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Abstract. Recommendation systems aim to recommend items that are likely to be of interest
to users. This paper investigates several issues fundamental to such systems.

(1) We model recommendation systems for packages (sets) of items. We use queries to specify
multi-criteria for item selections and express compatibility constraints on items in a package, and
use functions to compute the cost and usefulness of items to a user.

(2) We study recommendations of points of interest, to suggest top-k packages. We also investi-
gate recommendations of top-k items, as a special case.

(3) We identify several problems, to decide whether a set of packages makes a top-k recommen-
dation, and whether a rating bound is maximum for selecting top-k packages. We also study function
problems for computing top-k packages, and counting problems to find how many packages meet the
user’s criteria.

(4) We establish the upper and lower bounds of these problems, all matching, for combined
and data complexity. These results reveal the impact of variable sizes of packages, the presence of
compatibility constraints, as well as a variety of query languages for specifying selection criteria and
compatibility constraints, on the analyses of these problems.
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1. Introduction. Recommendation systems, a.k.a. recommender systems, re-
commendation engines or platforms, aim to identify and suggest information items
or social elements that are likely to be of interest to users. Traditional recommenda-
tion systems are to select top-k items from a collection of items, e.g., books, music,
news, Web sites and research papers [3], which satisfy certain criteria identified for a
user, and are ranked by a rating (a.k.a. utility) function. More recently recommenda-
tion systems are often used to find top-k packages, i.e., sets of items, such as travel
plans [34], teams of players [20] and various course combinations [17, 24, 25]. The
items in a package are required not only to meet multi-criteria for selecting individual
items, but also to satisfy compatibility constraints and aggregate constraints defined
on all the items in a package taken together, such as team formation [20] and course
prerequisites [24]. Packages may have variable sizes subject to a cost budget, and are
ranked by overall ratings of their items [34].

Recommendation systems are increasingly becoming an integral part of Web
services [34], Web search [4], social networks [4], education software [25] and com-
merce services [3]. A number of systems have been developed for recommending
items or packages, known as points of interest (POI) [34] (see [3, 4] for surveys).
These systems use relational queries to specify selection criteria and compatibility
constraints [2, 7, 17, 25, 34]. There has also been work on the complexity of comput-
ing POI recommendations [20, 24, 25, 34].

However, to understand central issues associated with recommendation systems,
there is much more to be done. (1) The previous complexity results were developed for

∗School of Computer Science and Engineering, Beihang University, Beijing, China (dengt-
ing@act.buaa.edu.cn).

†School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK (wenfei@inf.ed.ac.uk).
‡Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Bel-

gium (Floris.Geerts@ua.ac.be).

1



2 T. Ding, W. Fan & F. Geerts

individual applications with specific selection criteria and compatibility constraints.
They may not carry over to other settings. This highlights the need for studying
recommendation problems in a uniform model. (2) In most cases only lower bounds
were given (NP-hard by e.g., [24, 25]). Worse still, among the few upper bounds
claimed, some are not quite correct. It is necessary to set the record straight by
establishing matching upper and lower bounds. (3) No previous work has studied the
precise causes for high complexity. Is it from variable sizes of packages, compatibility
constraints or from complex selection criteria? The need for understanding this is
evident when developing practical recommendation systems.

Example 1.1. Consider a recommendation system for travel plans, which main-
tains two relations specified by

flight(f#,From,To,DT,DD,AT,AD,Pr) and POI(name, city, type, ticket, time).

Here a flight tuple specifies flight f# from From to To that departs at time DT on
date DD and arrives at time AT on date AD, with airfare Pr. A POI tuple specifies a
place name to visit in the city, its ticket price, type (e.g., museum, theater), and the
amount of time needed for the visit.

(1) Recommendations of items. A user wants to find top-3 flights from Edinburgh
(edi) to New York City (nyc) with at most one stop, departing on 1/1/2012, with
lowest possible airfare and duration time. This can be stated as item recommendation:
(a) flights are items; (b) the selection criteria are expressed as a union Q1∪ Q2 of
conjunctive queries, where Q1 and Q2 select direct and one-stop flights from edi to
nyc leaving on 1/1/2012, respectively; and (c) the items selected are ranked by a
rating function f(): given an item s, f(s) is a real number computed from the airfare
Pr and the duration Dur of s such that the higher the Pr and Dur are, the lower the
rating of s is. Here Dur can be derived from DT, DD, AT and AD, and f() may
associate different weights with Pr and Dur.

(2) Recommendations of packages. One is planing a 5-day holiday, by taking a direct
flight from edi to nyc departing on 1/1/2012 and visiting as many places in nyc

as possible. In addition, no more than 2 museums should be in a package, which
is a compatibility constraint [34]. Moreover, plans should have the lowest overall
price. This is an example of package recommendations: (a) the selection criteria are
expressed as the following conjunctive query (CQ) Q, which finds pairs of flights and
POI as items:

Q(f#,Pr, name, type, ticket, time) = ∃ DT,AT,AD
(

flight(f#,edi,nyc,DT, 1/1/2012,AT,AD,Pr)

∧ POI(name,nyc, type, ticket, time)
)

;

(b) a package N consists of some items that have the same f# (and hence Pr); (c)
the rating of N , denoted by val(N), is a real number such that the higher the sum of
the Pr and ticket prices of the items in N is, the lower val(N) is; (d) the compatibility
constraint can be expressed as a CQ query Qc such that Qc(N) = ∅ if and only if no
more than 2 museums are present in a package. To assert this constraint we use the
following CQ query:

Qc() = ∃ f#,Pr, n1, t1, p1, n2, t2, p2, n3, t3, p3
(

RQ(f#,Pr, n1,museum, p1, t1)

∧RQ(f#,Pr, n2,museum, p2, t2) ∧RQ(f#,Pr, n3,museum, p3, t3)

∧ n1 6= n2 ∧ n1 6= n3 ∧ n2 6= n3
)

,
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where RQ denotes the schema of the query answer Q(D). Since Qc(N) 6= ∅ if there
are more than three distinct museums in N , Qc(N) = ∅ asserts the desired constraint;
and (e) the cost of N , denoted by cost(N), is the total time taken for visiting all POI

in N . Note that the number of items in N is not fixed: N may contain as many POI

as possible, as long as cost(N) does not exceed the total time allocated for sightseeing
in 5 days. Putting these together, the travel planning is to find top-k such packages
ranked by val(N), for a constant k chosen by the user.

(3) Computational complexity. To develop a recommendation system, one naturally
wants to know the complexity for computing top-k packages or top-k items. The
complexity may depend on what query language we use to specify selection criteria
and compatibility constraints. For instance, in the package recommendation example
given above, the criteria and constraints are expressed as CQ queries. Suppose that
the user also requires that there are at least 2 museums in a package N . This cannot
be expressed by CQ queries. Instead, one can consider the following Q′

c in first-order
logic (FO):

Q′
c() = ∀ f#,Pr, n1, t1, p1, n2, t2, p2

(

RQ(f#,Pr, n1,museum, p1, t1) ∧RQ(f#,Pr, n2,museum, p2, t2)

→ (n1 = n2 ∧ p1 = p2 ∧ t1 = t2)
)

.

Obviously, Q′
c returns nonempty on a package N if and only if N contains at most

one museum. Furthermore, suppose that the user can bear with indirect flights with
an unlimited number of stops. Then we need to express the selection criteria in,
e.g., DATALOG, which is more costly to evaluate than the CQ queries. What is the
complexity of package recommendations when criteria and constraints are expressed
in various languages? Will the complexity be lower if compatibility constraints are
absent? Will it make our lives easier if we fix the size of each package? To the best
of our knowledge, these questions have not been answered in previous work. ⋄

These highlight the need for a full treatment of recommendation problems, to
study them in a generic model, establish their matching upper and lower bounds, and
identify where the complexity arises.

A model for package recommendations. Following [2, 7, 17, 24, 25, 34] we
consider a databaseD that includes items in a recommendation system. We specify (a)
multi-criteria for selecting items as a relational query Q; (b) compatibility constraints
on the items in a package N as another query Qc such that Qc(N,D) = ∅ if and only if
N satisfies the constraints; (c) a rating function val() from packages to real numbers R
such that val(N) assesses the usefulness of a packageN to a user; and (d) a cost budget
C and a function cost() from packages to R such that a package N is a “valid” choice
if and only if cost(N) ≤ C. Given a positive integer k, package recommendation is to
find top-k packages based on val() such that each package consists of items selected
by Q and satisfies the constraints Qc. As shown in Example 1.1, packages may have
variable sizes : we want to maximize val(N) as long as cost(N) does not exceed the
budget C.

Traditional item recommendations are a special case of package recommendations.
We use a rating function f() to give a rating in R to each tuple in Q(D). For a given
k, item recommendation is to find top-k items that meet the criteria specified by Q,
ranked by the function f() (see detailed discussions in related work).

This yields a model for top-k package recommendation that subsumes previous
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models studied for,e.g., travel and course recommendations. We study recommenda-
tion problems in a generic setting when selection criteria and compatibility constraints
are expressed as queries, and when the functions cost(), val() and f() are only assumed
to be computable in PTIME w.r.t. the size of packages N and tuples t, respectively.

Recommendation problems. We identify several problems for POI recommenda-
tions. (a) Decision problems RPP and MBP are to decide whether a set of packages
is a top-k recommendation, and whether a constant B is the largest bound such that
there exists a top-k recommendation in which each package N is rated above B, i.e.,
val(N) ≥ B, respectively. (b) Function problem FRP is to find a top-k recommenda-
tion if there exists one. (c) Counting problem CPP counts how many valid packages
exist that have ratings above a bound B.

We study the impact of various dimensions on the complexity of these problems.

(a) Query languages for specifying queries Q and compatibility constraints Qc. We
consider various query languages LQ in which selection criteria Q and compatibility
constraints Qc are expressed. More specifically, the query language LQ ranges over
the following (see e.g., [1] for details):

• conjunctive queries (CQ), built up from atomic formulas with constants and
variables, i.e., relation atoms in database schema R and built-in predicates
(=, 6=, <,≤, >,≥), by closing under conjunction ∧ and existential quantifi-
cation ∃;

• union of conjunctive queries (UCQ) of the form Q1 ∪ · · · ∪Qr, where for each
i ∈ [1, r], Qi is in CQ;

• positive existential FO queries (∃FO+), built from atomic formulas by closing
under ∧, disjunction ∨ and ∃;
• nonrecursive datalog queries (DATALOGnr), defined as a collection of rules of
the form p(~x ) ← p1(~x1), . . . , pn(~xn), where the head p is an IDB predicate
and each pi is either an atomic formula or an IDB predicate, such that its
dependency graph is acyclic; the dependency graph of a DATALOG query Q
is a directed graph GQ = (V,E), where V includes all the predicates of Q,
and (p′, p) is an edge in E if and only if p′ is a predicate that appears in a
rule with p as its head [8];

• first-order logic queries (FO) built from atomic formulas using ∧, ∨, negation
¬, ∃ and universal quantification ∀; and

• datalog queries (DATALOG), defined as a collection of rules p(~x)← p1(~x1), . . . ,
pn(~xn), for which the dependency graph may possibly be cyclic, i.e., DATA-

LOG is an extension of DATALOGnr with an inflational fixpoint operator.

(b) Size bounds on packages. We investigate the impact of only allowing packages of
a fixed size versus allowing packages of variable size. Observe that item recommen-
dations can be viewed as package recommendations in which each package consists of
a single tuple only.

(c) Compatibility constraints. We compare the setting in which no compatibility
constraints are present with the case where such constraints are present. In addition,
we consider “simple” compatibility constraints Qc that can be evaluated in PTIME in
the sizes of Qc and database D.

(d) The number k of packages. We study whether the complexity of the problems
RPP, FRP, MBP and CPP depends on the number k of packages to be recommended.
More specifically, we consider two cases: k = 1 (top-1 packages) and variable k (top-k
packages).
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(e) Finally, we also study item recommendations for which each package consists of a
single item and compatibility constraints are absent.

Complexity results. For all these problems we establish their combined and data
complexity [1]. In the case of combined complexity, we allow the query Q, compati-
bility constraints Qc and database D to vary. For data complexity we only allow the
database D to vary and regard Q and Qc as being predefined and fixed.

These results give a complete characterization of the complexity in this model,
from decision problems to function and counting problems. They tell us where com-
plexity arises, complementing previously stated results.

(a) Query languages dominate the complexity of recommendation problems, e.g., the
problem for deciding the maximum bound for top-k package recommendations ranges
from Dp

2-complete for CQ, PSPACE-complete for FO and DATALOGnr, to EXPTIME-
complete for DATALOG.

(b) Variable package sizes do not make our lives harder when combined complexity is
concerned for all the languages given above. Indeed, when packages may have variable
sizes, all these problems have the same combined complexity as their counterparts
when packages are restricted to be singleton sets. In fact, variable sizes of packages
have impact only on data complexity, or when LQ is a simple language with a PTIME
complexity for its membership problem (i.e., given a query Q ∈ LQ, a database D
and a tuple t, to decide whether t ∈ Q(D)). These clarify the impact of package sizes
studied in, e.g., [34].

(c) The presence of compatibility constraints does not increase the combined complex-
ity when the query language LQ is FO, DATALOGnr or DATALOG. Indeed, for these
languages, all the problems for package recommendations and their counterparts for
item recommendations have the same complexity. Furthermore, these constraints also
do not complicate the data complexity analyses. However, compatibility constraints
increase combined complexity when LQ is contained in ∃FO+. In the absence of
compatibility constraints, the decision problem for top-k package recommendations
is DP-complete and its function problem is FPNP-complete when LQ is CQ. They are

DP-hard and FPNP-hard, respectively, even when selection criteria are given by an
identity query. In contrast, when compatibility constraints are present, these prob-
lems become Πp2-complete and FPΣp

2 -complete, respectively, when LQ is CQ. These
give precise bounds for the problems studied in, e.g., [34].

(d) The choice of k does not have an impact on the complexity. Indeed, recommending
top-1 packages (resp. items) is as hard as recommending top-k-packages (resp. items).

(e) The complexity of item recommendation problems coincides with the complexity
of their package recommendation counterparts in the absence of compatibility con-
straints (for combined complexity) and when packages are restricted to be of fixed
size (for data complexity).

These results are also of interest to the study of top-k query answering, among other
things. A variety of techniques are used to prove our results, including a wide range of
reductions, and constructive proofs with algorithms (e.g., for the function problems).
In particular, the proofs demonstrate that the complexity of these problems for CQ,
UCQ and ∃FO+is inherent to top-k package querying itself, rather than a consequence
of the complexity of the query languages.
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Related work. Traditional recommendation systems aim to find, for each user, items
that maximize the user’s rating function (see, e.g., [3] for a survey). Selection criteria
are decided by content-based, collaborative and hybrid approaches, which consider
preferences of each user in isolation, or preferences of similar users [3]. There has been
a large body of interesting work on item recommendation, mostly focusing on how
to choose appropriate rating functions, and how to extrapolate such functions when
they are not defined on the entire item space, by deriving unknown values from known
ones. Historical user behaviors and transaction data (logs) are typically considered
for extrapolation. Orthogonal to the prior work, we focus on the computational
complexity of recommendation problems in this work. To this end, we assume a given
rating function that is total, i.e., they are defined on the entire item space, and study
where the complexity arises when computing top-k items. We adopt a simple model
that supports content-based, collaborative and hybrid criteria in terms of various
queries, and assumes that historical user behaviors and transaction data are collected
in the database and can be employed in queries for selecting items.

Recently, recommendation systems have been extended to finding packages, which
are presented to the user in a ranked order based on some rating function [6, 20, 24,
25, 34]. A number of algorithms have been developed for recommending packages of a
fixed size [6, 20] or variable sizes [24, 25, 34]. Compatibility constraints [20, 24, 25, 34]
and budget restrictions [34] on packages have also been studied. Instead of considering
domain-specific applications, we model recommendations of both items and packages
(fixed size or polynomial size) by specifying general selection criteria and compatibility
constraints as queries, and supporting aggregate constraints defined in terms of cost
budgets and rating bounds.

Several decision problems for course package recommendations have been shown
to be NP-hard [24, 25]. It was claimed that the problems of forming a team with
compatibility constraints [20] and the problem of finding packages that satisfy some
budget restrictions (without compatibility constraints) [34] are NP-complete. In con-
trast, we establish the precise complexity of a variety of problems associated with POI

recommendations (Table 7.1 and 7.2, Section 7).

There has also been a host of work on recommending items and packages taken
from views of the data [2, 7, 17, 21, 34]. Such views are expressed as relational queries,
representing preferences or points of interest [2, 7, 17]. Here recommendations often
correspond to top-k query answers. Indeed, top-k query answering retrieves the k-
items (tuples) from a query result that are top-ranked by some rating function [16].
Such queries either simply select tuples, or join and aggregate multiple inputs to find
top-k tuples, by possibly incorporating user preference information [17, 28]. A number
of top-k query evaluation algorithms have been developed (e.g.,[13, 21, 27]; see [16]
for a survey), as well as algorithms for incremental computation of ranked query
results [9, 14, 22] that retrieve the top-k query answers one at a time. A central issue
there concerns how to combine different ratings of the same item based on multiple
criteria. Our work also retrieves tuples from the result of a query. It differs from the
previous work in the following. (1) In contrast to top-k query answering, we are to
find items and sets of items (packages) provided that a rating function is given. (2)
We focus on the complexity of recommendations problems rather than the efficiency
or optimization of query evaluation.

It should be remarked that real-life recommendation systems typically do not ex-
pect a normal user to write complexity queries and constraints. The systems aim to
provide their users with useful information, interface, or a fixed set of query forms so
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that the users can easily specify their selection criteria and compatibility constraints.
In this context, the data complexity analyses of recommendation problems (Section 5)
are applicable. Furthermore, the combined complexity results may help recommen-
dation system vendors or developers decide what query languages and compatibility
constraints to support, by striking a balance between the expressive power needed
and the cost (complexity) introduced.

This paper extends [11] by including detailed proofs which can be found in the
appendix. To keep the paper within a reasonable page limit we do not consider query
relaxation and adjustment recommendation, both of which are studied in [11].

Organization. The remainder of the paper is organized as follows. Section 2 intro-
duces the model for package recommendations. Section 3 formulates four fundamental
problems RPP, FRP, MBP and CPP in connection with POI recommendations. We
investigate the combined complexity of these four problems in Section 4, and establish
their data complexity in Section 5. A variety of special cases of these problems are
studied in Section 6. Section 7 summarizes the main results of the paper and identifies
open issues. Detailed proofs are deferred to the Appendix.

2. Modeling recommendations. In this section we present our model for rec-
ommendations of packages and items in detail.

Item collections. Following [2, 7, 17, 24, 25, 34], we assume a database D consisting
of items for selection, possibly along with historical user behaviors for rating the items.
The database is specified with a relational schema R composed of a collection of
relation schemas (R1, . . . , Rn). Each schema Ri is defined over a fixed set of attributes.
For each attribute A in Ri, its domain is specified in Ri and is denoted by dom(Ri.A).

Package recommendations. As remarked earlier, in practice one often wants pack-
ages of items, e.g., combinations of courses to be taken to satisfy the requirements
for a degree [25], travel plans including multiple POI [34], and teams of experts [20].
Package recommendation is to find top-k packages such that the items in each package
(a) meet the selection criteria, (b) satisfy some compatibility constraints, i.e., they
have no conflicts, and moreover, (c) their ratings and costs satisfy certain aggregate
constraints. To specify these, we extend the models proposed in [25, 34] as follows.

Selection criteria. We use a query Q in a query language LQ to specify multi-criteria
for selecting items from D. For instance, as shown in Example 1.1, we use a query to
specify what flights and sites a user wants to find.

A package is a subset N ⊆ Q(D). We use RQ to denote the relation schema of
the query result Q(D), which can be easily derived from query Q and the schema R
of D. To simplify the discussion, we assume w.l.o.g. two predefined polynomial p and
ps such that (1) the number |N | of items in N is no larger than p(|D|), where |D| is
the size of D, and (2) the arity of RQ (i.e., the number of attributes in the tuples of
N) does not exceed ps(|Q|, |R|), where |Q| is the size of query Q, and |R| is the size
of schema R. Indeed, it is not of much practical use to find items of exponentially
large or a package with exponentially many items.

