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Abstract

Databases in an enterprise are oftenpartially closed: parts of their data must be contained in master data, which has complete infor-
mation about the core business entities of the enterprise. With this comes the need for studyingrelative information completeness: a
partially closed database is said to becompletefor a queryrelative tomaster data if it has complete information to answer the query,
i.e., extending the database by adding more tuples either does notchange its answer to the query or makes it no longer partially
closedw.r.t. the master data. This paper investigates three problems associated with relative information completeness. Given a
queryQ and a partially closed databaseD w.r.t. master dataDm, (1) therelative completenessproblem is to decide whetherD
is complete forQ relative toDm; (2) theminimal completenessproblem is to determine whetherD is a minimal database that is
complete forQ relative toDm; and (3) thebounded extensionproblem is to decide whether it suffices to extendD by adding at
mostK tuples, such that the extension makes a partially closed database that is complete forQ relative toDm. While the combined
complexity bounds of the relative completeness problem andthe minimal completeness problem are already known, neither their
data complexity nor the bounded extension problem has been studied. We establish upper and lower bounds of these problems for
data complexity, all matching, forQ expressed in a variety of query languages.
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1. Introduction

When we query a database, we naturally expect the database
to have complete information for answering our query. How-
ever, databases in the real world are often incomplete, from
which tuples are missing. Indeed, it is estimated that “pieces
of information perceived as being needed for clinical decisions
were missing from 13.6% to 81% of the time” [27].

This gives rise to the following question: for a given queryQ,
can its complete answer be found from an incomplete database
D? That is, the answer toQ in D remains unchanged no mat-
ter howD is extended by adding new tuples. In other words,
althoughD is generally incomplete, it still possesses sufficient
information to answerQ. The need for studying this problem
is evident in practice: ifD does not have complete information
for answeringQ, one can hardly expect that the answer toQ in
D is complete or even correct.

The traditional Closed World Assumption (CWA) or the Open
World Assumption (OWA) does not help us here. TheCWA as-
sumes that a database contains all the tuples representing real-
world entities,i.e., it assumes that no tuples are missing from a
database. As remarked earlier, this rarely happens in practice.
The OWA assumes thattuplesrepresenting real-world entities
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may bemissing, but we cannot do much about it (see [2, 34] for
surveys). Indeed, for few sensible queriesQ and databasesD,
adding tuples toD does not change the answer toQ in D.

The good news is that real-life databases areneitherentirely
closed-worldnor entirely open-world, in light of the increasing
use of master data management (MDM [26]) systems provided
by, e.g.,IBM , SAP, Microsoft and Oracle. An enterprise nowa-
days typically maintainsmaster data(a.k.a. reference data), a
single repository of high-quality data that provides various ap-
plications with a synchronized, consistent view of its corebusi-
ness entities. Master data consists of a closed-world database
Dm about the enterprise in certain aspects,e.g.,employees and
products. Other databases of the enterprise arepartially closed
w.r.t.Dm: parts of their data are contained inDm, e.g.,employ-
ees and products, while the other parts are not constrained by
Dm and are open-world,e.g.,product shipments.

To understand partially closed databases, relative informa-
tion completeness has been proposed in [12] and studied
in [13, 14]. For a databaseD and master dataDm, a setV
of containment constraintsis used to specify thatD is partially
constrained byDm. A containment constraint is of the form
q(D)⊆p(Dm), whereq is a query in a languageLQ andp is a
simple projection query onDm. Intuitively, the part ofD that
is constrained byV is bounded byDm, while the rest is open-
world. We refer to a databaseD that satisfies all containment
constraints inV as apartially closeddatabasew.r.t. (Dm,V ).

For a queryQ and a partially closed databaseD w.r.t. master
data(Dm,V ), D is said to becomplete relative to(Dm,V ) if
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for all databasesD′, Q(D)=Q(D′) as long asD⊆D′ andD′

is also partially closedw.r.t. (Dm,V ). That is, whenDm is as-
serted as an “upper bound” of certain information inD, the an-
swer toQ remains unchanged no matter howD is extended. In
other words, adding tuples toD either does not change the an-
swer toQ, or makes it no longer partially closedw.r.t. (Dm,V ).

It is likely to find complete answer to a query in a partially
closed databaseD, even whenD is generally incomplete, as
illustrated by the following example.

Example 1. Consider a (simplified) product relation of Ama-
zon, specified by the following schema:

product(asin, brand, model, price, sale),

where each item is specified by its id (asin), brand, model and
price. A flag sale indicates whether the item is on sale or not.
Consider the following queries.

(1) QueryQ1 is to find all wireless reading devices that have
brand = “Nook” and price≤150, but arenot on sale by Sony.
The answer toQ1 in theproduct relation may not be complete.
Indeed, Nook is a brand of Sony, and Amazon may not carry
all the products of Sony. Worse still, the answer may not even
be correct: the chances are that some device found byQ1 is
actually on sale by Sony, when Amazon does not have complete
information about Sony products that are on sale.

(2) QueryQ2 is the same asQ1 except that it asks forbrand =
“Kindle” instead. In contrast toQ1, we may trust the answer to
Q2 in product to be complete. That is, even though theproduct

relation is incomplete in general, we can still find the complete
answer toQ2 in it. Indeed, “Kindle” is Amazon’s own brand
name, and Amazon maintains complete “master data” about its
own products and their promotion sales. In other words, relative
to Amazon’s master data, theproduct relation is complete for
Q2 provided thatproduct contains all the information relevant
to “Kindle” and sales from the master data.

(3) QueryQ3 is to find all wireless reading devices withbrand

= “Nook” and model = “PRS-600”. One can conclude that
the answer toQ3 in product is complete as long as the answer
is nonempty, since (brand,model→asin, price, sale) is a func-
tional dependency (FD) defined onproduct. Note that in the
presence of theFD, when the answer toQ3 is empty, we can
makeproduct complete forQ3 by including at most one tuple
with brand = “Nook” andmodel = “PRS-600”. In Example 2,
we will show that theFD given above can be expressed as three
containment constraints. �

The analysis of relative information completeness has been
studied in [12, 13, 14], for combined complexity. In practice,
one often has to deal with a predefined set of queries. That
is, the queries are fixed, and only the underlying databases
vary. For instance, the queries given in Example 1 can be is-
sued by using fixed Web forms provided by Amazon’s Web
site. In practice, when queries are fixed, so are the associated
constraints. Indeed, people typically first design constraints
based on the schema of a database, and then populate and main-
tain database instances. This highlights the need for studying

the data complexity of relative information completeness,for a
fixed set of queries and a fixed set of containment constraints.

Contributions. Adopting the model of relative information
completeness of [12, 14], we study thedata complexityof the
following problems associated with relative information com-
pleteness. LetLQ be a query language.

(1) The relative completeness problem(RCP(LQ)) is to deter-
mine, for a fixed queryQ in LQ and a fixed setV of contain-
ment constraints, given master dataDm and a databaseD par-
tially closedw.r.t. Dm andV , whetherD is complete forQ
relative to(Dm,V ). That is, we want to find out whether the
answer toQ in D is complete whenD is possibly incomplete.

(2) The minimal completeness problem(MinP(LQ)) is to de-
cide, for a fixed queryQ in LQ and fixedV , givenDm and
D as above, whetherD is a minimal database partially closed
w.r.t. (Dm,V ) and is complete forQ relative to(Dm,V ). That
is, removing any tuple fromD would make it incomplete forQ
relative to(Dm,V ). Intuitively, we want to know whetherD
has redundant data when answeringQ is concerned.

(3) The bounded extension problem(BEP(LQ)) is to deter-
mine, for a fixed queryQ in LQ and fixedV , givenDm and
D as above and a nonnegative integerK, whether there exists
an extensionD′ ofD by adding at mostK tuples such thatD′ is
partially closedw.r.t.Dm andV , and moreover,D′ is complete
for Q relative to(Dm,V ). Intuitively, whenD may not have
complete information to answerQ, we want to know whether
D can be “made” complete forQ by adding at mostK tuples.

The study of these problems helps us find out whether we can
get the complete answer to a set of predefined queries in a pos-
sibly incomplete database, what excessive data is in a database
for answering the queries, and how we can make a database
complete for the queries by minimally extending the database.

We parameterize each of these problems with various query
languagesLQ in which queryQ and the queryq of containment
constraintq(D)⊆p(Dm) in V are expressed. We consider the
following LQ, all with equality ‘=’ and inequality ‘6=’:

• conjunctive queries (CQ),

• union of conjunctive queries (UCQ),
• first-order queries (FO), and

• datalog (DATALOG).

(4) Complexity results. We establish upper and lower bounds of
these problems parameterized with these languages,all match-
ing, for theirdata complexity. We show the following.

(1) It is known that the combined complexity analyses of
RCP(LQ) andMinP(LQ) are undecidable [12, 13, 14], when
LQ is FO or DATALOG. We show that fixing queryQ and con-
tainment constraintsV does not make our lives easier here.
That is, the data complexity analyses ofRCP(LQ), MinP(LQ)
and BEP(LQ) are all undecidable whenLQ is either FO or
DATALOG. Furthermore, these complexity results are rather ro-
bust: all these problems remain undecidable forFO when mas-
ter dataDm and containment constraintsV are both absent, and
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for DATALOG when master dataDm is absent and containment
constraintsV are a fixed set ofFDs.

(2) In contrast, whenLQ is CQ or UCQ, their data complexity
becomes much lower:RCP(LQ) andMinP(LQ) are tractable;
while BEP is NP-complete, it becomes tractable whenK is
fixed, i.e., when the number of tuples added to databaseD is
bounded by a constant. Compare these with their combined
complexity: RCP(LQ) is Πp

2-complete forCQ and UCQ [12,
14], andMinP(LQ) is ∆p

3-complete forCQ andUCQ [13].

(3) The data complexity results of this paper remain unchanged
no matter whether the language for expressing queryq in con-
tainment constraintsq(D)⊆p(Dm) is CQ, UCQ, FO or DATA-
LOG. Indeed, (a)RCP(LQ), MinP(LQ) andBEP(LQ) are un-
decidable forFO when master dataDm and containment con-
straints inV are absent, and forDATALOG whenDm is absent
andV is a fixed set ofFDs, while FDscan be expressed usingq
in CQ. (b) WhenLQ is CQor UCQ, the algorithms for the upper
bound proofs in Section 5 have the same data complexity when
q is expressed inCQ, FO or DATALOG. Indeed, checking fixed
containment constraints is inPTIME no matter whether the con-
straints are defined with queries inFO or DATALOG. In light of
this, we can assumew.l.o.g.that containment constraints are de-
fined with queries in the same language that expresses queryQ.

Taken together with the combined complexity bounds es-
tablished in [12, 13, 14], these results provide a comprehen-
sive picture of complexity bounds for important decision prob-
lems in connection with relatively complete information. While
the combined complexity bounds ofRCP(LQ) andMinP(LQ)
have been settled in [12] and [13], respectively, no previous
work has studied their data complexity. Furthermore, we are
not aware of any previous work that has consideredBEP(LQ),
an interesting and practical issue. A variety of techniquesare
used to prove the results, including constructive proofs with al-
gorithms and a wide range of reductions.

Related work. The model of relative information completeness
was introduced in [12], which we use in this work. The com-
bined complexity analysis ofRCP(LQ) was shown to be un-
decidable forFO andDATALOG, andΠp

2-complete forCQ and
UCQ in [12, 14], referred to as the relatively complete database
problem there. In contrast, we show that while the data com-
plexity analysis ofRCP(LQ) remains undecidable forFO and
DATALOG, it is down toPTIME for CQ andUCQ. The proofs
for the data complexity bounds make use of the characterization
developed in [12, 14], but are more involved than their counter-
parts for the combined complexity. A revision ofRCP(LQ) is
studied in [18] for data exchange, a very different setting;no
data complexity results are given there.

The model of [12] was extended in [13] by incorporating
missing values in terms of representations systems, which we
do not consider in this work. The combined complexity of
MinP(LQ) was studied there, referred to as the minimality
problem; it was shown to be undecidable forFOandDATALOG,
and∆p

3-complete forCQ andUCQ. In this work we show that
the data complexity analysis ofMinP(LQ) remains undecid-
able forFOandDATALOG, and it becomes tractable forCQ and

UCQ. Again, the proofs ofMinP(LQ) in this work are rather
different from their counterparts in [13].

