CS2 Current Technologies note 7 CS2Bh March 4, 2005

CS2 Current Technologies note 7

Relational Algebra.

Peter Buneman

7.1 Relational Algebra

The reason for having relational databases and SQL is because there is a very simple algebra
of database operations. SQL is, roughly speaking, turned into a relational algebra expression,
this expression is rewritten into a more efficient form and then evaluated using a bunch of well-
developed algorithms.

It's important to remember that relational algebra is just that — a set of operations that act on
tables to produce new tables. Just as we operate on numbers with arithmetic, we operate on
tables with relational algebra.

e Selection selects rows from a table. The symbol for selection is op where P is a predicate
on the attributes. E.g.

Oroom—s2{(COUISES)

Conditions are made up of comparisons between attributes or between attributes and con-
stants. These can be combined with conjunction, disjunction and negation.

As will be seen shortly, selection is equivalent to SELECT * FROM ... WHERE in SQL.
e Equally simple is projection. which corresponds to a simple SELECT ... FROM ... (no
WHERE)

7Tcname,teacher (CO u rSES)

We shall see that projection is realized in SQL simply as SELECT ... FROM ... (no
WHERE).

e Union (U) and difference (\) work as before, but now we shall assume that the we can only
take the union of two tables if they have the same schema. Note that we haven't included
intersection in this catalogue because it can be expressed in terms of difference:

RNS=R\(R\S)

CS2 Current Technologies note 7 CS2Bh March 4, 2005

e Join. This comes in a variety of flavors, but we shall use just one, <, called natural join.
Here is how R xS works. Suppose the set of attributes of R is Ar and that of S is Ag.
The set of attributes of R <1 S is Ag U Ag. A tuple in R and a tuple in S match if they
agree on their common attribute values (the attributes in Az N Ag). Two such matching
tuples can be combined into a tuple on A U Ag.

Example. Consider

students:

id name email
50123 | White | sw@dot.com
50456 | Prince | prince@dd.edu

takes:
id cname marks
50123 | CompSci3 | 75
S0456 | Hist4 62

50123 | French3 | 70
50456 | CompSci3 | 60

The natural join of these tables is:

id name | email cname marks
S0123 | White | sw@dot.com CompSci3 | 75
S0456 | Prince | prince@dd.edu | Hist4 62

S0123 | White | sw@dot.com French3 70
50456 | Prince | prince@dd.edu | CompSci3 | 60

e Relabeling. Since our operations are “label sensitive”, we need a method for relabeling
attributes (for example, we might want to join the student and teacher table to see if there
are any students with the same names as teachers. This is an operation that we tend to
forget about when thinking about optimisation or expressive power, but it's important if we
are to complete the relational algebra. The relabeling operation is p and it is subscripted
by a set of old-name — new-name pairs. E.g.

Pid_sidname;sname (Students)

Note that if we relabel a field involved in the join, it changes what the join does.

The relational algebra is an idealisation of what happens in practice. SQL does not use natural
join, but it does optimise joins which work on equality of attributes, and we can use ideas from
the relational algebra, though their expression as code in the SQL optimiser is a bit more messy.

For example, consider R <1 S 1 T and suppose that R contains 10* tuples, S contains 10° tuples
and T contains 10 tuples. Which of the following expressions is likely to be a good evaluation
strategy: (R S) < T, Rix (S T), (R T) xa S?7 Note that < is an associative,
commutative idempotent operation.

CS2 Current Technologies note 7 CS2Bh March 4, 2005

7.2 Relational Algebra exercises

1. Do the following identities hold!?

e Rxi(SUT)=(R=S)U (R T),
e Ra(S\T)=(R>=8)\(R=T),
o T(RUT) =mp(R)Unp(T), and
o p(R\T) = mp(R) \7p(T).
Answer:
e Rxi(SUT)=(R>=S)U(RxT) — yes.

R (S\T)=(R>=S8)\ (R>T) - yes.
7r(RUT) =7mp(R)Unr(T) — yes.

o mp(R\T)=7p(R)\7p(T)-no. Eg, F={B},R= A|B,S= A|B.
1|2 2 |2
13

2. Under what conditions is o¢(7r)(R) = nr(0c(R))? Cis a condition and F' is a subset of
the attributes of R.

Answer: Suppose the condition C' mentions the attributes F' of R. If F' € F then
7r(0c(R)) is not properly defined. In all other cases, both sides are well-defined and
equal.

3. Describe R <1 S when (a) R and S have exactly the same attributes and (b) when they
have no attributes in common.

Answer:

(a) Intersection.

(b) Something that looks like a Cartesian product. Every tuple of R combined with every
tuple of S.

4. Consider o¢(R >t S) (this is a very common form of query.) How would one go about
rewriting this as a more efficient query.

Answer: As a general rule, joins are expensive and selections are cheap, so one does
selections first. Let F- be the attributes mentioned in the condition C and let F'; and Fjg
be the attributes of R and S respectively.

Suppose F C Fpg, then we can rewrite the query as o¢(R) > S. Similarly if Fo C Fgs.

Suppose C = C' A C" with For C Fi and For C Fs. We can rewrite the query as
O'CN(R) > O'CII(S).
If C = C'"v C" with Fov C Fr and Fgn C Fg, the query can still be rewritten as

(o0 (R) > S) U (R 0cn(S)), but whether this is more efficient than the original query
now depends on other questions such as how “selective” the two selections o¢r, ocr are.

LThe last two of these were not on the original handout.

CS2 Current Technologies note 7 CS2Bh March 4, 2005

5. Suppose that the table R has a numeric attribute A and that numeric comparisons are
allowed in selections. How would you find the rows in R with the fifth largest value for A?
Do not try to write down the whole query, but explain in detail how to construct the query.

Answer: The general strategy is to find the rows in R with the largest value for A, subtract
those rows, and repeat the process three more times to get a table from which we take the
rows with the largest value for A.

The hard part is finding the rows with the largest value for A. This is a form of universal
quantification; as we shall see, SQL will handle this in more or less the same way with a
long query.

First we construct a table of all A values and all possible pairs of A-values:

R, = WA(R) P=psa (RA) DA PA— A, (RA)

Here, p.. is the relabelling operation. It is needed because > would otherwise produce the
identity!

Next, from P, we can find the A-values that are less than some other A-value:
H' = pA1—>A(UA1<A2 (P))

Subtract this from H to get the single row table containing the maximum A-value. Join
this with the original table R to get the rows with the maximum A-value:

Rmax:RlX](H\HI)

As we shall see, in SQL one has aggregate functions so this can be shortened to something

like
SELECT *
FROM R

WHERE A = SELECT MAX(A) FROM R

However, even in SQL we have to go through the iteration to get to the fifth largest value.
This shows one way in which the relational algebra fails to be turing-complete. There is no
term in the relational algebra that will find the tuples with the nth largest A-values.

