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Abstract A variety of integrity constraints have been

studied for data cleaning. While these constraints can

detect the presence of errors, they fall short of guiding

us to correct the errors. Indeed, data repairing based

on these constraints may not find certain fixes that are

guaranteed correct, and worse still, may even introduce

new errors when attempting to repair the data. We pro-

pose a method for finding certain fixes, based on master

data, a notion of certain regions, and a class of editing

rules. A certain region is a set of attributes that are as-

sured correct by the users. Given a certain region and

master data, editing rules tell us what attributes to fix

and how to update them. We show how the method can

be used in data monitoring and enrichment. We also

develop techniques for reasoning about editing rules, to

decide whether they lead to a unique fix and whether
they are able to fix all the attributes in a tuple, relative

to master data and a certain region. Furthermore, we

present a framework and an algorithm to find certain

fixes, by interacting with the users to ensure that one of
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the certain regions is correct. We experimentally verify

the effectiveness and scalability of the algorithm.

1 Introduction

Real-life data is often dirty: 1%–5% of business data

contains errors [36]. Dirty data costs us companies

alone 600 billion dollars each year [15]. These highlight

the need for data cleaning, to catch and fix errors in

the data. Indeed, the market for data cleaning tools is

growing at 17% annually, way above the 7% average

forecast for the other it sectors [24].

An important functionality expected from a data

cleaning tool is data monitoring [9, 37]: when a tuple t

is created (either entered manually or generated auto-

matically by some process), it is to find errors in t and

correct the errors. That is, we want to ensure that t is

clean before it is used, to prevent errors introduced by

adding t. As noted by [37], it is far less costly to correct

t at the point of data entry than fixing it afterward.

A variety of integrity constraints have been stud-

ied for data cleaning, from traditional constraints (e.g.,

functional and inclusion dependencies [6,13,40]) to their

extensions (e.g., conditional functional and inclusion

dependencies [8, 19, 26]). These constraints help us de-

termine whether data is dirty or not, i.e., whether er-

rors are present in the data. However, they fall short

of telling us which attributes of t are erroneous and

moreover, how to correct the errors.

Example 1 Consider an input tuple t1 given in

Fig. 1(a). It specifies a supplier in the uk in terms

of name (fn, ln), phone number (area code AC and

phone phn) and type, address (street str, city, zip code)

and items supplied. Here phn is either home phone or

mobile phone, indicated by type (1 or 2, respectively).
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fn ln AC phn type str city zip item
t1: Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH cd
t2: Robert Brady 131 6884563 1 null Ldn null cd
t3: Robert Brady 020 6884563 1 null null EH7 4AH dvd
t4: Mary Burn 029 9978543 1 null Cad null book

(a) Example input tuples t1, t2, t3 and t4

fn ln AC Hphn Mphn str city zip DOB gender
s1: Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 11/11/55 M
s2: Mark Smith 020 6884563 075568485 20 Baker St. Ldn NW1 6XE 25/12/67 M

(b) Example master relation Dm

Fig. 1 Example input tuples and master relation

It is known that in the uk, if AC is 020, city should

be Ldn, and when AC is 131, city must be Edi. These

can be expressed as conditional functional dependencies

(cfds [19]). The cfds find that tuple t1 is inconsistent:

t1[AC] = 020 but t1[city] = Edi. In other words, either

t1[AC] or t1[city] is incorrect, or both. However, they do

not tell us which of the two attributes is wrong and to

what value it should be changed. 2

Several heuristic methods have been studied for re-

pairing data based on constraints [2,6,14,23,28,30]. For

the reasons mentioned above, however, these methods

do not guarantee to find correct fixes in data monitor-

ing; worse still, they may introduce new errors when

trying to repair the data. For instance, the tuple s1 of

Fig. 1(b) indicates corrections to t1. Nevertheless, the

prior methods may opt to change t1[city] to Ldn; this

does not fix the erroneous t1[AC] and worse, messes up

the correct attribute t1[city].

This highlights the quest for effective methods to

find certain fixes that are guaranteed correct [25, 28].

The need for this is especially evident in monitoring

critical data, in which a minor error may have disas-

trous consequences [28]. To this end we need editing

rules that tell us how to fix errors, i.e., which attributes

are wrong and what values they should take. In con-

trast, constraints only detect the presence of errors.