To the best of our knowledge, no previous work has stud-
ied either the bounded extension problemBEP(LQ) or the data
complexity ofRCP(LQ) andMinP(LQ). A problem, referred
to as the boundedness problem, was studied in [13], which is
to decide, given a queryQ, master dataDm and a constantK,
whether there exists a partially closed databaseD of sizeK
such thatD is complete forQ relative to(Dm,V ). Note that
BEP(LQ) takes an existing databaseD as input and looks for
bounded extensions ofD. The boundedness problem of [13] is
a special case ofBEP(LQ), whenD is empty. The proof of [13]
for the boundedness problem does not carry over toBEP(LQ).

A few other problems were investigated in [12, 13, 14],
to decide,e.g.,givenQ andDm, whether there exists a par-
tially closed database such thatD is complete forQ relative to
(Dm,V ). We do not consider those problems in this work since
their data complexity analysis is not very sensible in practice.

Several approaches have been proposed to represent or query
databases with missing tuples. In [35], a complete and consis-
tent extension of an incomplete databaseD is defined to be a
databaseDc such thatD⊆πL(Dc) andDc |=Σ, whereπ is the
projection operator,L is the set of attributes inD, andΣ is a
set of integrity constraints. Complexity bounds for computing
the set of complete and consistent extensions ofD w.r.t. Σ are
established there. A notion ofopen nullis introduced in [19]
to model locally controlled open-world databases: parts ofa
databaseD, values or tuples, can be marked with open null
and are assumed open-world, while the rest is closed. Rela-
tional operators are extended to tables with open null values.
In contrast to [19], this work aims to model databases partially
constrained by master dataDm and consistency specifications,
both via containment constraints. In addition, we study deci-
sion problems that are not considered in [19].

Partially complete databasesD have also been studied in
[29], which assumes a virtual databaseDc with “complete in-
formation”, and assumes that part ofD is known as a view of
Dc. It investigates the query answer completeness problem, the
problem for determining whether a query posed onDc can be
answered by an equivalent query onD. In this setting, the prob-
lem can be reduced to query answering using views. Along the
same lines, [23] assumes thatD contains someCQviews ofDc.
It reduces the query answer completeness problem to the inde-
pendence problem for deciding independence of queries from
updates [24]. As opposed to [23, 29], we assume neitherDc

with complete information nor that an incomplete databaseD
contains some views ofDc. Instead, we considerDm as an
“upper bound” of certain information inD. Moreover, the de-
cision problems studied here can be reduced to neither the query
rewriting problem nor the independence problem (see below).

We now clarify the difference between our decision prob-
lems and the independence problem (e.g.,[9, 24]). The latter
is to determine whether a queryQ is independent of updates
generated by another queryQu, such thatfor all databasesD,
Q(D)=Q(D⊕∆), where∆ denotes updates generated byQu.
In contrast, we study problems to decide, for a fixed queryQ,
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(a) whether a given databaseD is relatively completew.r.t.mas-
ter data, whereD andDm satisfy containment constraintsV ;
(b) whether a givenD is a minimal witness forQ to be rela-
tively complete, and (c) whetherD can be minimally extended
such that it is relatively complete forQ w.r.t. master data. Due
to the difference between the problems, results for the indepen-
dence problem do not carry over to ours, and vice versa.

A revision of the models of [23, 12, 29] has recently been
introduced in [31], to study partially complete databases.The
problems investigated there are quite different fromRCP(LQ),
MinP(LQ) andBEP(LQ) considered in this work.

One may also think of an incomplete database as a “view” of
a database with complete information. There has been a large
body of work on answering queries using views (e.g., [1, 5,
25, 32]), to determine certain answers [1], compute complete
answers from views with limited access patterns [7, 25], or to
decide whether views determine queries [32] or are lossless[5].
This work differs from that line of research in that one may
not find a definable view to characterize a relatively complete
databaseD in terms of the database with complete information.
Indeed,D is only partially constrained by master dataDm via
containment constraints, whileDm itself may not contain the
complete information of the entities thatD intends to represent.

There has also been work on modeling negative information
and incomplete information via logic programming (see [34]
for a survey). For instance, protected circumscription is studied
in [28], where databases may contain null values that are not
known to be true or false under the closed world assumption.
The prior work considers neither partially complete databases
nor the decision problems studied in this work.

Representation systems have also been studied for incom-
plete information,e.g.,c-tables [20, 21]. Such systems aim to
represent databases with missing values rather than missing tu-
ples (see [2, 34] for surveys). Master data and the problems
investigated in this work are not considered in the prior work.

There has also been recent work on consistent query answer-
ing (e.g.,[3, 4, 6]). That is to decide whether a tuple is in the
answer to a query in every repair of a databaseD, where a re-
pair is a database that satisfies a given set of integrity constraints
and moreover, minimally differs from the originalD w.r.t.some
repair model. Master dataDm is not considered there, and we
do not consider repairs in this work. Note that most contain-
ment constraints in this paper arenot expressible as integrity
constraints studied for data consistency.

Organization. Section 2 reviews the model of relative com-
pleteness. Section 3 states the decision problems studied in this
paper. Section 4 provides the undecidability results forFO and
DATALOG, followed by the decidable cases forCQ andUCQ in
section 5. Finally, Section 6 summarizes the main results ofthe
paper and identifies open questions.

2. Relative Information Completeness

In this section, we review the model of relative completeness
proposed in [12]. We start with basic notations.

Databases and master data. A database is specified by a re-
lational schemaR, which is a collection of relation schemas
(R1, . . . ,Rn). Each schemaRi in R is defined over a fixed set
of attributes. For each attributeA of R, its domain is specified
in R, denoted bydom(A). To simplify the discussion we as-
sume that all attributes have a countably infinite domaind, a
setting commonly adopted in database theory (see,e.g.,[2]).

A relation (instance) over a relation schemaR(A1, . . . ,Am)
is a finite setI of m-arity tuplest(a1, . . . ,am) such that for
eachi∈ [1,m], ai is in dom(Ai). A database (instance) over a
relational schemaR=(R1, . . . ,Rn) is a collection of finite sets
(I1, . . . ,In), where eachIi is a relation overRi.

We will use the following notion. Consider instancesD=
(I1, . . . ,In) andD′=(I ′1, . . . , I

′
n) of the same schemaR. We

say thatD is contained inD′, denoted byD⊆D′, if Ij⊆I ′j for
all j∈ [1,n]. If D⊆D′, we say thatD′ is anextensionof D.

Master data (a.k.a.reference data)Dm is specified by a rela-
tional schemaRm. As remarked earlier, an enterprise typically
maintains master data that is assumed consistent and complete
about certain information of the enterprise [8, 30]. We do not
impose any restriction on the relational schemasR andRm.

Partially closed database. DatabasesD are usually partially
constrained by master dataDm. We specified such relationship
betweenD andDm in terms ofcontainment constraints(CCs).
LetLC be a query language. ACCφ in LQ is of the form

q(R)⊆p(Rm),

whereq is a query inLQ defined over schemaR, andp is a
projection query over schemaRm. That is,p is a query of the
form ∃~x Rm

i (~x,~y) for some relation schemaRm
i in Rm.

Intuitively, constraintφ assures thatDm is an “upper bound”
of the information extracted byq(D). In other words, theCWA
is asserted forDm, which constrains the part of data identified
by q(D) from D. More specifically, while this part ofD can
be extended, the expansion cannot go beyond the information
already inDm. On the other hand, theOWA is assumed for the
part ofD that is not constrained by anyCCφ.

An instanceD of R and master data instanceDm of Rm

satisfyCCφ, denoted by(D,Dm) |=φ, if q(D)⊆p(Dm).

Example 2. Recall schemaproduct described in Example 1.
Suppose that there exists a master relationproductm spec-
ified by schemaRm(asin, model, price, sale), which main-
tains a complete record of Kindle products. We specify a
CC q(product)⊆Rm, whereq(product) is a query defined as
q(a,m,p,s)=∃b

(

product(a,b,m,p,s)∧b = ‘Kindle’
)

. This
CCassure thatproductm is an upper bound on the Kindle prod-
uct information possibly contained in relationproduct.

As shown in [12, 13] and as will be seen shortly, many in-
tegrity constrains commonly used in practice can be expressed
asCCs. For example, consider a functional dependency (FD)
ψ: (brand,model→ asin,price,sale), which assures that if two
products have the same brand and model, then they refer to the
same item with the same id, price and status of sale. Assume
that there exists an empty relationproduct∅ in master dataDm.
Thenψ can be written asCCsincluded inV :
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qasin(product)⊆product∅,

qprice(product)⊆product∅,

qsale(product)⊆product∅,

where

qasin(b,m) = ∃a1,a2,p1,p2,s1,s2 (product(a1, b,m,p1,s1)

∧product(a2, b,m,p2,s2)∧a1 6=a2),

which detects violations ofFD (brand,model→asin); similarly
one can specify the otherCCs qprice(product)⊆product∅ and
qsale(product)⊆product∅. �

We say thatD andDm satisfya setV of CCs, denoted by
(D,Dm) |=V , if for eachφ∈V , (D,Dm) |=φ.

A databaseD is said to be apartially closed w.r.t.(Dm,V )
if (D,Dm) |=V . That is, the information inD is partially
bounded byDm via theCCsin V .

A databaseD′ is a partially closed extensionof D w.r.t.
(Dm,V ) if D⊆D′ andD′ is partially closedw.r.t. (Dm,V ).

Relative completeness. We are now ready to introduce the no-
tion of relative information completeness. Consider a database
D of schemaR, master dataDm of schemaRm and a setV of
CCs, such thatD is partially closedw.r.t. (Dm,V ).

We say thatD is complete for queryQ relative to(Dm,V )
if Q(D)=Q(D′) for every partially closed extensionD′ of
D, i.e.,D⊆D′ such that(D′,Dm) |=V . Theset of complete
databasesfor Q w.r.t. (Dm,V ), denoted byRCQ(Q,Dm,V ),
is the set of all complete databases forQ relative to(Dm,V ).

Intuitively, if D is complete forQ relative to(Dm,V ), then
no matter howD is expanded by including new tuples, as long
as the extension does not violate containment constraintsV , the
answer to queryQ remains unchanged. In other words,D has
already got complete information for answeringQ.

To simplify the discussion, we assume that queryQ and the
CCsin V are expressed in the same languageLQ. As remarked
in Section 1, this does not lose generality. All the results of this
paper remain the same ifQ andV are expressed in the different
languagesCQ, UCQ, FO or DATALOG.

Example 3. Recall the Amazon instance ofproduct (also re-
ferred to asproduct), queriesQ1, Q2 andQ3 from Example 1,
and master dataproductm and CCs V from Example 2. As
shown in Example 1,product is complete forQ2 relative to
(productm,V ) if Q2(product) returns all wireless reading de-
vices inproductm with brand= “Kindle” and price≤150.

ConsiderQ3, to find all wireless reading devices withbrand

= “Nook” and model = “PRS-600”. Suppose that there exist
such device records inproductm, but Q3(product) is empty.
Then product is not complete forQ3. Nonetheless, we can
makeproduct complete forQ3 by adding at most one prod-
uct with brand=“Nook” and model= “PRS-600”. Indeed,V
includes theCCsencoding theFD ψ, assuring that there exists
at most one product with this brand and model. Thus the ex-
pandedproduct is complete forQ3 relative to(productm,V ).

In contrast, considerQ1, to find all wireless reading devices
that havebrand = “Nook” andprice≤150, but arenoton sale by
Sony. Then master dataproductm does not help when we want
to makeproduct complete:productm has no complete informa-
tion about Sony products withbrand = “Nook”. In this case we
cannot makeproduct complete forQ1 relative to(productm,V )
by adding tuples ofproductm to product. �

Relative completeness and consistency. Several classes of
constraints have been used to capture inconsistencies in rela-
tional data (seee.g.,[6, 10] for recent surveys), notably denial
constraints, conditional functional dependencies (CFDs, which
are an extension of functional dependencies (FDs)), and condi-
tional inclusion dependencies (CINDs, which are an extension
of inclusion dependencies (INDs)). As shown in [12, 14], de-
nial constraints andCFDscan be expressed asCCs in CQ, and
CINDs can be expressed asCCs in FO. Moreover, in all three
cases only an empty master data relation is required. This al-
lows us to capture both data consistency and relative informa-
tion completeness in a uniform logic framework [14].

3. Determining Relative Information Completeness

In this section, we formulate three decision problems in con-
nection with relative complete databases, each of them param-
eterized by a query languageLQ. Consider a queryQ∈LQ,
master dataDm, a setV of CCsdefined in terms of queries in
LQ, and a partially closed databaseD w.r.t. (Dm,V ).

The first problem is referred to as therelative completeness
problem. It is to decide whether a givenD is complete for a
queryQ relative to(Dm,V ). The need for studying this prob-
lem is evident: one naturally wants to know whether one can
trust their databases to yield complete answers to queries.

