
BEAS: Bounded Evaluation of SQL Queries

Yang Cao1,2, Wenfei Fan1,2, Yanghao Wang1, Tengfei Yuan1, Yanchao Li3, Laura Yu Chen4

1School of Informatics, University of Edinburgh 3Nanjing University of Science and Technology
2RCBD and SLISDE, Beihang University 4Huawei America Research Center

{yang.cao@, wenfei@inf., yanghao.wang@, tengfei.yuan@}ed.ac.uk
leeyc.gm@gmail.com Yu.Chen1@huawei.com

ABSTRACT
We demonstrate BEAS, a prototype system for querying re-
lations with bounded resources. BEAS advocates an uncon-
ventional query evaluation paradigm under an access schema
A, which is a combination of cardinality constraints and as-
sociated indices. Given an SQL query Q and a dataset D,
BEAS computes Q(D) by accessing a bounded fraction DQ

of D, such that Q(DQ) = Q(D) and DQ is determined by A
and Q only, no matter how big D grows. It identifies DQ by
reasoning about the cardinality constraints of A, and fetches
DQ using the indices of A. We demonstrate the feasibility of
bounded evaluation by walking through each functional com-
ponent of BEAS. As a proof of concept, we demonstrate how
BEAS conducts CDR analyses in telecommunication industry,
compared with commercial database systems.

Keywords
Bounded evaluation, resource bounded SQL evaluation

1. INTRODUCTION
Querying big relations is often beyond reach for small com-

panies. It may take hours to join tables of millions of tuples.
Given a query Q and a dataset D, it is NP-complete to de-
cide whether a tuple is in Q(D) when Q is in SPC (selection,
projection, Cartesian product). It is PSPACE-complete for Q
in relational algebra [1]. One might think that parallelism
would solve the problem by using more processors. However,
small companies can often afford only limited resources.

Is it feasible to query big data with bounded resources?
One approach to addressing this challenge is based on

bounded evaluation [9, 8, 6, 7, 5]. The idea is to use an access
schema A over a database schema R, which is a combination
of cardinality constraints and associated indices. A query Q
is boundedly evaluable under A if for each instance D of R
that conforms to A, there exists a small DQ ⊆ D such that

◦ Q(DQ) = Q(D), and
◦ the time for identifying DQ is decided by Q and A.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882942

Intuitively, DQ consists of only data needed for answering Q.
Its size |DQ| is determined by Q and A only, not by |D|.
BEAS. As a proof of concept of [9, 8, 6, 7, 5], we have devel-
oped BEAS [4], a prototype system for Bounded EvAluation
of SQL. BEAS has the following unique features that differ
from conventional query evaluation paradigm and DBMS.

(1) Quantified data access. BEAS identifies DQ by reasoning
about the cardinality constraints in A, and fetches DQ by
using the indices in A. In the process it deduces a bound M
on the amount of data to be accessed, and can hence decide
whether Q is boundedly evaluable before Q is executed.

(2) Reduced redundancy. Leveraging A, BEAS fetches only
distinct partial tuples needed for answering Q. This reduces
duplicated and unnecessary attributes in tuples fetched
by traditional DBMS. It also reduces joins, in which the
redundancies get inflated rapidly (see an example shortly).

(3) Scalability. Putting these together, BEAS computes Q(D)
by accessing a bounded fraction DQ of D, no matter how
big D grows. Hence to an extent, it makes big data analysis
possible for small businesses with bounded resources.

(4) Ease of use. BEAS can be built on top of any conven-
tional DBMS, and make seamless use of existing optimization
techniques of DBMS. This makes it easy to extend DBMS

with the functionality of bounded evaluation.

One of our industry collaborators has deployed and tested
a prototype of BEAS, and found that BEAS outperforms
commercial DBMS for more than 90% of their queries, with
speedup from 25 times up to 5 orders of magnitude.

Demo overview. We demonstrate the bounded evaluation
functionality of BEAS in two parts. (1) To illustrate how
bounded evaluation works, we walk through each functional
component of BEAS, from access schema discovery and main-
tenance to bounded query plan generation and execution.
(2) To demonstrate the performance of BEAS, we adopt a
real-life scenario from telecommunication industry for CDR
(call detail record) analyses, and visualize how different query
plans perform compared with commercial DBMS.

