TypeScript: The Next Generation

To boldly enforce types where no one has enforced types before

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

Introduction

There is increasing interest in integrating dynamically and
statically typed programming languages, as witnessed in
industry by the development of the languages TypeScript
and Dart, and in academia by the development of the theories
of gradual types, hybrid types, and the blame calculus. The
purpose of our project is to bring the academic and industrial
developments together, applying theory to improve practice.

Our project focusses on JavaScript, an ECMA standard,
and its typed variant TypeScript, an open-source project
sponsored by Microsoft. JavaScript plays a central role in
web-based applications and the new Windows 8 frame-
work, and TypeScript is seeing rapid takeup, with over 150
JavaScript libraries now provided with TypeScript declara-
tions. Our project has two parts, one aimed at immediate
short-term application, and one aimed at fundamental long-
term research.

1. TypeScript TNG The short-term goal is to build a tool,
TypeScript: The Next Generation (or TypeScript TNG
for short), that generates wrapper code from TypeScript
import declarations to detect and pinpoint type errors.
A wrapper will accept any JavaScript value as input,
and either raise an error or return a value guaranteed
to satisfy the invariant associated with the correspond-
ing type. In particular, wrappers for generic types will
assure surprisingly strong guarantees, known as “theo-
rems for free”. Our hypothesis is that TypeScript TNG
will aid debugging and increase reliablility of TypeScript
and JavaScript code.

2. A wide-spectrum type system. The long-term goal is to
extend the foundations of the blame calculus to support
a wide-spectrum of type systems, ranging from dynamic
types (as in JavaScript or Racket) through generic types
(as in F# or Haskell) to dependent types (as in F* or
Coq). Our hypothesis is that a wide-spectrum type system
will increase the utility of dependent types, by allowing
dynamic checks to be used as a fallback when static
validation is problematic.

The workplan below is likely to be too ambitious for a
single PhD studentship. Which aspects are carried out will

Gavin Bierman

Microsoft Research
gmb®@microsoft.com

depend on which seem the most promising as our work

develops, and on the abilities and desires of the student.
The next two sections detail the two parts of our research

plan, and the final section summarises our track record.

1. TypeScript TNG

Types serve two different purposes in modern programming
environments. The first is as a source of information to
prompt the developer, for instance to populate a pulldown
menu with methods that might be invoked at a given point.
Indeed, providing effective prompts in Visual Studio is a
primary motivation for the development of TypeScript. The
second is as a source of correctness guarantees, for instance
ensuring that a boolean is never passed where a number
is expected. Ensuring correctness is a lesser motivation of
TypeScript, because it is incompatible with another goal,
supporting zero-cost interaction with JavaScript. However,
recent developments in theory show how we might eat our
cake and have it too: we can use wrappers to enforce type
correctness guarantees while supporting low-cost interaction
with JavaScript.

TypeScript allows the programmer to specify in an
interface declaration types for a JavaScript module or li-
brary supplied by another party. The DefinitelyTyped repos-
itory (Yankov 2013) contains over 150 such declarations for
a variety of popular JavaScript libraries. However, the infor-
mation supplied by an interface is taken on faith. If, say,
an interface declares that a callback expects a number when
in fact the library supplies it a boolean, then an error may
occur somewhere deep in the code of the callback (for in-
stance, where the argument to the callback is used to index
an array), or, worse, no error may be detected and a nonsen-
sical result may be returned.

We intend to build a tool, TypeScript TNG, that gener-
ates wrapper code from TypeScript import declarations to
detect and pinpoint type errors. A wrapper will accept any
JavaScript value as input, and either raise an error or return
a value guaranteed to satisfy the invariant associated with
the corresponding type. As detailed in the next section, gen-
eration of wrappers will be based on the blame calculus;
and, as detailed in the section after that, the wrappers for

2013/9/26

generic types ensure strong guarantees, known as “theorems
for free”.