RCP(LQ): The relative completeness problem.
INPUT: A query Q∈LQ, master dataDm, a set

V of CCs in LQ, and a partially closed
databaseD w.r.t. (Dm,V ).

QUESTION: IsD in RCQ(Q,Dm,V )? That is, isD
complete forQ relative to(Dm,V )?

To decide what data should be collected in a database in order
to answer a queryQ, we want to identify a minimal amount of
information that is complete forQ. To capture this, we use a
notion of minimality given as follows.

A databaseD is calleda minimal database complete for a
queryQ relative to (Dm,V ) if it is in RCQ(Q,Dm,V ) and
moreover, for anyD′(D,D′ is not inRCQ(Q,Dm,V ).

These suggests that we study the following problem, referred
to as theminimal completeness problem.

MinP(LQ): The minimal completeness problem
INPUT: Q,Dm, V ,D as inRCP.

QUESTION: IsD a minimal database complete forQ
relative to(Dm, V )?

5



When a databaseD is not complete forQ, one naturally
wants to extendD with minimal information to make it com-
plete. We use∆D to denote a set of tuples to be inserted intoD
andD∪∆D to denote the database obtained by adding all tu-
ples of∆D toD. Given a positive integerK≥1, we call∆D a
bounded set of updatesfor (Q, Dm, V, D, K) if (a) |∆D|≤K,
and (b)D∪∆D is complete forQ relative to(Dm,V ).

There is practical need for studying the following problem,
referred to as thebounded extension problem. Indeed, this prob-
lem may assist practitioners to identify how much additional
data needs to be collected to make the database complete forQ.

BEP(LQ): The bounded extension problem
INPUT: Q,Dm, V andD as inRCP, and a positive

integerK≥0.

QUESTION: Does there exist a bounded set of up-
dates∆D for (Q,Dm,V,D,K)?

Query languages. We study these problems whenLQ ranges
over the following query classes (see,e.g.,[2], for the details):

(1) conjunctive queries (CQ), built up from atomic formulas
with constants and variables,i.e., relation atoms in database
schemaR, equality (=) and inequality (6=), by closing under
conjunction∧ and existential quantification∃;

(2) union of conjunctive queries (UCQ) of the formQ1∪·· ·∪
Qk, where for eachi∈ [1,k],Qi is in CQ;

(3) first-order logic queries (FO) built from atomic formulas us-
ing∧, ∨, negation¬, ∃ and universal quantification∀; and

(4) datalog queries (DATALOG), defined as a collection of rules
p(x̄)←p1(x̄1), . . . ,pn(x̄n), where eachpi is either an atomic
formula (a relation atom inR, =, 6=) or anIDB predicate.

One might also want to consider positive existentialFO
queries (∃FO+), which is built from atomic formulas by closing
under∧, disjunction∨ and∃. Note that anyfixed∃FO+query
can be unfolded into aUCQ in constant time. Thus all the
complexity results of this paper forUCQ carry over to∃FO+.

As remarked earlier, we express both the user’s queryQ and
CCsof V in the same query languageLQ, with LQ as one of
the languages given above.

Data complexity. In the rest of the paper, we investigate the
data complexity ofRCP(LQ), MinP(LQ) andBEP(LQ), i.e.,
when both the queryQ and the setV of CCs are predefined
and fixed, while databasesD and master dataDm may vary
(see,e.g.,[2] for details about data complexity). As mentioned
earlier, in practice the containment constraints are oftenprede-
fined, and users execute a fixed set of queries, while the under-
lying databaseD and master dataDm may vary from time to
time. We establish the complexity of these problems in this set-
ting, whenLQ ranges over all the query languages given above.

4. Undecidability Results for FO and DATALOG

In this section we establish thedata complexityof RCP(LQ),
MinP(LQ) andBEP(LQ) whenLQ is eitherFO or DATALOG.

It is known that for thecombined complexity, RCP(LQ)
andMinP(LQ) are undecidable whenLQ is FO or DATALOG
[12, 13, 14]. One might think that fixing queries and contain-
ment constraints would make our lives easier. The results inthis
section tell us, however, that these two problems remain unde-
cidable when data complexity is concerned (Theorems 1 and 2).
Furthermore, we also show thatBEP(LQ) is undecidable when
LQ is FO or DATALOG (Theorem 3).

In addition, the undecidability results are rather robust:
RCP(LQ), MinP(LQ) andBEP(LQ) remain undecidable for
FO even in the absence of both master dataDm and contain-
ment constraintsV ; moreover, they are undecidable forDATA-
LOG whenDm is absent andV is a fixed set ofFDs, which can
be expressed asCCsin CQ (see Example 2 and [12, 13, 14]).

In fact, we show the undecidability ofRCP(LQ), MinP(LQ)
andBEP(LQ) for these special cases in Theorems 1, 2, and 3,
respectively. Clearly, this implies the undecidability for the
general case of these problems.

Deciding Relative Completeness. We start withRCP(LQ), the
relative completeness problem. We show that for the data com-
plexity analysis,RCP(LQ) is undecidable whenLQ is FO or
DATALOG. The proofs of the undecidability of the data com-
plexity analyses are rather different from their combined com-
plexity counterparts given in [12, 13, 14].

Theorem 1. The data complexity ofRCP(LQ) is undecidable
whenLQ is FO or DATALOG. The problem remains undecidable

• for FO, even when master dataDm and containment con-
straintsV are absent; and

• for DATALOG, even whenDm is absent andV is a fixed
set ofFDs. �

Proof: We first settle the data complexity ofRCP(LQ) when
LQ is FO, and then considerRCP(LQ) whenLQ is DATALOG.

WhenLQ is FO. We show thatRCP(LQ) is undecidable by re-
duction from the embedding problem for the class of all finite
semigroups, which is known to be undecidable [22]. To formu-
late the embedding problem we need the following notions.

A semigroupA is a structure of the formA=(A,f) such
thatA is a nonempty set, called the domain ofA, andf is an
associative binary function onA; this means that, for everya, b,
c∈A, we have thatf(f(a,b), c)=f(a,f(b,c)). A finite semi-
group is a semigroup whose domain is a finite set. Apartial
semigroupis a structureB of the formB=(B,g) where, as be-
fore,B is a nonempty set but nowg is apartial binary function
that is associative. LetB=(B,g) be a partial finite semigroup
andA=(A,f) a finite semigroup. We say thatB is embed-
dableinA if B⊆A andf is an extension ofg, that is, whenever
g(b1, b2) is defined, we have thatf(b1, b2)=g(b1, b2).

The embedding problemfor finite semigroups is to decide
whether a given partial finite semigroup is embeddable in some
finite semigroup. This problem is undecidable [22].

Given a finite partial semigroupB=(B,g), we define afixed
relational schemaR, a databaseD onR, a fixedFO queryQ
such thatD is partially closedw.r.t. (Dm,V ), whereDm and
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V are bothempty. We show thatD∈RCQ(Q,Dm =∅,V =∅)
if and only ifB is not embeddable.

(1) Let R consist of a single schemaRg(A,X,Y,Z), where
attributesA,X,Y andZ have a countably infinite domain, and
D consist of a single relationIg overRg, which is defined as
follows. For any three elementsa,b andc in B, there exists a
tuple (0,a,b,c) in Ig if g(a,b)=c. Intuitively, Ig encodes the
function g of the finite partial semigroupB. Extensionsg′ of
g are encoded by extensionsI ′g of Ig by means of tuples of the
form (1,a′, b′, c′) such thatg′(a′, b′)=c′.

We say that an instanceI ′g of Rg is well-formedif (a) each
tuple of the form(0,a,b,c) in I ′g has a counterpart of the form
(1,a,b,c) in I ′g; and (b)I ′g(1,x,y,z) encodes an associative bi-
nary functionf such thatz=f(x,y). Obviously, an extension
I ′g of Ig that is well-formed encodes an extension ofg that is an
associative binary function.

(2) The queryQ is a boolean query that encodes the conditions
(a) and (b) given above. It returns true on an instance ofRg if
and only if this instance is well-formed. More specifically,Q is
the conjunction of sub-queriesQ1, Q2, Q3, andQ4, which are
defined as follows:

Q1 = ∀x,y,z
`

Rg(0,x,y,z)→Rg(1,x,y,z)
´

,

Q2 = ∀x,y,z,z′
`

Rg(1,x,y,z)∧Rg(1,x,y,z
′)→z=z′

´

,

Q3 = ∀x,y,z,u,v,w
`

Rg(1,x,y,u)∧Rg(1,y,z,v)∧

Rg(1,u,z,w)→Rg(1,x,v,w)
´

,

Q4 = ∀x,y,z,x′

,y
′

, z
′
`

Rg(1,x,y,z)∧Rg(1,x
′

,y
′

, z
′)→

∃w1, . . . ,w9 (Rg(1,x,x
′

,w1)∧Rg(1,x,y′,w2)

∧Rg(1,x,z′,w3)∧Rg(1,y,x′

,w4)∧Rg(1,y,y′,w5)∧

Rg(1,y,z′,w6)∧Rg(1, z,x′

,w7)∧Rg(1, z,y′,w8)∧

Rg(1, z,z′,w9))
´

.

Clearly, for any databaseD′=(I ′g) on R, Q1(D
′) 6=∅ if

and only if the condition (a) given above is satisfied, and
Q2(D

′) 6=∅ if and only if the subsetI ′g(1,x,y,z) encodes a
function. Furthermore, for such databasesD′, Q3(D

′) 6=∅ if
and only if I ′g(1,x,y,z) encodes an associative function. Fi-
nally,Q4(D

′) 6=∅ if and only if for any two elements that occur
in two triples inI ′g(1,x,y,z), functionf is defined on the val-
ues of these elements and is encoded inI ′g(1,x,y,z). In other
words,Q4(D

′) 6=∅ if and only if I ′g(1,x,y,z) encodes a total
function. Hence,Q(D′) 6=∅ if and only if the setI ′g(1,x,y,z)
encodes an associative binary functionf such thatf(x,y)=z,
and moreover, it is an extension ofg.

Observe that sinceV is empty,D is partially closedw.r.t.
(Dm,V ) and so is anyD′ ofR such thatD⊆D′. Furthermore,
Q(D)=∅ sinceQ1(D)=∅ by the definition ofD.

We next show that we have indeed defined a reduction,i.e.,
D∈RCQ(Q,Dm =∅,V =∅) if and only ifB cannot be embed-
ded in a finite semigroup.

⇒ First assume thatD∈RCQ(Q,∅,∅). Then for each par-
tially closed extensionD′ of D, Q(D′)=Q(D)=∅. Suppose
by contradiction that there exists a finite subgroupA =(A,f)
such thatB can be embedded inA. Let I ′g be an instance ofRg

such that(0,a,b,c),(1,a,b,c)∈I ′g if and only if f(a,b)=c. Let
D′=(I ′g). It is easy to see thatD′ is an extension ofD since
B can be embedded inA. Moreover, one can readily verify
thatQ(D′) 6=∅ by the definition ofQ. Obviously, as discussed
above,D′ is a partially closed extension ofD sinceV is empty.
This contradicts the assumption thatD∈RCQ(Q,∅,∅).

⇐ Conversely, assume thatD /∈RCQ(Q,∅,∅). Then there
exists a partially closed extensionD′=(I ′g) of D such that
Q(D′) 6=∅. ThusI ′g(1,x,y,z) encodes an associative binary
function g′ that is an extension ofg, i.e., for eacha,b∈B,
g′(a,b)=g(a,b) if g(a,b) is defined. We next construct a semi-
groupA=(A,f) such thatB can be embedded inA. Note that
Ig is defined in terms of the functiong and that even thoughI ′g
encodes a total function,I ′g may not contain all values inB.

GivenI ′g, we therefore letA consist of (i) all elements inB,
(ii) all values of attributesX,Y or Z that appear in a tuple of
the form(1,a,b,c) in I ′g, and (iii) a fresh constantε that does
not appear inB or I ′g. Moreover, we define a functionf such
that for each pair of elementsa and b in A, (a) f(a,b)=c if
g′(a,b)=c for somec∈A\{ε}; (b) f(a,b)=ε if a 6=ε, b 6=ε,
andg′(a,b) is not defined (i.e.,a,b∈B, andg(a,b) andg′(a,b)
are both undefined); and (c)f(a,b)=a if b=ε andf(a,b)=b
if a=ε. Obviously, by the definition ofA andf , we have that
B⊆A andf is an extension ofg. Moreover, one can readily
verify thatf is an associative binary function onA. ThusA is
a semigroup andB can be embedded inA.