Compatibility constraints. To specify the compatibility constraints for a package N ,
we use a query Qc such that N satisfies Qc if and only if Qc(N,D) = ∅. That is, Qc
identifies inconsistencies among items in N . To simplify the discussion, we assume
that query Qc for specifying compatibility constraints and query Q for specifying
selection criteria are in the same language LQ. If a system supports compatibility
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constraints in LQ, there is no reason for not supporting queries in the same language
for selecting items. We defer to future work the study in the setting when Qc and Q
are expressed in different languages. Note that queries in various query languages are
capable of expressing compatibility constraints commonly found in practice, including
those studied in [17, 20, 24, 25, 34].

Aggregate constraints. To specify aggregate constraints, we define a cost function and
a rating function over packages, following [34]: (1) cost(N) computes a value in R as
the cost of package N ; and (2) val(N) computes a value in R as the overall rating of
N . For instance, cost(N) in Example 1.1 is computed from the total time taken for
visiting POI, while val(N) is defined in terms of airfare and total ticket prices. We
also assume a cost budget C, and specify an aggregate constraint cost(N) ≤ C. For
instance, the cost budget C in Example 1.1 is the total time allowed for visiting POI

in 5 days, and the aggregate constraint cost(N) ≤ C imposes a bound on the number
of POI in a package N .

We just assume that cost() and val() are PTIME computable aggregate functions
w.r.t. the size of packagesN , defined in terms of e.g.,max, min, sum, avg, as commonly
found in practice.

Top-k package selections. For a databaseD, queriesQ andQc in LQ, a natural number
k ≥ 1, a cost budget C, and functions cost() and val(), a top-k package selection is a
set N =

{

Ni | i ∈ [1, k]
}

of packages such that for each i ∈ [1, k],
(1) Ni ⊆ Q(D), i.e., its items meet the criteria given in Q;
(2) Qc(Ni, D) = ∅, i.e., the items in the package satisfy the compatibility con-

straints specified by query Qc;
(3) cost(Ni) ≤ C, i.e., its cost is below the budget;
(4) for all packages N ′ 6∈ N that satisfy conditions (1–3) given above, val(N ′) ≤

val(Ni), i.e., packages in N have the k highest overall ratings among all
feasible packages; and

(5) Ni 6= Nj if i 6= j, i.e., the packages are pairwise distinct.

Note that packages in N may have variable sizes. That is, the number of items
in each package is not necessarily bounded by a constant. We just require that Ni
satisfies the constraint cost(Ni) ≤ C, |Ni| does not exceed a predefined polynomial p
in |D|, and that the arity of tuples in Ni is bounded by a predefined polynomial ps
in |Q| and |R|. In Section 6, we will also consider a fixed size bound for |Ni|.

The package recommendation problem is to find a top-k package selection for (Q,
D,Qc, cost(), val(), C), if there exists one. As shown in Example 1.1, users may want
to find, e.g., a top-k travel-plan selection with the minimum price. Note that there
may exist more than one top-k packages. In this case, we assume that there is either
a strategy in place to break the ties, e.g., based on some ordering on packages, or that
a single top-k package is non-deterministically selected.

As advocated in [2, 7, 17, 24, 25, 34], selection criteria, compatibility constraints,
and aggregate constraints for rating are key components for specifying package recom-
mendations. Along the same lines, we treat these parameters separately in our model
to explore the impact of each factor on the complexity of package recommendation.

Item recommendations. To rank items, we use a rating function f() to measure the
usefulness of items selected by Q(D) to a user [3]. It is a PTIME-computable function
that takes a tuple s from Q(D) and returns a real number f(s) as the rating of item
s. The functions may incorporate users’ preferences [28] and historical behaviors, and
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may be different for different users.

Given a constant k ≥ 1, a top-k selection for (Q,D, f) is a set S =
{

si | i ∈ [1, k]
}

such that
(a) S ⊆ Q(D), i.e., items in S satisfy the criteria specified by Q;
(b) for all s ∈ Q(D) \ S and i ∈ [1, k], f(s) ≤ f(si), i.e., items in S have the

highest ratings; and
(c) si 6= sj if i 6= j, i.e., items in S are distinct.

Given D,Q, f and k, the item recommendation problem is to find a top-k selection
for (Q,D, f) if there exists one. For instance, a top-3 item selection is described in
Example 1.1, where items are flights and the rating function f() is defined in terms
of the airfare and duration of each flight.

The connection between item and package selections. In our model item selections are
a special case of package selections. Indeed, a top-k selection S =

{

si | i ∈ [1, k]
}

for (Q,D, f) is a top-k package selection N for (Q,D,Qc, cost(), val(), C), where N =
{

Ni | i ∈ [1, k]
}

, and for each i ∈ [1, k], (a) Ni = {si}, (b) Qc is a constant query that
returns ∅ on any input, referred to as the empty query; (c) cost(Ni) = |Ni| if Ni 6= ∅,
and cost(∅) =∞; that is, cost(Ni) counts the number of items in Ni if Ni 6= ∅, and the
empty set is not taken as a recommendation; (d) the cost budget C = 1, and hence,
Ni consists of a single item as imposed by cost(Ni) ≤ C; and (e) val(Ni) = f(si).

In the sequel, we use top-k package selection specified in terms of (Q,D, f) to
refer to a top-k selection S for (Q,D, f), i.e., a top-k package selection for (Q,D,Qc,
cost(), val(), C) in which Qc, cost(), val() and C are defined as above.

We say that compatibility constraints are absent if Qc is the empty query; e.g.,
Qc is absent in item selections.

Examples. As a case study, below we show how course package recommendation [24]
and team formation [20] can be specified in our model.

Example 2.1. The course package recommendation problem [24] is to find a
top-1 package of a fixed number of courses such that some prerequisite constraints are
satisfied, i.e., if a course is recommended then all its prerequisites must also be rec-
ommended as well, such that the package maximizes some rating function val(). We
can easily specify course recommendation in our model as follows. The system main-
tains a database Dcourse consisting of two relations specified by course(cid, title) and
prereq(cid1, cid2). Here a course tuple specifies course title identified by cid. A prereq
tuple encodes that course cid1 is a prerequisite for course cid2. Packages are selected
by the identity query Qid on the course relation. Since we are interested in packages
N of a fixed size m, we define cost(N) =∞ if |N | 6= m and cost(N) = |N | otherwise.
We set C = m such that only packages of size m will be recommended. Moreover,
the prerequisite requirement [24] can be expressed as a compatibility constraint:

Qprereq = ∃ c, n, c′, n′
(

RQ(c
′, n′) ∧ course(c, n) ∧ prereq(c, c′) ∧ ¬RQ(c, n)

)

.

Note that this query (compatibility constraint) needs to access not only courses in N
but also the prerequisite relation stored in the database. Clearly, a top-1 package se-
lection for (Qid, Dcourse, Qprereq, cost(), val(), C) corresponds to recommending a course
package as described in [24].

As another example, consider the team formation problem of [20]. Assume a
number of available experts X, each specified with a set of skills. There is also
collaboration graph G that specifies how the experts collaborate with each other.
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The team formation problem is then to find a set X ′ ⊆ X such that the joint set
of skills of those experts in X ′ suffices to perform a given task T and furthermore,
X ′ has a minimal communication cost. Two kinds of costs are put forward in [20]:
(a) the weight of the longest shortest path between any two nodes in graph G′; and
(b) the sum of the weights of the edges in a minimum spanning tree on G′. Here G′

is the subgraph of G induced by X ′.
This problem can be readily formulated in our model. Indeed, let Dexp be the

database storing G, Qid the identity query, and let Qsubg be a query for a compatibility
constraint such that Qsung(N) = ∅ if N is a subgraph of G that is induced by the
vertices occurring in N . Furthermore, for a team N of experts, we define cost(N) to
be the number of required skills for a task that are not exhibited by any other expert
in N , while val(N) is defined in terms of the communication cost of N such that the
higher the communication cost of N is, the lower val(N) is. Clearly, cost() and val()
are PTIME computable functions in the size of the teams. Finally, we set the cost
budget C to be 0 such that cost(N) ≤ C ensures that the experts in team N meet
the skill requirements of the task. It can then be readily verified that a top-1 package
selection for (Qid, Dexp, Qsubg, cost(), val(), C) corresponds to recommending a team of
experts as stated in [20]. ⋄

3. Recommendations of POI’s. We investigate four problems for package
recommendations, namely, RPP(LQ), FRP(LQ), MBP(LQ) and CPP(LQ), stated as
follows, which are fundamental to computing package recommendations.

We start with a decision problem for package selections. Consider a database D of
schema R, queries Q and Qc in a query language LQ, functions val() and cost(), a cost
budget C, and a natural number k ≥ 1. Given a set N consisting of k packages, the
problem is to decide whetherN makes a top-k package selection. That is, each package
N in N satisfies the selection criteria Q, compatibility constraint Qc, and aggregate
constraints cost(N) ≤ C and val(N) ≥ val(N ′) for all N ′ 6∈ N . As remarked earlier,
we assume two predefined polynomials p and ps such that |N | ≤ p(|D|) and the arity of
tuples in N does not exceed ps(|Q|, |R|) (omitted from the problem statement below
for simplicity). Intuitively, this problem is to decide whether a set N of packages
should be recommended.

RPP(LQ): The recommendation problem (packages).
INPUT: A database D, two queries Q and Qc in LQ, two functions cost()

and val(), natural numbers C and k ≥ 1, and a set N =
{

Ni |

i ∈ [1, k]
}

.

QUESTION: Is N a top-k package selection for (Q,D,Qc, cost(), val(), C)?

Recommendation systems have to compute top-k packages, rather than expecting
that candidate recommendations are already in place. This highlights the need for
studying the function problem below, to compute top-k packages.

FRP(LQ): The function recommendation problem (packages).
INPUT: A database D, two queries Q and Qc in LQ, two functions cost()

and val(), and natural numbers C and k ≥ 1.

OUTPUT: A top-k package selection for (Q,D,Qc, cost(), val(), C) if it exists.

The next question concerns how to find a maximum rating bound for computing
top-k packages. We say that a constant B is a rating bound for (Q,D,Qc, cost(), val(),
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C, k) if (a) there exists a top-k package selection N =
{

Ni | i ∈ [1, k]
}

for (Q,D,Qc,
cost(), val(), C) and moreover, (b) val(Ni) ≥ B for each i ∈ [1, k]. That is, B allows a
top-k package selection. We say that B is the maximum bound for packages with (Q,
D,Qc, cost(), val(), C, k) if for all rating bounds B′, B ≥ B′. Obviously B is unique
if it exists. Intuitively, when B is identified, we can capitalize on B to compute top-
rated packages. Furthermore, vendors could decide, e.g., the price for certain items
on sale with such a bound, for risk assessment.

MBP(LQ): The maximum bound problem (packages).
INPUT: A database D, two queries Q and Qc in LQ, two functions cost()

and val(), and natural numbers C, k ≥ 1, and and B.

QUESTION: Is B the maximum bound for packages with (Q,D,Qc, cost(), val(),
C, k)?

The last problem we consider is to count the number of valid packages. Recall
that a package N is valid for (Q,D,Qc, cost(), val(), C,B) if (a) N ⊆ Q(D), (b)
Qc(N,D) = ∅, (c) cost(N) ≤ C, and (d) val(N) ≥ B, where |N | is bounded by a
predefined polynomial p in |D|. Given B, one naturally wants to know how many
valid packages are out there, and hence, can be selected. This suggests that we study
the following counting problem.

CPP(LQ): The counting problem (packages).
INPUT: A database D, two queries Q and Qc in LQ, two functions cost()

and val(), and natural numbers C and B.

OUTPUT: The number of packages that are valid for (Q, D, Qc, cost(), val(),
C, B).

That is, CPP(LQ) is to count the number of valid packages satisfying the users’
requirements. An effective counting procedure obviously finds applications in practice.
For instance, it helps managers of recommendation systems to find out how many
packages carried by the system meet the users’ need, and adjust the stock accordingly.

In the rest of the paper we investigate these problems. We provide their combined
complexity bounds in Section 4, data complexity bounds in Section 5, followed by
complexity in various special cases in Section 6.

4. Combined complexity. In this section, we establish the combined complex-
ity of RPP(LQ), FRP(LQ), MBP(LQ) and CPP(LQ), when LQ ranges over CQ, UCQ,
∃FO+, FO, DATALOGnr and DATALOG. Detailed proofs of the results in this section
can be found in Appendix A.

Deciding package selections. We first consider the combined complexity of RPP(LQ)
in the presence of compatibility constraints Qc (Theorem 4.1). We then study the
complexity of RPP(LQ) in the absence of Qc (Theorem 4.2)

The result below tells us that the combined complexity of RPP(LQ) is mostly
determined by what query language LQ we use to specify selection criteria and com-
patibility constraints. Indeed, it is Πp2-complete when LQ is CQ, PSPACE-complete
for DATALOGnr and FO, and it becomes EXPTIME-complete when LQ is DATALOG.

Theorem 4.1. For RPP(LQ), the combined complexity is
• Πp2-complete when LQ is CQ, UCQ, or ∃FO+;
• PSPACE-complete when LQ is DATALOGnr or FO; and
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• EXPTIME-complete when LQ is DATALOG.

Proof sketch. (1) We show that RPP(LQ) is Π
p
2-hard when LQ is CQ, by reduction

from the complement of the compatibility problem. Given a query Q, a database
D, compatibility constraints Qc, two functions cost() and val(), and constants C
and B, the compatibility problem is to decide whether there exists a nonempty set
N ⊆ Q(D) such that Qc(N,D) = ∅, cost(N) ≤ C and val(N) > B. We show that
the compatibility problem is Σp2-complete for CQ by reduction from the ∃∗∀∗3DNF

problem. The latter problem is to decide whether a given sentence ϕ = ∃X∀Y ψ(X,Y )
is true, where ψ is a disjunction C1 ∨ · · · ∨ Cr and each clause Ci is a conjunction of
three literals defined in terms of variables in X∪Y . The ∃∗∀∗3DNF problem is known
to be Σp2-complete [29].

For the upper bound, we give a Πp2 algorithm for RPP(∃FO+), which first tests,
given a query Q, a database D, compatibility constraints Qc, two functions cost() and
val(), constants C, and a set N of packages, whether N is a valid package selection for
(Q,D,Qc, cost(), val(), C) in DP; it then checks whether there exists no package with
a higher rating than some N ∈ N , in Πp2. Here DP is the class of languages recognized
in deterministic polynomial time with two calls to an oracle: one call to an NP oracle
and one call to a coNP oracle. That is, L is in DP if there exists languages L1 ∈ NP
and L2 ∈ coNP such that L = L1 ∪ L2 (see the details about DP in, e.g., [23]).

(2) We show that RPP(DATALOGnr) and RPP(FO) are PSPACE-hard by reduction
from the membership problem for DATALOGnr and FO, respectively. The membership
problem is to determine, given a query Q in DATALOGnr or FO, a database D and
a tuple t, whether t ∈ Q(D). It is know that this problem is PSPACE-complete for
queries in DATALOGnr [32] and FO [31] (see also [10] for a general survey of complexity
results of the membership problem for various query languages). For the upper bound,
we provide an NPSPACE algorithm to check RPP for these two languages. Thus
RPP(DATALOGnr) and RPP(FO) are both in PSPACE since NPSPACE =PSPACE by
Savitch’s theorem [26].

(3) For DATALOG, we show that RPP is EXPTIME-hard by reduction from the mem-
bership problem for DATALOG, which is EXPTIME-complete [31]. For the upper
bound, we give an EXPTIME algorithm to check RPP(DATALOG).

One might think that the absence of compatibility constraints Qc would make
our lives easier. Indeed, RPP(CQ) becomes DP-complete in the absence of Qc, as
opposed to Πp2-complete in the presence of Qc. However, when LQ is powerful enough
to express FO or DATALOGnr queries, dropping Qc does not help: RPP(LQ) in this
case has the same complexity as its counterpart when Qc is present.

Theorem 4.2. In the absence of Qc, the combined complexity of RPP(LQ) is
• DP-complete when LQ is CQ, UCQ, or ∃FO+;
• PSPACE-complete when LQ is DATALOGnr or FO; and
• EXPTIME-complete when LQ is DATALOG.

Proof sketch. (1) We show that RPP(CQ) is DP-hard by reduction from SAT-

UNSAT, which is known to be DP-complete (cf. [23]). An instance of SAT-UNSAT

is a pair (ϕ1, ϕ2) of 3SAT instances over variables in X and Y , respectively, where
ϕ1 is an instance ϕ = C1 ∧ · · · ∧ Cr in which each clause Ci is a disjunction of
three variables or negations thereof taken from X; similarly for ϕ2 and Y . Given
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such a pair (ϕ1, ϕ2), SAT-UNSAT is to decide whether ϕ1 is satisfiable and ϕ2 is not
satisfiable. In the reduction we define compatibility constraints Qc as the empty query,
i.e., compatibility constraints are absent.

For the upper bound, consider the algorithm outlined earlier for RPP(∃FO+) in
the proof of Theorem 4.1. In the absence of Qc, the algorithm is in DP, and hence so
is RPP(∃FO+).

(2-3) The lower bound proofs (2-3) of Theorem 4.1 for RPP(DATALOGnr), RPP(FO)
and RPP(DATALOG) do not use compatibility constraints, and hence remain intact
here. The upper bounds given there obviously carry over to this special case.

Computing top-k packages. To state the complexity of FRP we first recall the
following complexity classes: FPNP is the class of all functions from strings to strings
that can be computed by a PTIME Turing machine with an NP oracle (cf. [23]),

and FPΣp
2 is the class of all functions computable by a PTIME 2-alternating max-min

Turing machine [18]. By FPSPACE(poly) (resp. FEXPTIME(poly)) we mean the class of
all functions associated with a two-argument predicate RL that satisfies the following
conditions:

• RL is polynomially balanced, i.e., there is a polynomial q such that for all
strings x and y, if RL(x, y) then |y| ≤ q(|x|), and
• the decision problem “given x and y, whether RL(x, y)” is in PSPACE (resp.
EXPTIME) [19].

Given a string x, the function problem associated with RL is to find a string y such
that RL(x, y) if such a string exists.

The complexity of the function problem FRP(LQ) is as follows:

Theorem 4.3. For FRP(LQ), the combined complexity is

• FPΣp
2 -complete when LQ is CQ, UCQ or ∃FO+;

• FPSPACE(poly)-complete if LQ is DATALOGnr or FO; and
• FEXPTIME(poly)-complete when LQ is DATALOG.

In the absence of compatibility constraints, its combined complexity remains unchanged
for DATALOGnr, FO and DATALOG, but it becomes FPNP-complete for CQ, UCQ and
∃FO+.

These results tell us that it is nontrivial to find top-k packages. Indeed, to ex-
press compatibility constraints on travel plans given in [34], we need at least CQ;
for the course combination constraints of [17, 24, 25], we need FO; and for connec-

tivity of flights we need DATALOG. These place FRP in FPΣp
2 , FPSPACE(poly) and

FEXPTIME(poly), respectively.

It was claimed in several earlier papers that when k = 1, it is NP-complete to find a
top-1 package. Unfortunately, it is not the case. Indeed, the proofs of Theorems 4.3,
and 4.1 tell us that when k = 1, the function problem FRP(LQ) remains FPΣp

2 -
complete and the decision problem RPP(LQ) is Πp2-complete even when LQ is CQ,
not to mention more expressive LQ. Furthermore, we will show in the next section

that even when Q and Qc are both fixed, FRP is FPNP-complete (Theorem 5.2) and
RPP is coNP-complete (Theorem 5.1) when k = 1.