Adding wrappers leaves the behaviour of the code un-
changed, so long as the library actually has the behaviour
specified by the interface declaration, and so long as the
library does not check for object identity on functions. We
expect that most libraries do conform to suitable interface
declarations and that use of object identity on functions is an
uncommon corner case. Testing these hypotheses will be an
important part of our research programme.

Wrappers are not free, but as they only impinge at the
boundary between modules their cost is low. Wrappers are
most important during the debug and test phases of a project,
although (as with array bound checking) it is desirable to
maintain them for production use as well. Measuring the
runtime cost of wrappers will be another important part of
our research programme.

Our theses are:

e [t is possible to develop a tool to generate wrappers
from interface declarations in TypeScript, such that
the wrappers enforce the semantic properties expected
by values of the given type, including the “theorems for
free” associated with generic types.

e The tool will yield practical benefits: adding wrap-
pers will aid in debugging and not impose undue
run-time overhead. Most libraries will possess suitable
interface declarations, for which adding wrappers will
preserve the semantics.

The following sections review foundations on which our
proposal is built, the blame calculus and Theorems for Free,
review related work on F*, JS*, and TS*, and ResearchTS,
and details our plans for evaluation.

Blame calculus The long tradition of work that integrates
static and dynamic types includes the partial types of Thatte
(1988), the dynamic type of Abadi et al. (1991), the co-
ercions of Henglein (1994), the contracts of Findler and
Felleisen (2002), the dynamic dependent types of Ou et al.
(2004), the hybrid types of Gronski et al. (2006), the grad-
ual types of Siek and Taha (2006), the migratory types
of Tobin-Hochstadt and Felleisen (2006), and the multi-
language programming of Matthews and Findler (2007). In-
tegration of static and dynamic types is a feature of .NET
languages including C# and Visual Basic, is being explored
for JavaScript, Perl, Python, and Ruby, and is the subject of
the recent series of STOP workshops.

The foundation for our proposal is the blame calculus,
a core calculus that supports integration of a variety of type
systems. The origin of the blame calculus lies in the observa-
tion that two research papers published in the same year used
the same techniques to different ends. The gradual types of
Siek and Taha (2006) integrate dynamic types with static
types, while the hybrid types of Flanagan (2006) integrate
generic types with refinement types. Both use essentially the

same source language (lambda calculus), the same interme-
diate language (lambda calculus with casts), and the same
type-directed translation between the two. Both are based on
the contracts of Findler and Felleisen (2002), but neither use
the positive and negative labels introduced by that calculus,
which are essential to allocating blame to either the context
containing the cast or the term contained in the cast.

The key result about blame was to observe that when cast-
ing between two types, if one is more precise than the other
then blame always lies on the less-precisely typed side of the
cast; we refer to this result as the blame theorem. Because
gradual types and hybrid types lack positive and negative
blame labels, the works cited above could not even begin to
formulate such a result. Results similar to the blame theo-
rem had been established by Tobin-Hochstadt and Felleisen
(2006) and Matthews and Findler (2007), but each required a
complicated proof based on operational equivalence. Wadler
and Findler (2009) established the first simple proof of the
blame theorem, using the traditional technique for proofs of
type soundness based on progress and preservation (Wright
and Felleisen 1994).

One important use case for blame is as follows. Consider
the situation mentioned above, where a module written in
TypeScript imports a library written in JavaScript, specify-
ing the types of the library using an interface declara-
tion. As mentioned above, currently in TypeScript the types
in the interface declaration are taken on faith. Because
JavaScript is untyped, there is no guarantee that a value
passed from the JavaScript module will correspond to the
interface declaration. Further, because TypeScript is not
designed to provide watertight type soundness, there is no
guarantee for a value passed from the TypeScript module ei-
ther. Interposing a wrapper derived from a cast in the blame
calculus would allow any violations of the interface dec-
laration to be pinpointed, with blame corresponding to an
indication of which of the two modules is at fault. In the
presence of higher-order functions it may not be completely
trivial to decide which module is in error using informal
reasoning—the blame calculus provides a simple formal-
ism for accurately allocating blame. The technique works
not just for a single import, but extends to import of multi-
ple modules written in JavaScript, each passing objects and
functions to the other, so long as each has types provided by
an inferface declaration.