WhenLQ is DATALOG. We showRCP(DATALOG) is undecid-
able by reduction from the emptiness problem for deterministic
finite 2-head automata, which is known to be undecidable [33].
Our proof closely follows the reduction presented in [33, Theo-
rem 3.4.1], which shows that the satisfiability of the existential
fragment of transitive-closure logic,E+TC, is undecidable over
a schema having at least two non-nullary relation schemas, one
of them being a function symbol. AlthoughE+TC allows the
negation of atomic expression as opposed toDATALOG, the un-
decidability proof only uses a very restricted form of negation,
which can be simulated using6= and a fixed set ofFDs.

For readers’ convenience, we present necessary definitions
taken from [33]. Adeterministic finite 2-head automaton(or
2-headDFA for short) is a quintupleA=(S, Σ, Γ, s0, sacc) con-
sisting of a finite set of statesS, an input alphabetΣ={0,1}, an
initial states0, an accepting statesacc, and a transition function
Γ: S×Σε×Σε→ S×{0,+1}×{0,+1}, whereΣε =Σ∪{ε}.
A configuration ofA is a triple(s,ω1,ω2)∈S×Σ∗×Σ∗, repre-
senting thatA is in states, and the first head and second head of
A are positioned on the first symbol ofω1 andω2, respectively.
On an input stringω∈Σ∗,A starts from the initial configuration
(s0,ω,ω); and the successor configuration is defined as usual.

We say thatA acceptsω if a configuration(sacc,ω1,ω2) can
be reached, based on the successor relation, from the initial
configuration for(s0,ω,ω); otherwise we say thatA rejects
ω. The language accepted byA, denoted byL(A), consists of
all strings that are accepted byA. Theemptiness problem for
2-headDFAs is to determine, given a 2-headDFA A, whether
L(A) is empty. This problem is known to be undecidable [33].
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Given a 2-headDFAA=(S, Σ, Γ, s0, sacc), we define afixed
relational schemaR, empty master schemaRm, a databaseD
onR, afixedDATALOG-queryQ, afixedsetV of FDsandempty
master dataDm. We show thatL(A) is empty if and only if
D∈RCQ(Q,Dm =∅,V ).

(1) Let R consist of four relation schemasRP (U,A),
RF (W,A1,A2), RT (B1, B2, S1, In1, In2, S2, M1, M2) and
RC(C1,C2), where all attributes inR have a countably infi-
nite domain. Intuitively, instancesI ′P andI ′F of RP andRF ,
respectively, are to represent a stringω∈Σ∗ such that (i) el-
ements inσU=1(I

′
P ) represent the positions inω where an1

occurs, (ii) σU=0(IP ′ ) records those positions inω that are
0; and (iii) I ′F is to represent a successor relation over these
positions. More specifically, the successor relation will be
given byπA1,A2

(σA1 6=A2
(I ′F ))∪πA1,A2

(σA1=A2∧W=1(I
′
F )) in

which the last part identifies the final position in the succes-
sor relation. This will be further explained when consider-
ing the CCs below. Furthermore, the instanceIT of RT is
to encode the transitions inΓ of A. More specifically, for
each transitionΓ:(s, in1, in2)→(s′,move1,move2), there ex-
ists a tuple(b1, b2,s, in1, in2,s

′,move1,move2) in IT , such that
the first two attributes of all tuples inIT result in a sequence
0→1→···→n, wheren is the number of transition inΓ. That
is, πB1,B2

(IT ) consists of all tuples(0,1),(1,2), . . . ,(n−1,n).
We setIC ={(0,n)}. We defineD=(IP ,IF ,IT ,IC), where
IP and IF are emptyinstances ofRP andRF , respectively,
which encode anemptystring, andIT andIC are defined above.

(2) The setV consists of fiveFDsto assure that we only consider
well-formedinstances ofR. An instanceD′=(I ′P ,I

′
F ,I

′
T ,I

′
C)

of R is well-formed if (a)σU=1(I
′
P ) andσU=0(I

′
P ) are dis-

joint (i.e., a string can only have one letter at each position);
and πA1,A2

(

σA1 6=A2
(I ′F )

)

∪πA1,A2

(

σA1=A2∧W=1(I
′
F )

)

must
(b) be a function and (c) contain a unique tuple of the form
(k,k) for some constantk indicating thefinal position. We ad-
ditionally require thatI ′F contains a tuple of the form(w,0, i),
where 0 represents theinitial position andi is some con-
stant. Similarly, we require the presence of a tuple(1,k,k)
in I ′F representing thefinal position, wherek is some constant.
These two extra requirements will be assured by theDATALOG-
queriesQini andQfin to be defined shortly, respectively. Fur-
thermore, (d)πC2

σC1=0I
′
C(C1,C2) is to contain a single value

only, (e)πB1,B2
(I ′T ) encodes a bijection, and finally, (f) there

is a unique transition inI ′T for each value inπB1
(I ′T ). More

specifically, the setV consists of the followingFDs:

• A→U , enforcing that for any instanceD′ = (I ′P , I ′F , I ′T ,
I ′C ) ofR such thatI ′ |=V , condition (a) is satisfied forI ′P ;

• A1→A2, ensuring thatπA1,A2
(I ′F ) encodes a function;

hence condition (b) is satisfied;

• W→A1,A2, ensuring that there can be at most one tu-
ple with its W -attribute set to1 in I ′F . As a result,
πA1,A2

(

σA1=A2∧W=1(I
′
F )

)

contains at most one tuple,
and condition (c) is satisfied;

• C1→C2, ensuring thatπC2
σC1=0I

′
C(C1,C2) consists of

a single value only, ensuring that (d) is satisfied;

• B1→B2 andB2→B1, ensure that{(b1, b2) |πB1,B2
(I ′T )}

is bijection fromπB1
(I ′T ) toπB2

(I ′T ), and hence condition
(e) is satisfied; and finally,

• B1→B2,S1, In1, In2,S2,M1,M2, ensuring that condition
(f) is satisfied.

Recall thatFDscan be encoded byCCs in CQ together with an
empty master database (Example 2 and [12, 13, 14]).

In summary, any instanceD′=(I ′P ,I
′
F ,I

′
T ,I

′
C) ofR that sat-

isfiesV is well-formed, with the exception that we still need to
check for the existence of an initial and a final position in the in-
stanceI ′F of RF in D′. Obviously, we have that(D,Dm) |=V .

(3) We next define the queryQ. To do this, we first
give some auxiliary DATALOG queries, and then show
how the non-emptiness ofL(A) can be expressed in
terms of these queries. LetΠP (u,a)←RP (u,a),u=0 and
ΠP (u,a)←RP (u,a),u=1. Furthermore, letΠF (a1,a2)←
RF (w,a1,a2),a1 6=a2 and ΠF (a1,a2)←RF (w,a1,a2),a1 =
a2,w=1. TheseDATALOG queries are to extract the strings
and successor relation on strings from the database instances.
Let TC(b1, b2)←RT (b1, b2,s, in1, in2,s

′,move1,move2) and
TC(b1, b2)←TC(b1, b3),TC(b3, b2). That is,TC contains the
transitive closure ofπB1,B2

(RT ). We define

Πpost(b2)←TC(b1, b2), b1 =0

Πpre(b2)←TC(b1, b2),RC(c1, b2), c1 =0,

and defineΠΓ(s, in1, in2,s
′,move1,move2) as

RT (s, in1, in2, s
′

,move1,move2),Πpost(b2),Πpre(b1).

It can be readily verified that for each extensionD′=
(I ′P ,I

′
F ,I

′
T ,I

′
C) of D, if (D′,Dm) |=V then ΠΓ(D′) returns

exactly all tuples inIT . Indeed, this follows from the fact that
by (D′,Dm) |=V , πB1,B2

(I ′T ) encodes a bijection;Πpre re-
turns all transitions reachable from0; Πpost returns all transi-
tions that can reachn; and thatI ′T contains a unique transition
for eachB1-value. Heren is the number of transitions inΓ.

Finally, from ΠΓ we construct the following queries to rep-
resent howA run on the string encoded byI ′P andI ′F : for each
i1∈{ε,0,1}, i2∈{ε,0,1},m1∈{0,+1}, andm2∈{0,+1},

Πi1,i2,m1,m2
(x,y,z,x′

,y
′

, z
′)←ΠΓ(x,i1, i2,x

′

,m1,m2),

ψi1,i2,m1,m2
(y,z,y′, z′),

where

ψi1,i2,m1,m2
(y,z,y′, z′)←α1(i1,y),α2(i2, z),

β1(m1,y,y
′),β2(m2, z,z

′),

and α1(i1,y)←ΠF (y,y′),ΠP (i1,y),y 6=y′ if i1 =0,1;
and α1(i1,y)←ΠF (y,y) if j=ε; similarly for α2(i2,z).
Furthermore, β1(m1,y,y

′)←ΠF (y,y′) if m1 =+1 and
β1(m1,y,y

′)←y=y′ if m1 =0; similarly for β2(m2,z,z
′).

Intuitively, αi(j,y) enforcesy to be a position in the string
coded byΠP (1,y) (whenj=1) or ΠP (0,y) (whenj=0) that
has a successor, unlessy is the final position (whenj=ε),
whereαi(j,y) demandsΠF (y,y). Moreover,βi(y,y

′) ensures
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thaty andy′ are consecutive positions whenA makes a move
(with headi) andy=y′ otherwise.

Putting these together,ψi1,i2,m1,m2
(y,z,y′,z′) expresses

valid moves ofA on the string encoded byI ′P andI ′F . Then,

Πtrans(x,y,z,x
′

,y
′

, z
′)←

^

i1,i2,m1,m2

Πi1,i2,m1,m2
(x,y,z,x′

,y
′

, z
′)

Πtrans(x,y,z,x
′

,y
′

, z
′)←Πtrans(x,y,z,x

′′

,y
′′

, z
′′),

Πtrans(x
′′

,y
′′

, z
′′

,x
′

,y
′

, z
′)

represents all possible valid transitions inA; hence, the query

Q
′()=∃y1y2Πtrans(q0,0,0, qacc,y1,y2).

is satisfiable if and only ifL(A) 6=∅.
Clearly, we can expressQ′ in DATALOG. Recall that we still

need to assure the existence of an initial and a final position
in well-formed instance ofRF . The finalDATALOG-queryQ
is therefore defined as the conjunction ofQ′(), Qini andQfin,
whereQini()←RF (w,0,x) andQfin()←RF (1,x,x) so that
initial and final positions inIP andIF are also checked.

We next show that it is indeed a reduction. Recall that
(D,Dm) |=V ; sinceQfin(D)=∅, we have thatQ(D)=∅. It
remains to show thatL(A)=∅ if and only if for each partially
closed extensionD′=(I ′P ,I

′
F ,I

′
T ,I

′
C) of D, Q(D′)=∅. Ob-

serve that for suchD′, the addition of extra tuples inIT does
not affect the query results sinceQ only selects tuples already
in IT , andV does not allow the addition of other tuples inIC
representing the number of transitions inΓ. ThusI ′P andI ′F
encode a stringω such thatQ(D′) is nonempty if and only if
ω∈L(A). As a result,L(A)=∅ if and only if for each partially
closed extensionD′ of D,Q(D′)=∅, i.e.,D∈RCQ(Q,∅,V ).

This completes the proof of Theorem 1. �

Determining Minimal Completeness. When it comes to the
minimal complete problemMinP(LQ), we show that it is also
beyond reach in practice whenLQ is FO or DATALOG. In-
deed, we get results similar to Theorem 1: the data com-
plexity of MinP(FO) is undecidable in the absence of master
dataDm and CCsV (i.e.,Dm =∅ andV =∅); and moreover,
MinP(DATALOG) is undecidable even whenDm is absent and
V is a fixed set ofFDs (i.e.,V can be expressed inCQ).

Theorem 2. The data complexity ofMinP(LQ) is undecidable
whenLQ is FO or DATALOG. The problem remains undecidable

• for FO, even when both the master dataDm and contain-
ment constraintsV are empty; and

• for DATALOG, even whenDm is empty andV is a fixed set
of FDs. �

Proof: We first studyMinP(LQ) whenLQ is FO, and then in-
vestigate it whenLQ is DATALOG.

WhenLQ is FO. We show thatMinP(FO) is undecidable by
Turing reductionfrom RCP(FO) to MinP(FO). By Theorem 1,
RCP(FO) is undecidable even when master dataDm and con-
tainment constraintsV are absent. We consider such special

case ofRCP(FO) in the reduction. To give the reduction, we
first show the following lemma.

Lemma 1. For anyFO queryQ, empty master dataDm, empty
V of CCs, and any databaseD that is partially closedw.r.t.
(Dm,V ), D∈RCQ(Q,Dm =∅,V =∅) if and only if there ex-
ists a databaseD0⊆D such thatD0 is a minimal database
complete forQ relative to(Dm =∅,V =∅).