Below we first present the foundation (Section 2) and the
functional components (Section 3) of BEAS. We then propose
a more detailed demonstration plan (Section 4).

2. FOUNDATIONS OF BEAS
We start with a review of access schema and bounded

evaluability [5, 9, 8], which are the foundations of BEAS.

Access schema. Over a database schema R, an access con-
straint ψ is of the form R(X → Y,N), where R is a relation

in R, X,Y are sets of attributes of R, and N is a natural
number [5, 8, 9]. A relation instance D of R conforms to ψ if

◦ for any X-value ā in D, |DY (X = ā)| ≤ N , where
DY (X = ā) = {t[Y] | t ∈ D, t[X] = ā}; and
◦ there exists an index on X for Y that given an X-value
ā, retrieves DY (X = ā) by accessing at most N tuples.

That is, for any given X-value, there exist at most N distinct
corresponding Y values in D (cardinality constraint), and
the Y values can be fetched by using the index for ψ (index).

An access schema A over R is a set of access constraints
over R. A database instance D of R conforms to A, denoted
by D |= A, if D conforms to each constraint in A.

Example 1: Consider a commercial benchmark of schema
R0 from a telecommunication company (name withheld). It
includes three (simplified) relations: (a) call(pnum, recnum,
date, region), recording that number pnum called recnum in
region on date; (b) package(pnum, pid, start, end, year), saying
that pnum is in service package pid from month start to end in
year; and (c) business(pnum, type, region) says that business
number pnum in region is of type, e.g., bank, hospital.

An access schema A0 over R0 includes:

◦ ψ1: call({pnum, date} → {recnum, region}, 500),
◦ ψ2: package({pnum, year} → {pid, start, end}, 12), and
◦ ψ3: business({type, region} → pnum, 2000).

Here (1) access constraint ψ1 states that each number calls
at most 500 distinct numbers in a region per day; (2) ψ2 says
that each number can be in at most 12 distinct packages per
year since it has to stay in each package for at least a month;
and (3) ψ3 states that for each type in each region, there are
at most 2000 businesses of the same type. Constants 500 and
2000 are upper bounds aggregated from historical datasets.

Given a pnum and date, the index for ψ1 retrieves all dis-
tinct (recnum, region) pairs from relation call, at most 500
(partial) call tuples; similarly for indices of ψ2 and ψ3. 2

Bounded evaluability. Underlying BEAS is the theory of
bounded evaluability [8, 6, 5]. Given an access schema A and
a query Q, the key idea is to generate a bounded query plan
that accesses data quantified by A, as illustrated below.

Example 2: Consider a benchmark query Q to find regions
in which there are numbers that were called by some business
number x on date d0 in 2016, where x was (a) of business
type t0, (b) in region r0, and (c) in service package c0:
select call.region
from call, package, business
where business.type = t0 and business.region = r0 and

business.pnum = call.pnum and call.date = d0 and
call.pnum = package.pnum and package.year = 2016
and package.start ≤ d0 and package.end ≥ d0
and package.pid = c0

Under access schema A0 given in Example 1, Q has a
bounded query plan and can be answered as follows:

(1) Fetch a set T1 of at most 2000 pnum’s from relation
business by using the index for ψ3 with key (t0, r0).

(2) For each pnum in T1, fetch at most 12 distinct (pid, start,
end) triples using the index for ψ2 with key (pnum, 2016),
yielding a set T2 of at most 2000× 12 partial package tuples.

(3) Select pnum’s from T2 with start ≤ d0 ≤ end and pid = c0.

(4) For each pnum selected in (3), fetch at most 500 (recnum,
region) pairs from relation call using the index for ψ1 with
key (pnum, d0). This yields a set T4 of region’s as the query
answer, by accessing at most 500× 2000× 12 call tuples.

Figure 1: Architecture of BEAS

The bounded plan accesses a set DQ of at most 2000 partial
business tuples, 24000 package tuples and 12 million call tuples
in total, no matter how big the relations are.