Theorems for Free Ahmed et al. (2011) extended the grad-
ual typing fragment of the blame calculus to include poly-
morphic types, which correspond to the generic types found
in Java and C#, and recently added to TypeScript. A fun-
damental semantic property of polymorphic types is rela-
tional parametricity, as introduced by Reynolds (1983) and
popularised under the name “theorems for free” by Wadler
(1989). A statically typed value of generic type is guaranteed
to satisfy certain properties.

2013/9/26

For instance, in a statically-typed language without side
effects, a value of type VT. T — T must either be the identity
function (which always returns its argument) or the unde-
fined function (which never returns a value). The intuitive
reason for this is that the function must work for any type
T, while examining a value or generating a new value re-
quires knowing something about the structure of its type.
Similarly, a value of type VT.List<T> — List<T> must
be a rearranging function, such as one that reverses a list or
drops its first element; it cannot examine the value of the el-
ements passed to it or generate new elements to return. In
the presence of side effects, similar though slightly weaker
properties still hold.

What is remarkable is that the wrappers generated by the
blame calculus can guarantee this property, even though the
value passed into the wrapper is from a dynamically-typed
language and satisfies no constraints whatsoever. This is
achieved by use of sealing, closely related to cryptographic
sealing. The required operation is to be able to generate a
pair of functions, one which seals a value and one which un-
seals the value. A sealed value is opaque and cannot be ex-
amined save by applying the corresponding unsealing func-
tion, which returns the original value. Wrappers for generic
types use the types as a guide to sealing. When a wrapper en-
counters an instantiation of a generic function, it generates a
new pair of sealing and unsealing functions; only the wrap-
per has access to these functions. Each value of generic type
is sealed by the wrapper when it is passed into the function,
and unsealed when it is returned.

Hence, in the case of a function of type VI.T — T, if
a value is returned other than the argument it will not be
properly sealed, and the unseal function applied to the result
will raise an error. Similarly, in the case of a function of type
VT.List<T> — List<T>, the seal prevents elements of the
input list from being examined, and ensures that the only
elements in the output list must come from the input list.
As with blame, in the presence of higher-order functions it
may not be completely trivial to decide which values to seal
or unseal using informal reasoning—the extended blame
calculus provides a simple formalism that specifies when
sealing and unsealing is required.

Relational parametricity underlies some program opti-
mizations, notably shortcut deforestation as employed by
the Glasgow Haskell Compiler (Gill et al. 1993). Our sys-
tem guarantees the validity of such optimizations even in the
presence of dynamic types.

F*, JS*,and TS* F* is a new, dependently typed language
for secure distributed programming. It is designed to enable
the construction and communication of proofs of program
properties and of properties of a program’s environment in
a verifiably secure way. F* compiles to .NET bytecode in
type-preserving style, and interoperates smoothly with other
NET languages, including F#, on which it is based. F*
subsumes several prior languages, including Fine, F7, FX,

and others. It has been used to verify nearly 50,000 lines of
code, ranging from crypto protocol implementations to web
browser extensions, and from cloud-hosted web applications
to key parts of the F* compiler itself. The F* language is
described in Swamy et al. (2011a), and its use to certify its
own compiler is described in Strub et al. (2012). [Parts of
this paragraph are taken from the F* web site.]

Recent work has examined the use of F* to generate
JavaScript satisfying strong security properties. JavaScript
code that interacts with third-party code is subject to a num-
ber of security attacks, such as modifying the prototype of an
object to change the object’s behaviour, or traversing stack
frames to examine the internal state of a function.