Observe that in the absence of compatibility constraints, only the analyses of the
combined complexity of FRP for CQ, UCQ and ∃FO+are simplified. This is consistent
with Theorem 4.2.
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Proof sketch. (1) We show that FRP(CQ) is FPΣp
2 -hard by reduction from the

maximum Σp2 problem, which is FPΣp
2 -complete [18]. The latter is to find, given a

formula ϕ(X) = ∀Y ψ(X,Y ), the truth assignment µlast

X of X that satisfies ϕ and
comes last in the lexicographical ordering if it exists, where ψ(X,Y ) is an instance of
3DNF over variables in X ∪ Y . That is, ψ is a disjunction C1 ∨ · · · ∨ Cr, where each
clause Ci is a conjunction of three literals over X ∪ Y .

For the upper bound, we give an FPΣp
2 algorithm (i.e., an algorithm runs in

polynomial time with access to a Σp2-oracle) for FRP(∃FO
+) that given as input Q, D,

Qc, cost(), val(), C and k, computes a top-k package selection if it exists.

(2) When LQ is DATALOGnr or FO (resp. DATALOG), we show that FRP(LQ) is
FPSPACE (poly)-hard (resp. FEXPTIME(poly)-hard) by reducing to it all functions
computable by a PSPACE (resp. EXPTIME) Turing machine in which the output
on the working tape is bounded by a polynomial. For the upper bounds, we give
an algorithm in FPSPACE(poly) (resp. FEXPTIME(poly)) for FRP(LQ) when LQ is
DATALOGnr or FO (resp. DATALOG). The algorithm is a variation of the algorithm
given for FRP(∃FO+) in which we replace the Σp2-oracle by a PSPACE oracle (resp.
EXPTIME oracle) when LQ is DATALOGnr or FO (resp. DATALOG).

(3) When Qc is absent, we show that FRP(CQ) is FPNP-hard by reduction from MAX-

WEIGHT SAT, which is known to be FPNP-complete (cf. [23]). Given a set C of clauses
{C1, . . . , Cr} with weights, where each clause Ci is a disjunction of three literals over
X, MAX-WEIGHT SAT is to find a truth assignment that satisfies a set of clauses in
C with the most total weight. For the upper bound, the algorithm for FRP(∃FO+)
given in proof (1) is now in FPNP. The proofs for DATALOGnr, FO and DATALOG

given in (2) still work in this special case, as no Qc is used there when verifying the
lower bounds.

Deciding the maximum bound. We show that MBP(CQ) is Dp
2-complete. Here

Dp
2 is the class of languages recognized by oracle machines that make a call to an Σp2

oracle and a call to a Πp2 oracle. That is, L is in Dp
2 if there exist languages L1 ∈ Σp2

and L2 ∈ Πp2 such that L = L1 ∩ L2 [33], analogous to how DP is defined with NP
and coNP [23].

When LQ is FO, DATALOGnr or DATALOG, MBP(LQ) and RPP(LQ) have the
same complexity. Moreover, the absence of Qc has the same impact on MBP(LQ) as
on RPP(LQ).

Theorem 4.4. For MBP(LQ), the combined complexity is

• Dp
2-complete when LQ is CQ, UCQ or ∃FO+;

• PSPACE-complete when LQ is DATALOGnr or FO; and
• EXPTIME-complete when LQ is DATALOG.

When compatibility constraints are absent, its combined complexity remains un-
changed for DATALOGnr, FO and DATALOG, but it becomes DP-complete for CQ,
UCQ and ∃FO+.

Proof sketch. (1) We show thatMBP(CQ) is Dp
2-hard by reduction from ∃∗∀∗3DNF–

∀∗∃∗3CNF, which is known to be Dp
2-complete [33]. Given a pair (ϕ1, ϕ2) of ∃

∗∀∗3DNF

instances (see the proof of Theorem 4.1 for the description of ∃∗∀∗3DNF instances),
the latter is to decide whether ϕ1 is true and ϕ2 is false. For the upper bound, we
show that MBP(∃FO+) is in Dp

2 by giving an polynomial time algorithm that makes
one call to a Σp2 oracle and one call to a Πp2 oracle.



On the complexity of package recommendation problems 15

(2) We show that MBP(DATALOGnr), MBP(FO) and MBP(DATALOG) are PSPACE-
hard, PSPACE-hard and EXPTIME-hard, respectively, by reduction from the member-
ship problems of DATALOGnr, FO and DATALOG queries, respectively (see the proof
of Theorem 4.1 for the details of the membership problem). The reductions are exten-
sions of their counterparts in the proofs of Theorem 4.1 (2-3) for RPP(DATALOGnr),
RPP(FO) and RPP(DATALOG), respectively, in which compatibility constraints are all
defined as the empty query. For the upper bounds, we give an NPSPACE (=PSPACE)
algorithm for RPP(LQ) when LQ is DATALOGnr or FO, and an EXPTIME algorithm
for MBP(DATALOG).

(3) In the absence of Qc, we show that MBP(CQ) is DP-hard by reduction from SAT-

UNSAT (see the proof of Theorem 4.2 for the details of SAT-UNSAT). For the upper
bound, we show that MBP(∃FO+) is in DP by giving a polynomial time algorithm
that makes one call to an NP oracle and one call to a coNP oracle. When LQ is
FO, DATALOGnr or DATALOG, the lower bound proofs given in (2) above do not use
compatibility constraints, and thus the lower bounds remain intact. Obviously, the
upper bounds given there carry over to the special case in the absence of Qc.

Counting recommendations We provide the complexity of CPP(LQ) as follows.

Theorem 4.5. For CPP(LQ), the combined complexity is

• #·coNP-complete when LQ is CQ, UCQ or ∃FO+;
• #·PSPACE-complete when LQ is DATALOGnr or FO; and
• #·EXPTIME-complete when LQ is DATALOG.

In the absence of compatibility constraints, its combined complexity remains un-
changed for DATALOGnr, FO and DATALOG, but it becomes #·NP-complete for CQ,
UCQ and ∃FO+.

Here we use the framework of predicate-based counting classes introduced in [15].
For a complexity class C of decision problems, #·C is the class of all counting problems
associated with a binary predicate RL that satisfies the following conditions:

• RL is polynomially balanced, i.e., RL(x, y) implies |y| 6 |x|k for some k > 1;
that is, the length of the second component is always bounded by a polynomial
in the length of the first; and

• the decision problem “given x and y, whether RL(x, y)” is in C.

A counting problem is to compute the cardinality of the set {y|RL(x, y)}, i.e., it is to
find how many y there are such that RL(x, y) holds.

It is known that #·P = #P, #·NP ⊆ #NP = # · PNP = #·coNP, but #·NP =
#·coNP if and only if NP = coNP, where #P and #NP are counting classes in the
machine-based framework of [30]. These and Theorem 4.5 tell us that the combined
complexity of CPP(CQ) is #NP-complete.

Proof sketch. (1) We show that CPP(CQ) is #·coNP-hard by reduction from
#Π1SAT, which is #·coNP-complete [12]. Given a universally quantified Boolean for-
mula of the form ϕ(X,Y ) = ∀X ψ(X,Y ), where ψ is a 3DNF over variables in X ∪Y ,
#Π1SAT is to count the number of truth assignments of Y that satisfy ϕ. The reduc-
tion is an 1-1 mapping from the solutions to CPP(CQ) to the truth assignments of Y
that satisfy ϕ, and thus is parsimonious. We also show that CPP(∃FO+) is in #·coNP.

(2) We show that CPP is #·PSPACE-hard for DATALOGnr and FO by parsimonious
reductions from #QBF, which is known to be #·PSPACE-complete [19]. Given ϕ =
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∃X ∀y1P2y2 · · · Pnyn ψ, where ψ is a 3SAT instance over X and {yi | i ∈ [1, n]}, and
Pi is ∀ or ∃, #QBF is to count the number of truth assignments of X that satisfy ϕ.
For DATALOG, we verify that CPP is #·EXPTIME-hard by parsimonious reduction
from all counting problems in #·EXPTIME. We also show that CPP is in #·PSPACE
(resp. #·EXPTIME) for DATALOGnr and FO (resp. DATALOG).

(3) When Qc is absent, we show that CPP(CQ) is #·NP-hard by parsimonious reduc-
tion from #Σ1SAT, which is #·NP-complete [12]. Given ϕ(X,Y ) = ∃X ψ(X,Y ) =
∃X(C1 ∧ · · · ∧Cr), where Ci’s are disjunctions of variables or negated variables taken
from X ∪Y , #Σ1SAT is to count truth assignments of Y that satisfy ϕ. We also show
that CPP(∃FO+) is in #·NP. When LQ is DATALOGnr, FO or DATALOG, the proofs
of (2) given above carry over since those lower bound proofs do not use compatibility
constraints.

5. Data Complexity. In practice, one often has to deal with a predefined set
of queries. That is, the queries are fixed, and only the underlying databases vary. For
instance, the queries given in Example 1.1 can be issued by using fixed Web forms
provided by the recommendation system’s Web site. This highlights the need for
studying the data complexity of package recommendations, for a fixed set of queries.

In this section, we investigate the data complexity of problems RPP(LQ), FRP(LQ),
MBP(LQ) and CPP(LQ), when queries Q and compatibility constraints Qc are pre-
defined and fixed, while database D may vary.

The complexity results given below tell us that fixing selection criteria Q and
compatibility constraints Qc do make our lives easier: RPP(LQ), FRP(LQ), MBP(LQ)

and CPP(LQ) are coNP-complete, FPNP-complete, DP-complete and #·P-complete,
respectively, for all the languages in Section 1. However, dropping compatibility con-
straints Qc does not further reduce the complexity when data complexity is concerned.
That is, all the results given in this section remain unchanged in the absence of QC .
Detailed proofs of the results in this section can be found in Appendix B.

We start with RPP(LQ), the recommendation problem for packages.

Theorem 5.1. For RPP(LQ), the data complexity is coNP-complete when LQ
is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG, in the presence or absence of
compatibility constraints.

Proof sketch. We first show that the data complexity of the compatibility problem
is NP-complete in the absence of compatibility constraints Qc, by reduction from
3SAT (see the proof of Theorem 4.1 for the statement of the compatibility problem).
Given an instance ϕ = C1 ∧ · · · ∧Cr in which each clause Ci is a disjunction of three
variables or negations thereof taken from X, 3SAT is to decide whether ϕ is satisfiable
and is known to be NP-complete (cf. [23]). From this it follows that RPP(CQ) is
already coNP-hard in the absence of Qc, by reduction from the complement of the
compatibility problem. For the upper bound, we give a coNP algorithm for RPP when
Q and Qc are fixed queries in either FO or DATALOG, where Qc may be present.

When it comes to FRP(LQ), the function recommendation problem, we show that

fixing Q and Qc also makes the problem easier: it drops to FPNP-complete for all the
languages in Section 1.

Theorem 5.2. The data complexity of FRP(LQ) is FP
NP-complete for CQ, UCQ,

∃FO+, DATALOGnr, FO and DATALOG, in the presence or absence of compatibility
constraints.
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Proof sketch. When Qc is absent, FRP(CQ) is FP
NP-hard by Theorem 4.3. More-

over, the lower bound proof of Theorem 4.3 uses a fixed query Q in CQ (i.e., a fixed
identity query). Thus FRP(CQ) is FPNP-hard when Q is fixed and Qc is absent. For
the upper bound, we give an FPNP algorithm for FRP(FO) and FRP(DATALOG) when
Q and Qc are fixed.

We next study the maximum bound problem MBP(LQ). The results below tell
us that fixing Q and Qc simplifies the analysis of MBP(LQ).

Theorem 5.3. For MBP(LQ), the data complexity is DP-complete when LQ
is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG, in the presence or absence of
compatibility constraints.

Proof sketch. When Qc is absent, MBP(CQ) is DP-hard by Theorem 4.4. More,
its lower bound proof uses a fixed query Q in CQ. Thus MBP(CQ) is DP-hard when Q
is fixed and Qc is absent. For the upper bound, we give an DP algorithm for MBP(FO)
and MBP(DATALOG) when Q and Qc are fixed.

Finally, we study the data complexity of CPP(LQ). The result below tells us that
the data complexity of CPP(LQ) is #P-complete for all the languages considered,
since #P =#·P (cf. [23]).

Theorem 5.4. For CPP(LQ), the data complexity is #·P-complete when LQ
is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG, in the presence or absence of
compatibility constraints.

Proof sketch. When Q and Qc are fixed, we show that CPP(CQ) is #·P-hard by
parsimonious reduction from #SAT, which is #·P-complete (cf. [23], by #P =#·P).
Given an instance ψ of 3SAT, #SAT is to count truth assignments that satisfy ψ. Fur-
thermore, we define compatibility constraints Qc as the empty query in the reduction.
Thus CPP(CQ) is #·P-hard when Q is fixed and Qc is absent. For the upper bound,
we show that CPP is in #·P when Q and Qc are fixed queries in FO or DATALOG,
where Qc may be present.

6. Special cases of POI recommendations. The results established in the
previous sections tell us that RPP, FRP, MBP and CPP have rather high complexity.
In this section we revisit these problems for special cases of package recommendations,
to explore the impact of various parameters of these problems on their complexity.
We consider the settings when packages are bounded by a constant instead of a poly-
nomial, when LQ is a language for which the membership problem is in PTIME, and
when compatibility constraints are simply PTIME functions. We also study item
recommendations, for which each package has a single item, and compatibility con-
straints are absent. Finally, we observe that all results carry over when considering
top-1 recommendations instead of top-k recommendations. Our main conclusion of
this section is that the complexity bounds of these problem are rather robust : these
restrictions simplify the analyses, but not much. Detailed proofs of the results in this
section can be found in Appendix C.

6.1. Packages with a fixed bound. One might be tempted to think that
fixing package size would simplify the analyses. Below we study the impact of fixing
package sizes on package selections, in the presence of compatibility constraints Qc,
by considering packages N such that |N | ≤ Bp, where Bp is a predefined constant
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rather than a polynomial.
We show that fixing package sizes does not make our lives easier when combined

complexity is concerned. In contrast, it does simplify the analyses of data complexity.

Corollary 6.1. For packages with a constant bound Bp, the combined complex-
ity bounds of RPP, FRP, MBP and CPP are the same as given in Theorems 4.1, 4.3,
4.4 and 4.5, respectively; and the data complexity is

• in PTIME for RPP,
• in FP for FRP,
• in PTIME for MBP, and
• in FP for CPP,

when LQ is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG. The complexity remains
unchanged even when Bp is fixed to be 1.

Proof sketch. (1) For the combined complexity, the lower bounds of RPP, FRP,
MBP and CPP in the presence of Qc hold here, since their proofs given in Theorems
4.1, 4.3, 4.4 and 4.5, respectively, use only top-1 package with one item. Moreover,
all the upper bounds given there carry over to this special case

(2) For fixed Q and Qc, we give algorithms in PTIME, FP, PTIME and FP for RPP,
FRP, MBP and CPP, respectively.

6.2. SP queries. In contrast, for queries that have a PTIME complexity for
their membership problem, variable package sizes lead to higher complexity of RPP,
FRP, MBP and CPP than their counterparts for packages with a fixed bound.

To illustrate this, we consider SP queries, a simple fragment of CQ queries that
support projection and selection operators only. An SP query is of the form

Q(~x ) = ∃~x, ~y (R(~x, ~y ) ∧ ψ(~x, ~y )),

where ψ is a conjunction of predicates =, 6=, <,≤, > and ≥.
The result below holds for all query languages with a PTIMEmembership problem,

including but not limited to SP. In fact the lower bounds remain intact even when the
selection criteria are specified by an identity query, when |~y | = 0 and ψ is a tautology.

Corollary 6.2. For SP queries, the combined complexity and data complexity
are

• coNP-complete for RPP, but in PTIME for packages with a fixed (constant)
bound Bp;

• FPNP-complete for FRP, but in FP for fixed Bp;
• DP-complete for MBP, but in PTIME for fixed Bp; and
• #·P-complete for CPP, but in FP for fixed Bp.

when compatibility constraints are present or absent.

Proof sketch. (1) For packages of variable sizes, the lower bounds of RPP, FRP,
MBP and CPP with fixed Q in CQ hold for SP. Indeed, their proofs for Theorems 5.1,
5.2, 5.3 and 5.4 use an identity query as Q, which is in SP. For the upper bounds, the
algorithms given there for RPP, FRP, MBP and CPP with a fixed Q apply to arbitrary
SP queries.

(2) For packages with a constant bound, the algorithms for fixed Q of Corollary 6.1
apply to SP queries, fixed or not.
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6.3. PTIME compatibility constraints. One might also think that we would
get lower complexity with PTIME compatibility constraints. That is, we simply treat
compatibility constraints as PTIME functions in the sizes of |Qc|, |D| and |N | of
compatibility constraints Qc, database D and packages N , respectively, rather than
queries in LQ. Nonetheless, in this setting, the complexity remains the same as its
counterpart when Qc is absent, no better and no worse.

Corollary 6.3. With PTIME compatibility constraints Qc,
• the combined complexity of RPP, FRP MBP and CPP remains the same as
their counterparts in the absence of Qc, as given in Theorems 4.2, 4.3, 4.4
and 4.5, respectively, and

• their data complexity remains the same as their counterparts in the absence
of Qc, as given in Theorems 5.1, 5.2, 5.3 and 5.4, respectively,

when LQ is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG.

Proof sketch. The lower bounds of RPP, FRP, MBP and CPP in the absence
of Qc, for combined complexity and data complexity, respectively, obviously carry
over to this setting, since when Qc is empty (see Section 2), Qc is in PTIME. The
upper bound proofs of Theorems 4.2, 4.3, 4.4 and 4.5 for combined complexity, and
Theorem 5.1, 5.2, 5.3 and 5.4 for data complexity, in the absence of Qc, also remain
intact here. Indeed, adding an extra PTIME step for checking whether Qc(N,D) = ∅
does not increase the complexity of the algorithms given there.

6.4. Item recommendations. As remarked in Section 2, item recommendation
is a special case of package recommendation when (a) compatibility constraints Qc are
absent, and (b) each package consists of a single item, i.e., with a fixed size 1. Given
a database D, a query Q ∈ LQ, a rating function f() and a natural number k ≥ 1, a
top-k item selection is a top-k package selection specified in terms of (Q,D, f).

When Qc is absent and packages have size 1, one might expect that the recom-
mendation analyses would become much simpler. Unfortunately, this is not the case.

Theorem 6.4. For items, RPP, FRP, MBP and CPP have
• the same combined complexity as their counterparts in the absence of Qc (The-
orems 4.2, 4.3, 4.4, 4.5), and

• the same data complexity as their counterparts for packages with a constant
bound (Corollary 6.1),

when LQ is CQ, UCQ, ∃FO+, DATALOGnr, FO or DATALOG.

Proof sketch. (1) Combined complexity. The upper bounds of these problems in
the absence of Qc (Theorems 4.2, 4.3, 4.4, 4.5) obviously remain intact here. The lower
bound proofs for RPP and CPP given there are still valid for item recommendations,
since they require only top-1 packages with a single item. For FRP and MBP, however,
new lower bound proofs are required for item recommendations.

More specifically, we show that FRP(CQ) is FPNP-hard by reduction from MAX-

WEIGHT SAT, and thatMBP(CQ) is DP-hard by reduction from SAT-UNSAT, for item
recommendations (see the proof of Theorem 4.3 for the statement of MAX-WEIGHT

SAT, and the proof of Theorem 4.2 for the statement of SAT-UNSAT). For other
languages LQ, the proofs for FRP(LQ) and MBP(LQ) are given along the same lines
as their counterparts for Theorems 4.3 and 4.4, respectively.