This is possible given the recent development of

master data management (MDM [31]). An enterprise

nowadays typically maintains master data (a.k.a. ref-

erence data), a single repository of high-quality data

that provides various applications with a synchronized,

consistent view of its core business entities. MDM sys-

tems are being developed by IBM, SAP, Microsoft and

Oracle. In particular, master data has been explored to

provide a data entry solution in the Service Oriented

Architecture (SOA) at IBM [37], for data monitoring.

Example 2 A master relation Dm is shown in Fig. 1(b).

Each tuple in Dm specifies a person in the uk in terms

of the name (fn, ln), home phone (Hphn), mobile phone

(Mphn), address, date of birth (DOB) and gender. An

example editing rule eR1 is:

◦ for an input tuple t, if there exists a master tuple s in

Dm with s[zip] = t[zip], then t should be updated by

t[AC, str, city] := s[AC, str, city], provided that t[zip]

is certain, i.e., it is assured correct by the users.

This rule makes corrections to attributes t[AC], t[str]
and t[city], by taking values from the master tuple s1.

Another editing rule eR2 is:

◦ if t[type] = 2 (indicating mobile phone) and if there

is a master tuple s with s[Mphn] = t[phn], then t[FN,

LN] := s[FN, LN], as long as t[phn, type] is certain.

This standardizes t1[FN] by changing Bob to Robert.

As another example, consider tuple t2 in Fig. 1(a),

in which t2[str, zip] are missing, and t2[AC] and t2[city]

are inconsistent. Consider an editing rule eR3:

◦ if t[type] = 1 (indicating home phone) and if there

exists a master tuple s in Dm such that s[AC, phn] =

t[AC,Hphn], then t[str, city, zip] := s[str, city, zip],

provided that t[type,AC, phn] is certain.

This helps us fix t2[city] and enrich t2[str, zip] by taking

the corresponding values from the master tuple s1. 2

Contributions. We propose a method for data moni-

toring, by capitalizing on editing rules and master data.

(1) We introduce a class of editing rules defined in terms

of data patterns and updates (Section 2). Given an in-

put tuple t that matches a pattern, editing rules tell

us what attributes of t should be updated and what

values from master data should be assigned to them.

In contrast to constraints, editing rules have a dynamic

semantics, and are relative to master data. All the rules

in Example 2 can be written as editing rules, but they

are not expressible as traditional constraints.

(2) We identify and study fundamental problems for

reasoning about editing rules (Sections 3 and 4). The

analyses are relative to a region (Z, Tc), where Z is a set

of attributes and Tc is a pattern tableau. One problem is

to decide whether a set Σ of editing rules guarantees to

find a unique (deterministic [25,28]) fix for input tuples

t’s that match a pattern in Tc. The other problems con-

cern whether Σ is able to fix all the attributes of such

tuples. Intuitively, as long as t[Z] is assured correct, we

want to ensure that editing rules can find a certain fix
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for t. We show that these problems are conp-complete,

np-complete or #p-complete, but we identify special

cases that are in polynomial time (ptime).

(3) We present an interactive framework and an algo-

rithm to find certain fixes (Section 5). A set of certain

regions are first recommended to the users, derived from

a set Σ of editing rules and master data Dm available,

by using an algorithm of [20]. For an input tuple t, the

users may only ensure that t[X] is correct, for a set X

of attributes of t. If t[X] matches any of the certain re-

gions, the rules guarantee to find t a certain fix. Other-

wise we deduce what other attributes Y of t are implied

correct by t[X] and the rules, and moreover, suggest a

minimal set S of attributes such that as long as t[S]

is assured correct, Y ∪ S covers a certain region and

hence, a certain fix to the entire t is warranted. The in-

teractive process proceeds until the users are guided to

reach a certain region. We show that it is np-complete

to find a minimum S. Nonetheless, we develop an ef-

ficient heuristic algorithm to find a set of suggestions,

and introduce effective optimization techniques. These

yield a practical data entry solution to clean data.

(4) We experimentally verify the effectiveness and scal-

ability of the algorithm, using real-life hospital data

and dblp (Section 6). We find that the algorithm effec-

tively provides suggestions, such that most input tuples

are fixed with two or three rounds of interactions only.