Note that BEAS fetches partial tuples instead of entire tu-
ples and avoids joining big relations, e.g., it replaces the join of
package and call (each may have billions of tuples) by a fetch
of 24000 tuples and selection in steps (2) and (3) above. 2

Query Q is boundedly evaluable under A if it has a bounded
query plan in which each fetch operation is controlled by an
access constraint of A, e.g., steps (1), (2), (3) in the plan of
Example 2 by ψ3, ψ2, ψ1, respectively (see [8, 5] for details).

As illustrated in Example 2, if Q is boundedly evaluable,
then (a) the amount |DQ| of data accessed can be deduced
from the cardinality in A. Moreover, DQ is determined by Q
and A only, no matter how big D is. This allows us to answer
Q with bounded resources. (b) A bounded query plan fetches
distinct partial tuples. It reduces redundancies introduced by
irrelevant and duplicated attributes, and their inflation by
joins. Hence bounded evaluation may substantially improve
the scalability and efficiency of query evaluation.

While desirable, it is undecidable to determine whether an
SQL query is boundedly evaluable under an access schema
[8]. Nonetheless, we can still make practical use of bounded
evaluation due to the existence of an effective syntax.

Theorem 1 [Feasibility Theorem [5]]: Under access
schema A, there is a class of queries covered by A such that

(1) an RA query Q is boundedly evaluable under A if and
only if there exists an RA query Q′ that is covered by
A such that Q(D) = Q′(D) for all D |= A; and

(2) it is in PTIME to decide whether Q is covered by A.2

That is, Q is boundedly evaluable if and only if it can
be rewritten into an equivalent Q′ covered by A. In other
words, covered queries make the core subclass of boundedly
evaluable queries in relational algebra, without sacrificing
their expressive power. This is along the same lines as the
study of (undecidable) safe relational calculus queries [1].

BEAS extends Theorem 1 to SQL queries, and extends
DBMS with a bounded evaluation functionality as follows:

(1) given an SQL query Q, BEAS first checks whether Q is
covered by the access schema A available; if so

(2) it generates a bounded query plan and computes exact
answers to Q within bounded resources;

(3) otherwise, it generates partially bounded plans and uses
DBMS to compute exact answers (see Section 3).

Algorithms for checking the bounded evaluability and for
generating bounded query plans have been reported in [7, 5].

3. THE ARCHITECTURE OF BEAS
As shown in Fig. 1, BEAS consists of three major com-

ponents: (1) offline service AS Catalog to manage access

Figure 2: BEAS user interface

schema for different applications; and (2) online service
BE Query Planner and BE Plan Executor to process SQL
queries. It can be built on top of any commercial DBMS.

AS Catalog. It consists of three modules itself.

(1) Metadata module. It maintains (a) access schema, and (b)
statistics including the index size in a system table as catalog,
for query plan generation and optimization.

(2) Discovery module. Given an application, it automatically
discovers an access schema from its real-life datasets. It is
a multi-criteria optimization problem that covers (a) the
performance of bounded evaluation of the query load, (b)
storage limit for indices, (c) historical query patterns, and
(d) statistics of datasets in the application.

For each access constraint ψ = R(X → Y,N) discovered,
its index on a relation D of R is a modified hash index such
that (a) it takes attributes X as the key; and (b) each key
value ā points to a bucket DY (X = ā) (see Section 2), the
set of at most N distinct Y -values in D corresponding to ā.

(3) Maintenance module. It maintains access schema A in
response to changes to query loads and datasets in each ap-
plication. It (a) periodically adjusts constraints in A based on
the changes to the historical queries, to optimize the perfor-
mance of bounded evaluation; and (b) incrementally updates
the indices of A in response to changes to the datasets.

BE Query Planner. It also has three modules.

(1) BE Checker checks whether an input SQL query Q is
boundedly evaluable under the access schema discovered. A
checking algorithm has been reported in [5] for RA, based
on the effective syntax of the Feasibility Theorem. BEAS
extends the algorithm to (possibly aggregate) SQL queries.