(2) Data complexity. The algorithms developed for Corollary 6.1 suffice for item
selections when Q is fixed.
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Table 7.1

Combined complexity ((⋆): items (Th.6.4), (§): constant bound (Cor. 6.1), (†): PTIME Qc (Cor.6.3))

Problems Languages with Qc Without Qc

RPP

CQ, UCQ, ∃FO+ Πp
2-complete(§) DP-complete(⋆,†)

DATALOGnr, FO PSPACE-complete(§) PSPACE-complete(⋆,†)

DATALOG EXPTIME-complete(§) EXPTIME-complete(⋆,†)

(Th. 4.1) (Th. 4.2)

FRP

CQ, UCQ, ∃FO+ FPΣ
p
2 -complete(§) FPNP-complete(⋆,†)

DATALOGnr, FO
(⋆,†) FPSPACE(poly)-complete(§) FPSPACE(poly)-complete(⋆,†)

DATALOG FEXPTIME(poly)-complete(§) FEXPTIME(poly)-complete(⋆,†)

(Th. 4.3) (Th. 4.3)

MBP

CQ, UCQ, ∃FO+ D
p
2-complete(§) DP-complete(⋆,†)

DATALOGnr, FO PSPACE-complete(§) PSPACE-complete(⋆,†)

DATALOG EXPTIME-complete(§) EXPTIME-complete(⋆,†)

(Th. 4.4) (Th. 4.4)

CPP

CQ, UCQ, ∃FO+ #·coNP-complete(§) #·NP-complete(⋆,†)

DATALOGnr, FO #·PSPACE-complete(§) #·PSPACE-complete(⋆,†)

DATALOG #·EXPTIME-complete(§) #·EXPTIME-complete(⋆,†)

(Th. 4.5) (Th. 4.5)

Table 7.2

Data complexity ((⋆): items (Th. 6.4), (†): PTIME Qc (Cor. 6.3))

Problems Poly-bounded Constant bound

RPP coNP-complete(†) (Th. 5.1) PTIME (⋆) (Cor. 6.1)

FRP FPNP-complete(†) (Th. 5.2) FP (⋆) (Cor. 6.1)

MBP DP-complete(†) (Th. 5.3) PTIME (⋆) (Cor. 6.1)

CPP #·P-complete(†) (Th. 5.4) FP (⋆) (Cor. 6.1)

6.5. Top-1 recommendations. One may wonder whether recommending top-1
packages or items is easier than recommending top-k packages or items. However, a
close inspection of the lower bound proofs of RPP, FRP and MBP reveal that these
remain intact when k = 1 (note that k is irrelevant to CPP.) This tells us that the
parameter k does not affect the complexity.

7. Conclusions. We have studied a general model for recommendation systems,
and investigated several fundamental problems in the model, from decision problems
RPP,MBP to function problem FRP and counting problem CPP. We have also inves-
tigated special cases of these problems, when compatibility constraints Qc are absent
or in PTIME, when all packages are bounded by a constant Bp, and when both Qc
is absent and Bp is fixed to be 1 for item selections. We have provided a complete
picture of the lower and upper bounds of these problems, all matching, for both their
data complexity and combined complexity, when LQ ranges over a variety of query
languages. These results tell us where complexity of these problems arises.

The main complexity results are summarized in Tables 7.1 and 7.2 for combined
complexity and data complexity, respectively, annotated with their corresponding
theorems (the results for SP (Corollary 6.2) are excluded). From these results we find
the following.

Query languages LQ. Table 7.1 tells us that query languages dominate the combined
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complexity of all these problems. Indeed, the presence of negation or recursion in
queries makes our lives harder. In contrast, the data complexity of these problems is
independent of query languages, and remains unchanged no matter whether compat-
ibility constraints Qc are present or not, as shown in Table 7.2.

Compatibility constraints. As we can see from Table 7.1, (1) for CQ, UCQ and ∃FO+,
the presence of Qc increases the combined complexity of the analyses. (2) In contrast,
for more powerful languages such as DATALOGnr, FO and DATALOG, neither Qc nor
variable sizes make any difference. Indeed, RPP, FRP, MBP and CPP have exactly
the same combined complexity as their counterparts for item recommendations, in the
presence or absence of Qc. That is, the bounds for FO, DATALOGnr and DATALOG

are robust, regardless of the presence of Qc and package sizes. (3) For data complexity,
the presence of Qc has no impact (Table 7.2). Indeed, when Qc is fixed, it is in PTIME
to check Qc(N,D) = ∅ for all LQ in which Qc is expressed; hence Qc can be encoded
in the cost() function, and no longer needs to be treated separately. (4) To simplify
the discussion we use LQ to specify Qc. Nonetheless, all the complexity results remain
intact for any class C of Qc whose satisfiability problem has the same complexity as
the membership problem for LQ (the satisfiability problem is to determine, given a
query Q ∈ C, whether there exists a database D such that Q(D) is nonempty). (5) In
particular, when C is a class of PTIME functions, the presence of Qc has no impact
on the complexity. In other words, when Qc is a PTIME function, all these problems
have the same complexity bounds as their counterparts in the absence of Qc.

Variable sizes of packages. (1) For simple queries that have a PTIME membership
problem, such as SP queries, the problems with variable package sizes have higher
combined and data complexity than their counterparts with a fixed (constant) package
size. This is in line with the claim of [34]. (2) In contrast, for any query language that
subsumes CQ, variable sizes of packages have no impact on the combined complexity
of these problems. This is consistent with the observation of [24]. (3) When it comes
to the data complexity, however, variable (polynomially) package sizes make our lives
harder: RPP, FRP, MBP and CPP in this setting have a higher data complexity than
their counterparts with a fixed package size, as shown in Table 7.2.

Item recommendation. Item selections do not come with compatibility constraints Qc
and moreover, have a fixed package size 1. Observe that RPP, FRP, MBP and CPP
for items have the same combined complexity as their counterparts for packages in
the absence of Qc, and they have the same data complexity as their counterparts for
packages with a constant bound (see Tables 7.1 and 7.2)

The number k of packages. All the lower bounds of RPP, FRP and MBP remain intact
when k = 1, i.e., they carry over to top-1 package selections. That is, the number k
of packages has no impact on the combined and data complexity of these problems.

The study of recommendation problems is still preliminary. First, this work aims
to study a general model that subsumes previous models developed for various appli-
cations, and hence adopts generic functions cost(), val() and f(). These need to be
fine-tuned by incorporating information about users (e.g., historical behaviors), col-
laborative filtering and specific aggregate functions. Second, to simplify the discussion
we assume that selection criteria Q and compatibility constraints Qc are expressed in
the same language (albeit PTIME Qc). It is worth studying different languages for Q
and Qc. Third, the recommendation problems are mostly intractable. An interesting
topic is to identify practical and tractable cases. Finally, another issue to consider
concerns group recommendations [5], to a group of users instead of a single user.
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Appendix A. Proofs of Section 4.

A.1. Proof of Theorem 4.1 (RPP, combined complexity, in the pres-
ence of compatibility constraints). We prove the combined complexity bounds
of RPP(LQ) when LQ ranges over CQ, UCQ, ∃FO+, DATALOGnr, FO and DATALOG.

◮When LQ is CQ, UCQ or ∃FO+. It suffices to show that RPP(LQ) is Πp2-hard for
CQ and is in Πp2 for ∃FO+.

Lower bound. To verify that RPP(CQ) is Πp2-hard, we consider the compatibility
problem. It is to determine, given Q, D, Qc, cost(), val(), C and a constant B,
whether there exists a nonempty N ⊆ Q(D) such that cost(N) ≤ C, val(N) > B and
Qc(N,D) = ∅. The lower bound proof of RPP(CQ) consists of two parts. We first
show that the compatibility problem is Σp2-complete for CQ queries (see Lemma A.1
below). We then verify that RPP(CQ) is Πp2-hard by reduction from the complement
of the compatibility problem. We first show the following lemma:

Lemma A.1. The combined complexity of the compatibility problem is Σp2-complete
for CQ queries.

Proof. We show that the compatibility problem is in Σp2 by giving an NP algorithm
that calls an NP oracle, as follows. The algorithm first guesses a package N , where
the number of tuples in N is bounded by a predefined polynomial p, and the arity
of tuples in N is bounded by another predefined polynomial ps; the algorithm then
verifies whether (a) N ⊆ Q(D); (b) Qc(N,D) = ∅; and (c) cost(N) ≤ C and val(N) >
B. When LQ is CQ, UCQ or ∃FO+, checking (a) and (b) requires NP and coNP,
respectively. Indeed, for (a) the NP algorithm first guesses for each item s ∈ N , a
CQ query Qs from Q and a tableau from D for Qs (see [1] for details of tableau
representations of CQ queries), and then checks whether these yield N . If so, the
guess is accepted and the algorithm returns “yes”. For (b) the coNP algorithm simply
guesses a tuple t, a CQ query Qt from Q and a tableau D for Qt, and then checks
whether these yield the tuple t. If so, the guess is accepted and the algorithm returns
“no”. In addition, verifying (c) requires PTIME. From this the Σp2 upper bound
follows.

For the lower bound, we show that the compatibility problem is Σp2-hard by
reduction from the ∃∗∀∗3DNF problem, which is known to be Σp2-complete [29]. The
∃∗∀∗3DNF problem is to decide, given a sentence ϕ = ∃X∀Y ψ(X,Y ), whether ϕ is
true. Here X = {x1, . . . , xm}, Y = {y1, . . . , yn} and ψ is a disjunction C1 ∨ · · · ∨ Cr,
where Ci is a conjunction of three literals defined in terms of variables in X ∪ Y .

Given an instance ϕ = ∃X∀Y ψ(X,Y ), we define a database D, a query Q in CQ,
a query Qc in CQ for compatibility constraints, functions cost() and val(), and two
constants C and B, such that ϕ is true if and only if there exists a package N ⊆ Q(D)
such that cost(N) ≤ C, val(N) > B, and Qc(N,D) = ∅.

(1) The database D consists of four relations specified by schemas R01(X), R∨(B,

A1, A2), R∧(B,A1, A2) and R¬(A, ~A). Their instances are shown in Figure A.1. More
specifically, I01 encodes the Boolean domain, and I∨, I∧ and I¬ encode disjunction,
conjunction and negation, respectively, such that ψ can be expressed in CQ in terms
of these relations.

(2) We define a CQ query Q as Q(~x ) = R01(x1) ∧ · · · ∧ R01(xm), where ~x = (x1,
. . . , xm). That is, Q(~x ) generates all truth assignments of X variables by means of
Cartesian products of R01.
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I01 =

X

1
0

I∨ =

B A1 A2

0 0 0
1 0 1
1 1 0
1 1 1

I∧ =

B A1 A2

0 0 0
0 0 1
0 1 0
1 1 1

I¬ =

A Ā

0 1
1 0

Figure A.1. Relation instances used in the lower bound proof of Lemma A.1

(3) We define a CQ query Qc as follows:

Qc(b) = ∃~x ∃~y
(

RQ(~x ) ∧QY (~y ) ∧Qψ(~x, ~y, b) ∧ b = 0
)

.

Here RQ is the schema of the result of Q(D), and QY generates all truth assignments
of Y variables by means of Cartesian products of R01 in the same way as Q(~x ). Query
Qψ in CQ encodes the truth value of ψ(X,Y ) for given truth assignments µX and µY ,
in terms of I∨, I∧ and I¬; it returns b = 1 if ψ(X,Y ) is satisfied by µX and µY , and
b = 0 otherwise. Intuitively, Qc(b) 6= ∅ if for a given set N ⊆ Q(D) that encodes a
truth assignment µX for X, there exists a truth assignment of Y that makes ψ(µX , Y )
false.

(4) We define cost(N) = |N | when N 6= ∅, i.e., it counts the number of items in
nonempty packages N , and define cost(∅) = ∞ otherwise. In addition, we use cost
budget C = 1, i.e., any recommended package N has exactly one item. Furthermore,
we let val() be a constant function that assigns 1 to any package and set B = 0.

We next verify that ϕ is true if and only if there exists N ⊆ Q(D) such that
cost(N) ≤ C, val(N) > B, and Qc(N,D) = ∅.

⇒ First assume that ϕ is true. Then there exists a truth assignment µ0
X for X

such that for all truth assignments µY for Y , ψ is true. Let N consist of the tuple
representing µ0

X . Then Qψ does not return b = 0 for µ0
X and hence, Qc(N,D) is

empty. Obviously, cost(N) ≤ C and val(N) > B.

⇐ Conversely, assume that ϕ is false. Then for all truth assignment µX for X, there
exists a truth assignment µY for Y such that ψ is false for µX and µY . Hence no
matter how we select N , as long as N consists of a truth assignment of X, Qψ returns
b = 0 and hence, Qc(N,D) is nonempty. Observe that the empty package N = ∅
cannot be recommended because cost(∅) =∞ > C.

This completes the proof of the lemma.

We next show that RPP(CQ) is Πp2-hard by reduction from the complement of the
compatibility problem. Given an instance Q, D, Qc, cost(), val(), cost budget C and
a constant B of the compatibility problem, we define a set N of packages, a function
val′(), and let k = 1. We show that there exists N ⊆ Q(D) such that cost(N) ≤ C,
val(N) > B and Qc(N,D) = ∅ if and only if N is not a top-1 package selection for
(Q,D,Qc, cost(), val

′(), C).
To do this, we simply let N consist of a single package S, which is empty, i.e., no

recommendation is made. We define val′(N) = B if N = S = ∅, and val′(N) = val(N)
if N 6= ∅. These suffice. Indeed, first assume that N is a top-1 package selection for
(Q,D,Qc, cost(), val

′(), C). Then there exists no N ⊆ Q(D) such that cost(N) ≤ C,
val(N) > val′(S) = B, and Qc(N,D) = ∅. Conversely, assume that N is not a top-1
package selection for (Q,D,Qc, cost(), val

′(), C). Then there must exist an N ⊆ Q(D)
such that cost(N) ≤ C, val(N) > val′(S) = B, and Qc(N,D) = ∅ by the definition of
top-k package selections. Therefore, RPP(CQ) is Πp2-hard.
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Upper bound. We present a Πp2 algorithm to check whether N is a top-k package selec-
tion for (Q,D,Qc, cost(), val(), C), when LQ is ∃FO+. The algorithm works as follows.

1. Test whether N is a valid package selection for (Q,D,Qc, cost(), val(), C), in DP.
(a) For each item s in Ni ∈ N , guess a CQ query Qs from Q and a tableau from

D for Qs. Check whether these tableaux yield N . If so, continue; otherwise
reject the guess and go back to step 1(a).

(b) For each Ni ∈ N , check whether Qc(Ni, D) = ∅. If so, continue; otherwise
return “no”.

(c) For each Ni ∈ N , check whether cost(Ni) ≤ C. If so, continue; otherwise
return “no”.

(d) Check whether Ni 6= Nj for all i 6= j and i, j ∈ [1, k]. If so, continue; otherwise
return “no”.

2. Test whether N is a top-k package selection (i.e., there exists no valid package N
such that (i) N 6∈ N ; and (ii) val(N) > val(Ni) for some Ni ∈ N ) by the following
Σp2 algorithm for the complement problem:
(a) Guess polynomially many CQ queries from Q and for each CQ query, guess a

tableau from D. These tableaux yield a package N ⊆ Q(D). If N ∈ N then
reject the guess and go back to step 2(a). Otherwise continue. Note that
the polynomial bound on the number of queries is implied by the predefined
polynomial bound on the size of packages as part of the input.

(b) Check whether Qc(N,D) = ∅. If so, continue; otherwise reject the guess and
go back to step 2(a).

(c) Check whether cost(N) ≤ C. If so, continue; otherwise reject the guess and
go back to step 2(a).

(d) Check whether val(N) > val(Ni) for some i ∈ [1, k]. If so, return “no”;
otherwise go back to step 2(a).

It is readily verified that step 1(a) is in NP and 1(b) is in coNP, along the
same lines as in the proof of Lemma A.1. In addition, steps 1(c) and 1(d) are in
PTIME. Observe that step 1 is actually in DP. Indeed, step 1 decides the yes-
instances of the intersection of two languages:

{

N = {N1, . . . , Nk}| for each Ni ∈ N ,

Ni ⊆ Q(D), cost(Ni) ≤ C and all Ni’s are pairwise distinct
}

and
{

N = {N1, . . . , Nk}|

for each Ni ∈ N , Qc(Ni, D) = ∅
}

, which are in NP and coNP, respectively. Step 2 is
in Πp2 since it consists of an Σp2 algorithm for deciding the complement problem, i.e.,
to find a package that has higher rating than some package in N . Indeed, step 2(a) is
an NP step that calls step 2(b), which is a coNP oracle. Furthermore, steps 2(c) and
2(d) are in PTIME. Because DP ⊆ Πp2, the algorithm is in Πp2.

◮When LQ is DATALOGnr or FO. We first show that RPP(LQ) is PSPACE-hard for
DATALOGnr or FO. We then provide a PSPACE algorithm for RPP(LQ) that works
for both DATALOGnr and FO.

Lower bounds. We show that RPP(DATALOGnr) and RPP(FO) are PSPACE-hard,
by reduction from the membership problem for DATALOGnr and FO, respectively.
The membership problem is to determine, given a query Q in DATALOGnr or FO,
a database D and a tuple t, whether t ∈ Q(D). It is known that this problem is
PSPACE-complete for queries in DATALOGnr [32] and FO [31]. In the following, we
let LQ be DATALOGnr or FO. Given an instance (Q,D, t) of the membership problem
for LQ, we define a query Q′ in LQ, Qc as the empty query, function cost(N) = |N |
when N 6= ∅ and cost(∅) = ∞, C = 1, and constant function val() that returns 1 on
each package. Furthermore, we let N = {t} and set k = 1. We show that t ∈ Q(D)
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if and only if N = {N} is a top-1 package selection for (Q′, D,Qc, cost(), val(), C). It
suffices to define the query

Q′(~x )← Q(~x ), ~x = t, for Q in DATALOGnr, or

Q′(~x ) = Q(~x ) ∧ ~x = t, for Q in FO.

Then it is readily verified that t ∈ Q(D) if and only if {t} is a top-1 package selection
for (Q′, D, Qc, cost(), val(), C).

Upper bound. We give an NPSPACE algorithm for checking whether N is a top-k
package selection for (Q,D,Qc, cost(), val(), C), when Q is in DATALOGnr or FO. It
works as follows.
1. Test whether N is a valid package selection for (Q,D,Qc, cost(), val(), C), in

PSPACE.
(a) Check the following: for each item s in Ni ∈ N , check whether s ∈ Q(D),

in PSPACE; for each Ni ∈ N , check whether cost(Ni) ≤ C; and for all i 6= j
and i, j ∈ [1, k], check whether Ni 6= Nj , in PTIME. If all these conditions
are satisfied, continue; otherwise return “no”.

(b) For each Ni ∈ N , check whether Qc(Ni, D) = ∅. If so, continue; otherwise
return “no”. This is done in PSPACE.

2. Test whether N is a top-k package selection, in NPSPACE.
(a) Guess a package N consisting of polynomially many tuples of the schema RQ

of query Q.
(b) Check the following: whether N ⊆ Q(D) and N 6∈ N , in PSPACE; and

whether cost(N) ≤ C, in PTIME. If so, continue; otherwise reject the guess
and go back to step 2(a).

(c) Check whether Qc(N,D) = ∅, in PSPACE. If so, continue; otherwise reject
the guess and go back to step 2(a).

(d) Check whether val(N) > val(Ni) for some i ∈ [1, k]. If so, return “no”;
otherwise go back to step 2(a).

Observe that steps 1(a), 1(b), 2(b) and 2(c) are in indeed in PSPACE since they rely
on the membership problems for DATALOGnr and FO. Including step 2(a), the overall
algorithm is thus in NPSPACE when Q is in either DATALOGnr or FO. Hence the
problem is in PSPACE since NPSPACE = PSPACE [26].

◮When LQ is DATALOG. We show that RPP(DATALOG) is EXPTIME-complete.

Lower bound. The EXPTIME-hardness of RPP(LQ) when LQ is DATALOG is shown
by reduction from the membership problem for DATALOG. The latter problem is to
determine, given a DATALOG query Q, a database D and a tuple t, whether t ∈ Q(D).
It is known that this problem is EXPTIME-complete [31].

Given an instance (Q,D, t) of the membership problem for DATALOG, we define
a DATALOG query Q′, and Qc as the empty query. We let cost(N) = |N | if N 6= ∅
and cost(∅) = ∞, C = 1, and let val() be a constant function. In addition, we set
k = 1 and let N = {t}. Here Q′ is the same as its counterpart defined in the proof
for DATALOGnr given above. It is readily verified that t ∈ Q(D) if and only if N is a
top-1 package selection for (Q′, D,Qc, cost(), val(), C).