We also show that it scales well with the size of master

data, and moreover, that the optimization techniques

effectively reduce the latency during interactions.

Related work. This work extends [20] by including (1)

a comprehensive analysis of the fundamental problems

in connection with certain fixes (Section 4); (2) an in-

teractive framework and algorithm for finding certain

fixes (Section 5), and (3) its experimental study (Sec-

tion 6). Neither (2) nor (3) was studied in [20]. All the

proofs and some of the results of (1) were not presented

in [20]. Due to the space constraint we opt to cover these

new results by leaving out the deduction algorithms for

certain regions and their experimental study of [20].

A variety of constraints have been studied for data

cleaning, such as fds [40], fds and inclusion depen-

dencies (inds) [6], cfds [14, 19], conditional inclu-

sion dependencies (cinds) [8], matching dependencies

(mds) [18], and extensions of cfds and cinds [7, 11]

(see e.g., [17] for a survey). (a) These constraints help

us determine whether data is dirty or not, but they do

not tell us which attributes are erroneous or how to fix

the errors, as illustrated earlier. (b) The static analyses

of those constraints have been focusing on the satisfi-

ability and implication problems [7, 8, 11, 18, 19], along

the same lines as traditional fds and inds [1]. Editing

rules differ from those constraints in the following: (a)

they are defined in terms of updates, and (b) their rea-

soning is relative to master data and is based on its

dynamic semantics, a departure from our familiar ter-

rain of dependency analysis. The rules aim to fix errors,

rather than to detect the presence of errors only.

Editing rules are also quite different from edits stud-

ied for census data repairing [23, 25, 28]. Edits (a) are

conditions defined on single records of a single relation,

and (b) are not capable of locating and fixing errors.

Closer to editing rules are mds [18]. In contrast

to editing rules, (a) mds are for record matching (see

e.g., [16] for a survey), not for data repairing. (b) They

only specify what attributes should be identified, but do

not tell us how to update them. (c) mds neither carry

data patterns, nor consider master data; and hence,

their analysis is far less challenging. Indeed, the static

analyses are in ptime for mds [18], but in contrast, the

analyses are intractable for editing rules.

There has also been work on rules for active

databases (see [39] for a survey). Those rules are far

more general than editing rules, specifying events, con-

ditions and actions. Indeed, even the termination prob-

lem for those rules is undecidable, as opposed to the

conp upper bounds for editing rules. Results on those

rules do not carry over to editing rules.

Prior work on constraint-based data cleaning has

mostly focused on two topics introduced in [2]: repair-

ing is to find another consistent database that mini-

mally differs from the original database [2, 6, 8, 10, 13,

19,23,25,28,30,34,41]; and consistent query answering

is to find an answer to a given query in every possible

repair of the original database (e.g., [2, 40]). Although

the need for finding certain fixes has long been recog-

nized [25,28], prior methods do not guarantee that fixes

are correct, i.e., new errors may be introduced while

fixing existing ones in the repairing process. Moreover,

master data is not considered in those methods. We

shall evaluate the effectiveness of our approach com-

pared with the repairing algorithm of [14] (Section 6).

This work studies data monitoring, which is advo-

cated in [9, 10, 22, 37], as opposed to prior data repair-

ing methods [2, 6, 8, 13, 19, 23, 25, 28, 30, 40] that aim to

generate another database as a candidate repair of the

original data. As noted by [37], it is far less costly to

correct t at the point of entry than fixing it afterward.

A method for matching input tuples with master data

was presented in [9], without repairing the tuples.

Another line of work on data cleaning has focused

on record matching [5,18,23,27], to identify records that

refer to the same real-world object (see [16] for a sur-

vey). This work involves record matching between input

tuples and master tuples. There has also been a host
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of work on more general data cleaning and ETL tools

(see [4] for a survey), which are essentially orthogonal,

but complementary, to data repairing and this work.

There have also been efforts to interleave merging

and matching operations [5,21,27,32]: [27] clusters data

rather than repair data, and [5,27] only merge/fuse tu-

ples when matches are found. Those merge operations

are far more restrictive than value modifications con-

sidered in this work and data repairing. While [21] con-

ducts both repairing and matching using cfds and mds,

these operations cannot assure the correctness of the re-

paired data. Indeed, the prior work neither guarantees

certain fixes, nor considers master data.

