A Tale of Two Zippers

Philip Wadler
IOG and University of Edinburgh
Edinburgh, United Kingdom
philip.wadler@iohk.io

Abstract

We apply the zipper construct of Huet to prove correct an
optimiser for a simply-typed lambda calculus with force and
delay. The work here is used as the basis for a certifying
optimising compiler for the Plutus smart contract language
on the Cardano blockchain.

The paper is an executable literate Agda script, and its
source may be found in the file

Zippers.lagda.md
available as an artifact associated with this paper.

CCS Concepts: « Software and its engineering — Com-
pilers; - Theory of computation — Type theory; Pro-
gram semantics.

Keywords: Compilers, Optimisation, Formal Methods,
Lambda Calculus, Agda

ACM Reference Format:

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen. 2025. A
Tale of Two Zippers. In Proceedings of the Workshop Dedicated to
Olivier Danvy on the Occasion of His 64th Birthday (OLIVIERFEST
’25), October 12-18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3759427.3760383

Dedicated to Olivier Danvy on the occasion
of his 64th birthday.

1 Introduction

It was the best of proofs, it was the worst of proofs.

Bad news for crypto investors is good news for formal
methods researchers: smart contracts for cryptocurrencies
regularly suffer exploits costing tens of millions of dollars,
which makes a business case for applying formal methods.

This is the tale of one such application. The Cardano
blockchain, created by IOG, uses a variant of System F as its
on-chain smart contract language. System F was chosen in
order to future-proof the system: if you want a language that
will still be viable in fifty years, pick one that is fifty years
old. The Cardano variant of System F is called TPLC (Typed
PLutus Core). Formal methods are used throughout: TPLC is

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

OLIVIERFEST °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2150-2/25/10
https://doi.org/10.1145/3759427.3760383

Ramsay Taylor

I0G

Shefhield, United Kingdom
ramsay.taylor@iohk.io

Jacco O.G. Krijnen
Utrecht University
Utrecht, Netherlands
j.o.g.krijnen@uu.nl

specified in Agda, including an operational semantics with a
proof of progress and preservation (Chapman et al 2019). The
constructive proof provides a way to execute TPLC in Agda,
which is used to test the production interpreter against the
formal specification.

To minimise the size of transactions (and hence reduce
their cost) the blockchain uses an untyped variant of TPLC,
referred to as UPLC (Untyped PLutus Core). Source programs
are written in a call-by-value variant of Haskell, referred to
as Plinth (formerly Plutus Tx). To further ensure reliability,
formal methods are applied again. We are not developing
a verified compiler, as that is still too costly, but we are de-
veloping a certifying compiler. We consider a portion of
the compiler consisting of a sequence of passes, translating
UPLC to optimised UPLC. Each optimisation pass generates
a certificate, which is an instance of a relation between un-
optimised source and optimised target code. Agda is used
to prove, once and for all, that the certification relation pre-
serves the semantics between source and target. The cer-
tificate makes it easy to check that the code produced by
the compiler satisfies the certification relation, and hence is
sound.

This paper is concerned with the certification of one pass
of the compiler. When erasing TPLC to UPLC, type abstrac-
tions and applications are converted to delay and force
operations, respectively. The compiler includes a pass that
optimises in the obvious case where force is applied directly
to delay.

force (delay M)

The pass also optimises when instances of force and delay
are separated by one or more applications.

force ((% (delay N)) - M) (A N) - M

Here M and N are terms of UPLC, (A N) denotes lambda
abstraction using de Bruijn indices, and _- _ denotes appli-
cation.

As we will see below, it is easy to specify equivalence
between terms, which we write M ~ N. The obvious thing
is to use _~_ itself as the certification relation, but this is
impractical. Given M and N, building a decision procedure to
determine whether M ~ N is difficult. There is far too large a
search space, mainly because equivalence is transitive so at
any point the search to verify M ~ N may split into multiple
searches, to find an L for whichM ~ LandL ~ N.

The story begins when one of us (Philip) was presented
by another of us (Ramsay) with the specification of the certi-
fication relation for this pass of the compiler. The relation

— M

—

https://orcid.org/0000-0001-7619-6378
https://orcid.org/0000-0002-4036-7590
https://orcid.org/0000-0002-1840-472X
https://doi.org/10.1145/3759427.3760383
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759427.3760383

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

requires two counters, represented as natural numbers. One
counts the number of force constructs encountered, while
the other counts the number of applications stepped under
while looking for the corresponding delay. It was confirmed
by testing that the certification relation accurately captures
the behaviour of this pass of the compiler. Further it is easy to
write a decision procedure to check that the source and tar-
get satisfy the two-counter relation. However, it was not at
all clear how to show that source and target terms satisfying
the relation were necessarily equivalent.

The solution turned out to be to replace the two counters
by a zipper. Zippers were introduced by Huet 1997 as a way
to navigate through a data structure. In our case, the zipper
represents an evaluation context threaded inside out. We
need two zippers, one for the source and one for the target.
Again, it is easy to write a decision procedure to check that
source and target satisfy the two-zipper relation. It is also
easy to design a second relation, an equivalence that specifies
when two terms have identical behaviours. Further, it is now
easy to specify how the two-zipper relation corresponds to
the equivalence relation, and to show that the first implies
the second, guaranteeing soundness.