Fournet et al. (2013) introduce JS*, which compiles a
large subset of F* to JavaScript. The compilation is fully ab-
stract, meaning that if two pieces of F* code behave identi-
cally in any F* context, the versions compiled by JS* will be-
have identically in any JavaScript context. This is a surpris-
ingly strong property, given that the JavaScript environment
can break a number of abstractions assumed in F*, for in-
stance using the attacks on prototypes or stack frames men-
tioned above. The JS* compiler makes clever use of wrap-
pers to prevent such attacks. The compiler is written in F*,
and has been proved fully abstract within F* itself—a re-
markable achievement.

Swamy et al. (2013) goes one step further, and introduces
TS*, a variant of TypeScript which supports writing web
programs that are guaranteed not to be subject to the secu-
rity attacks mentioned above. The technique is to translate
TS* to F*, and then to translate F* back to JavaScript with
the fully-abstract JS* compiler. The wrappers that enforce
full abstraction guarantee freedom from a range of attacks,
and hence yield code satisfying strong security properties.
An interesting aspect of the system is the use of two distinct
types, Any and Un, to separate values known to satisfy se-
curity properties (of type Any) from those that may contain
attacker code (of type Un).

The wrappers used in JS* and TS* are closely related to
those used in the blame calculus, leading to several fruit-
ful lines for investigation. In one direction, one might adapt
blame tracking and the use of sealing to handle generic types
from the blame calculus to JS* and TS*. In the reverse di-
rection, one might adapt the methods of preventing security
attacks from JS* and TS* to the blame calculus.

ResearchTS Bierman is currently collaborating with the
TypeScript product team on the design of the TypeScript
type system. This ongoing process has already led to several
changes in the design, implementation, and public specifica-
tion of TypeScript, and some academic papers are in prepara-
tion. Additionally, a research variant of the TypeScript com-
piler, dubbed “ResearchTS”, is currently being built. This
variant of the compiler allows for various experiments on
the type system. Currently compiler options are being added
to restrict the type system to ensure various levels of static

2013/9/26

safety, and also to guarantee specific security properties of
the emitted JavaScript.

ResearchTS is slated for open-source release and will
provide a convenient platform for the implementation work
described in this proposal.

Evaluation Once a wrapper generator has been built on top
of ResearchTS, we will take steps to evaluate its efficacy.
Our hypotheses are as follows.

e JavaScript TNG will reduce debugging time.
e JavaScript TNG will impose only modest runtime costs.

e JavaScript TNG will preserve the semantics of most li-
braries: adding wrappers will yield the same results.

e Corner cases where adding JavaScript TNG wrappers
change the semantics, such as testing for pointer equality
on functions, will be rare.

We will measure to determine whether each of these is
the case. Test cases can be taken from the DefinitelyTyped
repository (Yankov 2013), which already contains over 150
declarations for JavaScript libraries.

Dependent types As types become more powerful, the
wrappers generated by TypeScript TNG enforce stronger in-
variants. A next step in the work described here might be
to extend TypeScript to support dependent types. Such work
requires a foundational study of how to integrate dynamic
types and dependent types, which is the study of the next
section.

2. A wide-spectrum type system

Politicians often claim that our differences make us stronger;
our aim here is to apply that truism to the field of program-
ming languages.

Programming languages offer a range of type structures.
Here are four of the most important, listed from weakest to
strongest:

e Purely dynamic, as in Racket, Python, and JavaScript
® Generic types, as in ML, Haskell, and F#

e Refinement types, as in Dependent ML and F7

e Dependent types, as in Coq, Agda, and F*

The different systems provide different levels of guarantee.
A dynamically typed program may fail by, for instance, sup-
plying an integer where an array is expected. A generic typed
program will guarantee to supply an array where an array is
expected, but may fail by providing an array index outside
of the array bounds; guarantees are provided by unification-
based type inference. A refinement typed program may guar-
antee that array indices are always within bounds, but may
fail by entering an infinite loop; guarantees are provided by
applying an SMT solver. A dependently typed program will
guarantee to never raise exceptions or enter an infinite loop;
guarantees are provided by user-supplied proofs. What we

call “refinement types” is sometimes called “weak depen-
dent typing”, and what we call “dependent types” is some-
times called “strong dependent typing”; they correspond to
two different kinds available in F*.