Lemma 1 can be easily verified as follows. First, assume
thatD∈RCQ(Q,Dm =∅, V =∅). Then there must beD0⊆D
such thatD0 is a minimal database complete forQ relative
to (Dm, V ), by the definition of minimal relatively complete
databases. Conversely, assume that there exists a minimal com-
plete databaseD0⊆D for Q relative to(Dm =∅,V =∅). Then
for any extensionsD′

0 ofD0,Q(D0)=Q(D′
0) and(D′

0,Dm) |=
V . We next show thatD∈RCQ(Q,Dm =∅,V =∅). Indeed,
for each partially extensionD′ of D,Q(D′)=Q(D0)=Q(D),
sinceD′ andD are both extensions ofD0. Thus, we have that
D∈RCQ(Q,Dm =∅,V =∅).

We next give the Turing reduction. LetTMMinP(Q,D, Dm,
V ) be an oracle that returns “yes” ifD is a minimal database
complete for a queryQ relative to (Dm, V ); otherwise, it re-
turns “no”. We give an algorithmΩ for RCP(FO) that calls
TMMinP(Q,D,V,Dm) at mostO(2|D|) times, whereDm and
V are both empty. AlgorithmΩ works as follows:

1. enumerate all databasesD′⊆D and do the following;
2. check whetherTMMinP(Q, D′, Dm =∅, V =∅) returns

“yes”; if so return “yes”;
3. return “no” otherwise if no suchD′ exists.

The correctness of algorithmΩ follows from Lemma 1.
Moreover, Ω calls TMMinP(Q,D,V,Dm) at mostO(2|D|)
times. ThereforeΩ is a Turing reduction fromRCP(FO) to
MinP(FO), in the absence ofDm andV . ThusMinP(FO) is
undecidable even whenDm andV are absent.

WhenLQ is DATALOG. The proof is similar to its counterpart
for FO above. First, the lemma below can be easily verified.

Lemma 2. For anyDATALOGqueryQ, empty master dataDm,
a setV of FDs, and any databaseD that is partially closed
w.r.t. (Dm,V ), D∈RCQ(Q,Dm,V ) if and only if there exists
a databaseD0⊆D that is a minimal database complete forQ
relative to(Dm,V ).

It is known thatRCP(DATALOG) is undecidable whenDm is
absent andV is a fixed set ofFDs (Theorem 1). We construct a
Turing reduction from such a special case ofRCP(DATALOG)
toMinP(DATALOG) along the same lines as the one given above
for FO, which show thatMinP(DATALOG) is undecidable even
whenDm is absent andV is a fixed set ofFDs.

This completes the proof of Theorem 2. �

Determining Bounded Extensions. We next study the
bounded extension problemBEP(LQ). Just likeRCP(LQ) and
MinP(LQ), we show thatBEP(LQ) is undecidable whenLQ is
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FO or DATALOG. Moreover, we show that the problem remains
undecidable (a) forFO, when master dataDm and containment
constraintsV are both absent; and (b) forDATALOG, whenV is
a fixed set ofFDsand master dataDm is empty. Furthermore,
all the results hold for any positive integerK≥1. We remark
thatBEP(LQ) has not been studied by previous work.

Theorem 3. The data complexity ofBEP(LQ) is undecidable
whenLQ is FO or DATALOG. The problem remains undecidable
for any positive integerK≥1, and

• for FO, even when master data and containment con-
straints are absent; and

• for DATALOG, even when master data is absent and con-
tainment constraints is a fixed set ofFDs. �

Proof: We first study the data complexity ofBEP(LQ) when
LQ is FO, and then investigate it whenLQ is DATALOG.

WhenLQ is FO. We show thatBEP(LQ) is undecidable even
when both master data and containment constraints are absent,
by reduction from the embedding problem for the class of all
finite semigroups. We refer to the proof ofRCP(FO) in Theo-
rem 1 for the statement of the embedding problem. The reduc-
tion below is similar to the one given in that proof.

Given a finite partial semigroupB=(B,g), we define a
databaseD and a fixed queryQ in FO, and let the setV of
CCsand master dataDm beempty. We show that for any posi-
tive integerK≥1, there exists a bounded set of updates∆D for
(Q,D,Dm =∅,V =∅,K) if and only if B cannot be embedded
in a finite semigroup.

(1) LetR consist of a single relation schemaRg(A,X,Y,Z),
where attributesA,X,Y andZ all have a countably infinite do-
main. The databaseD ofR consists of a single relationIg over
schemaRg encoding the given finite semigroupB, as described
in the proof of Theorem 1. In addition,Ig containsK+1 tuples
of the form(2, i, i, i) for all i∈ [0,K]. Furthermore, along the
same line as the proof of Theorem 1 forRCP(FO), the exten-
sions ofg are encoded by tuples of the form(1,a′, b′, c′). Ac-
cordingly, we define that an instanceI ′g of Rg is well-formed if
(a) each tuple of the form(0,a,b,c) in I ′g has a counterpart of
the form(1,a,b,c) in I ′g; (b) I(1,x,y,z) encodes an associative
binary function; and (c) each tuple of the form(2, i, i, i) in I ′g
has a counterpart of the form(3, i, i, i) in I ′g .

(2) The queryQ is a boolean query that encodes the conditions
(a), (b) and (c), such thatQ returns true on an instance if and
only if this instance is well-formed. As in the proof of Theo-
rem 1 forRCP(FO), Q is the conjunction of queriesQ1, Q2,
Q3,Q4, andQ5, where the extra queryQ5 is defined as

∀x
(

Rg(2,x,x,x)→Rg(3,x,x,x)
)

,

which encodes condition (c). It is easy to see that, for each
collection∆D of tuples, if |∆D|≤K, Q(D∪∆D)=∅ since
Q5(D∪∆D)=∅. Furthermore, for such∆D, we have that
(D∪∆D,Dm) |=V sinceV =∅.

We next show that it is indeed a reduction,i.e., there exists a

bounded set of updates∆D for (Q,D,Dm =∅,V =∅,K) if and
only if B cannot be embedded in a finite semigroup.

⇒ Assume that there exists a bounded set of updates∆D for
(Q,D,Dm =∅,V =∅,K). ThenD∪∆D∈RCQ(Q,∅,∅) and
|∆D|≤K. SinceQ(D∪∆D) is empty, we have that for each
partially closed extensionD′ of D∪∆D, Q(D′)=∅. Along
the same line as the proof of Theorem 1 forRCP(FO), one can
prove thatB cannot be embedded in a finite semigroup.

⇐ Conversely, ifB cannot be embedded in a finite semi-
group, assume by contradiction that there exists no bounded
set of updates∆D for (Q,D,Dm =∅,V =∅,K). This implies
that for each set of updates∆D such that|∆D|≤K, we have
that(D∪∆D,Dm =∅) |=V ,Q(D∪∆D)=∅, and furthermore,
there exists a partially closed extensionD′ ofD∪∆D such that
Q(D′) is nonempty. Along the line as the proof of Theorem 1
for RCP(FO), we can construct fromD′ a finite semigroupA
such thatB can be embedded inA, contradicting the assump-
tion thatB cannot be embedded in a finite semigroup.

WhenLQ is DATALOG. We next show thatBEP(DATALOG) is
undecidable by reduction fromRCP(DATALOG). The latter has
been shown to be undecidable in the proof of Theorem 1, even
for a fixed queryQ and databaseD such thatQ(D)=∅, and
whenDm is empty andV is a fixed set ofFDs. We con-
sider this special case ofRCP(DATALOG). Given such an in-
stanceQ,D,Dm and V of RCP(DATALOG), we construct a
fixed queryQ′ in DATALOG, a databaseD′, an empty master
databaseD′

m and a fixed setV ′ of FDs. We show that for any
integerK≥1, D is in RCQ(Q,Dm =∅,V ) if and only if there
exists a bounded set of updates for(Q′,D′,D′

m =∅,V ′,K).
To simplify the discussion, we assume thatD, Q andV are

defined over a relation schemaR, whereR consists of a single
relationR(A1, . . . ,Al) for a constantl. Indeed, the assumption
does not lose the generality, since one can always transforman
arbitrary instance ofRCP(DATALOG) to an equivalent one de-
fined over a single schema, as shown by the following lemma.

Lemma 3 ([14]). For any relational schemaR=(R1, . . . ,Rn),
there exist a single relation schemaR, a linear-time computable
bijective functionhD from inst(R) to inst(R), a linear-time
computable functionhQ :LQ→LQ such that for any instance
I ofR and any queryQ∈LQ overR,Q(I) =hQ(Q)(hD(I)).
HereLQ ranges overCQ, UCQ, FO andDATALOG, andinst(R)
denotes all the instances of schemaR. �

We next give the reduction. By Lemma 3 and Theorem 1,
we consider a databaseD=(I) and afixed DATALOG query
Q both defined over schemaR(A1, . . . ,Al) such thatQ(D) is
empty, along with empty master dataDm and a setV of FDs,
wherel can be taken as a constant sinceQ andV are fixed.

(1) LetR′ consist of two relation schemasR′(G,A1, . . . ,Al)
andRE(C), whereR′(G,A1, . . . ,Al) extendsR with a fresh
attributeG that has an infinite domain, andRE(C) is a unary
relation schema consisting of a single attributeC with an infi-
nite domain. We denote byI(g) andIE(c) the instances ofR′

andRE , respectively, whereI(g) consists of{g}×I, for some
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constantg in dom(G), andIE(c)={(c)} for some constantc
in dom(C). In particular, we consider the database instanceD′

ofR′ consisting of the two relationsI(g0) andIE(c0) for some
constantsg0 in dom(G) andc0 in dom(C).

(2) The master dataD′
m is assumed to be an empty relation.

(3) We defineV ′ such that for eachFDX→A in V , there exists
an FD (G,X)→A in V ′ defined overR′. It is easy to verify
that the following two are equivalent: for any instanceI of R
defined with constantsg∈dom(G) andc∈dom(C) as above,

•
(

I,Dm =∅
)

|=V ;

•
(

(I(g),IE(c)),D′
m =∅

)

|=V ′.

In particular, we have that(D′,∅) |=V ′ since(D,∅) |=V , forD
andD′ given above.

(4) To defineQ′, we first construct a queryQ1 onR′ by sub-
stitutingR′(z,~y) for each occurrence ofR(~y) in Q, wherez is
a common variable shared across all the atoms inQ1. Obvi-
ously, for each instanceI of R and anyg∈dom(G), Q(I) is
nonempty if and only ifQ1(I(g)) is nonempty. We next define

Q′(x) ← Q1(g,~y ),RE(x).

Intuitively, for any instanceI ′ of R′ and instanceIE of RE ,
Q′ returns the relationIE if there existsg such thatQ1(I

′
g) is

nonempty, whereI ′g is the subset ofI ′ consisting of tuplest
such thatt[G]=g, andQ′ returns empty otherwise. As a con-
sequence, for any instanceI of R, any g∈dom(G), and any
nonempty instanceIE of RE , the following two are equivalent:

•
(

I,∅
)

|=V andQ(I) is nonempty;

•
(

(I(g),IE),∅
)

|=V ′ andQ′
(

I(g), IE
)

is nonempty,

In particular,Q′(D′)=∅ sinceQ(D)=∅.

We next show that this is indeed a reduction,i.e., for any
integerK≥1, D is in RCQ(Q,Dm =∅,V ) if and only if there
exists a bounded set of updates for(Q′,D′,D′

m =∅,V ′,K).

⇒ Assume thatD is in RCQ(Q,Dm =∅,V ). Recall that we
assume thatQ(D)=∅. Then for any partially closed exten-
sionD′′ of D, we have thatQ(D′′)=Q(D)=∅. Let ∆D′=
∅. We show that∆D′ is a bounded set of updates for(Q′,
D′, D′

m =∅, V ′, K), i.e.,D′∈RCQ(Q′,D′
m =∅,V ′). Recall

thatD′=(I(g0),IE(c0)). As argued above,(D′,∅) |=V ′ and
Q′(D′)=∅. Since∆D′=∅, it remains to show that for any
partially closed extension(I ′,I ′E) of D′, Q′(I ′,I ′E)=∅. As-
sume by contradiction that there exists a partially closed ex-
tension(I ′,I ′E) of D′ such that(I ′,I ′E) 6=D′ andQ′(I ′,I ′E)
is nonempty. Then by the definition ofQ′, there existsg∈
dom(G) such thatQ1(I

′
g) is nonempty. ThusQ(πA1,...,Al

(I ′g))
is nonempty, as discussed above. Obviously,πA1,...,Al

(I ′g) is
a partially closed extension ofD, which contradicts the as-
sumption thatD is in RCQ(Q,∅,V ) sinceQ(D)=∅. Hence
D′∈RCQ(Q′,∅,V ′) and∆D=∅ is a bounded set of updates
for (Q′,D′,D′

m =∅,V ′,K), for any integerK≥1.