The remainder of this paper develops our formulation as a
literate Agda script. To focus on essentials, we use a simply-
typed lambda calculus rather than TPLC or UPLC. Every
line of Agda code is included in this paper, and the source is
provided as an artifact (Wadler et al 2025). Code in colour
has been type-checked by the Agda system, so you can be
confident it is correct. A reviewer of the paper wondered
why it was necessary to include all the code, even imports
and trivial inductions? Too often we’ve read papers that we
could decipher only by reading the accompanying code. By
including all executable code in the paper, we guarantee
nothing needed has been omitted. We encourage others to
try this style—there is value in learning how to communicate
clearly without elision.

The paper is intended to be accessible to anyone with a
passing knowledge of proof assistants. Additional detail on
how to formalise proofs in Agda can be found in the text-
book Programming Language Foundations in Agda (hence-
forth PLFA), by Wadler, Kokke, and Siek (2018). Additional
information on PLFA itself can be found in a paper by Kokke,
Siek, and Wadler (2020). A previous paper by Wadler (2024)
is also written as a literate Agda script, and also describes
a simply-typed lambda calculus. In a few places we have
borrowed phrasing from that paper or from PLFA.

Anyone familiar with Olivier Danvy’s body of publications
will see his inspiration here. Zippers are related to evaluation
contexts, which play a key role in his work on refocusing
(see, e.g., Danvy and Nielsen 2004), and he has also been
known to publish literate scripts from a proof assistant (in
his case, Rocq, as in Danvy 2023). We don’t claim this paper
is as elegant as one of Olivier’s, but hope it will be of interest
nonetheless.

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

2 Module Header

We begin with bookkeeping: the module header and imports
from the Agda standard library. Agda supports mixfix syntax,
so _=_ names infix equality.

module Zippers where

open import Data.Nat using (N; zero; suc)

open import
Relation.Binary.PropositionalEquality
using (_=_; refl)

open import Data.Empty using (1)

3 Operator Priorities

We declare in advance binding priorities for infix, multifix,
prefix, and postfix operators. A higher number indicates
tighter binding, and letters 1 or T indicate left or right asso-
ciativity.

infix 4 _>_ k- _Co _F_~_ _~_

infixl 5 _,_

infix
infixl
infixr
infix
infix

© o NN O
|
4
|

4 Lambda Calculus with Delay and Force

We model the source and target language for our optimiser as
a simply-typed lambda calculus with delay and force. The de-
lay and force operations are introduced when erasing TPLC
(a variant of System F) to UPLC, to represent type abstrac-
tions and type applications. The delay operation corresponds
to a lambda abstraction over the unit type, and the force
operation corresponds to an application to a unit value. For
the actual Plutus toolchain, the typed language erases to
an untyped language containing delay and force. Here we
use a simply-typed language containing delay and force. Re-
quiring that the relations we use preserve types provides a
sanity check. Because we use intrinsic typing (see below),
this sanity check comes almost for free.

Lambda calculus is typically formulated using named vari-
ables and extrinsic typing rules, but when using a proof
assistant it is often more convenient to use de Bruijn indices
and intrinsic typing rules. With named variables the Church
numeral two is written As.Az. (s- (s-z)), whereas with
de Bruijn indices it is written AA(1-(1-0)). In the latter,
variables names do not appear at point of binding; instead
each variable is replaced by a count (starting at zero) of how
many binders outward one must step over to find the one
that binds this variable. With extrinsic typing, one first gives
a syntax of pre-terms and then gives rules assigning types to
terms, while with intrinsic typing the syntax of terms and the
type rules are defined together. Reynolds (2000) introduced
the names intrinsic and extrinsic; the distinction between

A Tale of Two Zippers

the two is sometimes referred to as Curry-style (terms exist
prior to types) and Church-style (terms make sense only
with their types). The formulation using de Bruijn indices
and intrinsic types was first proposed by Altenkirch and
Reus (1999). A textbook development in Agda of both the
named-variable/extrinsic and the de Bruijn/intrinsic style
can be found in PLFA.

We model concepts of interest, such as the types, contexts,
variables, and terms of our calculus, as inductive types. In
Agda, inductive types are introduced with data declarations,
similar to those found in Haskell. When we write Type :
Set, note that Type stands for the types of our typed calcu-
lus, whereas Set is the type of all types of the meta-language
Agda—be careful not to confuse the two! Similarly, term can
mean either a term of our calculus or a term of the meta-
language Agda—again, be careful not to confuse them.

(Readers familiar with Girard’s paradox (Girard 1972)
will know that taking Set : Set leads to a contradiction.
Instead Agda has a hierarchy with Sete : Sets, Sets
: Set: and so on. Fortunately, Set—an abbreviation for
Seto—will suffice for our purposes.)