Upper bound. We give an EXPTIME algorithm to check whether N is a top-k package
selection for (Q,D,Qc, cost(), val(), C) when Q is in DATALOG:
1. Compute Q(D), in EXPTIME.
2. For each Ni ∈ N , check the following: (a) whether Ni ⊆ Q(D), in EXPTIME, (b)

whether Qc(Ni, D) = ∅, in EXPTIME, and (c) whether cost(Ni) ≤ C, in PTIME.
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For all i 6= j and i, j ∈ [1, k], check (d) whether Ni 6= Nj , in PTIME. If all these
conditions are satisfied, continue; otherwise return “no”.

3. Enumerate all subsets of Q(D) consisting of polynomially many tuples. For each
such set N , do the following.
(a) Check (i) whetherN 6∈ N , in PTIME, (ii) whetherQc(N,D) = ∅, in EXPTIME,

and (iii) whether cost(N) ≤ C, in PTIME. If all these conditions are satisfied,
continue; otherwise check the next set.

(b) Check whether val(N) > val(Ni) for some i ∈ [1, k], in PTIME. If so, return
“no”; otherwise check the next set.

4. Return “yes” after all the sets are inspected.
This algorithm is in EXPTIME. In particular, step 3(a) is executed exponentially
many times, and still takes EXPTIME in total. Hence the problem is in EXPTIME.

This completes the proof of Theorem 4.1. Note that in all the lower bound
proofs, we use k = 1, i.e., we consider top-1 package selections. Moreover, for FO,
DATALOGnr and DATALOG, the lower bound proofs use empty compatibility con-
straints Qc, i.e., the lower bounds hold in the absence of Qc.

A.2. Proof of Theorem 4.2 (RPP, combined complexity, no compatibil-
ity constraints). Clearly, the case of RPP(LQ) when the compatibility constraints
Qc are absent, i.e., when Qc is the empty query, is a special case of RPP(LQ) in the
presence of compatibility constraints. As a consequence, all upper bounds established
in Theorems 4.1 carry over here. Furthermore, observe that the lower bound proofs
given there do not use compatibility constraints, except for the Πp2-lower bound for
the combined complexity of RPP(CQ). To establish the theorem we thus only need to
reconsider RPP(LQ) when LQ ranges over CQ, UCQ, or ∃FO+.

We next show that RPP(LQ) is DP-hard for CQ and is in DP for ∃FO+.

Lower bound. We show that RPP(CQ) is DP-hard by reduction from SAT-UNSAT,
which is known to be DP-complete (cf. [23]). An instance of SAT-UNSAT is a pair
of 3SAT instances (ϕ1, ϕ2), where ϕ1 = C1 ∧ · · · ∧ Cr is a 3SAT instance over X =
{x1, . . . , xm} and ϕ2 is a 3SAT instance over Y = {y1, . . . , yn}. That is, ϕ1 is an
instance C1 ∧ . . . ∧ Cr in which each clause Ci is a disjunction of three variables or
negations thereof taken from X; similarly for ϕ2 and Y . Given (ϕ1, ϕ2), SAT-UNSAT

is to determine whether ϕ1 is satisfiable and ϕ2 is not satisfiable.
Given an instance (ϕ1, ϕ2) of SAT-UNSAT, we construct a query Q, a database

D, and Qc as the empty query. Moreover, we define cost(N) = |N | if N 6= ∅ and
cost(∅) = ∞ and set C = 1. In addition, we define a rating function val() and a
package N . Furthermore, we set k = 1. In other words, we consider top-1 package
selections in which a package consists of one tuple. We show that N = {N} is a top-1
package selection for (Q,D,Qc, cost(), val(), C) if and only if ϕ1 is satisfiable and ϕ2

is not satisfiable.

(1) The database D consists of four relations as shown in Figure A.1, specified by
schemas R01(X), R∨(B,A1, A2), R∧(B,A1, A2) and R¬(A, Ā) given in the proof of
Theorem 4.1. The formulas ϕ1 and ϕ2 can be expressed in CQ in terms of these
relations.

(2) We define the CQ query Q as follows:

Q(b, b′) = ∃~x ∃~y
(

QX(~x ) ∧Qϕ1
(~x, b) ∧QY (~y ) ∧Qϕ2

(~y, b′)
)

.

Here ~x = (x1, . . . , xm) and ~y = (y1, . . . , yn). Furthermore, the queries QX(~x ) and
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QY (~y ) generate all truth assignments of X variables and Y variables for ϕ1 and ϕ2,
respectively, by means of Cartesian products of R01. The sub-query Qϕ1

(~x, b) encodes
the truth value of ϕ1 for a given truth assignment µX such that b = 1 if µX satisfies
ϕ1, and b = 0 otherwise; similarly for Qϕ2

(~y, b′) and ϕ2. Obviously, Qϕ1
(~x, b) and

Qϕ2
(~y, b′) can be expressed in CQ in terms of R∨, R∧, and R¬. Observe that given

D, the answer to Q in D is a subset of
{

(1, 0), (1, 1), (0, 0), (0, 1)
}

.

(3) It suffices to define val() on singleton sets. We define val({(1, 0)}) = 2, val({(1, 1)})
= val({(0, 1)}) = 3 and val({(0, 0)}) = 1. Furthermore, we let N consist of the single
tuple (1, 0).

We show that N = {N} is a top-1 package selection for (Q,D,Qc, cost(), val(),
C) if and only if ϕ1 is satisfiable and ϕ2 is not satisfiable.

⇒ First assume that N is a top-1 package selection for (Q,D,Qc, cost(), val(), C).
Then (1, 1) and (0, 1) cannot be in Q(D). Therefore, there exists a truth assignment
for X making ϕ1 true and moreover, there exist no assignments for Y making ϕ2 true,
i.e., ϕ1 is satisfiable and ϕ2 is not satisfiable.

⇐ Conversely, assume that ϕ1 is satisfiable and ϕ2 is not satisfiable. Then by the
definition of Q, either Q(D) =

{

(1, 0), (0, 0)
}

or Q(D) =
{

(1, 0)
}

. Hence N =
{

(1, 0)
}

is a top-1 package selection for (Q,D,Qc, cost(), val(), C) by the definition of val()
given above.

Upper bound. Consider the algorithm for RPP(∃FO+) given in the proof of Theorem 4.1
for ∃FO+. Obviously, the algorithm can be applied here. Note that steps 1 and 2 are
in NP and coNP, respectively, when the Qc test is not needed (i.e., without steps 1(b)
and 2(b)). Thus RPP is in DP.

This completes the proof of Theorem 4.2. Observe that the lower bound proof
also uses k = 1.

A.3. Proof of Theorem 4.3 (FRP, combined complexity, in the presence
of compatibility constraints). We start with the combined complexity of FRP(LQ)
when LQ is CQ, UCQ or ∃FO+. We then consider DATALOGnr and FO, and conclude
with DATALOG.

◮When LQ is CQ, UCQ or ∃FO+. It suffices to show that FRP(LQ) is FPΣp
2 -hard

when LQ is CQ and is in FPΣp
2 when LQ is ∃FO+.

Lower bound. We show that FRP(LQ) is FP
Σp

2 -hard by reduction from the maximum

Σp2 problem, which is known to be complete for the class of functions computable by
a polynomial 2-alternating max-min Turing machine. This class of functions is often
denoted by ΣMM

2 [18]. It is easily verified that a complete problem for ΣMM
2 is also

complete for the class of functions that are computable by a PΣp
2 Turing machine, or

in other words, the class of FPΣp
2 computable functions [18].

An instance of maximum Σp2 consists of a universally quantified formula ϕ(X) =
∀Y ψ(X,Y ), where X = {x1, . . . , xm}, Y = {y1, . . . , yn} and ψ is a instance of 3DNF

over the variables in X∪Y . That is, ψ is a disjunction C1∨· · ·∨Cr, where each clause
Ci is a conjunction of three literals over X ∪ Y . Given ϕ, maximum Σp2 is to find the
truth assignment µlast

X of X that makes ϕ true and comes last in the lexicographical
ordering on m-ary binary tuples, if it exists.

Given a maximum Σp2 instance ϕ, we construct a database D, a query Q, a
query Qc for compatibility constraints, functions cost() and val(), and a cost budget



28 T. Ding, W. Fan & F. Geerts

C. In particular, The database D consists of four relations as shown in Figure A.1,
specified by schemas R01(X), R∨(B,A1, A2), R∧(B,A1, A2) and R¬(A, Ā) given in
the proof of Theorem 4.1. Furthermore, we set k = 1, define cost(N) = |N | if N 6= ∅,
cost(∅) =∞ and set C = 1. That is, only packages consisting of a single tuple can be
recommended. The query Q and compatibility constraint Qc are the same as given
in the proof of Lemma A.1. That is, Q returns all truth assignments of X and a
package N consists of a single tuple t such that (i) t represents a truth assignment µX
of X; and (ii) Qc({t}, D) = ∅, enforcing that µX makes ϕ true. Finally, for a tuple
t = (x1, . . . , xm), we define val({t}) to be t, denoting the value it encodes in binary.

We next show that {N} is a top-1 package selection for (Q,D,Qc, cost(), val(),
C), where N consists of a single tuple t = (~x ), if and only if the truth assignment µX
encoded by ~x coincides with µlast

X .

⇒ Assume that t = (~x ) is a top-1 package selection. Then for each t′ ∈ Q(D),
val({t}) ≥ val({t′}). As a result, the truth assignment µX determined by ~x makes
ϕ true and has the highest rating over all such truth assignments. It suffices to
observe that for any two truth assignments µX and µ′

X of X, µX comes after µ′
X

in the lexicographical ordering if and only if val(t) > val(t′), where t represents µX
and t′ represents µ′

X . As a consequence, µX = µlast

X . Note that when no top-1
package selection exists, ϕ is not satisfiable and hence only the empty package could
be recommended. However, by the definition of the cost function, val(∅) > C, and
hence no recommendation will be made.

⇐ Conversely, assume that ϕ is satisfiable and consider µlast

X . Let t be the tuple
that represents µlast

X . Then by the same argument as above, {t} will be the top-1
package by the definition of val(). If ϕ is not satisfiable, then no recommendation will
be returned, as argued above.

Upper bound. We show that when LQ is ∃FO+, FRP(LQ) is in FPΣp
2 by providing an

FPΣp
2 -algorithm that on input (Q,D,Qc, cost(), val(), C, k), returns a top-k package

selection N =
{

Ni | i ∈ [1, k]
}

, if it exists. That is, we develop an algorithm that
runs in polynomial time with access to a Σp2-oracle.

Let EXISTPACK≥(Q,D,Qc, cost(), val(), C,N , N, v) be a procedure that returns
“yes” if there exists a package N ⊆ Q(D) such that Qc(N,D) = ∅, cost(N) ≤ C,
val(N) ≥ v and N is not equal to any package already in N . It is easily verified
that this is an Σp2 procedure. Indeed, one simply needs to guess polynomially many
tuples from D to fill in the tableaux of CQ queries obtained from Q and verify whether
these produce a package N that satisfies the conditions. Since checking the conditions
requires calls to an NP and a coNP oracle, the complexity of the procedure is indeed
in Σp2. Given this procedure, the algorithm that returns a top-k package selection
N = {N1, . . . , Nk}, if it exists, works as follows:

1. Let Bmax = 2q(n), where q(n) is a polynomial that represents the length of the en-
coding of D and Q, taking into account that cost() and val() are PTIME functions,
such that any val()-rating of packages in Q(D) lies within the interval [0, Bmax].

2. Let N = ∅ and ℓ = 1.
3. While ℓ < k + 1 do the following:

(a) Perform a binary search over the interval [0, Bmax] to find the maximal value
B ∈ [0, Bmax] such that there exists a valid package N ⊆ Q(D) with val(N) =
B and N is not equal to any package in N , Clearly, B can be found in this
way by making log(2q(n)) = q(n) calls to the Σp2 oracle EXISTPACK≥(Q,D,
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Qc, cost(), val(), C,N , N, v). Such a value will always be found, unless no k
distinct packages exist. In that case, we return the empty set and terminate
the algorithm. Otherwise, we continue.

(b) Given B, we know that there exists a package N such that N ⊆ Q(D),
Qc(N,D) = ∅, cost(N) ≤ C, val(N) = B and N is distinct from any other
package already in N . It remains to find such an optimal package N . To do
this, we proceed as follows: Let p(n) be a polynomial that bounds the size of
packages, i.e., any package consists of at most p(|D|) tuples. Let N = ∅. We
will add tuples to N , one at a time, hereby guaranteeing that N can grow to
an optimal package with val(N) = B. Let l = 1.

(c) While l < p(|D|) + 1 do the following:
(i). We first check whether N is optimal. That is, whether val(N) = B. If so,

we add N to N and set Bmax = B. No further tuples need to be added to
N in this case and we go to step 3 and let ℓ = ℓ+ 1. That is, we extend
N with one package (i.e., N) and continue with adding a next package (if
needed).

(ii). Otherwise, if val(N) < B then we still need to add tuples to N . We
do this by gradually selecting the values for the new tuple, one attribute
at a time. Let m = arity(RQ) and n = |adom(Q,D)|, where arity(RQ)
denotes the arity of the output schema of Q and adom(Q,D) is the set
of constants appearing in D or Q. Denote by C = (cij) the m × n array,
where cij is the jth constant in some arbitrary ordering of adom(Q,D).
We next show how to transform C into an m×n array D = (dij) such that
for each i ∈ [1,m], there exists a unique j such that dij = cij , whereas
for j′ 6= j, dij′ = ⊔. The semantics of D is that we can derive a tuple
s ∈ Q(D) such that for each i ∈ [1,m], s[i] takes the unique value in the
ith row of D different from ⊔. This tuple s will be added to N . We next
show how D is constructed from C. Let i = 1, j = 1 and D = C.

(iii). While i < m+ 1 and j < n+ 1 do the following:
(A). Let c = cij . Consider the rating function valc,i,N given by valc,i,N (N ′) =

B − 1 if N ( N ′ and N ′ contains a tuple s 6∈ N with s[i] = c; and
valc,i,N (N ′) = val(N ′) otherwise.

(B). We next call the oracle. If EXISTPACK≥(Q,D,Qc, cost(), valc,i,N , C,
N , N,B) returns true, then this implies that there exists a packageN ′,
which is larger than N , N ′ ⊆ Q(D), cost(N ′) ≤ C and valc,i,N (N ′) =
B, and N ′ is not equal to any package already in N . That is, there
exists an optimal N ′ for which we can safely assume (by the definition
of valc,i,N ) that N ′ \N consists of tuples that do not carry value c in
their ith attribute. In other words, we can forget about any package
N ′ such that N ′ \N carries tuples with constant c. We thus change
dij to ⊔ (indicating that we can ignore this value when looking for
an optimal package) and set j = j + 1. In other words, we move to
the next constant in adom(Q,D). Furthermore, we replace val() with
valc,i,N , enforcing optimal extensions of N to carry values different
from c.

(C). On the other hand, if EXISTPACK≥(Q,D,Qc, cost(), valc,i,N , C, N ,
N,B) returns false, then any optimal package N ′ must contain a tuple
in N ′ \ N that carries c in its ith attribute. In this case, we cannot
disregard constant c when looking for optimal packages and thus we
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do not change dij = c into ⊔. However, we make this change for all
other values dij′ with j′ > j. We then set i = i + 1 (we move to
the next attribute) and define val(N ′) = B − 1 in case that N ′ does
not contain a tuple in N ′ \ N that carries c in its ith attribute. For
all other N ′ we keep the original val(N ′) value. In other words, the
choice of rating function will limit our search for an optimal package
by only looking for packages that carry an additional tuple with a
specific constant (c) in its ith attribute.

(iv). When all attributes and values are considered, we know the following:
The array D has a unique entry that is set to a constant different from
⊔ in each of its rows. Let s be the tuple obtained from these constants.
Furthermore, by the construction, we know that there exists an optimal
package N ′ such that N ( N ′ and N ′ \N contains tuple s. We thus add s
to N , reset val() to the original rating function and increase l by 1. That
is, we extend N with one tuple and look for the next tuple to add.

4. If successful, then k packages have been added to N in the order of decreasing
rating value. We return N .

This algorithm runs in FPΣp
2 . Indeed, the Σp2-oracle EXISTPACK≥ is called poly-

nomially many times. We next argue for the correctness of the algorithm. First,
observe that the algorithm returns a set of packages N = {N1, . . . , Nk} only if a
top-k package selection exists. Second, the algorithm finds packages Ni in the de-
creasing order of their val()-value. Indeed, in step (a), the binary search guarantees
that the maximal val()-value is selected for which there still exists a package in Q(D)
that differs from all previously constructed packages and that satisfies the cost bud-
get constraint; step (c) then constructs such an optimal package in Q(D) with the
maximal val()-value.

◮When LQ is DATALOGnr, FO or DATALOG. We next show that FRP(LQ) is FPSPACE
(poly)-complete when LQ is DATALOGnr or FO, and is FEXPTIME(poly)-complete when
LQ is DATALOG.

Lower bounds. We first show that FRP(LQ) is FPSPACE (poly)-hard when LQ is
DATALOGnr Indeed, consider a function g in FPSPACE (poly). Here we mean by
FPSPACE(poly) the class of functions computable by a PSPACE Turing machine that
represents the output on the working tape as well [19]. Since g is in FPSPACE
(poly), one can decide in PSPACE whether the ith bit of g(~x) is 1, for a given input
~x. We show that testing whether the ith bit of g(~x) is set to 1 reduces to testing
whether a package Ni consisting of a single tuple ti is the top-1 package selection for
(Qi, Di, Q

i
c = ∅, costi(), vali(), Ci), where Qi is a DATALOGnr query, Di is a database,

costi() and vali() are functions and Ci is a constant. This suffices. For if it holds, then
we can compute g(~x) by identifying each bit of its output, and hence all the functions
in FPSPACE(poly) are reduced to computing top-1 package selections for DATALOGnr.
From these it follows that FRP(DATALOGnr) is FPSPACE(poly)-hard.

To see how to determine the ith bit of g(~x), we first observe that due to the
PSPACE-completeness of the membership problem for DATALOGnr, there exists an
instance (Q′

i, D
′
i, t

′
i) of the membership problem for DATALOGnr such that t′i ∈ Q

′
i(D

′
i)

if and only if the ith bit of g(~x) is set to 1. Next, note that the package rec-
ommendation problem for DATALOGnr is PSPACE-complete by reduction from the
membership problem as shown in the proof of Theorem 4.1. Consider the instance
(D′

i, Q
′
i, t

′
i). A minor modification of the proof of Theorem 4.1 for DATALOGnr re-

sults in a database Di (encoding D′
i), a DATALOGnr query Qi (encoding Q′

i and
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t′i), the cost function costi(N) = |N | if N 6= ∅ and costi(∅) = ∞, Ci = 1, and a
rating function vali(), such that the tuple {(1)} is the top-1 package selection for
(Qi, Di, Q

i
c = ∅, costi(), vali(), Ci) if and only if t′i ∈ Q′

i(D
′
i) (i.e., the membership

problem for DATALOGnr), and tuple {(0)} is the top-1 package selection otherwise
(we enforce (0) to be always in Qi(Di)). More specifically, the construction of Qi al-
ways adds {(0)} toQi(Di) but adds the tuple {(1)} toQi(Di) if and only if ti ∈ Q

′
i(D

′
i)

is true. In addition, we let vali({(0)}) = 1 and vali({(1)}) = 2. As a consequence,
{(1)} will be recommended if it is present in Qi(Di). Since g(~x) is of polynomial size,
a polynomial number of instances (Qi, Di, Q

i
c = ∅, costi(), vali(), Ci) are needed to de-

cide all the bits of g(~x). Assume that we need q(|~x|) bits and consider the DATALOGnr

query Q that combines all Qi such that it outputs tuples of arity q(|~x|), where the ith
attribute denotes the output of Qi(Di). Furthermore, we let D consist of the union of
all Di’s in which we keep the Di’s distinct by adding an identifier to each tuple, and
incorporating these identifiers in the query Q. Observe that costi() does not depend
on i and that Ci is always set 1. We thus let cost() = costi() for some i, and set C = 1.
Finally, we define val({s}) =

∑

si2
i in binary, i.e., val({s}) = (sq(|~x|), . . . , s0), where

si denotes the ith attribute value of s. In this way, tuples s ∈ Q(D) encode values
and it is now readily verified that the tuple representing g(~x) is the top-1 package
selection for (Q,D,Qc = ∅, cost(), val(), C).