⇐ Conversely, assume thatD is not inRCQ(Q,∅,V ). Then

there exists a partially closed extensionDe =Ie of D such that
De 6=D, (De,Dm) |=V andQ(De) is nonempty. Assume by
contradiction that there exist a bounded set of updates∆D′=
(∆I ′,∆IE) for (Q′,D′,D′

m =∅,V ′,K), where∆I ′ and∆IE
are instances ofR′ andRE , respectively. ThenD′∪∆D′ is in
RCQ(Q′,D′

m =∅,V ′). Recall thatD′=(I(g0),IE(c0)). Then
D′∪∆D′=(I(g0)∪∆I ′,IE(c0)∪∆IE). By the definition of
Q′, Q′(D′∪∆D′) must be empty, since otherwise for any
extensionI ′E of IE(c0)∪∆IE such thatI ′E 6=IE(c0)∪∆IE ,
we have that(I(g0)∪∆I ′,I ′E) is a partially closed extension
of D′∪∆D′, but Q′

(

I(g0)∪∆I ′,I ′E
)

=I ′E 6=IE(c0)∪∆IE =
Q′(D′∪∆D′). Now consider the following extensionI ′′=
I(g0)∪∆I ′∪Ie(g1) of I(g0)∪∆I ′, whereg1 is a fresh constant
in dom(G) but it does not appear in any tuple inI(g0)∪∆I ′.
Obviously,D′′=(I ′′,IE(c0)∪∆IE) is a partially closed exten-
sion of (D′∪∆D′) since

(

I(g0)∪∆I ′,∅
)

|=V ′,
(

Ie(g1),∅
)

|=
V ′ and the tuples inI(g0)∪∆I ′ differ in theirG-attribute with
tuples in Ie(g1). We next show thatQ′(D′′) is nonempty,
and thusD′∪∆D /∈RCQ(Q′,∅,V ′). Recall thatDe =Ie and
Q(De) 6=∅. Then as argued above,Q1(I

e(g1)) is nonempty,
and henceQ1(I

′′
g1

) is not empty sinceIe(g1)=I
′′
g1

. As a re-
sult, Q′(D′′) is nonempty by the definition ofQ′, and thus
D′∪∆D /∈RCQ(Q′,∅,V ′). As a consequence, there exist no
bounded sets of updates∆D′=(∆I ′,∆IE) for (Q′,D′,D′

m =
∅,V ′,K) for any positive integerK≥1.

This completes the proof of Theorem 3. �

5. Decidable Cases for CQ and UCQ

In this section we studyRCP, MinP andBEP, focusing on
query languagesCQandUCQ. We show thatRCP andMinP are
both tractable (Theorem 4 and 5). In addition, we show that
BEP is NP-complete when the numberK is a variable, while it
is tractable whenK is a constant (Theorem 6).

5.1. Preliminaries

Before we present the proofs, we first present some notations
of [12, 14] that will be used in the proofs in this section.

To simplify the discussion, we considerCQ queries that are
defined over a single relation. This does not lose generalityby
Lemma 3, which we have seen in Section 4.

We represent aCQ queryQ as a tableau query(TQ,uQ),
whereTQ denotes formulas inQ anduQ is the output sum-
mary (see,e.g.,[2] for details). For each variablex in Q, we
useeq(x) to denote the set of variablesy inQ such thatx=y is
induced from equalities inQ. In TQ, we represent atomic for-
mulax=y by assigning the same distinct variable to all vari-
ables ineq(x), andx=c by substituting constant ‘c’ for each
occurrence ofy in eq(x). This is well defined whenQ is sat-
isfiable,i.e.,when there exists a databaseD such thatQ(D) is
nonempty. Note that the size ofTQ and the number of variables
in TQ are bounded by the size ofQ. We assumew.l.o.g. that
distinct tableaus carry distinct variables.

We denote byAdom the set consisting of (a) all constants that
appear inD,Dm,Q or V , and (b) a setNew of distinct values
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not inD,Dm,Q andV , one for each variable that is in either
TQ or in the tableau representations of the queries inV .

A valuationµ for variables inTQ is said to bevalid w.r.t. D
if (a) for each variabley in TQ, µ(y) is a value fromAdom,
and (b)Q(µ(TQ)) is nonempty,i.e.,µ observes inequality con-
ditionsx 6=y andx 6=b specified inQ.

A databaseD is said to bebounded by(Dm,V ) for a CQ
queryQ if for each valid valuationµ for variables inTQ, either
(D∪µ(TQ),Dm) 6|=V or µ(uQ)∈Q(D).

Now consider aUCQ queryQ = Q1∪·· ·∪Qn where each
Qi is a CQ query. For eachi∈ [1,n], we representQi as a
tableau query(Ti,ui), whereTi denotes formulas inQi and
µi is the output summary ofQi. A valuationµ for Q in UCQ
is (µ1, . . . ,µn) such that for eachi∈ [1,n], µi is a valuation
for variables inTi and moreover, for each variabley in Ti,
µi(y)∈Adom. The valuation isvalid w.r.t. D if there exists
somej∈ [1,n], such thatQj(µi(Tj)) is nonempty,i.e., µ ob-
serves inequality conditionsx 6=y andx 6=b specified inQi.

Consider master dataDm and a setV of CCs. A database
D is said to bebounded by(Dm,V ) for a UCQ queryQ if
for each valid valuationµ=(µ1, . . . ,µn) for Q, either (D∪
∆,Dm) 6|=V , or for eachi∈ [1, ℓ], µi(ui)∈Q(D), where∆ de-
notesµ1(T1)∪·· ·∪µk(Tn).

As shown in [12, 14], whenQ is in CQor UCQ, this notion of
bounded databases provides us with a sufficient and necessary
condition for a databaseD to be inRCQ(Q,Dm,V ).

Example 4. The following examples illustrate the intuition be-
hind the notion of bounded databases. Recall schemaproduct

from Example 1. Letproduct∅ be the empty instance of
product. Consider aCCφ1 :q(product)⊆product∅, where

q1(b) = ∃a1,m1,p1,s1, . . . ,ak+1,mk+1,pk+1,sk+1
(

∧

j∈[1,k+1]

product(aj , b,mj ,pj ,sj)∧
∧

j,l∈[1,k+1]

(aj 6=al)
)

,

It asserts that each brand has at mostk products. Consider
queryQ4 that is to find all products withbrand=“Kindle”. Let
D1 be a database overproduct andDm be an empty instance
of product∅, such thatQ4(D1) returnsk distinct tuples. Then
one can verify thatD1 is bounded by(Dm,V1) for Q4, where
V1 consists ofφ1. Indeed, for any valid valuationµ for TQ4

, ei-
ther (a)µ(TQ4

) contains a new tuplet that is not inD1 and has
t[brand] =“Kindle”; this violatesφ1, or (b)µ(uQ4

)∈Q4(D1).
It is easy to see thatD1 is complete forQ4 relative to(Dm,V1).

As another example, recall from Example 2 theFD ψ :
(brand,model→asin,price,sale) onproduct, which can be ex-
pressed as threeCCs in CQ, denoted byV2, usingproduct∅.
Consider theCQ query Q3 given in Example 3, which is
to find all wireless reading devices withbrand=“Nook” and
model=“PRS-600”. LetD2 be an instance ofproduct such that
Q3(D3) contains one tuple. ThenD2 is bounded by(Dm,V2)
forQ3, since for any valid valuationµ′ for TQ3

, eitherµ′(TQ3
)

adds a tuple that violates theFD ψ, or the addition ofµ′(TQ3
)

does not change the answer toQ3. Again one can see thatD2

is complete forQ3 relative to(Dm,V2). �

5.2. Decidability results

We now study the data complexity ofRCP(LQ), MinP(LQ)
and BEP(LQ) whenLQ is CQ or UCQ. We show that drop-
ping negation and recursion forLQ do make our lives easier:
RCP(LQ) andMinP(LQ) are both inPTIME, andBEP(LQ) is
NP-complete while it is inPTIME for a fixedK. This is in con-
trast to the undecidability results shown in the previous section.

Problem RCP(LQ). We start with the relative completeness
problemRCP(LQ). We show that its data complexity analysis
is tractable whenLQ is CQor UCQ. In contrast, as shown in [12,
14], the combined complexity of this problem isΠp

2-complete
for the sameLQ.

Theorem 4. The data complexity ofRCP(LQ) is in PTIME
whenLQ is CQ or UCQ. �

Proof: It suffices to show thatRCP(UCQ) is in PTIME. We pro-
vide aPTIME algorithm that returns “yes” if the given database
D is in RCQ(Q,Dm,V ), and returns “no” otherwise.

The key ingredient of the algorithm is a sufficient and nec-
essary condition for characterizing what databasesD are in
RCQ(Q,Dm,V ), stated in Lemma 4 below. The lemma is
taken from [12, 14], where it was verified.

Lemma 4 ([12, 14]). For any UCQ queryQ, any master data
Dm, any setV of CCs in UCQ, and any partially closed
databaseD w.r.t.(Dm,V ),D is in RCQ(Q,Dm,V ) if and only
if D is bounded by(Dm,V ) for Q. �

Capitalizing on the characterization, we next present the
PTIME algorithm, denoted byARCP. Given a fixedUCQ query
Q=Q1∪·· ·∪Qn, where eachQi is a CQ query denoted by
(Ti,ui), the tableau query ofQi, ARCP checks whether the
given partially closed databaseD is bounded by(Dm,V ) for
Q, based on Lemma 4. Note thatn is a constant sinceQ is
fixed. More specifically, the algorithm works as follows:

1. for each(Ti,ui) and each valid valuationµi of Ti, do the
following:

(a) let∆i =µi(Ti);
(b) check whether(D∪∆i,Dm) |=V ; if so, continue;

otherwise move to the next valid valuation ofQi;
(c) check whetherµi(ui) /∈Q(D); if so, return “no”;

otherwise move to the next valid valuation ofQi;

2. return “yes”.

Algorithm ARCP is correct by Lemma 4: It returns “yes” if
and only if the databaseD is bounded by(Dm,V ). We next
show thatARCP is in PTIME. SinceQ is fixed, there are only
a constant number of queriesQi in Q. Thus there are only
constantly manyTi’s in step 1. For the same reason, there are
only polynomially many valid valuations for each queryTi in
step 1, since|Adom||Ti| is an upper bound on the number of
valuations and the size ofTi, denoted by|Ti|, is a constant.
Moreover, steps 1(b) and 1(c) are inPTIME sinceV andQ are
both fixed. Thus step 1 is inPTIME. Putting these together,
ARCP is in PTIME. �
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Tq: product asin brand model price sale

xa Nook PRS-600 xp xs
, uq =〈asin :xa〉

Tq′ : product asin brand model price sale

x′a Kindle Paperwhite x′p x′s
, uq′ =〈asin :x′a〉,

D : asin brand model price sale

t1 : B002MWYUFU Nook PRS-600 $145 Y

t2 : B00AWH595M Kindle Paperwhite $119 Y

Figure 1: Tableau queries and the database used in Example 5.

Example 5. We next illustrate howARCP works. Recall
from Example 1 the schemaproduct(asin, brand, model,
price,sale) and from Example 2 theFD ψ : (brand, model→
asin,price,sale) on product which can be expressed as three
CCsin CQ, denoted byV2, and empty master relationDm. Con-
sider theUCQ queryQ5 =q∪q′, where

q(xa) = ∃xp,xs

(

product(xa,Nook,PRS-600,xp,xs)
)

,

q′(xa) = ∃xp,xs

(

product(xa,Kindle,Paperwhite,xp,xs)
)

,

which is to find all wireless reading devices withbrand=
“Nook” and model=“PRS-600”, or brand=“Kindle” and
model=“Paperwhite”. LetD be as shown in Figure 1, which
consists of two tuplest1 andt2 that specify two items. Let mas-
ter dataDm consist of the empty relationproduct∅. Clearly,
Q5(D)={(B002MWYUFU),(B00AWH595M)}.