(2) BE Plan Generator generates (a) a bounded query plan
for Q if Q is found boundedly evaluable by BE Checker, by
extending the bounded-plan generation algorithm reported
in [5] from RA to SQL; and (b) if Q is not bounded, it picks
a conventional query plan for Q generated by the underlying
DBMS, and applies BE Plan Optimizer to it (see below).

As shown in Example 2, a bounded plan consists of rela-
tional algebra operators [10] (i.e., select, project, join, union
and set difference), aggregates, group-by, and a new operator
fetch(X ∈ T, Y,R) with access constraint R(X → Y,N),
which fetches all Y -values corresponding to the X-values in
intermediate results T . It accesses data only via fetch oper-
ations, and answers Q by using a bounded amount of data.

(3) BE Plan Optimizer improves the conventional plan of
the DBMS for Q when Q is not bounded, to support partially
bounded evaluation. It identifies sub-queries of Q that are
boundedly evaluable under access schema A, and speeds up
the evaluation of Q by capitalizing on the indices of A.

BE Plan Executor. It executes bounded query plans by
extending the physical plan implementation of DBMS [10] to
support the fetch operator. For each fetch(X ∈ T, Y,R) with
access constraint R(X → Y,N) in a bounded plan, where T
is an intermediate relation, it fetches all associated Y values
for each X value ā in T by using the modified hash index for
ψ with key ā, and returns their union (see Section 2).

Observe the following. (1) The design of BE Query Planner
and BE Plan Executor allows us to implement BEAS on top
of any DBMS. It is also easy to add other modules to DBMS,
e.g., resource-bounded approximation. (2) There have been
recent efforts to query big relations with limited resources,
e.g., BlinkDB [2] and PIQL [3]. These systems, however,
focus on approximate query answering, by sampling [2] or by
restricting the fetched data with a user specified bound [3]
in the flavor of anytime algorithms [11]. In contrast, BEAS
introduces access schema and aims to provide exact query
answers with bounded resources as much as possible.

4. DEMONSTRATION OVERVIEW
We next present our plan to demonstrate the feasibility of

bounded evaluation and the performance of BEAS for exact
SQL query answering, compared with commercial DBMS.

We have implemented BEAS on top of PostgreSQL 9.4.6.
We have also created a demo portal as shown in Fig. 2, via
which the audience will be able to interact with BEAS. It

Figure 3: Performance analysis of Q in Example 2

is deployed at a workstation with Xeon E3-1535M@2.9GHz
CPU, 64GB of memory and 1.5TB of disk.

(1) A walk through. We visualize and demonstrate each
major component of bounded evaluation underlying BEAS.

(a) Bounded evaluability checking. As shown in Fig. 2(A),
the audience will be invited to enter an SQL query Q, select
a dataset, pick an access schema A discovered, and check
whether Q is boundedly evaluable under A using BE Checker.
Users can also enter a budget on the amount of data to be
accessed, and use BE Checker to find whether Q can be
answered within the budget under A, without executing Q.

(b) Bounded planning and optimization. As shown in

Fig. 2(B), when Q is boundedly evaluable under A, the
users will see a bounded query plan suggested by BE Plan
Generator, in which each fetch operation is annotated with
an upper bound on the amount of data to be fetched. The
upper bound is deduced by reasoning about A.

If Q is not bounded, BEAS picks a query plan ξ generated
by PostgreSQL. BE Plan Optimizer then makes ξ partially
bounded by identifying bounded sub-queries of Q under A.

(c) Analysis. After a query plan is carried out by BE Plan

Executor, a performance analysis is provided (Fig. 2(C)).

(d) Access schema management. As offline services, (i) the
discovery module of BEAS takes as input a dataset D, a set
Q of query patterns, and a choice of the objective function; it
discovers an access schema A and register it by AS Catalog
(Fig. 2(D)). For instance, Figure 2(E) shows part of an access
schema discovered. (ii) The maintenance module automati-
cally updates A in response to changes to D and queries. It
also allows users to add or remove access constraints.

(2) Performance. We demonstrate how BEAS works in prac-
tice using a commercial benchmark, denoted by TLC, from a
telecommunication company (name withheld), and compare
its performance with PostgreSQL, MySQL and MariaDB.