When LQ is FO, we use a similar proof as in the previous case, but using FO

formulas instead of queries in DATALOGnr, and by modifying the reduction to be
from the membership problem for FO as given in the proof of Theorem 4.1 for FO.

When LQ is DATALOG, we also use a similar proof but by using a function g in
FEXPTIME(poly), i.e., it is in EXPTIME to decide whether the ith bit of g(~x) is 1,
for a given input ~x, by using DATALOG formulas instead of queries in DATALOGnr,
and by modifying the reduction to be from the membership problem for DATALOG

as given in the proof of Theorem 4.1 for DATALOG.

Upper bound. We provide an FPSPACE(poly) algorithm to find a top-k package se-
lection for (Q,D,Qc, cost(), val(), C) when Q and Qc are in DATALOGnr or FO. The
algorithm is a variation of the algorithm given for FRP(∃FO+) above. Indeed, it suffices
to observe that the Σp2-oracle used in that algorithm can be replaced by a PSPACE
oracle, when the queries and compatibility constraints involved are in DATALOGnr

or FO. As a consequence, the modified algorithm will make polynomially many calls
to a PSPACE oracle and is therefore in FPSPACE(poly). Similarly, when Q and Qc
are in DATALOG, the oracle is replaced by an EXPTIME oracle to which polynomi-
ally many calls are made. Hence, when LQ is DATALOG the function problem is in
FEXPTIME(poly).

A.4. Proof of Theorem 4.3 (FRP, combined complexity, no compatibil-
ity constraints). When LQ is DATALOGnr, FO or DATALOG, we first show that the
absence of Qc makes no difference when combined complexity is concerned. Indeed,
for the lower bounds, it suffices to observe that the reductions of the FPSPACE(poly)
and FEXPTIME(poly) lower bounds given above for DATALOGnr, FO and DATALOG,
respectively, do no use compatibility constraints (i.e., each Qic is the empty query).
Furthermore, the FPSPACE(poly) and FEXPTIME(poly) algorithms given in that proof
clearly remain valid after the Qc test is removed. As a consequence, FRP(LQ) remains
FPSPACE(poly)-complete when LQ is either DATALOGnr or FO, and FEXPTIME(poly)-
complete when LQ is DATALOG, even in the absence of compatibility constraints.

In contrast, the absence of Qc has an impact on the combined complexity when LQ
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is CQ, UCQ or ∃FO+. We show that FRP(LQ) is FP
NP-complete in the absence of Qc,

when LQ is CQ, UCQ or ∃FO+.

Lower bound. For the lower bound, it suffices to show that FRP(CQ) is FPNP-hard
when Qc is absent. We verify this by reduction from MAX-WEIGHT SAT, which is
known to be FPNP-complete (cf. [23]). An instance of MAX-WEIGHT SAT consists
of a set C of clauses {C1, . . . , Cr} such that each clause Ci has an integer weight
wi associated with it. Furthermore, for each i ∈ [1, r], the clause Ci is of the form
ℓi1 ∨ ℓ

i
2 ∨ ℓ

i
3, where for each j ∈ [1, 3], ℓij is either a variable or the negation of a

variable in X = {x1, . . . , xm}. Given (C, {w1, . . . , wr}), MAX-WEIGHT SAT is to find
the truth assignment of X that satisfies a set of clauses in C with the largest total
weight, i.e., it is to find a truth assignment µX of X such that

∑

{i|Ci(µX) is true} wi
is maximized.

Given a MAX-WEIGHT SAT instance C = {C1, . . . , Cr} in which each clause Ci
has a weight wi, we define a database D, a query Q in CQ, empty query Qc, functions
cost() and val(), and constant C. We show that for a package N ⊆ Q(D) for which
cost(N) ≤ C, {N} is a top-1 package selection if and only if N encodes the truth
assignment of X that satisfies a set of clauses with the largest total weight.

(1) The database D has a single relation RC(cid, L1, V1, L2, V2, L3, V3). Its cor-
responding instance IC consists of the following set of tuples. For each i ∈ [1, r],
consider the clause Ci = ℓi1∨ ℓ

i
2∨ ℓ

i
3. For any possible truth assignment µi of variables

in the literals in Ci that make Ci true, we add a tuple (i, xk, vk, xl, vl, xm, vm), where
xk = ℓi1 in case ℓi1 ∈ X and xk = ℓ̄i1 in case ℓi1 = x̄k. We set vk = µi(xk); similarly for
xl, xm and vl and vm.

(2) We take Q as the identity query on instances of RQ.

(3) we define for each package N , val(N) as the sum of all the weights associated with
tuples (i.e., clauses) in N .

(4) For each package N , we define cost(N) = 1 if there exists no two distinct tuples
in N that have the same cid value or have different values for a variable appearing in
both of them. Furthermore, for any other N , we define cost(N) = 2. We set C = 1.

We next show that for a package N ⊆ Q(D) for which cost(N) ≤ C, {N} is
a top-1 package selection if and only if N encodes the truth assignment of X that
satisfies a set of clauses with the largest total weight. Clearly, a valid package N
consists of tuples t1, . . . , ts, at most one for each clause in ϕ, such that each variable
in X that occurs in one of the tuples ti has a unique value (0 or 1) in N . In other
words, a package corresponds to a partial truth assignment. Clearly, the top-1 package
selection will be {N}, where N is a valid package N (i.e., partial truth assignment of
X) that maximizes val(). By the definition of val(), the package that corresponds to
a partial truth assignment with the largest total weight will be selected as the top-1
package. By completing the partial truth assignment in an arbitrary way, we obtain
a truth assignment that maximizes the total weight of all clauses that it satisfies.
Conversely, giving a truth assignment µX that maximizes the weights, we can easily
construct a package N that consists of tuples corresponding to the clauses satisfied
by µX . Again, {N} will be a top-1 package selection.

Upper bound. For the upper bound, it suffices to observe that the algorithm presented
for FRP(∃FO+) in the proof of Theorem 4.3 given above works for all the languages
considered and moreover, the oracle used in the algorithm reduces to an NP oracle
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here. Indeed, the oracle guesses a package and then verifies whether (i) it is valid,
(ii) has a certain rating value, and (iii) is distinct from a number of other packages.
When compatibility constraints are absent, condition (i) is in NP. Conditions (ii) and
(iii) are always in PTIME. As a consequence, the algorithm makes polynomially many
calls to an NP oracle, from which the FPNP upper bound follows.

This completes the proof of Theorem 4.3. Note that k = 1 is used in all the lower
bound proofs of Theorem 4.3.

A.5. Proof of Theorem 4.4 (MBP, combined complexity, in the pres-
ence of compatibility constraints). We start with the combined complexity of
MBP(LQ) when LQ is CQ, UCQ or ∃FO+. We then consider DATALOGnr and FO, and
conclude with DATALOG.

◮When LQ is CQ, UCQ or ∃FO+. It suffices to show that MBP(LQ) is D
p
2-hard when

LQ is CQ and that it is in Dp
2 when LQ is ∃FO+.

Lower bound. We show that MBP(CQ) is Dp
2-hard by reduction from ∃∗∀∗3DNF–

∀∗∃∗3CNF, which is Dp
2-complete [33]. An instance of ∃∗∀∗3DNF–∀∗∃∗3CNF is a pair

(ϕ1, ϕ2) of ∃∗∀∗3DNF instances as described in the proof of Lemma A.1. It is to
decide whether ϕ1 is true and ϕ2 is false. Given (ϕ1, ϕ2), we define a database D, a
query Q in CQ, a query Qc in CQ for compatibility constraints, functions cost() and
val() and constants C, k and B such that ϕ1 is true and ϕ2 is false if and only if B is
the maximum bound for (Q,D,Qc, cost(), val(), C, k). We show that this holds even
when k = 1.

Consider (ϕ1, ϕ2), where ϕ1 = ∃X1∀Y1 ψ1(X1, Y1) and ϕ2 = ∃X2∀Y2 ψ2(X2, Y2).
We give the reduction as follows.

(1) To start with, the database D includes four relations given by I ′01, I
′
∨, I

′
∧ and

I ′¬ specified by R′
01(X), R′

∨(C,B,A1, A2), R
′
∧(C,B,A1, A2) and R

′
¬(C,A, Ā). These

instances are defined in terms of I01 I∨, I∧ and I¬ given in Figure A.1, as follows:
I ′01 = I01, I

′
∨ = ({0} × I0)∪ ({1} × I∨), I ′∧ = ({0} × I0)∪ ({1} × I∧) and I ′¬ = ({0} ×

I0) ∪ ({1} × I¬), where I0 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. Intuitively, these
instances encode Boolean values, disjunction, conjunction and negation, respectively,
when the C-attribute is set to 1. In contrast, when the C-attribute is 0, the instance
I0 is used to generate 0 (in the B-attribute) independent of the values in the attributes
A1, A2, A and Ā. Furthermore, the database D includes a relation Ic = {(1, 0), (1, 1)}
specified by schema Rc = (C1, C2). As will be seen shortly, Ic will be used to select
truth assignments for X1 and X2 that make either ∀Y1ψ1(X1, Y1) true or make both
∀Y1ψ1(X1, Y1) and ∀Y2ψ2(X2, Y2) true.

(2) We define a CQ query Q as follows:

Q(~x1, b1, ~x2, b2) = ∃~y1, ~y2
(

(QX1
(~x1) ∧QY1

(~y1) ∧Qψ1
(~x1, ~y1, b1)

∧ (QX2
(~x2) ∧QY2

(~y2) ∧Qψ2
(~x2, ~y2, b2)) ∧Rc(b1, b2)

)

where QX1
(~x1) generates all truth assignments of the X1 variables in ϕ1 by means of

Cartesian products of R′
01; similarly QY1

(~y1) for Y1, QX2
(~x2) for X2 and QY2

(~y2) for
Y2. Query Qψ1

encodes the truth value of ψ1(X1, Y1) for given truth assignments µX1

and µY1
, expressed in CQ in terms of I ′∨, I

′
∧ and I ′¬ and by setting C = 1; it returns

b1 = 1 if ψ1(X1, Y1) is satisfied by µX1
and µY1

, and b1 = 0 otherwise. Similarly, Qψ2

encodes the truth value of ψ2(X2, Y2) for given truth assignments µX2
and µY2

, where
b2 = 1 if ψ2(X2, Y2) is satisfied and b2 = 0 otherwise. By leveraging Rc, each tuple
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t in Q(D) encodes a truth assignment µX1
(in t[~x1]) and a truth assignment µX2

(in
t[~x2]), such that b1 is 1 and b2 is either 0 or 1.

(3) We define a CQ query Qc as follows:

Qc = ∃~x1, ~x2, b1, b2, b
′
1, b

′
2, ~y1, ~y2

(

RQ(~x1, b1, ~x2, b2) ∧QY1
(~y1) ∧QY2

(~y2)

∧Q′
ψ1
(b1, ~x1, ~y1, b

′
1) ∧ b

′
1 = 0 ∧Q′

ψ2
(b2, ~x2, ~y2, b

′
2) ∧ b

′
2 = 0

)

Here RQ is the schema of the result of Q(D), and QY1
, QY2

, Q′
ψ1

and Q′
ψ2

are the
same as given above except that the latter two queries carry the extra C-attribute
from I ′∨, I

′
∧ and I ′¬. For example, if b2 = 1 then Q′

ψ2
(b2, ~x2, ~y2, b

′
2) returns b

′
2 = 1 in

case that ψ2(X2, Y2) is satisfied for the given truth assignments for X2 and Y2, and it
returns b′2 = 0 otherwise. However, if b2 = 0 then b′2 is always 0 by the definition of
I ′∨, I

′
∧ and I ′¬. Similarly for Q′

ψ1
(b1, ~x1, ~y1, b

′
1). By requiring b′1 = 0 and b′2 = 0, only

falsifying truth assignments for ψ1(X1, Y2) and ψ2(X2, Y2) are considered.

Intuitively, Qc(N) is nonempty if for a given N ⊆ Q(D) that encodes a truth
assignment µX1

for X1 and a truth assignment µX2
for X2 together with b1 and b2,

(a) in case that b2 = 0, there exists a truth assignment of Y1 that makes ψ1(X1, Y1)
false (i.e., b′1 = 0); and (b) in case that b2 = 1, there exists a truth assignment of
Y1 that makes ψ1(X1, Y1) false (i.e., b′1 = 0) and there exists a truth assignment of
Y2 that makes ψ2(X2, Y2) false (i.e., b′2 = 0). Recall that by the definition of Q,
non-empty packages always have b1 = 1.

(4) We define, for each package N , cost(N) = |N | if N 6= ∅ and cost(∅) =∞, and set
C = 1, i.e., a valid N consists of one tuple only. Given N = {t}, we define val(N) = 1
if the (b1, b2) value in t is (1, 0), val(N) = 2 if the (b1, b2) value in t is (1, 1), and
val(∅) = 0. We define bound B = 1.

We next verify that ϕ1 is true and ϕ2 is false if and only if B is the maximum
bound for (Q,D,Qc, cost(), val(), C, k), where k = 1.

⇒ First assume that ϕ1 is true and ϕ2 is false. Then there exists a truth assignment
µ0
X1

for X1 such that for all truth assignment µY1
for Y1, ψ1 is true, and moreover,

for all truth assignments µX2
for X2, there exists a truth assignment µY2

for Y2 such
that ψ2 is not satisfied by µX2

and µY2
. Let N consist of the tuple representing

µ0
X1

and an arbitrary µX2
, with (b1, b2) = (1, 0). Since b2 = 0, the evaluation of

Qc(N,D) returns a non-empty result if and only if there exists a truth assignment
µY1

for Y1 such that Q′
ψ1
(1, µ0

X1
, µY1

, 0) holds. Since µ0
X1

makes ∀Y1ψ1(µX0
1
, Y1) true,

no such µY1
exists and thus Qc(N,D) = ∅. Moreover, val(N) ≥ B and cost(N) ≤

C. Hence N = {N} is a valid package selection. As a result, B is a bound for
(Q,D,Qc, cost(), val(), C, k). In addition, there exists no B′ > B such that B′ is
also a bound for (Q,D,Qc, cost(), val(), C, k). Indeed, by the definition of val(), the
only possible N ′ with val(N ′) higher than B consists of some tuple in which the
(b1, b2) value is (1, 1). However, if N ′ is a valid package then Qc(N

′, D) is empty
and thus since b2 = 1, N ′ would encode a truth assignment µ0

X2
for X2 that makes

∀Y2ψ2(µ
0
X2
, Y2) true. This contradicts the assumption that ϕ2 is false. Therefore, B

is the maximum bound for (Q,D,Qc, cost(), val(), C, k).

⇐ Conversely, assume that either ϕ1 is false or ϕ2 is true. We have the following
cases to consider. (a) If ϕ1 is false, then first assume that there exist µ0

X1
for X1

and µ0
Y1

for Y1 that make ψ1(µ
0
X1
, µ0
Y1
) true, i.e., b1 = 1. In other words, ψ1 is

not always false. However, since ϕ1 is false, there must also exist a µ1
Y1

for Y1 that
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makes ψ1(µ
0
X1
, µ1
Y1
) false. Hence, for any N = (µ0

X1
, 1, µX2

, b2), Qc(N,D) is non-
empty and thus no valid package exists. Similarly, in case when ψ1 is always false
and thus Q(D) = ∅, no valid package can be selected. That is, B is not even a bound
for (Q,D,Qc, cost(), val(), C, k). (b) If ϕ1 and ϕ2 are both true, then there exists
a truth assignment µ0

X1
for X1 such that for all truth assignment µY1

for Y1, ψ1 is
true, and similarly, there exists such µ0

X2
for X2. We define a package N consisting

of a single tuple t0 that encodes µ0
X1

and µ0
X2

with t0(b1, b2) = (1, 1). Then N is
a valid package selection. Indeed, val(N) ≥ B and cost(N) ≤ C, and moreover,
Qc(N,D) = ∅ since neither Q′

ψ1
nor Q′

ψ2
detects falsifying truth assignments (ϕ1 and

ϕ2 are assumed to be true). Since val(N) = 2 > B, B is not the maximum bound for
(Q,D,Qc, cost(), val(), C, k).

Upper bound. By the definition of maximum bound, the set of yes-instances to
MBP(∃FO+) is L1 ∩ L2, where

• L1 =
{

(Q,D,Qc, C, cost(), val(), B, k) | there exists a set N = {Ni | i ∈ [1, k]}
of distinct packages such that for each i ∈ [1, k], Ni ⊆ Q(D), cost(Ni) ≤ C,
val(Ni) ≥ B, Ni is of a polynomial size, and Qc(Ni, D) = ∅

}

; and

• L2 =
{

(Q,D,Qc, C, cost(), val(), B, k) | there exists no set N ′ = {N ′
i | i ∈ [1, k]}

of distinct packages such that for each i ∈ [1, k], N ′
i ⊆ Q(D), cost(N ′

i) ≤ C,
val(N ′

i) > B, N ′
i is of a polynomial size, and Qc(N

′
i , D) = ∅

}

.

It suffices to show that L1 ∈ Σp2 and L2 ∈ Πp2. For if it holds, then the membership
in Dp

2 is immediate by the definition of Dp
2. We show that L1 is in Σp2 by giving an

algorithm as follows:

1. Guess a set N = {Ni | i ∈ [1, k]} of distinct packages of polynomial sizes.
2. Check whether for each i ∈ [1, k], Ni ⊆ Q(D) (in NP), cost(Ni) ≤ C (in PTIME),

val(Ni) ≥ B (in PTIME) and Qc(Ni, D) = ∅ (in coNP). If so, return “yes”, and
otherwise reject the guess and go back to step 1.

Obviously the algorithm is in Σp2, and hence so is L1. Similarly, one can verify that
L2 is in Πp2.

◮When LQ is DATALOGnr or FO. We next show that for DATALOGnr and FO, MBP
is PSPACE-complete.

Lower bound. We show that MBP(LQ) is PSPACE-hard when LQ is DATALOGnr by
reduction from the membership problem for DATALOGnr as described in the proof of
Theorem 4.1 for DATALOGnr. Given an instance (Q,D, t) of the membership problem,
we define a DATALOGnr query Q

′, a database D, Qc as empty query, functions cost(),
val(), and constants C = 1 and k = 1. These are the same as their counterparts given
in the proof of Theorem 4.1 for DATALOGnr. In addition, we set B = 1.

We show that this is indeed a reduction. To see this, first assume that t ∈ Q(D).
Then N = {t} is a valid package. As a result, B = 1 is a maximum bound for
(Q′, D,Qc = ∅, cost(), val(), 1, 1) since val() assigns 1 to all packages. Conversely, if
t 6∈ Q(D) then only the empty package is recommended. Consequently, B = 1 is not
the maximum bound for (Q′, D,Qc = ∅, cost(), val(), 1, 1) since cost(∅) =∞ > C.

When LQ is FO, we use a proof similar to the one given in the previous case, but
using FO formulas instead of queries in DATALOGnr and relying on the membership
problem for FO as given in the proof of Theorem 4.1 for FO.

Upper bound. We show that MBP is in PSPACE for DATALOGnr and FO. Indeed,
consider the algorithm for L1 given earlier. It is in NPSPACE for DATALOGnr and
FO. Similarly, the algorithm for L2 is also in NPSPACE. Hence the algorithm is in
NPSPACE = PSPACE, and so is MBP for FO and DATALOGnr.
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◮When LQ is DATALOG. We show that MBP(DATALOG) is EXPTIME-complete.