Recent work on contracts has suggested the use of
checked or validated casts to interface between such sys-
tems. For instance, one can cast a value of dynamic type
to a generic type, or a value of generic type to a refinement
type. Such casts may require conditions to be satisfied. (Is
this dynamic value an array? Is this integer within the ar-
ray bounds?) Such tests may be checked dynamically at run-
time, or validated statically at compile time, in the latter case
via either an SMT solver or a user-supplied proof. Contracts
have a sound theory, and are particularly important when
dealing with higher-order functions.

Recent work on effect systems suggest that one can use
effect types to classify what guarantees are provided in what
segments of code. For instance, effects might record whether
or not a code segment contains a cast that is dynamically
checked, or whether or not a code segment may enter an
infinite loop. Proofs may be represented by programs, so
long as the program contains no dynamic checks and cannot
loop.

Modern systems partake of the entire range of type sys-
tems listed above. Browsers and the Windows 8 framework
depend heavily on JavaScript, while advanced systems for
security build on refinement types and dependent types. We
believe that a system integrating all the typing styles would
be stronger than the sum of its parts. For instance, one set
of developers could write JavaScript applications on top of
a security layer validated by a different set of developers,
with dynamically checked tests (similar to the wrappers gen-
erated by TypeScript TNG) ensuring that the preconditions
assumed by the security code are met by the JavaScript ap-
plications.

Our theses are:

e [t is possible to develop a wide-spectrum type system
covering all the above disciplines, building on the ideas
of the blame calculus and effect systems.

e A wide-spectrum system will increase the utility of the
different styles of typing, by allowing dynamic checks to
be used as a fallback when static validation is problem-
atic.

The following sections detail specific areas requiring devel-
opment: theoretical work on extended foundations for the
blame calculus and on effect systems, an implementation
with case studies, and possible further work on property-
based testing.

Blame calculus foundations The first paper on the blame
calculus supports base types, function types, refinements
over base types, and type dynamic (Wadler and Findler
2009). The second paper adds polymorphism, but removes

2013/9/26

refinements over base types (Ahmed et al. 2011). Two ex-
tensions are required as a basis for further work.

First is to add refinements at all types (not restricted to
base types), and to add dependent types. Refinements at
other than base type pose technical difficulties, but recent
work introduces a new technique that appears to avoid the
problems (Belo et al. 2011). We expect to be able to base our
work on this new approach, the interesting new step being to
add the type dynamic. The adaptation will require dealing
with several subtle differences: Belo et al. (2011) requires
a cast from a polymorhic type to be to a polymorphic type
(and conversely), but permits the body of a polymorphic ab-
straction to be any term, while Ahmed et al. (2011) permits
casts from polymorphic type to any compatible type (and
conversely), but requires the body of a polymorphic abstrac-
tion to be a value. Once the extended framework is estab-
lished, one must suitably extend the definitions of the four
subtyping relations, and establish the equivalent of the blame
theorem for the extended system.

Second is to investigate the tradeoffs between lazy and
eager approaches to contract enforcement. Each of these is
known to have advantages but also to entail costs (Degen
et al. 2010; Findler et al. 2007; Hinze et al. 2006; Swamy
et al. 2013). The tradeoffs are less important when dealing
with functions, but are significant when dealing with data
structures such as tuples and lists. It would be useful to
develop both lazy and eager variants of the blame calculus
to understand the tradeoff between them, and to be able to
choose the appropriate variant when developing programs.

If the student has a strong theoretical bent, additional
work in this area could define and prove parametricity prop-
erties by establishing a suitable step-indexed logical relation.