Telecommunication. TLC has 12 relations with 285 attributes
in total. It has 11 built-in queries, simulating industrial data
analytical jobs in real-life mobile communication scenarios,
e.g., query Q given in Example 2. We will see that these
analytical queries are actually boundedly evaluable under a
small access schema. In contrast, conventional DBMS may
access almost the entire database to answer these queries.

Efficiency. The users are invited to interact with BEAS, pick
built-in queries or enter their own queries, and examine the

1 10 50 100 200
Size of TLC (GB)

0

1000

2000

3000

4000

5000

6000

7000

Q
u

e
ry

 T
im

e
 (

se
co

n
d

s)

0
.1

0
.4

0
.7

0
.9

1
.1

8
.8 9
1

.5 4
5

9
.7 9
3

3
.6

1
9

3
2

.5

2
8

.8 3
1

3
.3

1
5

4
2

.6

3
0

6
9

.8

6
1

8
7

.6

2
2

.4 2
4

4
.0

1
2

7
7

.7

2
5

7
8

.3

5
2

4
3

.8

BEAS

PostgreSQL

MySQL

MariaDB

Figure 4: Scalability comparison

effectiveness of bounded evaluation. For instance, for query
Q of Example 2 on a TLC dataset D of 20GB, a snapshot
of the BEAS performance analyzer is given in Fig. 3, which
shows that BEAS is 1953, 6562 and 5135 times faster than
PostgreSQL, MySQL and MariaDB, respectively. It details
(a) the overall execution time, acceleration ratio compared to
commercial DBMS, the total number of tuples fetched and the
number of access constraints employed; and (b) a breakdown
of the cost to each individual operation in the query plan,
compared to its counterpart in plans generated by commercial
DBMS. It illustrates why BEAS works better.

Scalability. The audience will also witness the scalability of
BEAS by scaling up the datasets. Figure 4 shows the evalua-
tion time of Q of Example 2 with BEAS, PostgreSQL, MySQL
and MariaDB when varying TLC from 1GB to 200GB. One
can see that BEAS consistently takes about 1s when D varies,
and is hence “scale-independent”. In contrast, PostgreSQL,
MySQL and MariaDB grow to 1932s, 6187s and 5243s, re-
spectively, if we allow them to run to completion.

Acknowledgments. Cao, Fan, Wang and Yuan are sup-
ported in part by ERC 652976, NSFC 61421003, 973 Program
2014CB340302, EPSRC EP/M025268/1, Shenzhen Peacock
Program 1105100030834361, Guangdong Innovative Research
Team Program 2011D005, the Foundation for Innovative Re-
search Groups of NSFC, Beijing Advanced Innovation Center
for Big Data and Brain Computing, and two Innovative Re-
search Grants from Huawei Technologies. Can and Wang are
also supported in part by NSFC 61602023.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. BlinkDB: Queries with bounded errors and
bounded response times on very large data. In EuroSys, 2013.

[3] M. Armbrust, S. Tu, A. Fox, M. J. Franklin, D. A. Patterson,
N. Lanham, B. Trushkowsky, and J. Trutna. PIQL:
a performance insightful query language. In SIGMOD, 2010.

[4] BEAS. http://139.196.196.250:8000/BEAS.

[5] Y. Cao and W. Fan. An effective
syntax for bounded relational queries. In SIGMOD, 2016.

[6] Y. Cao, W. Fan, F. Geerts, and
P. Lu. Bounded query rewriting using views. In PODS, 2016.

[7] Y. Cao, W. Fan, T. Wo,
and W. Yu. Bounded conjunctive queries. PVLDB, 2014.

[8] W. Fan, F. Geerts, Y. Cao, and T. Deng.
Querying big data by accessing small data. In PODS, 2015.

[9] W. Fan, F. Geerts, and L. Libkin. On
scale independence for querying big data. In PODS, 2014.

[10] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill Higher Education, 2000.

[11] S. Zilberstein. Using anytime
algorithms in intelligent systems. AI magazine, 17(3), 1996.

