
1

CS2 Spring 2004 (LN2) 1

CS2Bh: Current Technologies

Introduction to XML and Relational Databases

Spring 2005

Document Type Definition

CS2 Spring 2004 (LN2) 2

Document Type Definition (DTD)

An XML document may come with an optional DTD – “schema”
<!DOCTYPE db [

<!ELEMENT db (book*)>
<!ELEMENT book (title, chapter*, ref*)>
<!ATTLIST book isbn ID #required>
<!ELEMENT chapter (number, section*) >
<!ELEMENT section (number, (text | section)*)>
<!ELEMENT ref EMPTY>
<!ATTLIST ref to IDREFS #implied>
<!ELEMENT title #PCDATA>
<!ELEMENT text #PCDATA>

]>

2

CS2 Spring 2004 (LN2) 3

An instance of the DTD
db

book bookbook book

title chapter

“XML”

chapter

section section

“1” “Bush,
a C
student,...”

“6”

number section

number text number

“10”

number

“1” number

“1”

section

number

“5”

title chapter

“SGML” number

“1”

chapter

number

“10”

@isbn @isbn

CS2 Spring 2004 (LN2) 4

What is a DTD?

A DTD constraints the structure of an XML document, and may
help us formulate/optimize our queries.
There is a relationship between a DTD and a databases
schema or a type/class declaration of a program, but it is not
close – hence the need for additional “typing” systems, such as
XML Schema.
A DTD is a syntactic specification. Its connection with any
“conceptual” model may be quite remote.
DTDs do not act like type systems for XQuery, XPath or XSLT.
You can “validate” your XML documents, but that does not
mean that your programs are checked for type errors.

3

CS2 Spring 2004 (LN2) 5

Element Type Definition (1)

For each element type E, a declaration of the form:
<!ELEMENT E P>

where P is a regular expression, i.e.,
P ::= EMPTY | ANY | #PCDATA | E’ |

P1, P2 | P1 | P2 | P? | P+ | P*
– E’: element type
– P1 , P2: concatenation
– P1 | P2: disjunction
– P?: optional
– P+: one or more occurrences
– P*: the Kleene closure

CS2 Spring 2004 (LN2) 6

Element Type Definition (2)

Extended context free grammar: <!ELEMENT E P>
Why is it called extended?

E.g., <!ELEMENT book (title, chapter*, ref*)>
single root: <!DOCTYPE db […] >
subelements are ordered.
The following two definitions are different. Why?
<!ELEMENT section (text | section)*>
<!ELEMENT section (text* | section*)>
recursive definition, e.g., section, binary tree:
<!ELEMENT node (leaf | (node, node))
<!ELEMENT leaf (#PCDATA)>

4

CS2 Spring 2004 (LN2) 7

Element Type Definition (3)

more on recursive DTDs
<!ELEMENT person (name, father, mother)>
<!ELEMENT father (person)>
<!ELEMENT mother (person)>
What is the problem with this? How to fix it?
– Attributes
– optional (e.g., father?, mother?)

CS2 Spring 2004 (LN2) 8

exercise

What is the problem with the following?
<!ELEMENT person (name,

person?, /*father
person? /* mother)

>

How to declare E to be an unordered pair (a, b)?
<!ELEMENT E ((a, b) | (b, a)) >

5

CS2 Spring 2004 (LN2) 9

Element Type Definition (4)

EMPTY element:
<!ELEMENT ref EMPTY>
<!ATTLIST ref to IDREFS #implied>
observe that it has attributes

ANY: may contain any content
<!ELEMENT generic ANY>

mixed content
<!ELEMENT section (#PCDATA | section)*>

CS2 Spring 2004 (LN2) 10

Element Type Definition (5)

global definition:
<!ELEMENT person (name, ssn)>
<!ELEMENT course (name, credit, instructor)>
The type definition associated with an element is unique -- only
one declaration for name is allowed.
To avoid name clashes, one may use two distinct tags: e.g.,
personname, coursename.
namespace: define two namespaces
<MYNAMESPACE xmlns:person=“~fan/person.dtd”

xmlns:course=“~fan/course.dtd”>
<person:name> … <course:name> …
</MYNAMESPACE>

6

CS2 Spring 2004 (LN2) 11

exercise

What is the problem with the following?