Effect systems Programs that use dynamic checking may
raise blame at runtime, and programs with unbounded recur-
sion may loop forever. It is desirable to permit these compu-
tational effects in program code, while sound representation
of proofs as code requires banning such effects. We propose
to track the presence or absence of such effects using an ef-
fect type system, of the kind introduced by Gifford and Lu-
cassen (1986).

In previous work, we related effect types to monads
(Wadler and Thiemann 2003). A practical difficulty with ef-
fect types is that they require labelling every function type
with an effect, which may render types unwieldy. Recent
work on type systems for monads by Swamy and Leijen at
MSR and Guts and Hicks at Maryland restricts the places at
which effect labels are required while maintaining type in-
ference and coherence, and may be useful in ensuring effect
types remain tractable (Swamy et al. 2011b).

The problem of permitting exceptions and loops in gen-
eral code while prohibiting them in code used to represent
proofs also occurs in the F* system (Swamy et al. 2011a),
where it is solved by an innovative use of kinds. We would
like to explore and understand the relation between using ef-

fects and using kinds to delimit code used for computation
from code used for proofs.

Implementation and case studies Apart from the theoreti-
cal foundations outlined above, it is desirable to design and
implement a practical system for writing such programs, and
attempt suitable case studies. Implementing a new system
from scratch is probably not desirable; suitable base systems
for the work include F# and F*. There is already a suite of
case studies for F*, including a cloud application managing a
medical record database, a curated database with provenance
recorded as proof terms, a suite of seventeen browser exten-
sions, and a cryptographic library used to implement two-
and three-party sessions (Swamy et al. 2011a). One possi-
bility is to adapt these studies, paying particular attention
to the tradeoff between run-time checking and compile-time
validation. We conjecture that usability will be significantly
increased by permitting run-time checking as a workaround
when compile-time validation is infeasible.

Property-based testing Property-based testing tools such
as QuickCheck have attracted considerable interest as an
alternative to unit testing for increasing the reliability of
systems (Claessen and Hughes 2000). Over the last decade,
these tools have seen increased use by software developers
such as Ericsson, the appearance of commercial suppliers
such as Quviq, and the founding of an EU funded project
(Derrick et al. 2009).

Refinement and dependent types in our system may serve
as a source of properties for testing, using techniques simi-
lar to those developed for QuickCheck. From the declaration
of each type one can automatically derive a random gener-
ator of values of that type, and then check that the proper-
ties specified by the refinement and dependent types hold.
This complements run-time checking and compile-time val-
idation: whereas run-time checking tests that the specified
properties hold for each invocation of a function during pro-
gram execution, and compile-time validation proves that the
properties always hold, property-based testing checks that
the properties hold for a collection of randomly generated
values, and searches for a simple counterexample if a test
fails. It may be possible to either use property-based testing
as a separate stand-alone test separate from program execu-
tion, or in combination with program execution. In particu-
lar, the technique of run-time testing cannot easily apply to
properties that include quantifiers, but such properties are a
perfect candidate for property-based testing.

3. Track record

Philip Wadler is Professor of Theoretical Computer Sci-
ence in the School of Informatics of the University of Edin-
burgh. His career spans academia and industry, with degrees
from Stanford and Carnegie-Mellon, posts at Oxford, Glas-
gow, Bell Labs, and Avaya Labs, and guest professorships
in Sydney, Copenhagen, and Paris. He contributed to the de-
sign of generics for Java, to the W3C standard XQuery, and

2013/9/26

to the functional language Haskell, and is Principal Investi-
gator on a five-year £4M EPSRC programme grant, “From
Data Types to Session Types: A Basis for Concurrency and
Distribution”. He co-founded the Journal of Functional Pro-
gramming, served as program chair for ICFP and POPL, and
is Past Chair of ACM SIGPLAN. He is a Fellow of the ACM,
a Fellow of the Royal Society of Edinburgh, and a former
Royal Society Wolfson Merit Fellow. He appears second in
the list of “Top Programming Language Researchers” on
Microsoft Academic Search, and has an h-index of 60 on
Google Scholar.