As shown in Figure 1, queriesq andq′ can be represented as
tableau queries(Tq,uq) and(Tq′ ,uq′), respectively. To decide
whetherD is complete forQ5 relative to(Dm =∅,V2), ARCP

checks whetherD is bounded by(Dm =∅,V2) for Q5. More
specifically,ARCP carries out steps 1(a)-(c) for every valid val-
uation ofTq andTq′ . Assumew.l.o.g.thatARCQ picks(Tq,uq)
first in step 1. ThenAdom={B002MWYUFU, Nook, PRS-
600, $145, B00AWH595M, Kindle, Paperwhite, $119,Y, ca,
cp, cs, c′a, c′p, c′s}, whereca, cp and cs are new constants in
New associated withxa,xp and xs, respectively. Similarly,
c′a, c′p and c′s correspond to the variables inTq′ . (We omit
constants denoting variables inV2 for simplicity.) We assume
w.l.o.g. that variablesxa, xp andxs have an infinite domain
that containsAdom. Denote byΓq the set of all valid valu-
ation µq for variables inTq, whereµq(xa),µq(xp),µq(xs)∈
Adom. Let µ0

q be the valuation inΓq that maps(xa,xp,xs)
to (B002MWYUFU, $145,Y). Obviously,µ0

q is the only val-
uation in Γq such that(D∪µ0

q(Tq),Dm) |=V2 and µ0
q(uq)=

(B002MWYUFU)∈Q5(D), and moreover, for any other val-
uationµq in Γq, (D∪µq(Tq),Dm)2V2.

After this, algorithmARCP moves to(Tq′ ,uq′), and gets sim-
ilar result as above. It returns “yes” and terminates. That is, it
concludes that databaseD is complete for queryQ5 relative to
the empty master dataDm and theCCsin V2. �

Problem MinP(LQ). We show that dropping negation and
recursion from queries also makes the minimal complete-
ness problemMinP(LQ) tractable, as opposed to the∆p

3-
completeness of their combined complexity counterparts [13].

Theorem 5. The data complexity ofMinP(LQ) is in PTIME
whenLQ is CQ or UCQ. �

Proof: We only need to show thatMinP(UCQ) is in PTIME. We
present aPTIME algorithm to check whether a given database
D is a minimal database complete forQ relative to(Dm,V ).
To do this, we first give a sufficient and necessary condition for
characterizing minimal completeness, by the lemma below.

Lemma 5. For any databaseD, UCQ queryQ, master data
Dm, and any setV of CCs inUCQ such thatD is complete for
Q relative to (Dm,V ), D is not minimal if and only if there
exists a tuplet∈D such thatD\{t} is also complete forQ
relative to(Dm,V ). �

We now prove Lemma 5. First assume that there exists a
tuple t∈D such thatD\{t} is in RCQ(Q,Dm,V ). Then ob-
viously,D is not minimal. Conversely, suppose thatD is not
minimal. Then there exists a subsetD1 (D such thatD1 is
in RCQ(Q,Dm,V ). Observe that there must exist a subset
D2 =D\{t} for somet∈D such thatD1⊆D2 sinceD1 (D,
and moreover,(D2,Dm) |=V since (D,Dm) |=V . Indeed,
for any containment constraintφ∈V , let φ be q(R)⊆p(Dm),
whereq is aUCQ query. We have thatq(D2)⊆q(D)⊆p(Dm)
sinceD2⊆D andUCQ queries are monotonic. We next show
thatD2∈RCQ(Q,Dm,V ), i.e., for any partially closed exten-
sionD′

2 of D2, Q(D′
2)=Q(D2). Indeed, for suchD′

2, D′
2 is

also a partially closed extension ofD1, and hence,Q(D′
2)=

Q(D1)=Q(D2) sinceD1∈RCQ(Q,Dm,V ). ThusD2 is in
RCQ(Q,Dm,V ). This concludes the proof of Lemma 5.

Based on Lemma 5, we give aPTIME algorithm, denoted
by AMinP, for determining whetherD is a minimal database
complete for a queryQ w.r.t.Dm andV , as follows:

1. check whetherD is in RCQ(Q,Dm,V ); if so, continue;
otherwise return “no”;

2. check whether there exists a tuplet∈D such thatD\{t}
is in RCQ(Q,Dm,V ); if so, return “no”; otherwise return
“yes”.

Clearly, AMinP is correct by Lemma 5. We now prove that
AMinP is in PTIME. By Theorem 4, it is inPTIME to check
whether a databaseD is in RCQ(Q,Dm,V ) whenQ is a fixed
UCQ query; so step 1 is inPTIME. Moreover, step 2 is also in
PTIME since there are at most|D| tuplest∈D for which we
need to check whetherD\{t} is in RCQ(Q,Dm,V ), which is
also inPTIME by Theorem 4. HenceAMinP is in PTIME.
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This completes the proof of Theorem 5. �

Example 6. ConsiderQ5,D,Dm =∅ andV2 described in Ex-
ample 5, whereD is complete forQ5 relative to(Dm =∅,V2).
To check whetherD is a minimal complete database forQ5,
AMinP checks whether there exists a tuplet∈{t1, t2} such that
D\{t}∈RCQ(Q5,Dm,V2); if so, the algorithm returns “no”;
otherwise it returns “yes”.

Assume w.l.o.g. that the algorithm first checks whether
D\{t1}={t2} is in RCQ(Q5,Dm,V2), in step 2. Here
Adom={Nook, PRS-600, B00AWH595M, Kindle, Paper-
white, $119,Y, ca, cp, cs, c′a, c′p, c′s}, andQ5(D\{t1})=
{(B00AWH595M)}. By algorithmARCP given in Theorem 4
(for RCP(UCQ)), there exists a valid valuationµ1

q of variables in
Tq whereµ1

q(xa)=ca, µ1
q(xp)=cp andµ1

q(xs)=cs, such that
((D\{t1})∪µ1

q(Tq),Dm =∅) |=V andµ1
q(uq)=(ca) /∈Q5(D\

{t1}). That is, (D\{t1}) /∈RCQ(Q5, Dm,V2). ThenAMinP

moves toD\{t2}={t1}. Similarly, algorithmARCP finds a
valid valuationµ1

q′ of variables inTq′ witnessing that(D\
{t2}) /∈RCQ(Q5,Dm,V2). In light of these, algorithmAMinP

returns “yes”. That is, it concludes thatD is a minimal database
complete forQ5 relative to(Dm,V2). �

Problem BEP(LQ). Finally, we study the bounded extension
problemBEP(LQ). In contrast toRCP(LQ) andMinP(LQ),
BEP(LQ) is intractable whenLQ is CQ or UCQ. However, it
is in PTIME whenK is fixed, i.e., when the number of tuples
in updates∆D is bounded by a predefined constantK. As
remarked earlier, no previous work has studied this problem.

Theorem 6. WhenLQ is CQ or UCQ, the data complexity of
BEP(LQ) is NP-complete; it is inPTIME for fixedK. �

Proof: We first studyBEP(LQ) whenK varies, and then inves-
tigate it whenK is fixed, forCQ andUCQ.

WhenK varies. It suffices to show thatBEP(LQ) is NP-hard
whenLQ is CQ and it is inNP for UCQ.

Lower bound. We show thatBEP(CQ) is NP-hard by reduc-
tion from the 3SAT problem, which is known to beNP-complete
(cf. [17]). An instanceϕ of 3SAT is a formulaC1∧·· ·∧Cr in
which each clauseCi is a disjunction of three variables or nega-
tions thereof taken fromX={x1, . . . ,xn}. Givenϕ, 3SAT is to
decide whetherϕ is satisfiable,i.e.,whether there exists a truth
assignment for variables inX that satisfiesϕ.

Given an instanceϕ of 3SAT above, we define two fixed re-
lational schemasR andRm, a databaseD of R, master data
Dm of Rm, a fixed CQ queryQ and a setV of fixed CCs
in CQ. We show that there exists a bounded set of updates
∆D for (Q,Dm,V,D,K) if and only if ϕ is satisfiable, where
K=r−1. Herer is the number of clauses inϕ.

(1) Let R consist of two relation schemasRC(cid, X1, V1,
X2, V2, X3, V3, V ) andR1(A,B). We define the database
D as (IC ,I1), where IC is an empty instance ofRC and
I1 ={(1,0),(0,0)} is an instance ofR1.

(2) LetRm consist of three relation schemas:Rm
C =RC ,Rm

1 =

R1 andRm
2 =R1. We first define an instanceIm

C of Rm
C . Intu-

itively, Im
C encodes truth assignments of the clauses inϕ. For

reasons that will become clear later on, we assign variables(or
negations thereof) that appear in asingle clausewith a fixed
truth value: 1 if it concerns a variable and0 if it concerns a
negated variable. More specifically, letXp (resp.Xn) denote
the set of variables (resp. negated variables) inX that occur
in a single clause only. For each clauseCi =ℓ

i
1∨ℓ

i
2∨ℓ

i
3, for

i∈ [1,r], we include tuples(i,xk, vk, xj , vj , xm, vm, v) such
that (i) xk =ℓi1 if ℓi1∈X andxk = ℓ̄i1 if ℓ̄i1∈X ; (ii) vk =1 if
ℓi1∈Xp andvk =0 if ℓ̄i1∈Xn; and (iii) xk can be either0 or 1
if ℓi1∈X\{Xp∪Xn}. Similarly forxj , vj andxm andvm. We
setv=1 if the truth assignment encoded in the tuple makesCi

true and setv=0 otherwise. Further, we define the instanceIm
1

of Rm
1 as{(1,0),(0,0)}, i.e.,Im

1 is the same asI1, and letIm
2

be theemptyinstance ofRm
2 . We setDm =(Im

C ,I
m
1 ,I

m
2 ).

(3) The setV consists of the following 15 CCsφ1−φ12:

φ1 : RC ⊆ Rm
C ,

φ2 : R1 ⊆ Rm
1 ,

φ3−φ5 : qp
x(i, i′) ⊆ Rm

2 , p∈{1,2,3},

φ6−φ8 : qp
v(i, i′) ⊆ Rm

2 , p∈{1,2,3},

φ9 : qv(i, i
′) ⊆ Rm

2

φ10−φ15 : qp,p′

(i, i′) ⊆ Rm
2 , p,p

′∈{1,2,3},p6p′,

where the queriesqp
x, qp

v andqp,p′

are defined as follows: For
p∈{1,2,3}, qp

x(i, i′) is given by

∃z1,w1,z2,w2,z3,w3,w,z
′
1,w

′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′

(

RC(i,z1,w1,z2,w2,z3,w3,w)

∧RC(i′,z′1,w
′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′)∧(i= i′)∧(zp 6=z
′
p)

)

,

qp
v(i, i′) is given by

∃z1,w1,z2,w2,z3,w3,w,z
′
1,w

′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′

(

RC(i,z1,w1,z2,w2,z3,w3,w)

∧RC(i′,z′1,w
′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′)∧(i= i′)∧(wp 6=w
′
p)

)

,

qv(i, i′) is given by

∃z1,w1,z2,w2,z3,w3,w,z
′
1,w

′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′

(

RC(i,z1,w1,z2,w2,z3,w3,w)

∧RC(i′,z′1,w
′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′)∧(i= i′)∧(w 6=w′)
)

,

and for each pairp,p′∈{1,2,3} wherep6p′,

qp,p′

(i, i′)=∃z1,w1,z2,w2,z3,w3,w,z
′
1,w

′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′

(

RC(i,z1,w1,z2,w2,z3,w3,w)∧

RC(i′,z′1,w
′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′)∧

(zp =z′p′∧wp 6=w
′
p′)

)

.

Note thatφ1 is relative to master dataIm
C ; φ2 to Im

1 ; andφ3–
φ15 to the empty master data instanceIm

2 . Intuitively, for any
extensionD′=(I ′C ,I

′
1) of D, we have that (a)(D′,Dm) |=φ1
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if and only if each tuple inI ′C encodes one clauseCi of ϕ and a
truth assignmentµ of variables inCi, as well as the truth value
of Ci underµ; (b) (D′,Dm) |=φ2 if and only if I ′1 =I1, i.e.,D′

keepsI1 unchanged; (c)(D′,Dm) |={φ3, . . . ,φ9} if and only
if all tuples in I ′C have pairwise distinctcid values,i.e., they
corresponds to distinct clauses ofϕ; and finally, (d)(D′,Dm) |=
{φ10, . . . ,φ15} if and only if each pair of tuples inI ′C have the
same value for common variables. That is,I ′C encodes a partial
truth assignment ofX .

(4) We define the queryQ as follows:

Q(i, i′)=∃ z1,w1,z2,w2,z3,w3,w,z
′
1,w

′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′

(

RC(i,z1,w1,z2,w2,z3,w3,w)

∧RC(i′,z′1,w
′
1,z

′
2,w

′
2,z

′
3,w

′
3,w

′)∧R1(w,w
′)∧i 6= i′

)

.