We let A, B, C (and the same primed) range over types. A
type is either a base type 1, a function type A 3 B, or the
type of a delayed term, De'lay A.

data Type : Set where
1
Type
S
(A : Type)
(B : Type)
9 __________
Type
Delay
(A : Type)
_) __________
Type
variable

ABCA" B" C" : Type

Two dashes indicate the beginning of a comment in Agda, as
in Haskell. We take advantage of this to make our declara-
tions mimic the corresponding inference rules. They would
mimic them even more closely if the rule for _3_ were in-
stead written, say,

(A : Type)

(B : Type)

: Type)

but that would not be legal Agda.

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

We let I', A range over contexts. Contexts are essentially
lists of types, with new types added at the right. A context
is either the empty context @ or an extended context I , A.

data Context : Set where

%)
Context
(I : Context)
(A : Type)
9 _____________
Context
variable

A : Context

We let u, v, X, y range over variables, and write X : [
> A to indicate that in context I" the variable x has type A.
Variables are de Bruijn indices, where Z stands for zero (the
variable at the right end of the context), and S stands for
successor (skipping over the variable at the right end of the
context).

data _>_ : Context » Type » Set where

variable

uvxy:I>A

We let L, M, N (and the same primed) range over terms,
and write M : T + A to indicate that in context ' the term
M has type A. A term is either a variable (* X), an abstraction
(X N), an application (L + M), a delay (delay M), or a force

(force M).
data _+_ : Context » Type - Set where
(x : T 2 A)
9 ___________
re+ A
A
(N:T ,ArB)
_) _______________
r~ (A > B)
(L:T+AS>3B)
M T+ A)
_) _______________

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

r~=8

force :
(M : I + Delay A)

I +~ Delay A

variable

LL MM NN T A

We write LET M N as equivalent to (A N) - M. For this
to be well-typed we should haveM : ' - AandN : I ,
A + B. Using a pattern declaration means that LET may
appear anywhere a constructor may appear.

pattern LET M N = (A N) - M
We use the following as a running example.

Ne : Context
fle =2, 132121, 1,1

MoMo’:rel—l
Mo =
force
((x & (delay (* SSSSz.'YzZ-1'YS2Z)))
‘'Sz
\Z)
Mo’ =
xx(*sSsssz.'vYz-.-"Ys2z))
‘'Sz
V27

If we were using named variables instead of de Bruijn indices,
term Mo would instead be written as
Mo :t @, f:131331,Uu:1,V:1F?!1
Mo =
force
(x> Axy=> (delay (V- Yy - 'x)))
\

u
\ v)
Note we translate f to S S S S Zratherthan S S Z

because there are two % bindings between f and the sur-
rounding context.

5 Renaming and Weakening

Weakening asserts that if a term is well-typed in a context
then it is also well-typed in that context extended with an
additional variable. Hence if L : +~ Bthenwk L : I ,
A+ B.

We will introduce equivalences between terms in Section
10. One equivalence we require involves passing an appli-
cation inside a let binding. We take (LET M N) - L to be
equivalent to LET M (N - wk L).HereM : [+ AandN

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

:F, ArB> CandL : I + B,andhencewk L : I
s A + B, which is what is required for the second term in
the equivalence to be well-typed.

We let p range over renamings, and write [C A to denote
a renaming from I to A. A renaming is a function that takes
every variable in [toonein A,soif x : I > Athenp x :
A > A

C : Context » Context » Set
FrcA=vYV{A} 5T s3A>A3A

If we have arenaming p : [C Athen ren p converts
a term over context [to one over context A, that is, if M :
'~ Athenrten p M : A + A The case for renaming a
lambdatermZ N : I - A 3 B requires a way to extend
arenaming p : [C A to apply to the body of the lambda
termN : [, A + B.Thisis provided by the function ext
(short for extend), which givesext p : ' , A c A , A

ext :

r
ext p Z
ext p (

ren :

A
ren p (" x) ='px
ren p (A N) = % ren (ext p) N
renp (L -M) =renpl - Ttenp M
ren p (force M) = force (ren p M)
ren p (delay M) = delay (ren p M)

With these definitions under our belt, it is easy to de-
fine weakening. Note that S_ : ' ¢ ' , Aisarenaming,
where S_ is the successor function on de Bruijn indices.
Hence we can weaken theterm L : [+ B by computing
ren S_ L : T, A+ B

wk

r,ArsB
wk L = ren S_ L

Here is a simple example.

131, 1TkF1

Le : @
\ \Z

Le =

N -
N

La t 2, 1
L1+ = YSS
_ :wk Le = L4
_ = refl

A Tale of Two Zippers

In Agda, one may use _ as a dummy name that is convenient
for examples. If L and M are terms, one writes L = M to
stand for the judgement that L and M are identical. The only
constructor for this type is refl, short for reflexive, and we
haverefl : L = Lforany term L. The lastline typechecks
because Agda computes that wk Le evaluates to L.

6 Relations over Terms and Compatible
Closure

Under the propositions-as-types interpretation, a proposition
is represented by a type in the meta-language; recall that
in Agda the type of types is written Set. A proposition is
represented by a set of all its possible proofs; a value of this
set is referred to as evidence for the proposition. If the set is
empty the proposition is false, while if the set is non-empty
the proposition is true. In particular, if X and Y are types
corresponding to propositions, then X » Y corresponds to
implication—it takes every proof of X into a proof of Y.