Gavin Bierman is a senior researcher at Microsoft Re-
search in Cambridge. He holds degrees from Imperial and
Cambridge. Before joining Microsoft he was a University
Lecturer at the University of Cambridge. At Microsoft his
research has focused on type systems, semantics, separation
logic, database query languages and dynamic software up-
dating and he has made contributions to several production
languages including C#, Visual Basic, and TypeScript.

University of Edinburgh The School of Informatics has
top ratings for both teaching and research. Wadler sits in
the Laboratory for the Foundation of Computer Science,
with a long tradition of high-quality research linking theory
to application. The productive relation between Microsoft
and Edinburgh is recognised by the University of Edinburgh
Microsoft Research Joint Initiative in Informatics.

References

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing
in a statically typed language. TOPLAS, 13(2):237-268, 1991.

A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In

Principles of Programming Languages (POPL), pages 201-214,
2011.

J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymor-
phic contracts. In ESOP, pages 18-37, 2011.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In ICFP, pages 268-279,
2000.

M. Degen, P. Thiemann, and S. Wehr. Eager and delayed contract

monitoring for call-by-value and call-by-name evaluation. J.
Log. Algebr. Program., 79(7):515-549, 2010.

J. Derrick, N. Walkinshaw, T. Arts, C. B. Earle, F. Cesarini, L.-
A. Fredlund, V. M. Gulias, J. Hughes, and S. J. Thompson.
Property-based testing—the ProTest project. In FMCO, pages
250-271, 2009.

R. B. Findler and M. Felleisen. Contracts for higher-order func-
tions. In ICFP, 2002.

R. B. Findler, S. Guo, and A. Rogers. Lazy contract checking for
immutable data structures. In /FL, Oct. 2007.

C. Flanagan. Hybrid type checking. In Principles of Programming
Languages (POPL), 2006.

C. Fournet, N. Swamy, J. Chen, P-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In POPL,
pages 371-384, 2013.

D. K. Gifford and J. M. Lucassen. Integrating functional and
imperative programming. In Lisp and Functional Programming,
1986.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In FPCA, pages 223-232, 1993.

J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme
Workshop, 2006.

F. Henglein. Dynamic typing: Syntax and proof theory. Sci.
Comput. Programming, 22(3):197-230, 1994.

R. Hinze, J. Jeuring, and A. Loh. Typed contracts for functional
programming. In FLOPS, volume 3945 of LNCS, pages 208—
225, 2006.

J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. In POPL, 2007.

X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing

with dependent types. In Conference on Theoretical Computer
Science, 2004.

J. Reynolds. Types, abstraction, and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing, pages 513-523.
North-Holland, 1983.

J. G. Siek and W. Taha. Gradual typing for functional languages.
In Scheme Workshop, 2006.

P.-Y. Strub, N. Swamy, C. Fournet, and J. Chen. Self-certification:
bootstrapping certified typecheckers in F* with Coq. In POPL,
pages 571-584, 2012.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and
J. Yang. Secure distributed programming with value-dependent
types. In ICFP, 2011a.

N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In ICFP, 2011b.

N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P--Y.
Strub, and G. Bierman. Gradual typing embedded securely in
JavaScript, 2013. Draft paper.

S. Thatte. Type inference with partial types. In ICALP, volume 317
of LNCS. Springer-Verlag, 1988.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration:
From scripts to programs. In Dynamic Languages Symposium,
2006.

P. Wadler. Theorems for free. In FPCA, 1989.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed.
In ESOP, pages 1-16, 2009.

P. Wadler and P. Thiemann. The marriage of effects and monads.
TOCL, 4(1):1-32, 2003.

A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38-94, 1994.

B. Yankov. Definitely typed repository, 2013.
https://github.com/borisyankov/DefinitelyTyped.

2013/9/26