Lower bound. We show that MBP(DATALOG) is EXPTIME-hard by reduction from
the membership problem for DATALOG as in the proof of Theorem 4.1 for DATALOG.
The reduction is similar to the reduction given above for DATALOGnr and FO, but by
using DATALOG queries.

Upper bound. We give an EXPTIME algorithm to check whether B is the maximum
bound, as follows.
1. Compute Q(D), in EXPTIME.
2. Enumerate all subsets of Q(D) consisting of polynomially many tuples.
3. For each N consisting of k such pairwise distinct subsets, and for each set Ni in
N , check: (a) whether Qc(Ni, D) = ∅, in EXPTIME, and (b) cost(Ni) ≤ C; and
(c) whether val(Ni) ≥ B in PTIME. If all these conditions are satisfied, continue;
otherwise returns “no”.

4. For each N ′ of k such pairwise distinct subsets, check conditions (a) and (b)
above and in addition, condition (c’): whether val(N ′) > B for all N ′ ∈ N ′. If
so, returns “no”, otherwise continue to check the next N ′.

5. Return “yes” after all such sets are inspected.
Each of the steps 1–4 takes EXPTIME. Hence MBP is in EXPTIME for DATALOG.

A.6. Proof of Theorem 4.4 (MBP, combined complexity, no compat-
ibility constraints). We reconsider MBP(LQ) when Qc is absent. When LQ is
DATALOGnr, FO or DATALOG, we show that the combined complexity of MBP(LQ)
remain unchanged when Qc is absent. Indeed, for the lower bounds, it suffices
to observe that the proofs of the lower bounds given above for MBP(LQ) do not
use any compatibility constraints. Furthermore, the corresponding PSPACE and
EXPTIME upper bound proofs given earlier remain intact when Qc is absent. There-
fore, MBP(LQ) remains PSPACE-complete when LQ is either DATALOGnr or FO, and
EXPTIME-complete when LQ is DATALOG, even in the absence of compatibility con-
straints.

When LQ is CQ, UCQ or ∃FO+, we next show that MBP(LQ) is DP-complete
when Qc is absent.

Lower bounds. For the lower bound, it suffices to show that MBP(CQ) is DP-hard
when Q is fixed and Qc is absent, by reduction from SAT-UNSAT (see the proof of
Theorem 4.2 (CQ case) for the statement of SAT-UNSAT). Given an instance (ϕ1, ϕ2)
defined over variables X,Y , respectively, we define D, Q, cost(), val(), C, B and k.
We show that ϕ1 is satisfiable and ϕ2 is not satisfiable if and only if B is the maxi-
mum bound for (Q,D,Qc, C, cost(), val(), C, k) where Qc is the empty query, i.e.,Qc
is absent.

(1) The database D consists of a single relation RC(cid, L1, V1, L2, V2, L3, V3). Its
corresponding instance IC consists of the following set of tuples. For each i ∈ [1, r],
let Ci = ℓi1 ∨ ℓ

i
2 ∨ ℓ

i
3 be the ith clause of ϕ1. Here r denotes the number of clauses in

ϕ1. For any possible truth assignment µi of variables in the literals in Ci that make
Ci true, we add a tuple (i, xk, vk, xl, vl, xm, vm), where xk = ℓi1 in case ℓi1 ∈ X and
xk = ℓ̄i1 in case ℓi1 = x̄k. We set vk = µi(xk); similarly for xl, xm and vl and vm.
Similarly, we add tuples for the clauses in ϕ2 but using cid values ranging from r + 1
to r + s, where s denotes the number of clauses in ϕ2.

(2) We define Q as the identity query over instances of RC .
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(3) We define val(N) = 1 when N contains tuples that carry only variables in X;
val(N) = 2 if N contains tuples that carry variables in X and tuples that carry
variables in Y ; and val(N) = 0 otherwise. We set B = 1 and k = 1.

(4) We define cost(N) = 1 in case that (a) N contains precisely one tuple for each
clause in ϕ1; (b) if N additionally contains a tuple denoting a clause in ϕ2, then N
should also contain precisely one tuple for each clause in ϕ2; and (c) all tuples in
N should agree on the values of variables in X and Y . For any other N , we define
cost(N) = 2. We set C = 1.

We next show that ϕ1 is satisfiable and ϕ2 is not satisfiable if and only if B is
the maximum bound for (Q,D,Qc, C, cost(), val(), C, k) where Qc is the empty query.

⇒ First assume that ϕ1 is satisfiable and ϕ2 is not satisfiable. Let µ0
X be a truth

assignment that makes ϕ1 true. Let N consist of r tuples, one for each clause in
ϕ1, such that the variables in these clauses take values as given by µ0

X . Clearly,
N ⊆ Q(D). Furthermore, cost(N) = 1 and val(N) = 1, by the definition of cost() and
val(). Moreover, there exists no B′ > B such that there exists N ′ with cost(N ′) ≤ C
and val(N ′) ≥ B′. Indeed, if this happens then by the definition of val(), N ′ must
carry both variables in X and Y , and since cost(N ′) ≤ 1, N ′ must encode a truth
assignment µY of Y that satisfies ϕ2. But this is impossible since ϕ2 is not satisfiable.

⇐ Conversely, assume that ϕ1 is not satisfiable or ϕ2 is satisfiable. Consider
the following cases. (1) If ϕ1 is not satisfiable, then by the definition of cost(),
no N can exist that carries variables in X. That is, B is not even a bound for
(Q,D,Qc, cost(), val(), C, k). (2) If ϕ1 is satisfiable and ϕ2 is satisfiable, we let N ′

be the package that encodes truth assignments µ0
X and µ0

Y that make ϕ1 and ϕ2

true, respectively. In other words, N ′ consists of r + s tuples corresponding to
the clauses in ϕ1 and ϕ2 that conform to the given truth assignments. Clearly,
cost(N ′) = 1 ≤ C and val(N ′) = 2 > B. Hence B is not the maximum bound
for (Q,D,Qc, cost(), val(), C, k).

Upper bound. For ∃FO+, Consider the languages L1 and L2 defined in the proof of
Theorem 4.4 for the upper bound of MBP(∃FO+). We use the following algorithm to
check membership in the language L1:
1. Guess k sets, where each set consists of polynomially many CQ queries from Q,

and for each CQ query in each set, guess a tableau from D. These tableaux yield
a package N =

{

Ni | i ∈ [1, k]
}

, where Ni ⊆ Q(D) for all i ∈ [1, k].
2. Check whether cost(Ni) ≤ C, val(Ni) ≥ B, and Ni 6= Nj when i 6= j. If so, return

“yes”; otherwise reject the guess and go back to step 1.
This is in NP since step 2 is in PTIME. Similarly, one can show that membership in
L2 can be decided in coNP. Hence MBP(∃FO+) = L1 ∩ L2 is in DP.

This completes the proof of Theorem 4.4. Again the lower bound proofs of The-
orem 4.4 use only k = 1.

A.7. Proof of Theorem 4.5 (CPP, combined complexity, in the presence
of compatibility constraints). We start with the combined complexity of CPP(LQ)
when LQ is CQ, UCQ or ∃FO+. We then consider DATALOGnr and FO, and conclude
with DATALOG.

◮When LQ is CQ, UCQ or ∃FO+. It suffices to show that CPP(CQ) is #·coNP-hard
and CPP(∃FO+) is in #·coNP.

Lower bound. We show that CPP(CQ) is #·coNP-hard by parsimonious reduction



38 T. Ding, W. Fan & F. Geerts

from #Π1SAT, which is known to be #·coNP-complete [12]. An instance of #Π1SAT

consists of a universally quantified Boolean formula of the form ϕ(X,Y ) = ∀X (C1 ∨
· · ·∨Cr), where the Ci’s are conjunctions of variables or negated variables taken from
X = {x1, . . . , xm} and Y = {y1, . . . , yn}; #Π1SAT is to count the number of truth
assignments of Y that make ϕ true.

Given an instance ϕ of #Π1SAT we define a database D, Q and Qc in CQ, cost()
and val(), C and B such that the number of valid packages for (Q, D, Qc, cost(),
val(), C, B) is equal to the number of truth assignments of Y that make ϕ true.

(1) The database D consists of three relations specified by schemas R01(X), R∨(B,
A1, A2) and R¬(A, Ā) given in the proof of Theorem 4.1. Their corresponding in-
stances are shown in Figure A.1.

(2) The query Q simply returns truth assignment for Y , that is,

Q(~y ) = R01(y1) ∧ · · · ∧R01(yn),

where ~y = (y1, . . . , yn).

(3) We consider the following CQ query Qc:

Qc(~y ) = RQ(~y ) ∧ ∃~x
(

∧

i∈[1,m]

R01(xi) ∧
∧

i∈[1,r]

QC̄i
(~x, ~y )

)

,

where ~x = (x1, . . . , xm), ~y = (y1, . . . , ym), and QC̄i
leverages R01, R∨ and R¬ to

encode the disjunctions in the negated clause C̄i of Ci. The semantics of QC̄i
is that

for a given truth assignment µX of X and µY for Y , QC̄i
(µX , µY ) evaluates to true

if C̄i holds for µX and µY ; and QC̄i
(µX , µY ) returns false otherwise.

(4) We define cost(N) = |N | if N 6= ∅, cost(∅) = ∞, and set C = 1. That is, each
package consists of a single tuple. Furthermore, val(N) = b for some constant b for
all packages N . We set B = b.

To see that this is a parsimonious reduction, observe that N = {s} ⊆ Q(D) if and
only if s represents a truth assignment for Y in ϕ, as returned by Q, and in addition,
Qc(N,D) = ∅. That is, there does not exist a truth assignment µX of X that makes
C̄1 ∧ · · · ∧ C̄r false. In other words, all truth assignments µX of X make at least
one of the clause Ci true, and hence make ϕ true. Furthermore, since the condition
val(N) ≥ B does not remove any packages we have that the number of valid packages
for (Q,D,Qc, cost(), val(), C,B) is equal to the number of truth assignments of Y that
make ϕ true.

Upper bound. Consider D, Q, Qc, cost(), val(), C and B as input, where Q and Qc are
in ∃FO+. Given a package N , it is readily verified that (i) checking whether N ⊆ Q(D)
is in NP; (ii) testing cost(N) ≤ C and val(N) ≥ B is in PTIME; and (iii) checking
Qc(N,D) = ∅ is in coNP. In other words, there exist two Turing machines: an NP
machineM1 and a coNP machineM2, such that (~x, ~y) is accepted by bothM1 and
M2, where ~x is an encoding of D, Q, Qc, C, B, cost() and val(), and ~y is an encoding
of a package N satisfying the conditions above. That is, the witness function is in DP.
Furthermore, since no new values are invented by queries, the encoding ~y of tuples s in
Q(D) is bounded by arity(RQ)× log |adom(Q,D)|, where arity(RQ) denotes the arity
of the output schema of Q, which is bounded by a predefined polynomial ps in |R|
and |Q|, and adom(Q,D) is the set of constants appearing in D or Q. Since packages
are of size polynomial in |D|, we may conclude that |~y| is bounded by a polynomial
in |~x|. Putting these together, we have that CPP(∃FO+) is in #·DP. Note however,
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that #·DP ⊆ # · PNP simply because the # operator is monotonic in its argument.
The #·coNP upper bound then follows from # · PNP = #·coNP [15].

◮When LQ is DATALOGnr or FO. We next show that CPP(LQ) is #·PSPACE-complete
when LQ is DATALOGnr or FO.

Lower bound. We show that CPP(DATALOGnr) is #·PSPACE-hard by parsimonious
reduction from #QBF, which is #·PSPACE-complete (implicitly given in [19]). An in-
stance of #QBF consists of a Boolean formula of the form ϕ = ∃X P1y1P2y2 · · ·Pnyn ψ,
where P1 = ∀ and Pi ∈ {∃, ∀}, for i ∈ [2, n], and ψ is quantifier-free Boolean formula
over the variables in X = {x1, . . . , xm} and Y = {y1, . . . , yn}; #QBF is to count the
number of truth assignments of X that make ϕ true.

Given an instance ϕ of #QBF, we construct a database D, query Q, empty
compatibility constraint Qc, functions cost(), val(), cost budget C and a constant
B. We show that the number of valid packages for (Q,D,Qc, cost(), val(), C,B) is
equal to the number of truth assignments of X that make ϕ true.

(1) The database D consists of a single relation I01 specified by schema R01(X), as
shown in Figure A.1.

(2) We define the DATALOGnr query Q in stages as follows. It has an IDB

p(~x )← p1(~x, ~y).

Next, for each i ∈ [1, n], pi(~x, ~y) is defined as follows. If Pi is ∀, then

pi(~x, ~y )← pi+1(~x, y1, yi−1, 1, yi+1, . . . , yn), pi+1(~x, y1, yi−1, 0, yi+1, . . . , yn),

i.e., it checks both yi = 1 and yi = 0. If Pi is ∃, then

pi(~x, ~y )← R01(yi), pi+1(~x, ~y ),

i.e., either yi = 1 or yi = 0 will do. Finally, pn+1(~x, ~y ) is an IDB that encodes ψ(X,Y ),
by using inequality 6= to encode the negation of variables and multiple datalog rules to
encode disjunction. Obviously this is a non-recursive datalog program. Observe that
one could also encode the negation of variables by including an additional relation in
D that encodes negation (i.e., by including R¬ and I¬ as in the lower bound proof of
Lemma A.1).

(3) We take val() to be the constant function that assigns the value 1 to every package,
and define cost(N) = |N | in case N 6= ∅, cost(∅) =∞, and C = 1.

It is readily verified that N = {s} ⊆ Q(D) is a valid package if and only if s
corresponds to a truth assignment of X that makes ϕ true. Furthermore, since the
condition val(N) ≥ B does not remove any packages we have that the number of valid
packages for (Q,D,Qc, cost(), val(), C,B) is equal to the number of truth assignments
of X that make ϕ true. In other words, this is indeed a parsimonious reduction.

The lower bound for CPP(FO) is verified in the same way, but by providing a
reduction from QBF by means of FO queries.

Upper bound. As implied by Theorem 4.4, the witness function for MBP(LQ) is in
PSPACE when LQ is FO or DATALOG. Hence it suffices to observe that the size
of encodings of recommended packages is polynomially bounded by the size of an
encoding of the input. Indeed, this readily follows from the fact that the encoding of
single tuples is bounded and that each package consists of polynomially many tuples in
the size of the input. Putting these together, we have that CPP(LQ) is in #·PSPACE
for FO and DATALOG.
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◮When LQ is DATALOG. We show that CPP(DATALOG) is #·EXPTIME-complete.

Lower bound. We show that CPP(DATALOG) is #·EXPTIME-hard by showing that for
any function for which there exists an alternating polynomial space-bounded Turing
machine M = (St,Σ, δ, ı, s0) such that h(~x) = |{~y | (~x, ~y) is accepted byM}| and
|~y| ≤ |~x|k for some k, there exist Q, D, empty compatibility constraint Qc, functions
cost(), val(), and constants C and B such that the number of valid packages for (Q,D,
Qc, cost(), val(), C,B) is equal to h(~x). In particular, we set cost(N) = |N | if N 6= ∅,
cost(∅) = ∞, and C = 1. In addition, val() assigns the same value b to all packages.
We let B = b. Note that packages consist of a single tuple only and since Qc is the
empty query, a tuple makes a valid package if and only if it belongs to Q(D).

Recall that EXPTIME coincides with languages accepted by alternating poly-
nomial space-bounded Turing machines. An alternating Turing machine (ATM) is
of the form M = (St,Σ, δ, ı, s0), where St is a set of states with initial state s0;
Σ is a finite tape alphabet; transition function δ : St × Σ → 2St×Σ×{L,R} and
ı : St → {∧,∨, acc, rej}. Here L shifts the head to the left and R shifts it to the
right. IfM is in a configuration with state s and ı(s) = acc, then that configuration
is accepting; if it is in a state s with ı(s) = rej then the configuration is rejecting. A
configuration with s such that ı(s) = ∧ is accepting if all configurations reachable in
one step are accepting; and it is rejecting otherwise. A configuration with s such that
ı(s) = ∨ is accepting if one of the configurations reachable in one step is accepting;
and it is rejecting otherwise. An ATMM accepts a string ~x if the initial configuration
with state s0 and head positioned to the left of the input string ~x is accepting.

Let h be a function for which there exists an alternating polynomial space-
bounded Turing machineM = (St,Σ, δ, ı, s0) such that h(~x) = |{~y | (~x, ~y) is accepted
byM}| and |~y| ≤ |~x|k for some k. Let q be a polynomial such thatM on an input of
length n uses at most g(n) = nk + q(n) cells of its tape for input ~x and computation;
the first nk cells are reserved for ~y (possible padded with blanks ⊔ to fill all nk cells).
Let ~x = (x1, . . . , xn) be an input string.

Given M and ~x, we define a database D, a DATALOG query Q, and functions
and constants as specified above. The database D consists of a unary relation RΣ

that encodes the alphabet Σ. The query Q is defined as follows:
• If ı(s) = ∨, then for each s′ ∈ St, for each a, a′ ∈ Σ with δ(s, a) = (s′, a′, µ), for

some µ ∈ {L,R}, and for each i ∈ [0, g(|~x|)], we add the following rule:

Πs,i(z1, . . . , zi−1, a, zi+1, . . . , zg(|~x|))← Πs′,i+ℓ(z1, . . . , zi−1, a
′, zi+1, . . . , zg(|~x|)),

where ℓ = −1 if µ = L, and ℓ = 1 otherwise.
• If ı(s) = ∧, then for each a ∈ Σ, we construct the set Qs,a ={(s1, a1),. . .,

(sk(a), ak(a))} consisting of all pairs (sj , aj) such that δ(s, a) = (sj , aj , µj) for
some µj ∈ {L,R}. As before, we set ℓj = −1 if µj = L and ℓj = 1 otherwise. For
each i ∈ [0, g(|~x|)], we add the following rule:

Πs,i(z1, . . . , zi−1, a, zi+1, . . . , zg(|~x|))←

k(a)
∧

j=1

Πsj ,i+ℓj (z1, . . . , zi−1, aj , zi+1, . . . , zg(|~x|)).

• If ı(s) = acc is an accepting state then for each i ∈ [0, g(|~x|)], we add the following
rule:

Πs,i(z1, . . . , zg(|~x|))←

g(|~x|)
∧

j=1

RΣ(zi),



On the complexity of package recommendation problems 41

where RΣ denotes the unary instance consisting of all alphabet symbols.
• If ı(s) = rej is a rejecting state then for each i ∈ [0, g(|~x|)], we add the following
rule:

Πs,i(z1, . . . , zg(|~x|))← ∅.

• If s = s0 then we add

Q(y1, . . . , ynk)← Πs0,0(y1, . . . , ynk , x1, . . . , xn,⊔, . . . ,⊔).

Clearly, ~y ∈ Q(D) if and only if (~x, ~y) is accepted byM. Here, ~y = (y1, . . . , ynk) is the
tuple encoding ~y. Furthermore, |Q(D)| = |{~y | (~x, ~y) is accepted byM}| = h(~x).

Upper bound. As shown by Theorem 4.4, the witness function for MBP(DATALOG)
is in EXPTIME. Hence it suffices to observe that the size of encodings of recom-
mended packages is polynomially bounded by the size of encoding of the input. In-
deed, this readily follows from the fact that the encoding of single tuples is bounded,
and packages consist of polynomially many tuples in the size of the input. Therefore,
CPP(DATALOG) is in #·EXPTIME.

A.8. Proof of Theorem 4.5 (CPP, combined complexity, no compati-
bility constraints). When LQ is DATALOGnr, FO or DATALOG, we show that the
absence of Qc makes no difference when the combined complexity is concerned. In
contrast, the absence of Qc does have an effect when LQ is CQ, UCQ or ∃FO+.

◮When LQ is CQ, UCQ or ∃FO+. it suffices to show that CPP(CQ) is #·NP-hard
and that CPP(∃FO+) is in #·NP.