If I + Ais the type of terms, thenl" - A > T + A >
Set specifies a relation between two terms in the same con-
text with the same type. If the set is non-empty then the
relation holds, while if the set is empty then the relation
does not hold. We let R range over such relations.

Relation =V {F A} s T A>T A > Set

variable
R : Relation

The compatible closure of a relation over terms is the small-
est relation that contains the original relation and is closed
over the syntactic constructs of the language. If R is a re-
lation over terms we write CC R for its compatible closure.
Here CC is declared as an inductive type. Constructor base
injects the original relation into the compatible closure, so
that if s is a proof that R M M” holds, then base s is a proof
that CC R M M’ holds. There is also one constructor of the
compatible closure for each constructor of the term type. If x
is a variable then relation (" x) relates term (" x) to itself.
Similarly, if t relates N to N” then (A t) relates (X N) to
(% N"). Similarly also, if r relates L to L " and s relates M to
M’ thent + srelatesL « MtoL” + M’. And again, if s
relatesMto M’ then delay s relates delay Mto delay M’
and force s relates force Mto force M’. Here we use
the fact that Agda supports overloading of constructors to
use ‘_, A_, _-_, de'lay, force as constructors of both the

type ™ + AandthetypeCC R M M'.
data CC (R : Relation) : Relation where

base :

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

ﬁ ________________
CCR (M x) (Y x)
A
(t : CCRNN)
9 _________________
CCR (AN) (A N")
(r:CCRLL")
(s : CCRMM)
9 ______________________
CCR(L-M (L" - M)
delay
(s : CCRMM)
_) _________________________
CC R (delay M) (delay M")
force
(s : CCRMM)
S e

CC R (force M) (force M")

It is easy to show that the compatible closure is reflexive.
Regardless of R, we have that CC R M Mholds for every term
M. The proof is an easy induction over the structure of M.

reflCC : V (M : T +A) >CCRMM
reflcC (' x) ="' x

reflCC (% N) A (reflCC N)

reflcC (L - M) = reflCC L . reflCC M
reflCC (force M) = force (reflCC M)
reflCC (delay M) = delay (reflCC M)

Here is a simple example. Let Re be the empty relation,
that relates no term to any other. Recall that we introduced
Lo in Section 5. A term is compatible with itself even in the
compatible closure of the empty relation.

Re : Relation
Re M M = 1

‘Sz . V2

_ : CC Roe Lo Lo
_ = reflCC Lo

_ :reflCC {R=Re} Lo='SZ."'Z
_ = refl

Agda can usually use type inference to determine implicit
arguments such as R, but here we need to instantiate R to
Re explicitly. Because of constructor overloading, both Le
and reflCC Lo are written with the same constructors, as
follows: ¥ S Z . ' Z

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

7 Force-Delay Relation with Two Counters

We now describe the original force-delay relation with two
counters.

We write FDnat m n M M’ toindicate that term M relates
to term M, where m counts the number of force operations
encountered so far, n counts the number of applications
encountered so far, and M and M’ are the terms related. Intu-
itively, both terms have the same lambda abstractions and
applications, but matching instances of force and delay in
term M have been removed in term M’. The two terms have
the same context but may have different types, because one
may have a force or delay applied when the other does
not.

The relation is defined by five inference rules.

variable
mn : N

data FDnat :
(m : N) (n : N)
M :r A (M
> Set where

: T A"

cc
(s : CC (FDnat zero zero) M M")
3 e e
FDnat zero zero M M’
force
(s : FDnat (suc m) n M M")
3 e
FDnat m n (force M) M’
delay
(s : FDnat m n M M)
3 e e
FDnat (suc m) n (delay M) M’
app
(s : FDnat zero zero M M")
(r : FDnat m (suc n) L L")
B e
FDnat m n (L - M) (L" - M")
abs
(t : FDnat mn N N")
> e

FDnat m (suc n) (A N) (A N")

Rule cc states that the relation is compatibly closed when
both counters are zero. Force and delay must match to enable
the optimisation, and similarly for applications and abstrac-
tions; if the optimisation does not apply, then compatible
closure is used instead. Terms are traversed from outside to
inside. Rule force states that every time we encounter a
force we increment the first counter, and rule de'lay states
that every time we encounter a delay we decrement the first
counter. Instances of force and delay are cancelled by the

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

optimisation, so appear in the left term but not the right in
these two rules. Rule app states that every time we encounter
an application we increment the second counter, and rule
abs states every time we encounter a lambda abstraction
we decrement the second counter. Applications and lambda
abstractions are carried over by the optimisation, so appear
in both the left term and the right in these two rules. In the
application rule, note that functions are related by FDnat m
n L L', whilearguments are related by FDnat zero zero
MM,

Experimentation shows that the FDnat relation ade-
quately characterises the behaviour of the optimisation. That
is, if the optimisation is given source term M and produces tar-
get term M " then FDnat zero zero M M’ holds. Further,
it proves easy to write a decision procedure to determine
whether FDnat holds for given counters and terms, so it
is feasible to use it as a certification relation for verified
compilation.

