
1

CS2 Spring 2005 (LN5) 1

CS2Bh: Current Technologies

Introduction to XML and Relational Databases

Spring 2005

Introduction to Databases

CS2 Spring 2005 (LN5) 2

Why databases? Why not use XML?

What is missing from XML:
Consistency and integrity: XML representations are tree-like
and often encourage redundant representations of data
Efficient storage: XML is intended for data exchange, not data
storage (arguable)
Efficient query evaluation: current XML query technology does
not scale, and type checking is difficult
Concurrency control: updates, transactions and recovery are
not well understood for XML – many people want to work on the
data simultaneously
Security: security policies should be enforced such that different
users have permissions to access different subsets of the data
. . .

The problems get worse when the data gets large

2

CS2 Spring 2005 (LN5) 3

Example: a document for students and courses

What is wrong with the following?
<school>

<student id = “011”> <name> G. W. Bush </name>
<taking><course cno = “Eng”> <title> Spelling</title> </course>

<course cno = “CS2”> <title> XML </title> </course>
</taking>
<GPA> 1.5 </GPA>

</student>
<student id = “012”> <name> D. Cheney </name>

<taking> <course cno = “CS2”> <title>politics</title> </course>
</taking>

<GPA> 1.4 </GPA>
</student>

. . .
</school>

CS2 Spring 2005 (LN5) 4

Problem 1. Data organization

Redundancy: It appears to be keeping our course records in
student records and doing so redundantly

efficiency: consider information about the courses that the
students are taking, such as instructor, classroom, etc.

consistency: the “CS2” record is different in Bush and
Cheney’s record

loss of information: what if we drop Bush and Cheney from the
document? We may end up losing all the information about CS2
and Eng

So maybe we want to separate our student records and course
records, and link them. But how?

3

CS2 Spring 2005 (LN5) 5

Problem 2. Efficiency

Probably a student file would never contain more than a few
thousand entries. But there are things we’d like to do quickly
and efficiently – even with our simple files. Examples:
– Give me all the students whose gpa is greater than 3.0.
– Who are taking CS2 and Eng simultaneously?

We would like to “program” these as quickly as possible.
We would like these programs to be executed efficiently. What
would happen if you were using a document of universities with
hundreds of thousands of entries?

CS2 Spring 2005 (LN5) 6

Problem 3. Concurrency control

Suppose several people are allowed to modify the document of
student records. How do we stop two people changing the file at
the same time and leaving it in a physical (or logical) mess?

Example. Suppose at the same time,
– Bush reads his gpa (1.5), adds 2.5 to it, and writes it back
– Cheney reads Bush’s gpa, subtracts it by 1.5, and writes it

back.
What would happen if Cheney reads Bush’s gpa before Bush

writes it, and writes the result back after Bush writes it? Bush’s
gpa now becomes 0 instead of 2.5!

If you don’t care about your GPA, just imagine this might happen to
your bank account.

4

CS2 Spring 2005 (LN5) 7

Problem 4. Recovery and reliability

The system may crash while we are changing the document

Example. We are increasing everyone’s gpa by a certain
percentage in response to Blair’s education reform (this may not
happen), but in the middle of it, the system crashes. Then those
who didn’t get an increase would not be happy.

CS2 Spring 2005 (LN5) 8

Problem 5. Consistency and security

How to ensure
– each student has a unique sid?
– gpa is in the range from 0 to 4?

How to prevent
– a student from increasing his/her own gpa?
– a student from checking other’s gpa?

Operating systems are not sufficiently flexible to enforce security
policies.

5

CS2 Spring 2005 (LN5) 9

Advantages of a DBMS

Data independence: it provides an abstract view of data to
insulate application code from details of data representations
and storage.

Uniform data administration and efficient data access: it utilizes
a variety of techniques to store and retrieve data efficiently.

Reduced development time: it supports many important
functions that are common to many applications accessing data
stored in the DBMS.