Our data monitoring framework leverages user feed-

back, similar to [10, 34, 41]. Potter’s Wheel [34] sup-

ports interactive data transformations, based on itera-

tive user feedback on example data. USHER [10] cleans

data by asking users online about erroneous values,

identified by a probabilistic method. GDR [41] devel-

ops a cfd-based repairing approach by soliciting user

feedback on the updates that are likely to improve data

quality. Our approach asks users to assure the correct-

ness of a small number of attributes for an input tuple,

to find a certain fix. While all these methods interact

with users, they differ from each other in what feedback

is requested and how the feedback is used.

Editing rules can be extracted from business rules.

They can also be automatically discovered from sample

data along the same lines as mining constraints for data

cleaning, e.g., [12, 26] for cfds and [38] for mds.

Organization. Section 2 defines editing rules. Sec-

tion 3 presents certain fixes. Section 4 studies funda-

mental problems in connection with certain fixes. An

interactive framework for data monitoring is introduced

in Section 5. The experimental study is presented in

Section 6, followed by conclusions in Section 7.

2 Editing Rules

We study editing rules for data monitoring. Given a

master relation Dm and an input tuple t, we want to

fix errors in t using editing rules and data values in Dm.

We specify input tuples t with a relation schema

R, and use A ∈ R to denote that A is an attribute of

R. The master relation Dm is an instance of a relation

schema Rm, often distinct from R. As remarked earlier,

Dm can be assumed consistent and complete [31].

Editing rules. An editing rule (eR) ϕ defined on

(R,Rm) is a pair ((X,Xm)→ (B,Bm), tp[Xp]), where

◦ X and Xm are two lists of distinct attributes in

schemas R and Rm, respectively, with the same

length, i.e., |X| = |Xm|;

◦ B is an attribute such that B ∈ R\X, and attribute

Bm ∈ Rm; and

◦ tp is a pattern tuple over a set of distinct attributes

Xp in R such that for each A ∈ Xp, tp[A] is one of ,

a or ā. Here a is a constant drawn from the domain

of A, and is an unnamed variable.

Intuitively, a and ā specify Boolean conditions x = a

and x 6= a for a value x, respectively, and is a wildcard

that imposes no conditions. More specifically, we say

that a tuple t of R matches pattern tuple tp, denoted

by t[Xp] ≈ tp[Xp], if for each attribute A ∈ Xp, (1)

t[A] = a if tp[A] is a, (2) t[A] 6= a if tp[A] is ā, and (3)

t[A] is any value from the domain of A if tp[A] is .

Example 3 Consider the supplier schema R and master

relation schema Rm shown in Fig. 1(b). The rules eR1,

eR2 and eR3 described in Example 2 can be expressed as

the following editing rules ϕ1– ϕ4 defined on (R,Rm).

ϕ1: ((zip, zip) → (B1, B1), tp1 = ());

ϕ2: ((phn,Mphn) → (B2, B2), tp2[type] = (2));

ϕ3: (([AC, phn], [AC,Hphn]) → (B3, B3), tp3[type,AC]

= (1, 0800));

ϕ4: ((AC,AC) → (city, city), tp4[AC] = (0800)).

Here eR1 is expressed as three editing rules of the form

ϕ1, for B1 ranging over {AC, str, city}. In ϕ1, both X

and Xm consist of zip, and B and Bm are B1. Its pat-

tern tuple tp1 poses no constraints. Similarly, eR2 is

expressed as two editing rules of the form ϕ2, in which

B2 is either fn or ln. The pattern tuple tp2[type] = (2),

requiring that phn is mobile phone. The rule eR3 is

written as ϕ3 for B3 ranging over {str, city, zip}, where

tp3[type,AC] requires that type = 1 (home phone) yet

AC 6= 0800 (toll free, non-geographic). The eR ϕ4 states

that for a tuple t, if t[AC] 6= 0800 and t[AC] is correct,

we can update t[city] using the master data. 2

Semantics. We next give the semantics of editing rules.