Here is an example.

FDnatoe : FDnat zero zero Me Mo’
FDnate =
force
(app (cc (' 2))
(app (cc (* S 7))
(abs (abs (delay (cc
(*s$sssz.vz-.152)))))))
In fact, Agda computed this example for us. When creating
this script interactively, the right-hand side of the equation
was given as ?.

FDnate = ?
This causes Agda to generate a hole.
FDnatoe = { }0O

We can ask Agda to fill in the hole automatically by typing
AC MA. Alittle search is required because of potential overlap
between the cc rules and the other rules, and it times out
after one second. We can up the search time to two seconds
by filling the hole with the -t flag.

FDnate = { -t 2 }0

Now Agda generates the term above, showing that not
much search is required—it is easy to decide whether the
relation holds.

Unfortunately, it proved difficult to show this relation
sound, that is, that related terms possess identical behaviour.
The problem is that the counters throw too much information
away. When an application occurs we need to remember the
corresponding arguments. We also want to keep track of
the interleaving between instances of force and instances
of application. It turns out that zippers are perfect for this
purpose.

A Tale of Two Zippers

8 Zippers

We write " - A ~ B for a zipper in context ' that wraps
a term of type A to yield a term of type B. We let z (and
the same primed) range over zippers. A zipper is either the
empty zipper O, an application zipper z - M, or a force zip-
per force z.

data _+_~_ : Context » Type » Type > Set where

O
r-A-~A
(z:T+B~20C)
Mm:T+A)

_) _______________
r-A=B8-~C
force :
(z:T+A~C)
_) _______________
'+ Delay A ~ C
variable
zz'" :T+A-~B

Givenazipperz : ' + A ~ BandatermM : [+ A
we can plug the latter into the former, yielding a term zip
z M : I + B. Because zippers are inside-out evaluation
contexts, the zip operation is written as a tail recursion,
stripping applications and forces off the zipper and adding
them to the term.

zip : TvFA~B->TrHA->T B
zip O L =1L

zip (z - M) L zip z (L - M)
zip (force z) L = zip z (force L)

Just as we need weakening for terms we also need weaken-
ing for zippers. Weakening for zippers asserts that if a zipper
is well-typed in a context then it is also well-typed in that
context extended with an additional variable. Henceifz : I
+ A ~ Bthenwk? z : T , C + A ~ B. Weakening on
a zipper simply applies weakening to each term contained
in the zipper.
wk* :FT'+A~B->T,Cr-A~B
wk? O = 0O
wk?z (z - M) wk? z - wk M
wk? (force z) = force (wk? z)

Recall that we introduced Mg in Section 4.

_:MeE
force
((A % (delay (* SSSSZ-'Z-
A
\Z)
_ = refl

‘'S 2)))

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

We can factor Me into a zipper and a smaller term as follows.

Zo 1@, 13131, 1,1
F 13 13 Delay 1 ~ 1

Zo = forceo - Y72 . 'YS2Z
No 2,111, 1, 1F1>1> Delay 1
Ne = A A (delay (' SSSSzZ-'YZ.'YS2Z))

_ : zip ze Ne = Mo
_ = refl

Note that the constructors of the zipper ze are in the reverse
order to the constructors of the final term Me. The force on
the inside of the zipper corresponds to force on the outside
of Mg, while the two applications in the zipper are reversed
compared to their occurrence in Me.

9 Force-Delay Relation with Two Zippers

Having defined zippers, we can now define the force-delay
relation with two zippers. Here the work of the two counters
is performed by a single zipper, which keeps track of both
the applications and the forces encountered as we traverse
the term. We need two zippers because there is one for each
of the related terms.

We write FD z z° M M’ to indicate that that zipper z
relates to zipper z” and term M relates to term M’ . Intuitively,
both terms have the same lambda abstractions and applica-
tions, but matching instances of force and delay in term M
have been removed in term M". Similarly, both zippers have
the same applications, but instances of force in zipper z have
been removed in zipper z”. The two terms have the same
context but may have different types, because one may have
a force or delay applied when the other does not. Simi-
larly for the two zippers. The invariant we expect is that zip
z Mand zip z' M’ are equivalent, so plugging the terms
into the zippers must result in terms of the same type.

The relation is defined by five inference rules.

data FD :
(z:TFT-A~B) (z' : T +A" ~B)
M :T A (M T A"
> Set where

’

(s : CC(FDooO) M M)

FD (force z) z' (delay M) M’

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

app
(r:FD(z-M) (z/ -M)LL")
i
abs
(s : FDooMM)
(t : FD (wk? z) (wkz z") N N")
TR R B o)

Rule cc states that the relation is compatibly closed when
both zippers are empty. Force and delay must match to enable
the optimisation, and similarly for applications and abstrac-
tions; if the optimisation does not apply, then compatible
closure is used instead. Terms are traversed from outside
to inside. Rule force states that every time we encounter
a force we add it to the zipper on the left, and rule delay
states that every time we encounter a delay we remove a
force from the zipper on the left. Instances of force and de-
lay are cancelled by the optimisation, so appear in the left
term but not the right in these two rules. Rule app states
that every time we encounter an application we add it to
both zippers, and rule abs states every time we encounter
a lambda abstraction we remove an application from both
zippers. Applications and lambda abstractions are carried
over by the optimisation, so appear in both the left term and
the right in these two rules. In the abstraction rule, note that
functions are related by FD z z" L L', while arguments
are related by FD 0 0 M M. Note that whereas in FDnat it
is the application rule that has two premises (one for the ar-
gument), in FD it is the abstraction rule that has two premises,
where the argument is taken from the zipper; this will prove
crucial in the proof of correctness.

