]](x, S) = Ea[[e2]](x, S)

E : Axis → Expr → (Node,Set(Node))→ Number
Ea[[e1 + e2]](x, S) = Ea[[e1]](x, S) + Ea[[e2]](x, S)
Ea[[e1 * e2]](x, S) = Ea[[e1]](x, S)× Ea[[e2]](x, S)
Ea[[position()]](x, S) = let j = size({x1 | x1 ∈ S, x1 ≤doc x }) in

if D[[a]] = forward then j else size(S) + 1− j
Ea[[last()]](x, S) = size(S)
Ea[[i]](x, S) = i

Figure 1: First semantics of XPath

2



S : Axis → Pattern → Node → Set(Node)
Sa[[p1|p2]]x = Sa[[p1]]x ∪ Sa[[p2]]x
Sa[[/p]]x = Sa[[p]](root(x))
Sa[[p1/p2]]x = {x2 | x1 ∈ Sa[[p1]]x, x2 ∈ Sa[[p2]]x1 }
Sa[[a1::p1]]x = Sa1 [[p1]]x
Sa[[n]]x = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = P[[a]], name(x1) = n }
Sa[[*]]x = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = P[[a]] }
Sa[[text()]]x = {x1 | x1 ∈ A[[a]]x, nodetype(x1) = Text }
Sa[[p[q]]]x = let S1 = Sa[[p]]x in

let n = size(S1) in
{x1 |
x1 ∈ S1

let j = size({x2 | x2 ∈ S1, x2 ≤doc x1 }) in
let k = (if D[[a]] = forward then j else n+ 1− j) in
Q[[q]](x1, k, n)}

Q : Qualifier → (Node,Number ,Number)→ Boolean
Q[[q1 and q2]](x, k, n) = Q[[q1]](x, k, n) ∧Q[[q2]](x, k, n)
Q[[q1 or q2]](x, k, n) = Q[[q1]](x, k, n) ∨Q[[q2]](x, k, n)
Q[[not(q)]](x, k, n) = ¬Q[[q]](x, k, n)
Q[[p]](x, k, n) = Schild[[p]]x 6= ∅
Q[[e1=e2]](x, k, n) = E [[e1]](x, k, n) = E [[e2]](x, k, n)

E : Expr → (Node,Number ,Number)→ Number
E [[e1 + e2]](x, k, n) = E [[e1]](x, k, n) + E [[e2]](x, k, n)
E [[e1 * e2]](x, k, n) = E [[e1]](x, k, n)× E [[e2]](x, k, n)
E [[position()]](x, k, n) = k
E [[last()]](x, k, n) = n
E [[i]](x, k, n) = i

Figure 2: Second semantics of XPath

3



A : Axis → Node → Set(Node)
A[[child]]x = children(x)
A[[parent]]x = parent(x)
A[[descendant]]x = children+(x)
A[[ancestor]]x = parent+(x)
A[[self]]x = {x }
A[[attribute]]x = attributes(x)
A[[namespace]]x = namespaces(x)

P : Axis → Nodetype
P[[child]] = Element
P[[parent]] = Element
P[[descendant]] = Element
P[[ancestor]] = Element
P[[self]] = Element
P[[attribute]] = Attribute
P[[namespace]] = Namespace

D : Axis → Direction
D[[child]] = forward
D[[parent]] = reverse
D[[descendant]] = forward
D[[ancestor]] = reverse
D[[self]] = forward
D[[attribute]] = forward
D[[namespace]] = forward

Figure 3: Auxiliary functions

4