We say that an eR ϕ and a master tuple tm ∈ Dm

apply to an R tuple t, which results in a tuple t′, denoted

by t→(ϕ,tm) t
′, if (1) t[Xp]≈ tp[Xp], (2) t[X] = tm[Xm],

and (3) t′ is obtained by the update t[B] := tm[Bm]. We

shall simply say that (ϕ, tm) apply to t.

That is, if t matches tp and if t[X] agrees with

tm[Xm], then we assign tm[Bm] to t[B]. Intuitively, if

t[X,Xp] is assured correct (referred to as validated), we

can safely enrich t[B] with master data tm[Bm] as long

as (1) t[X] and tm[Xm] are identified, and (2) t[Xp]

matches the pattern in ϕ. This yields a new tuple t′

such that t′[B] = tm[Bm] and t′[R \ {B}] = t[R \ {B}].
We write t →(ϕ,tm) t if ϕ and tm do not apply to

t, i.e., t is unchanged by ϕ if either t[Xp] 6≈ tp[Xp] or

t[X] 6= tm[Xm].
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Example 4 As shown in Example 2, we can correct t1
by applying the eR ϕ1 and master tuple s1 to t1. As a

result, t1[AC, str] is changed from (020, 501 Elm St.) to

(131, 51 Elm Row). Furthermore, we can standardize

t1[fn] by applying ϕ2 and s1 to t1, such that t1[fn] is

changed from Bob to Robert.

The eR ϕ3 and master tuple s1 can be applied to t2,

to correct t2[city] and enrich t2[str, zip]. 2

Notations. We shall use the following notations.

(1) Given an eR ϕ = ((X,Xm)→ (B,Bm), tp[Xp]), we

denote (a) lhs(ϕ) = X, rhs(ϕ) = B; (b) lhsm(ϕ) =

Xm, rhsm(ϕ) = Bm; and (c) lhsp(ϕ) = Xp.

(2) Given a set Σ of eRs, we denote ∪ϕ∈Σlhs(ϕ) by

lhs(Σ); similarly for rhs(Σ), lhsm(Σ) and rhsm(Σ).

Here abusing the notions for sets, we use X ∪Y , X ∩Y
and X \Y to denote the union, intersection and differ-

ence of two lists X and Y of attributes, respectively.

(3) An eR ϕ = ((X,Xm) → (B,Bm), tp[Xp]) is said

to be in the normal form if tp[Xp] does not contain

wildcard . Every eR ϕ can be normalized to an eR

ϕ′ by removing all such attributes A from tp[Xp] that

tp[A] = . From the semantics of eRs one can readily

verify that ϕ and ϕ′ are equivalent: for any input tuple t,

master tuple tm, and tuple t′, t→(ϕ,tm) t
′ iff t→(ϕ′,tm) t

′.

Remarks. (1) As remarked earlier, editing rules are

quite different from cfds [19]. A cfd ψ = (X → Y, tp)

is defined on a single relation R, where X → Y is a

standard fd and tp is a pattern tuple on X and Y . It

requires that for any tuples t1, t2 of R, if t1 and t2 match

tp, then X → Y is enforced on t1 and t2. When tp[Y ]

consists of constants only, it is referred to as a constant

cfd. It has a static semantics: t1 and t2 either satisfy

or violate ψ, but they are not updated. As shown in

Example 1, when t1 and t2 violate ϕ, one cannot tell

which of t1[X], t1[Y ] or t2[Y ] is erroneous, and hence,

cannot simply apply ϕ to find a certain fix. The problem

remains even when ϕ is a constant cfds, which can be

violated by a single tuple. In contrast, an eR ϕ specifies

an action: applying ϕ and a master tuple tm to t yields

an updated t′. It is defined in terms of master data. As

will be seen shortly, this yields a certain fix when ϕ and

tm are applied to a region that is validated.

(2) mds of [18] also have a dynamic semantics. An md

φ is of the form ((X,X ′), (Y, Y ′),OP), where X,Y and

X ′, Y ′ are lists of attributes in schemas R,R′, respec-

tively, and OP is a list of similarity operators. For an R1

tuple t1 and an R2 tuple t2, φ states that if t1[X] and

t2[X ′] match w.r.t. the operators in OP, then t1[Y ] and

t2[Y ′] are identified as the same object. As remarked in

Section 1, eRs differ from mds in several aspects.