Using zippers makes it easy to write the rules force,
delay, app, and abs, which move constructs from the term
to the zipper and vice-versa. A zipper is essentially the same
as an evaluation context, but evaluation contexts are often
written outside-in, which would hinder manipulation; in-
deed, for this reason some authors make a point of writing
evaluation contexts inside-out, closely resembling zippers
(e.g., see Danvy and Nielsen 2004).

It is easy to see the correspondence between FDnat m n
M M andFD z z" M M’.In particular, m counts the num-
ber of forces in zipper z, there will be no forces in zipper
z’, and n counts the number of applications in both zippers
z and z'. Tt follows that because FDnat adequately charac-
terises the behaviour of the optimisation, so does FD. That is,
if the the optimisation is given source term M and produces
target term M’, then FD 0 0 M M’ holds. Further, as with
FDnat, it proves easy to write a decision procedure to de-
termine whether FD holds for given zippers and terms, so
it is feasible to use it as a certification relation for verified
compilation.

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

Here is an example.

FDo : FD 0 O Me Mo’
FDe =
force
(app (app
(abs (cc (Y S 2))
(abs (cc (M S 7))
(delay (cc

(*S$SSSZ-z-"52))))))

Again, this can be computed for us automatically by Agda.

Unlike FDnat, it will be easy to show that FD is sound,
once we define a suitable notion of what it means for two
terms to have identical behaviour.

10 Equivalent Terms

We write M ~ N to indicate that M and N have the same
behaviour. The relation is a congruence, meaning it is both
an equivalence and compatibly closed.

data _~_ : Relation where
cc
(s : CC _~_MM)
9 _________________
M~M
refl~
M~M
sym~
(r : M ~N)
9 ___________
N~M
trans~
(s :L~Mm
(t : M ~N)
_) ___________
L ~N

force (delay M) ~ M
force-LET :

(LET M N) - L ~LET M (N -

Rule cc states that the relation is compatibly closed, while
rules refl~, sym~, and trans~ state that the relation is re-
flexive, symmetric, and transitive. Three rules state what we
take to be obvious equivalences. Rule force-delay states
that force of a delay cancels out, rule force-LET states that

A Tale of Two Zippers

we can push a force under a let, and rule LET-app states
that we can push an application under a let. In that last rule,
we need to weaken the argument when we push it under the
let, to account for the addition let binding; this is why had
to go to the effort of defining renaming and weakening.

Agda has a convention for writing chains of equivalences.
Here are the necessary definitions, which resemble similar
defintions for _=_ given in the standard library.

module ~-Reasoning where
infix 1 begin_

infixr 2 step-~-| step-~-) step-~-(
infix 3 _N

begin_ : L ~M>L ~M
begin r = r

step-~-| VL->L~M>L~M
step-~-| L T =71

step-~-) : Y L>M~N>L~M>L~N
step-~-) L s 7 = trans~ 1 s

step-~-{(: YV L>M~N>M~L>L~N
step-~-(L s r = trans~ (sym~ 1) s
syntax step-~-| L 7 =L ~{) 1

syntax step-~=Y L st =L ~{T1)s
syntax step-~-(L st =L ~{ 1 (s

MV (M
M B = refl~

FeA)>M~MN

open ~-Reasoning

Here is an example. We can assert equivalence between
terms that are definitionally equal (using ~(}), and apply
equivalences forward (using ~(_)), and backward (using
~(-{). In Agda, variable names can contain almost any sym-
bol. By convention, we take L~M as the name of a judgement
L ~M

postulate
L~M : L ~ M
N~M : N ~ M

L~N : V {M} > L ~N
L~N {L = L} {N} {M} =
begin
zip o L
~()
L
~(LM)
M
~(N~M (
N
|

i LeN{L =L} {N =N} {M =M} =

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

trans~ L~M (trans~ (sym~ N~M) refl~)
- = refl

If we ask Agda to prove Mg ~ Mg’ using automatic search
it fails, even if given 100 seconds. The search space is too
large, because there are too many ways that tran~ can be
applied.