Intuitively, for any partially closed extensionD′=(I ′C ,I
′
1) of

D, sinceI ′1 must be{(1,0),(0,0)} by the definition ofφ2,
Q(D′) returns all pairs(i, i′) such that there exist two distinct
tuplest andt′ in I ′C corresponding to clausesCi andCi′ , re-
spectively,i.e., t[cid]= i andt[cid]= i′, where the truth values
of Ci andCi′ are not both true under the truth assignments en-
coded byt andt′, respectively. That is,Q returns a nonempty
result if not all clauses encoded inI ′C are true.

We now show thatϕ is satisfiable if and only if there exists a
bounded set of updates∆D for (Q,Dm,V,D,K) forK=r−1.

⇒ Assume thatϕ is satisfiable and letµ0
X be a truth assign-

ment that makesϕ true. We modifyµ0
X into a truth assignment

µ1
X such thatµ1

X coincides with µ0
X on all variables in

X\{Xp∪Xn}, µ1
X(x)=1 if x∈Xp andµ1

X(x)=0 if x∈Xn.
Clearly, µ1

X makesϕ true as well. LetIr
C consist of tuples

t1, . . . , tr in Im
C , one for each clause inϕ, such that the values

of the variables in these tuples agree withµ1
X . We let Ir−1

C

consist of the firstr−1 tuples t1, . . . , tr−1 and ∆D=Ir−1
C .

Then|∆D|≤K andD∪∆D=(Ir−1
C ,I1). It is easy to see that

(D∪∆D,Dm) |=V andQ(D∪∆D)=∅, by the definitions of
V andQ. We next show that∆D is a bounded set of updates
for (Q,Dm,V,D,K), i.e.,for any partially closed extensionD′

of D∪∆D, Q(D′)=Q(D∪∆D)=∅. Observe that(Ir
C ,I1)

is the only partially closed extension ofD∪∆D such that
(Ir

C ,I1) 6=D∪∆D, by the definitions ofV and the truth assign-
mentµ1

X . Indeed, only a single tuple, corresponding to clause
Cr , can be added in any extension. Furthermore, the truth
assignment encoded in this tuple is completely determined:for
variables inX\{Xp∪Xn}, this tuple must take the value of
such variables as encoded byIr−1

C ; and for variables inXp∪Xn

we fixed the variables to1 (for Xp) and0 (for Xp), as encoded
in Im

C and the definition ofV . Moreover,Q(Ir
C ,I1)=∅ by

the definition ofQ, since all the truth assignments encoded by
tuples inIr

C make the corresponding clauses true. Hence∆D
is a bounded set of updates for(Q,Dm,V,D,K) forK=r−1.

⇐ Conversely, assume thatϕ is not satisfiable. Then there
exists no truth assignmentµX that satisfiesϕ. Let ∆D be
an arbitrary set consisting of no more thanK tuples such that
D∪∆D is a partially closed extension ofD. Then by the def-
inition of V , ∆D consists of only tuples overRC that encodes

distinct clauses ofϕ, and moreover, for each pair of such tu-
ples t and t′, they have the same value for each variable ap-
pearing in both of them. We next show thatD∪∆D is not
in RCQ(Q,Dm,V ). Let µ1

X be a truth assignment ofX vari-
ables that agrees with the partial truth assignment stored in∆D.
Let D′=(I ′C ,I1), whereI ′C consists ofr tuples, one for each
clause inϕ, such that the values of the variables in these tuples
agree withµ1

X . Obviously,D′ is a partially closed extension of
D∪∆D, andD′ 6=D∪∆D. Note thatµ1

X must makeϕ false
sinceϕ is not satisfiable. That is, thet[V ] values of tuplest
in I ′C cannot be all1. By the definition ofQ, it can be read-
ily verified thatQ(D∪∆D) 6=Q(D′). HenceD∪∆D is not in
RCQ(Q,Dm,V ). As a result, there exists no bounded set of
updates for(Q,Dm,V,D,K) whereK=r−1.

Upper bound. We show thatBEP(UCQ) is in NP by giving an
NP algorithm, which returns “yes” if there exists a bounded set
of updates∆D for (Q, Dm, V, K) and returns “no” otherwise.

By Lemma 3, we may assumew.l.o.g.that databaseD is an
instance of a single relation schemaR(A1, . . . ,An). Let NewV

be a set ofK ·n new constants disjoint fromAdom.

The algorithm forBEP(UCQ), denoted byABEP, is as fol-
lows:

1. guess an instance∆D of R with no more thanK tuples,
such that∆D draws values fromAdom∪NewV;

2. check whetherD∪∆D is in RCQ(Q,Dm,V ); if so, return
“yes”; otherwise, reject the guess and go back to step 1.

The algorithm is indeed inNP as it involves guessingK tu-
ples∆D from a finite setAdom∪NewV (step 1) and verify-
ing thatD∪∆D is in RCQ(Q,Dm,V ) (which is inPTIME by
Theorem 4). We next verify the correctness of the algorithm
ABEP. It suffices to show that there exists a bounded set of up-
dates∆D for (Q, Dm, V, K) only if there exists a bounded set
of updates∆D′ for (Q, Dm, V, K) which draws values from
Adom∪NewV.

Given ∆D we construct such a∆D′, as follows: Letτ be
an injective function from the active domain ofD∪∆D (i.e.,
the set of all constants occurring inD∪∆D) to Adom∪NewV,
such thatτ when restricted to elements inAdom is the identity
mapping. Note that such a function always exists sinceAdom∪
NewV contains sufficiently many distinct values. Then, we
define∆D′={t′=(τ(a1), . . . , τ(an)) |t=(a1, . . . ,an)∈∆D}.
Observe that|∆D′|= |∆D|. We claim that∆D′ is a bounded
set of updates for(Q, Dm, V, K) provided that∆D is a
bounded set of updates.

We first verify thatD∪∆D′ is partially closedw.r.t. (DmV ).
Indeed, assume by contradiction thatD∪∆D is partially closed
butD∪∆D′ is not partially closed. This implies that one of the
CCs is violated. Assume thatq(D∪∆D′) 6⊆p(Dm) for a UCQ
queryq=q1∪·· ·∪qk. Let (Ti,ui) be the tableau representing
qi, for i∈ [1,k]. Then there exists a valuationµ′

q =(µ′
1, · · · ,µ

′
k)

of variables inT1, · · · ,Tk that draws values fromD∪∆D′ such
that µ′

i(ui) 6∈p(Dm) for somei∈ [1,k]. By the definition of
∆D′, one can now verify that there exists a valid valuationµi

of variables inTi such thatµ′
i =τ ◦µi andµi draws values from

D∪∆D, and moreoverµi(ui) 6∈p(Dm). Hence,D∪∆D is not
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Table 1: Data complexity of relative information completeness.

Problems LQ Complexity

RCP, MinP, BEP (Theorems 1, 2, and 3)

FO

Undecidable
(Dm =V =∅)

DATALOG
(Dm =∅, V is a set of FDs)

RCP, MinP (Theorems 4, 5) CQ, UCQ PTIME

BEP (Theorem 6)

CQ, UCQ
NP-complete

(variedK)
CQ, UCQ

PTIME
(fixedK)

partially closed, contradicting the assumption. ThusD∪∆D′

is partially closedw.r.t. (DmV ).

We next verify thatD∪∆D′∈RCQ(Q,Dm,V ). Assume
by contradiction thatD∪∆D∈RCQ(Q,Dm,V ) but D∪
∆D′ 6∈RCQ(Q,Dm,V ). Let Q=Q1∪·· ·∪Qn and denote
by (TQ

i ,u
Q
i ) the tableau representingQi, for eachi∈ [1,n].

By Lemma 4, there must exist a valid valuationµ′
Q =

(µ′
1, · · · ,µ

′
n) w.r.t. D∪∆D′ for Q such that(D∪∆D′∪

⋃

i∈[1,n]µ
′
i(T

Q
i ),Dm) |=V andµ′

i(u
Q
i ) 6∈Q(D∪∆D′). By the

definition of ∆D′, one can readily verify that there exists a
valid valuationµi w.r.t. D∪∆D for Q such thatµ′

i =τ ◦µi

andµi witnesses thatD∪∆D is not bounded by(Dm,V ) for
Q. This contradicts the assumption above. Thus,D∪∆D′∈
RCQ(Q,Dm,V ).

WhenK is fixed.It suffices to show thatBEP(UCQ) is in PTIME
for a constantK≥1. Consider the algorithm given above, in
the setting whenK is fixed. Clearly, there are polynomially
many instances∆D to guess in step 1 sinceQ andV are both
fixed andK is a constant. So we revise the algorithm such that
it returns “no” when all such∆D are considered and none of
them satisfies the condition given in step 2. Otherwise it returns
“yes”. Denote byAf

BEP the revised algorithm above. Obviously,
algorithmAf

BEP is in PTIME.

This completes the proof of Theorem 6. �

Example 7. We now illustrate how algorithmAf
BEP works.

ConsiderQ5,V2,Dm =∅ given in Example 5, and an empty
databaseD∅ of schemaproduct. Let K=2. Taking these as
input, Af

BEP checks whether there exists a bounded set∆D
of updates for(Q5,D∅=∅,Dm =∅,V2,K=2). It enumer-
ates all instances∆D of product with no more than 2 tu-
ples, by drawing values fromAdom∪NewV, whereAdom=
{Kindle, Paperwhite, Nook, PRS-600,ca, cp, cs, c′a, c′p, c′s}.
and NewV={d1,d2, . . . ,d10}. For each such instance∆D,
it checks whetherD∅∪∆D is complete forQ5 relative to
(Dm,V2). For example, consider∆D0 consisting of the fol-
lowing two tuples:t′1 ={(ca, “Nook”, “PRS-600”,cp,d1)} and
t′2 ={(d3, “Kindle”, “Paperwhite”, d3, c

′
s)}. Using the algo-

rithm ARCP given in the proof of Theorem 4 forRCP(UCQ), we
can see thatD∅∪∆D0 is complete forQ5 relative to(Dm,V2).
ThusAf

BEP returns “yes”. That is, there exists a bounded set
∆D0 of updates for(Q5,D∅,Dm =∅,V2,K=2) �

6. Conclusions

We have studied the data complexity of three decision
problems associated with relative information completeness,
namely,RCP(LQ) for deciding whether a databaseD is com-
plete for a given fixed queryQ relative to master dataDm and
containment constraintsV , MinP(LQ) for determining whether
D is a minimal database complete forQ relative toDm andV ,
andBEP(LQ) for deciding whether we can complete a database
D for answeringQ by adding no more thanK tuples toD. We
have studied these problems whenLQ ranges over a variety of
query languages for expressing queries and containment con-
straints. We have established the upper and lower bounds of
these problems, all matching, for data complexity.

The main complexity results are summarized in Table 1, an-
notated with their corresponding theorems. Putting these to-
gether with the results of [12, 13, 14], our main conclusion is
that different query languages dominate the complexity, even
whendata complexityis concerned. Indeed, from Table 1 we
can see the following. (1) The data complexity analyses of
RCP(LQ), MinP(LQ) andBEP(LQ) are all undecidable when
LQ is FO or DATALOG. The undecidability is rather robust:
whenLQ is FO, these problems remain undecidable when mas-
ter dataDm and containment constraintsV are both absent.
When it comes toDATALOG, these problems are undecidable
in the absence ofDm, when containment constraints are fixed
FDs. (2) RCP(LQ), MinP(LQ) and BEP(LQ) become sim-
pler for query languages without negation and recursion. More
specifically, whenLQ is CQ or UCQ, the data complexity anal-
yses ofRCP(LQ) andMinP(LQ) become tractable;BEP(LQ)
is NP-complete, but it is inPTIME whenK is fixed.

The study of relative information completeness is still in its
infancy. A number of issues are targeted for future work. We
have focused on incomplete databases from which tuples may
be missing. In practice, both tuples and attribute values may be
missing. Preliminary results on relative information complexity
have been reported in [13], when both tuples and values are
missing. Nevertheless, the data complexity analyses of related
decision problems have not been studied in that setting.

The data complexity analyses ofRCP(LQ), MinP(LQ) and
BEP(LQ) are beyond reach in practice whenLQ is FO or DAT-
ALOG. A natural question is to identify special cases of these
problems that are decidable and practical. Furthermore, heuris-
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tic algorithms are yet to be developed for analyzing these prob-
lems, ideally with certain performance guarantees.

Incomplete information is just one of the issues of data qual-
ity. Other central data quality issues include data consistency,
data accuracy, data currency and entity resolution (see,e.g.,[15]
for details). To make practical use of the study on data qual-
ity, it is necessary to investigate the interaction among these is-
sues. As shown in [12, 14], relative information completeness
and data consistency can be supported by a uniform framework.
Nevertheless, it remains to be studied whether containmentcon-
straints can be used to specify currency constraints for data cur-
rency [16] and dynamic constraints for entity resolution [11].
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