CS2 Spring 2005 (LN5) 10

Advantages of a DBMS (cont’d)

Concurrency control: it schedules concurrent accesses to the
data such that the users can pretend they are using a single-
user system.

Recovery from crashes: it also protects users from the effects of
system failure.

Data integrity: it supports integrity constraints, that is,
conditions that data must satisfy to ensure that the data is
consistent and accurate.
Security: it enforces access control on the data.

6

CS2 Spring 2005 (LN5) 11

Three-level architecture

The logical structure: what users see. The program or query
language interface.
The physical structure: how files are organized. What indexing
mechanisms are used.
Further the “logical” level is split into two: conceptual level and
view level

views views views

Conceptual level

Physical level

Disk

viewsviews viewsviews viewsviews

Conceptual levelConceptual level

Physical levelPhysical level

Disk

CS2 Spring 2005 (LN5) 12

Fix the problem of the example XML file (cont’d)

Separate students from courses
<school>

<student id = “011”> <name> G. W. Bush </name> <gpa> 1.5 </gpa>
</student>
<student id = “012”> <name> D. Cheney </name> <gpa> 1.4 </gpa>

</student>
. . .

<course cno = “Eng”> <title> Spelling</title> </course>
<course cno = “CS2”> <title> XML </title> </course>
. . .

</school>

7

CS2 Spring 2005 (LN5) 13

Fix the problem of the example XML file

Add enrollment records to link the two
<school>

<student id = “011”> <name> G. W. Bush </name> <gpa> 1.5 </gpa>
</student>
<student id = “012”> <name> D. Cheney </name> <gpa> 1.4 </gpa>
</student>
. . .

<course cno = “Eng”> <title> Spelling</title> </course>
<course cno = “CS2”> <title> XML </title> </course>
. . .
<enroll cno = “Eng” sid = “011” />
<enroll cno = “CS2” sid = “011”/>
<enroll cno = “CS2” sid = “012”/>
. . .

</school>

CS2 Spring 2005 (LN5) 14

This ends up with three tables

Conceptual level:
Students(name: string, sid: string, email: string, gpa: real)
Courses(title: string, cno: string)
Enroll(sid: string, cno: string)
This is an example of a relational database schema, which we
will talk about soon.
– Physical level:

• Relations (a set of records) stored as unordered files
• Index on the second column of students

– View:
Course-info(cno: string, enrollment: integer)

8

CS2 Spring 2005 (LN5) 15

Data independence

Logical data independence: protection from changes in logical
structure of data.
The ability to modify the conceptual level without causing the
application programs (queries against views) to be rewritten.
Physical data independence: protection from changes in
physical structure of data.
The ability to modify the physical level without causing changes
at the conceptual level.

This is one of the most important benefits of using a DBMS.

After all, you don’t worry about how numbers are stored when you
use a computer-based calculator. This is the same principle.

CS2 Spring 2005 (LN5) 16

Example SQL query

One should be able to use SQL to query the university database,
for example,

SELECT name
FROM Students
WHERE gpa > 3.0

without knowing, nor caring about how precisely data is stored

9

CS2 Spring 2005 (LN5) 17

That’s the traditional view, but …

Three-level architecture is not always achievable. When databases
get big, users still have to worry about efficiency.

There are databases over which we have no control. For example,
the Web is a giant, disorganized database.

There are also well-organized databases on the Web, for example,
http://www-db.stanford.edu/
which has a very nice organization, but for which the terminology

does not quite apply.

CS2 Spring 2005 (LN5) 18

Describing data in a DBMS – data models and
database design

When we design a database we try to think “logically”, but we need
some kind of framework in which to design the database.

The problem is rather like designing a data structure in some
programming language. You might use arrays, lists, etc.
depending on what is available.
A data model is a collection of concepts for describing data.
Data model vs. type system in programming language.
A schema is a description of a particular collection of data,
using the given data model.
Schemas vs. types in programming language.
An instance of a schema (database) is the collection of data
stored in the database at a particular moment in time.
Instances vs. values of types.