Lower bound. We show that CPP(CQ) is #·NP-hard by parsimonious reduction from
#Σ1SAT, which is known to be #·NP-complete [12]. An instance of #Σ1SAT con-
sists of an existentially quantified Boolean formula of the form ϕ(X,Y ) = ∃X (C1 ∧
· · · ∧ Cr), where Ci are disjunctions of variables or negated variables taken from
X = {x1, . . . , xm} and Y = {y1, . . . , yn}; #Σ1SAT is to count the number of truth
assignments of Y that make ϕ true.

Given an instance ϕ of #Σ1SAT, we define a database D, a CQ query Q, empty
compatibility constraints Qc, functions cost(), val(), and constants C and B. We show
that the number of valid packages for (Q,D,Qc, cost(), val(), C,B) is equal to the
number of truth assignments of Y that make ϕ true. In particular, we let cost(N) =
|N | if N 6= ∅, cost(∅) =∞ and we set C = 1. In addition, val() is a constant function
assigning a value b to all packages. We let B = b. Note that valid packages consist of
a single tuple only.

(1) The database consists of four relations specified by schemas R01(X), R∨(B,
A1, A2), R∧(B,A1, A2), and R¬(A, Ā) given in the proof of Theorem 4.1. The corre-
sponding instances are shown in Figure A.1.

(2) The query Q is then given by:

Q(~y ) = ∃~x
(

∧

i∈[1,n]

R01(yi) ∧
∧

i∈[1,m]

R01(xi) ∧
∧

i∈[1,r]

Qi(~x, ~y )
)

,

where ~x = (x1, . . . , xm), ~y = (y1, . . . , yn), and Qi leverages R01, R∨ and R¬ to encode
the disjunctions in the clause Ci. The semantics of Qi is that for a given truth
assignment µX of X and µY for Y , Qi(µX , µY ) evaluates to true if Ci holds for µX
and µY ; and Qi(µX , µY ) returns false otherwise.

To see that this is a parsimonious reduction, observe that a package N can be
recommended if and only if N consists of a single tuple s ∈ Q(D). Note that s ∈
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Q(D) if and only if s represents a truth assignment for Y in ϕ that makes ϕ true.
Furthermore, since the condition val({s}) ≥ B does not remove any tuples, we have
that the number of valid packages for (Q,D,Qc, cost(), val(), C,B) is equal to the
number of truth assignments of Y that make ϕ true.

Upper bound. It is readily verified that CPP(∃FO+) is in #·NP, simply because veri-
fying whether a given package is valid is in NP in the absence of compatibility con-
straints.

◮When LQ is DATALOGnr, FO or DATALOG. It suffices to observe that the proofs
of the #·PSPACE and #·EXPTIME lower bounds of CPP(LQ) for DATALOGnr, FO and
DATALOG given earlier do no use compatibility constraints. Together with the upper
bounds given there, we conclude that CPP(LQ) is #·PSPACE-complete when LQ is
DATALOGnr or FO, and it is #·EXPTIME-complete when LQ is DATALOG.

This completes the proof of Theorem 4.5.

Appendix B. Proofs of Section 5.

B.1. Proof of Theorem 5.1 (RPP, data complexity). It suffices to show
that the data complexity of RPP(LQ) is already coNP-hard when LQ is CQ and Qc
is absent, and in coNP when LQ is DATALOG or FO and Qc may be present.

Lower bound. The coNP-hardness of RPP(CQ) is shown as follows. First we prove
that the data complexity of the compatibility problem is NP-complete for CQ queries.
We then verify that RPP(CQ) is coNP-hard by reduction from the complement of the
compatibility problem when Qc is the empty query, as defined in the proof of the
combined complexity of RPP(CQ) in Theorem 4.1.

Lemma B.1. The data complexity of the compatibility problem is NP-complete
for CQ queries.

Proof. The NP upper bound for the compatibility problem follows from the fol-
lowing NP algorithm for the compatibility problem: (i) simply guess a package; and
(ii) test whether it satisfies the condition. We verify the NP lower bound by reduction
from 3SAT, which is known to be NP-complete (cf. [23]). An instance ϕ of 3SAT is
a formula C1 ∧ · · · ∧ Cr in which each clause Ci is a disjunction of three variables or
negations thereof taken from X = {x1, . . . , xn}. Given ϕ, 3SAT is to decide whether
ϕ is satisfiable, i.e., whether there exists a truth assignment for variables in X that
satisfies ϕ.

Given an instance ϕ of 3SAT above, we define the same database D, identity
query Q, empty query Qc, and function cost() as their counterparts given in the lower
bound proof of Theorem 4.3 for FRP(CQ), where Qc is absent. That is, each clause Ci
is encoded by tuples in D such that these encode all truth assignments for variables
in Ci that make Ci true, and moreover, for each package N such that cost(N) ≤ 1,
N encodes a valid truth assignment for (part of) the variables in X that make some
clauses in {C1, . . . , Cr} true. Furthermore, we set C = 1 and k = 1. Finally, We
define for each package N , val(N) = |N | and set B = r − 1. That is, any package
must consist of at least r tuples.

We next verify that ϕ is true if and only if there exists an N ⊆ Q(D) such that
cost(N) ≤ C and val(N) > B.

⇒ First assume that ϕ is satisfiable. Then there exists a truth assignment µ0
X for

X that satisfies ϕ, i.e., every clause Cj of ϕ is true by µ0
X . Let N consist of r tuples
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from D, one for each clause, in which the values for the variables correspond to µ0
X .

Then val(N) = r > B and cost(N) = 1 ≤ C.

⇐ Conversely, assume that ϕ is not satisfiable. Suppose by contradiction that there
exists an N ⊆ Q(D) with cost(N) ≤ C and val(N) > B. Then N consists of r tuples
and since cost(N) ≤ C one can construct a truth assignment µN for X that makes
all clauses in ϕ true. A contradiction. This completes the proof of the Lemma B.1.

One can verify that RPP(CQ) is coNP-hard by using the same argument given
in the proof of Theorem 4.1 for the combined complexity of RPP(CQ), by using
Lemma B.1 and letting k = 1, where Qc is the empty query.

Upper bound. We show that RPP(LQ) is in coNP (data complexity) for all the
query languages considered when Qc may be present. Observe that the algorithm
for RPP(FO) (combined complexity, proof of Theorem 4.1) works correctly for all
those query languages. Indeed, it suffices to observe that when data complexity is
concerned, steps 1(a) and 1(b) are in PTIME, and similarly, steps 2(b) and 2(c) are
in PTIME. This follows from the fact that the data complexity of the membership
problem for LQ is in PTIME, even when LQ is FO or DATALOG. Since step 2 involves
guessing a package and deciding the existence of package with higher rating than some
package in N (i.e., the complement problem), the algorithm is thus in coNP overall.

This completes the proof of Theorem 5.1. Note that in the lower bound proof,
only k = 1 is used.

B.2. Proof of Theorem 5.2 (FRP, data complexity). We show that FRP(LQ)

is FPNP-complete for data complexity when LQ ranges over the languages CQ, UCQ,
∃FO+, DATALOGnr, FO and DATALOG, in the presence or absence of compatibility
constraints.

For the lower bound, it suffices to show that FRP(CQ) is FPNP-hard when Qc
is absent. Observe that in the proof of Theorem 4.3, FRP(CQ) is FPNP-hard when
Qc is absent. Furthermore, the reduction given there use a fixed query Q in CQ

(i.e., a fixed identity query). As a consequence, the data complexity of FRP(CQ) is
FPNP-hard when Qc is absent.

For the upper bound, it suffices to observe that the algorithm presented for
FRP(∃FO+) in the proof of Theorem 4.3 works for all the languages considered and
moreover, the oracle used in the algorithm reduces to an NP oracle. Indeed, the or-
acle guesses a package and then verifies whether (i) it is valid, (ii) it has a certain
rating value, and (iii) it is distinct from the other packages. When data complexity
is concerned, condition (i) is in PTIME for all considered languages. Conditions (ii)
and (iii) are always in PTIME. As a consequence, the algorithm makes polynomially
many calls to an NP oracle, from which the FPNP upper bound follows.

This completes the proof of Theorem 5.2. Again only k = 1 is needed in the lower
bound proof.

B.3. Proof of Theorem 5.3 (MBP, data complexity). We next show the
data complexity of MBP(LQ) in the presence or absence of Qc. It suffices to show that
MBP(CQ) is DP-hard when Q is a fixed CQ query and Qc is absent, and MBP(LQ) is
in DP for fixed DATALOG and FO queries Q and Qc.

For the lower bound, it is already shown in the proof of the Theorem 4.4 that
MBP(CQ) is DP-hard in the absence of Qc. Furthermore, the reduction in that proof
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uses a fixed query Q in CQ (i.e., a fixed identity query) and empty compatibility
constraint. Thus the data complexity of MBP(CQ) is also DP-hard when Qc is absent.

For the upper bound, we show that MBP is in DP when Q and Qc are fixed
DATALOG or FO queries and Qx may be present. Consider corresponding languages
L1 and L2 defined in the upper bound proof of Theorem 4.4 for MBP(∃FO+). When Q
and Qc are fixed, L1 is in NP and L2 is in coNP, for LQ ranging over all the languages
considered. As the set of yes-instances of MBP is L1 ∩ L2, MBP is in DP.

This completes the proof of Theorem 5.3. The lower bound proof also uses k = 1
only.

B.4. The proof of Theorem 5.4 (CPP, data complexity). We show that the
data complexity of CPP(LQ) is #·P-complete for all the query languages considered
whenever Qc is absent or present. It suffices to show that for fixed Q and Qc, CPP(CQ)
is #·P-hard when Qc is absent, and CPP(FO) and CPP(DATALOG) are in #·P when
Qc may be present.

Lower bound. We show #·P-hardness by parsimonious reduction from #SAT, which
is known to be #·P-complete (recall that #P =#·P). An instance of #SAT is an
instance ϕ(X) = C1 ∧ · · · ∧ Cr of 3CNF over X = {x1, . . . , xm}. It is to count the
number of truth assignments of X that make ϕ true.

Given ϕ, we define a database D, an identity query Q, empty compatibility con-
straints Qc, functions cost(), val() and constant C = 1. These are the same as their
counterparts given in the proof of Lemma B.1. Furthermore, we set B = r. From
that proof, we know that for a package N ⊆ Q(D), cost(N) ≤ C and val(N) ≥ B if
and only if N encodes a truth assignment for X variables that make ϕ true.

Hence, the number of valid packages for (Q,D,Qc, cost(), val(), C,B) is equal to
the number of truth assignments of X that satisfy ϕ.

Upper bound. Given D, Q, Qc, cost(), val(), C and B and a package N , verifying
whether N is a valid package is in PTIME. Furthermore, since N is polynomially
bounded by |D|, N consists of values from the active domains of D and Q, and the
arity of the tuples in N is polynomially bounded by |Q| and |R|, one can easily verify
that the size of encoding of packages is polynomially bounded by the size of encoding
of the input. In other words, CPP(LQ) is in #·P for all languages considered.

This completes proof of Theorem 5.4.

Appendix C. Proofs of Section 6.

C.1. Proof of Corollary 6.1 (Packages with a fixed bound). For combined
complexity, we observe that the lower bound proofs of RPP, FRP, MBP and CPP given
in Theorems 4.1, 4.3, 4.4 and 4.5, respectively, use only top-1 packages with one item.
They thus carry over to the setting when the size of packages is fixed. For the upper
bounds, the algorithms given there obviously remain intact in the special case for
packages with a constant bound Bp.

For the data complexity, it suffices to show that, for fixed DATALOG and FO

queries Q and Qc, and packages with a constant bound Bp, RPP, FRP, MBP and CPP
are in PTIME, FP, PTIME and FP, respectively. Let LQ be either DATALOG or FO.

(a) RPP(LQ). Consider the algorithm given in the proof of Theorem 4.1 for RPP
(DATALOG). We revise the algorithm such that in step 3, it only enumerates all
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subsets of Q(D) consisting of Bq tuples at most, and do steps 3(a) and 3(b) of the
algorithm for each of these subsets. Clearly, the revised algorithm works here, even
for FO. We next show that it is a PTIME algorithm. Note that steps 1 and 2 are
in PTIME for fixed queries Q and Qc in DATALOG or FO. Furthermore, there are
polynomial many subsets of Q(D) consisting of Bq tuples. So step 3 is also in PTIME.
Thus the algorithm is in PTIME.

(b) FRP(LQ). Observe that the algorithm given in the proof of Theorem 4.3 for
FRP (∃FO+) works here, when LQ is DATALOG or FO. Moreover, it is easy to see
that the oracle used in the algorithm reduces to a PTIME oracle. Indeed, since we
only consider packages with constant bound Bp, the oracle only needs to enumerate
polynomial many guesses of subsets of Q(D). Moreover, when data complexity is
considered, for each guessed package N , it is PTIME to check whether (i) it is valid,
(ii) it has a certain rating value, and (iii) it is distinct from the other packages. Thus
the algorithm is in FP. Hence the problem is in FP.

(c) MBP(LQ). To verify that MBP(FO) and MBP(DATALOG) are both in PTIME, we
use the algorithm given in the proof of Theorem 4.4 for MBP(DATALOG) (combined
complexity), except that in step 2, the algorithm enumerates all subsets of Q(D)
consisting of Bq tuples at most. Then there are only polynomially many such subsets.
Clearly, the algorithm works here, and moreover, it is easy to see that the algorithm
is in PTIME for data complexity.

(d) CPP(LQ). We give an FP algorithm. Given D, Q, Qc, cost(), val(), C, B, and
when LQ is FO or DATALOG, it is to count the number of packages that are valid for
(Q,D,Qc, cost(), val(), C,B). It works as follows:
1. Denote by n the number of packages that are valid for (Q,D,Qc, cost(), val(), C,
B). Initially, let n = 0.

2. Compute Q(D).
3. Enumerate all subsets of Q(D) consisting of Bq tuples at most.
4. For each such subset N , check whether N is valid for (Q,D,Qc, cost(), val(), C,
B). If so, let n = n+ 1; otherwise, continue.

5. Return n after all the subsets of Q(D) are inspected.
Step 1 is in PTIME for fixed Q. Furthermore, there are polynomially many subsets

enumerated in step 2, and moreover, it can be readily verified that step 4 is also in
PTIME for fixed Q and Qc. Thus the algorithm is in FP.

This completes the proof of Corollary 6.1.

C.2. The proof of Corollary 6.2 (SP queries). We first show the complexity
results of RPP, FRP, MBP and CPP, respective, for packages of variable sizes, and
then for packages with a constant bound.

For packages of variable sizes, it suffices to show that problems RPP(LQ), FRP(LQ),

MBP(LQ) and CPP(LQ) are coNP-hard, FP
NP-hard, DP-hard and # ·P-hard for fixed

SP queries, respectively, when Qc is absent, and are in coNP, FPNP, DP and # · P,
respectively, for varied SP queries, when Qc is present. Observe that the lower bounds
of RPP(LQ), FRP(LQ), MBP(LQ) and CPP(LQ) for data complexity, in the absence
of Qc, given in Theorem 5.1, 5.2, 5.3 and 5.4, respectively, are established by taking
Q as a identity query, which is in SP. As a result, these lower bounds hold here.
For the upper bound, obviously, the algorithms for RPP(FO), FRP(∃FO+), MBP(FO),
given in Theorem 5.1, 5.2 and 5.3, respectively, can carry over here. Furthermore,
since the combined complexity of membership problem of SP queries is in PTIME, one
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can readily verify that these algorithms are in coNP, FPNP and DP, respectively. For
CPP(LQ), it is easy to see that it is in PTIME to check whether a given set N is valid
for (Q, D, Qc, cost(), val(), C, B). Thus the problem is in #·P.

For packages of a constant size, it suffices to show that RPP(LQ), FRP(LQ),
MBP(LQ) and CPP(LQ) are in PTIME, FP, PTIME and FP, respectively, for varied
queries Q and Qc in SP. Since the combined complexity of membership problem of SP
queries is in PTIME, obviously, the algorithms for fixedQ andQc given in Corollary 6.1
can carry over here.

This completes the proof of Corollary 6.2.

C.3. The proof of Corollary 6.3 (PTIME compatibility constraints). The
lower bounds of RPP, FRP, MBP and CPP in the absence of Qc, given in Theorems 4.2,
4.3, 4.4 and 4.5 for combined complexity, respectively, and in Theorem 5.1, 5.2, 5.3
and 5.4 for data complexity, respectively, obviously carry over to this setting, since
when Qc is empty (see Section 2), Qc is in PTIME. The upper bound proofs given
there for combined complexity (Theorems 4.2, 4.3, 4.4 and 4.5) and for data complex-
ity (Theorem 5.1, 5.2, 5.3 and 5.4), in the absence of Qc, also remain intact here.
Indeed, adding an extra PTIME step for checking Qc(N,D) = ∅ does not increase the
complexity of the algorithms given there.

This completes the proof of Corollary 6.3.

C.4. The proof of Theorem 6.4 (Item recommendations). We first verify
the combined complexity results of RPP, FRP, MBP and CPP for items, and then
show their data complexity.

Combined complexity. For the combined complexity, we observe that the upper bounds
of RPP, FRP, MBP and CPP, in absence of compatibility constraints, given in The-
orems 4.2, 4.3, 4.4 and 4.5, respectively, obviously remain intact here. Similarly, the
lower bounds in those proofs use only top-1 packages with one item. Thus these
lower bounds are still valid here. It remains to show that for items, (a) FRP(CQ) is
FPNP-hard and (b) MBP(CQ) is DP-hard.

(a) FRP(CQ). We show that FRP(CQ) is FPNP-hard by reduction from MAX-WEIGHT

SAT (see the proof of Theorem 4.3 for the statement of SAT-UNSAT). Consider
an instance (C, {w1, . . . , wr}) of MAX-WEIGHT SAT, where C is a set of clauses
{C1, . . . , Cr} that are defined over variables in set X = {x1, . . . , xm}, and for each
i ∈ [1, r], wi is an integer weight associated with clause Ci. Given such an instance,
we define a database D that consists of a single relation I01 as shown in Figure A.1,
specified by schema R01(X), a query Q as a Cartesian product of relation R01 to
generate all truth assignments of X variables, and set k = 1. Furthermore, for each
tuple t in Q(D), we define its rating f(t) as the sum of weights of clauses in C that
are true under the truth assignment encoded by t.

By the definition of f(), one can readily verify that for any tuple t ∈ Q(D), {t}
is a top-1 item selection for (Q,D, f) if and only if t encodes a truth assignment of
X variables that satisfies a set of clauses with the largest total weight. Thus it is a
reduction.

(b) MBP(CQ). We show that MBP(CQ) is DP-hard by reduction from SAT-UNSAT

(see the proof of Theorem 4.2, CQ case, for the statement of SAT-UNSAT). Given an
instance (ϕ1, ϕ2) defined over X = {x1, . . . , xm} and Y = {y1, . . . , yn}, respectively,
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we define a database D that consists of a single relation I01 as shown in Figure A.1,
specified by schema R01(X), a CQ query Q as a Cartesian product of relation R01

to generate all truth assignments of X ∪ Y variables, and take k = 1. Furthermore,
for any tuple t ∈ Q(D), we define (i) f(t) = 1 if the truth assignment µX of X
variables encoded by t makes ϕ1 true, while the truth assignment µY of Y variables
also encoded by t makes ϕ2 false; and (ii) for any other tuple t′ ∈ Q(D), we define
f(t) = 2. Finally, we set B = 1.

We next show that ϕ1 is satisfiable and ϕ2 is not satisfiable if and only if B is the
maximum bound for (Q,D, f, k = 1). By the definition of f(), ϕ1 is satisfiable and
ϕ2 is not satisfiable if and only if there exists a tuple t ∈ Q(D) such that f(t) = 1,
and moreover, there exists no tuple t′ ∈ Q(D) such that f(t′) > 1. Obviously, the
latter holds if and only if B = 1 is the maximum bound for (Q,D, f, k = 1).

Data complexity. Obviously, the algorithms developed for Corollary 6.1 suffice for
item selections when Q is fixed. As a result, the upper bounds given there carry over.

This completes the proof of Theorem 6.4.
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