11 Soundness

We now show that the FD relation is sound, that is, if FD
0o M M holdsthenM ~ M” holds. Our proof requires a
more general result, namely that if FD z z" M M’ holds
then zip z M ~ zip z’ M’ holds.
It is easy to push compatibility closure under a zip.

cc-zip :

(z : T +A~B)

(s : CCRMM)

_) _________________________
CC R (zip z M) (zip z M")
cc-zip o t =t
cc-zip (z - M) t = cc-zip z (t - reflCC M)

cc-zip (force z) t = cc-zip z (force t)
Hence it is also easy to push equivalence under a zip.
zip~ :
(z : T+ A~ B)
(s : m~M)

zip z M ~ zip z M’
zip~ z v = cc (cc-zip z (base 1))

It is also easy to see that equivalence is preserved by let.
LET~ :

LET M N ~ LET M" N’
LET~ M~M' N~N'
= cc ((n (base N~N")) . base M~M")

Further, we can push a zip under a LET. This is easily
shown by induction over the structure of the zipper. There
are three cases, one for each of the constructors of the zipper.
Zip-LET :

(z :T+B~2C)
M T+ A)
(N:T ,Ar B)

zip z (LET M N) ~ LET M (zip (wk? Zz) N)
Zip-LET o M N =
begin
zip o (LET M N)
~()
LET M (zip o N)
[

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

Zip-LET (z - L) M N =
begin
zip (z -
~()
zip z (LET M N - L)
~{ zip~ z LET-app)
zip z (LET M (N -
~(zip-LET z M (N -
LET M (zip (wk? z) (N -

~()
LET M (zip (wk? (z - L)) N)

L) (LET M N)

wk L))
wk L))
wk L))

[|
zip-LET (force z) M N =
begin
zip (force z) (LET M N)
~()
zip z (force (LET M N))
~{ zip~ z force-LET)
zip z (LET M (force N))
~{ zip-LET z M (force N))
LET M (zip (wk? z) (force N))
~()
LET M (zip (force (wk? z)) N)
[|

With these preliminaries out of the way, we are ready to
prove soundness. The proof consists of two propositions, one
for the relation CC (FD o O) and one for FD. There is a mu-
tual dependence between these, since soundness of the first
depends on soundness of the second, and vice versa. There-
fore, we begin by assuming soundness of FD O 0O, which we
will later show follows as a special case of the soundness of
FD.

soundoo
(MM T A
(s : FDooMM)

It is easy to show that the compatible closure is sound
given the above assumption.

soundCC : CC (FDo o) N N » CC _~_ N N’
soundCC (base s) = base (soundoo _ _ s)
soundCC (' x) = ' x

soundCC (% t)
soundCC (r - s)
soundCC (delay s)
soundCC (force s)

% (soundCC t)

soundCC 7 - soundCC s
delay (soundCC s)
force (soundCC s)

We now have everything we need to prove soundness. The
proof is by induction over the evidence that the relation FD z

z' M M’ holds. There are five cases, one for each constructor
in the relation FD.

sound :

(z:TFT-A~B) (z' : T +A ~B)

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

M:TrrA) (M T rHA)
(s :FDzz' mm)

zip z M ~ zip z" M’
sound .0 .OM M (ccp) =
cc (soundCC p)

sound z z" (force M) M" (force p) =
begin
zip z (force M)
~()

zip (force z) M
~(sound (force z) z'" M M p)

zip z' M’
|
sound (force z) z" (delay M) M" (delay p) =
begin
zip (force z) (delay M)
~()

zip z (force (delay M))
~{ zip~ z force-delay)

zip z M
~{ sound z z'" MM p)
zip z' M
|
sound z z" (L - M) (L" - M) (app q) =
begin
zip z (L - M)
~()

zip (z - M) L

~(sound (z - M) (z' - M) LL" q)
zip (z" - m") L’
~0)
zip z" (L" - M)
|
sound (z - M) (z" - M) (A N) (A N") (abs p q) =
begin
zip (z - M) (A N)
~()

zip z (LET M N)
~(zip-LET z M N)
LET M (zip (wk? z) N)
~(LET~ (sound oo M M p)
(sound (wk? z) (wkZz z") N N q))
LET M (zip (wkZz z") N")
~(zip-LET z" M" N" {
zip z' (LET M N')
~()
zip (z’

S M) (AN

The two dots in the line sound .0 .0 M M’ (cc s) tell
Agda that other arguments (namely, the last) force the first
two arguments to be 0O, which allows Agda to work out that
it should match the last argument first. Otherwise, Agda

A Tale of Two Zippers

attempts to match a different argument first, causing two of
the equations to be displayed in grey (meaning that they do
not hold definitionally).

Finally, we show that the special case of soundness we
assumed earlier follows from the general case.

sounddo M M s = sound oo MM s

This completes the proof.
Here is an example.

Mo~Mg ’ Mo ~ Mo’
Mo~M0’ = soundoo Mo Me’ FDe

- M@~Mol =
trans~
(trans~
(trans~
(trans~
(trans~ (cc (force (base LET-app)))
(trans~
(trans~
(cc (base force-LET))
(trans~ refl~ refl~))
refl~))
(trans~
(cc ((%x base
(trans~
(trans~
(cc (base force-LET))
(trans~ refl~ refl~))
(trans~
(cc ((% base
(trans~
(cc (base force-delay))
(trans~
(cc
("' S (s (s (s2)))
.V 7
- 1S 7))
refl~)))
base (cc (' S 2))))
(trans~ (sym~ refl~) refl~))))
base (cc (M S 2))))
(trans~
(sym~
(trans~
(cc (base LET-app))
(trans~ refl~ refl~)))
refl~)))
refl~)
refl~)
refl~
- = refl

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

The evidence that Mg ~ Mg’ is unwieldy. Fortunately, the
code above was not written by hand; instead, it was gener-
ated by asking Agda to normalise soundoo Me Mo’ FDo.
In general, once our decision procedure yields evidence that
FD 0 o M M’, the soundness proof ensures that M ~ M'.
We’ve proved this once and for all, so the fact that evidence
forM ~ M’ is unwieldy hardly matters.