<!ELEMENT student (id, name, gpa)>
<!ELEMENT name (first-name, last-name)>

. . .
<!ELEMENT course (cno, name, credit)>
<!ELEMENT name (PCDATA)>

CS2 Spring 2004 (LN2) 12

Attribute declarations (1)

General syntax:
<!ATTLIST element_name

attribute-name attribute-type default-declaration>
example: “keys” and “foreign keys”

<!ATTLIST book
isbn ID #required>

<!ATTLIST ref
to IDREFS #implied>

Note: it is OK for several element types to define an attribute of the
same name, e.g.,
<!ATTLIST person name ID #required>
<!ATTLIST pet name ID #required>

7

CS2 Spring 2004 (LN2) 13

Attribute declarations (2)

<!ATTLIST element_name
attribute-name attribute-type default-declaration>

attribute types:
– CDATA
– ID, IDREF, IDREFS
– …

default declarations:
– #required, #implied
– “default value”, #fixed “default value”

CS2 Spring 2004 (LN2) 14

Specifying ID and IDREF attributes

<!ATTLIST person
id ID #required
father IDREF #implied
mother IDREF #implied
children IDREFS #implied>

e.g.,
<person id=“898” father=“332” mother=“336”

children=“982 984 986”>
….

</person>

8

CS2 Spring 2004 (LN2) 15

XML reference mechanism

ID attribute: unique within the entire document.
– An element can have at most one ID attribute.
– No default (fixed default) value is allowed.

• #required: a value must be provided
• #implied: a value is optional

IDREF attribute: its value must be some other element’s ID
value already in the document.
IDREFS attribute: its value is a set, each element of the set is
the ID value of some other element in the document.
<person id=“898” father=“332” mother=“336”

children=“982 984 986”>

CS2 Spring 2004 (LN2) 16

Keys and Foreign Keys

Example: school document
<!ELEMENT db (student+, course+) >
<!ELEMENT student (id, name, gpa, taking*)>
<!ELEMENT course (cno, title, credit, taken_by*)>
<!ELEMENT taking (cno)>
<!ELEMENT taken_by (id)>

keys: locating a specific object, an invariant connection from an
object in the real world to its representation – within a relation
student.@id → student, course.@cno → course

foreign keys: referencing an object from another object
taking.@cno ⊆ course.@cno, course.@cno → course
taken_by.@id ⊆ student.@id, student.@id → student

9

CS2 Spring 2004 (LN2) 17

The limitations of ID/IDREF

ID and IDREF attributes in DTD vs. keys and foreign keys in RDBs

Scoping:

– ID unique within the entire document (like oids), while a key
needs only to uniquely identify a tuple within a relation

– IDREF untyped: one has no control over what it points to --
you point to something, but you don’t know what it is!
<student id=“01” name=“Saddam” taking=“CS2”/>
<student id=“02” name=“Bush” taking=“CS2 01”/>
<course id=“CS2”/>

CS2 Spring 2004 (LN2) 18

exercise

What is the problem with the following?
<!ELEMENT people (person*)>
<!ELEMENT person (name, spouse, children)>
<!ATTLIST person NIN ID #required>
<!ELEMENT spouse (person?) >
<!ELEMENT children (person*)>

In an XML document of the DTD, a person is to appear as a child
under both his/her father and mother

10

CS2 Spring 2004 (LN2) 19

The limitations of the XML standard (DTD)

keys need to be multi-valued, while IDs must be single-valued
(unary)

enroll (sid: string, cid: string, grade:string)

a relation may have multiple keys, while an element can have at
most one ID (primary)

ID/IDREF can only be defined in a DTD, while XML data may
not come with a DTD/schema

ID/IDREF, even relational keys/foreign keys, fail to capture the
semantics of hierarchical data

CS2 Spring 2004 (LN2) 20

Valid XML documents

A valid XML document must have a DTD.
The document is well-formed
It conforms to the DTD:
– elements conform to the grammars of their type definitions

(nested only in the way described by the DTD)
– elements have all and only the attributes specified by the

DTD
– ID/IDREF attributes satisfy their constraints:

• ID must be distinct
• IDREF/IDREFS values must be existing ID values

Contrast valid documents and well-formed documents (possibly
in the absence of a DTD)

11

CS2 Spring 2004 (LN2) 21

DTDs vs. schemas (types)

By database (or programming language) standard, XML DTDs
are rather weak specifications.
– Only one base type -- PCDATA.
– No useful “abstractions”, e.g., unordered records.
– Element type definitions are “global”
– No methods
– No sub-typing or inheritance.
– IDREFs are not typed or scoped -- you point to something,

but you don’t know what!
XML extensions to overcome the limitations.
– Type systems: XML-Data, XML-Schema, SOX
– Integrity Constraints

CS2 Spring 2004 (LN2) 22

Summary and Review

DTD provides useful syntactic constraints on documents.
Element types, attributes
ID/IDREF, as constraints, are very restricted

Questions:
How to store large XML documents?
How to query large documents efficiently?
How to support XML updates by multiple users simultaneously?
How to secure access to XML data?
How to map between XML and other representations?
How to make XML schemas work like database schemas and
programming language types?