10

CS2 Spring 2005 (LN5) 19

The relational model – an introduction (1)

The relational data model is the most widely used model today.
Vendors: IBM, Microsoft, Oracle, Sybase, etc.
Recall the notions of sets and records.

Relation: a table with rows and columns (or a set of tuples).
Column: fields, attributes
Rows: tuples, records

4.0Grace@nimbus.ocis0004Grace
2.8Mary@nimbus.ocis0003Mary
3.6Joe@nimbus.ocis0002Joe
3.0John@nimbus.ocis0001John
gpaemailSidname

CS2 Spring 2005 (LN5) 20

The relational model – an introduction (2)

(Relation) Schema: every relation has a schema, which describes the
columns (fields, attributes).

Example:
Students(name: string, sid: string, email: string, gpa: real)
Courses(title: string, cid: string, credits: integer)
Enroll(sid: string, cid: string, grade: string)

Relational database: a collection of relations with distinct relation
names.

Database schema: a collection of relation schemas for the relations in
the database.

Example: {Students, Courses, Enroll}

11

CS2 Spring 2005 (LN5) 21

Why are relational databases so important?

They are extremely simple to understand
Query languages for them are well understood. There is an
interesting and useful connection between relational query
languages and first-order logic
Query languages are optimizable. There is well-developed
technology for this. Optimizing queries for hierarchical and XML
data is much less well-understood.
Updates and transaction processing are easier to understand
and implement for relational databases.

CS2 Spring 2005 (LN5) 22

Other data models

• Object-oriented data model.
Object-oriented database systems: ObjectStore, O2, Ode, etc.

• Object-relational model.
Object-relational database systems: UniSQL, Informix Universal
Server, etc.

• Semantic data model, e.g., the ER model.
• Semistructured data models: OEM, XML trees (DOM), etc.

Developed for Web databases and for data on the Web.
• Other data models:
• Network model
• Hierarchical model
• The functional data model
• …

12

CS2 Spring 2005 (LN5) 23

Database languages

Data definition language (DDL): defining schemas.
Data manipulation language (DML): retrieving and manipulating data.

Query: a statement requesting the retrieval of information.
Example: a SQL query
SELECT name
FROM Students
WHERE gpa > 3.0

Query language: expressing queries. It is part of DML.
Relational query languages:

relational algebra and relational calculus
Commercial languages: SQL (Structured Query Language)
and QBE (Query-By-Example).

Updates: insert, delete, modify.

CS2 Spring 2005 (LN5) 24

Structure of a DBMS

DDL and DML compilers, query processor.
Query processor: the most important components of a DBMS:

query execution plan
query optimization

File and access methods
Buffer management
Disk space management
Concurrency control and recovery DBMS

DB

queries

13

CS2 Spring 2005 (LN5) 25

Database folks -- where do you want to end up?

Database implementers: build DBMS software.
End-users: store and use data in a DBMS.
Query languages, conceptual level design, ect. The basic skills
have become a must for many jobs today.
Database application programmers: develop packages that
facilitate data access for a particular group of end-users.
Query languages, conceptual and physical level design, system
functions, etc.
Database administrators: design and maintain databases.
Conceptual and physical level design: security and
authorization, recovery from failure, database tuning
Others: the Web people (e.g., E-commerce, XML, workflows) .

CS2 Spring 2005 (LN5) 26

What we shall learn

Relational data model
Relational query languages

Relational algebra
SQL

14

CS2 Spring 2005 (LN5) 27

Summary – what you should remember!

Database and DBMS.
Why DBMS? What is the typical structure of a DBMS?

Data independence. Levels of abstraction (logical, physical).
What is logical independence? Physical independence? Why?

Data models. Schemas. Instances (database).
How to represent information about the real world in a database?

Database languages: DDL, DML, query languages.
Is DML a language just for database updates? Is query language

part of DML?
DBA, end-user, application programmers.

What are the responsibilities of a DBA?