12 Denotational Semantics

As a further step, we could specify a denotational seman-
tics for terms, and show that two terms satisfying _~_ have
identical semantics. It turns out that this is entirely straight-
forward, so we omit it. Considering the semantics would,
in the words of Reynolds, add little to the exposition save
length.

13 Conclusion

The public release of IOG’s UPLC optimiser includes cer-
tification for the force-delay optimisation pass using the
zipper-based FD relation above, with extensions to handle
the full UPLC term syntax. It supports most UPLC optimi-
sation passes: for each included pass, we define a suitable
certification relation and a decision procedure that can check
whether the source and target terms of the pass satisfy the
relation. We are currently completing proofs that the cer-
tification relations preserve soundness, as well as defining
certification relations and decision procedures for the re-
maining passes. The proof of soundness for the force-delay
optimisation pass depends crucially on our use of zippers as
described above, and we expect zippers may also prove use-
ful in establishing certification relations for the remaining
passes.

14 Data Availability Statement

The executable Agda script of this paper is available as an
artifact in the ACM Digital Library (Wadler et al 2025), in
the file Zippers.lagda.md.

References

Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations of
Lambda Terms Using Generalized Inductive Types. In Computer Science
Logic (Lecture Notes in Computer Science), Jorg Flum and Mario Rodriguez-
Artalejo (Eds.). Springer, Berlin, Heidelberg, 453-468. doi:10.1007/3-540-
48168-0_32

James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. 2019. Sys-
tem F in Agda, for Fun and Profit. In Mathematics of Program Construc-
tion, Graham Hutton (Ed.). Vol. 11825. Springer International Publishing,
Cham, 255-297. do0i:10.1007/978-3-030-33636-3_10 Series Title: Lecture
Notes in Computer Science.

Olivier Danvy. 2023. A Deforestation of Reducts: Refocusing. doi:10.48550/
arXiv.2302.10455 arXiv:2302.10455 [cs].

Olivier Danvy and Lasse R. Nielsen. 2004. Refocusing in Reduction Seman-
tics. BRICS Report Series 11, 26 (Nov. 2004). doi:10.7146/brics.v11i26.21851

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des
coupures de 'arithmétique d’ordre supérieur. Ph. D. Dissertation. Univer-
sité Paris VIL

https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.48550/arXiv.2302.10455
https://doi.org/10.48550/arXiv.2302.10455
https://doi.org/10.7146/brics.v11i26.21851

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7, 5
(1997), 549-554. doi:10.1017/S0956796897002864

Wen Kokke, Jeremy G. Siek, and Philip Wadler. 2020. Programming language
foundations in Agda. Science of Computer Programming 194 (Aug. 2020),
102440. doi:10.1016/j.scic0.2020.102440

John C. Reynolds. 2000. The Meaning of Types From Intrinsic to Extrinsic
Semantics. BRICS Report Series 32 (June 2000). doi:10.7146/brics.v7i32.
20167 Number: 32.

Philip Wadler. 2024. Explicit Weakening. In A Second Soul: Celebrating
the Many Languages of Programming, Annette Bieniusa, Markus Degen,

Philip Wadler, Ramsay Taylor, and Jacco O.G. Krijnen

and Stefan Wehr (Eds.). Electronic Proceedings in Theoretical Computer
Science, Vol. 413. Open Publishing Association, 15-26. doi:10.4204/
EPTCS.413.2

Philip Wadler, Wen Kokke, and Jeremy G Siek. 2018. Programming Language
Foundations in Agda. https://plfa.inf.ed.ac.uk/

Philip Wadler, Ramsay Taylor, and Jacco O. G. Krijnen. 2025. Executable
Agda Script for ‘A Tale of Two Zippers’. ACM. doi:10.1145/3747406

Received 2025-06-09; accepted 2025-07-31

https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.7146/brics.v7i32.20167
https://doi.org/10.7146/brics.v7i32.20167
https://doi.org/10.4204/EPTCS.413.2
https://doi.org/10.4204/EPTCS.413.2
https://plfa.inf.ed.ac.uk/
https://doi.org/10.1145/3747406

	Abstract
	1 Introduction
	2 Module Header
	3 Operator Priorities
	4 Lambda Calculus with Delay and Force
	5 Renaming and Weakening
	6 Relations over Terms and Compatible Closure
	7 Force-Delay Relation with Two Counters
	8 Zippers
	9 Force-Delay Relation with Two Zippers
	10 Equivalent Terms
	11 Soundness
	12 Denotational Semantics
	13 Conclusion
	14 Data Availability Statement
	References