Neither cfds nor mds are expressible as eRs, and

vice versa, because of their different semantics.

R Input relation schema
Rm Master relation schema
Σ A set of eRs on (R,Rm)
Dm Master data on Rm
ā Boolean condition x 6= a for a value x

An input tuple t matches a pattern tuple tct ≈ tc

Applying eR ϕ and a master tuple tm to an
t→(ϕ,tm) t

′
input tuple t, yielding t′

Table 1 Summary of notations of Section 2

(3) To simplify the discussion we consider a single mas-

ter relation Dm. Nonetheless the results of this work

readily carry over to multiple master relations. Indeed,

given master schemas Rm1 , . . . , Rmk , there exists a sin-

gle master schema Rm such that each instance Dm

of Rm characterizes an instance of (Dm1
, . . . , Dmk) of

those schemas. Here Rm has a special attribute id such

that σid=i(Rm) yields Dmi for i ∈ [1, k].

We summarize notations of this section in Table 1.

3 Certain Fixes and Certain Regions

Consider a master relation Dm of schema Rm, and a set

Σ of editing rules defined on (R,Rm). Given a tuple t

of R, we want to find a “certain fix” t′ of t by using

Σ and Dm. That is, (1) no matter how eRs of Σ and

master tuples in Dm are applied, Σ and Dm yield a

unique t′ by updating t; and (2) all the attributes of t′

are ensured correct (validated).

To formalize the notion of certain fixes, we first in-

troduce a notion of regions. When applying an eR ϕ and

a master tuple tm to t, we update t with values in tm.

To ensure that the changes make sense, some attributes

of t have to be validated. In addition, we are not able to

update t if either it does not match the pattern tuple

of ϕ or it cannot find a master tuple tm in Dm that

carries the information needed for correcting t.

Example 5 Consider the master data Dm of Fig. 1(b)

and a set Σ0 consisting of ϕ1, ϕ2, ϕ3 and ϕ4 of Exam-

ple 3. Both (ϕ1, s1) and (ϕ3, s2) apply to tuple t3 of

Fig. 1(a). However, they suggest to update t3[city] with

distinct values Edi and Lnd. The conflict arises because

t3[AC] and t3[zip] are inconsistent. Hence to fix t3, we

need to assure that one of t3[AC] and t3[zip] is correct.

Now consider tuple t4 of Fig. 1(a). Since no eRs in

Σ0 and master tuples in Dm can be applied to t4, we

cannot tell whether t4 is correct. This is because Σ0

and Dm do not cover all the cases of input tuples. 2

This motivates us to introduce the following notion.

Regions. A region is a pair (Z, Tc), where Z is a list of

distinct attributes in R, Tc is a pattern tableau consist-

ing of a set of pattern tuples with attributes in Z, and

each pattern tuple is defined as its counterparts in eRs.
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We say that a tuple t is marked by (Z, Tc) if there

exists tc ∈ Tc such that t ≈ tc.
Intuitively, a region (Z, Tc) species what input tu-

ples can be corrected with certain fixes by a set Σ of

eRs and master data. As will be seen shortly, (1) it tells

us that to correctly fix errors in a tuple t, t[Z] should

be assured correct, and moreover, t is marked such that

there exist an eR and a master tuple that can be applied

to t. (2) There exist no two eRs in Σ such that both

of them can be applied to t, but they lead to incon-

sistent updates. In other words, Tc imposes constraints

stronger than those specified by pattern tuples in eRs,

to prevent the abnormal cases illustrated in Example 5.

Consider an eR ϕ = ((X,Xm) → (B,Bm), tp[Xp]),

a master tuple tm and a region (Z, Tc). When we apply

ϕ and tm to a tuple t marked by (Z, Tc), we require

that X ⊆ Z, Xp ⊆ Z, B 6∈ Z. That is, it is justified

to apply ϕ and tm to t for those t marked by (Z, Tc) if

t[X,Xp] is correct. As t[Z] is validated, we make t[B]

“protected”, i.e., unchanged, by enforcing B 6∈ Z. We

denote this as t→((Z,Tc),ϕ,tm) t
′, where t→(ϕ,tm) t

′.

Example 6 Referring to Example 5, a region defined on

R is (ZAH, TAH) = ((AC, phn, type), {(0800, , 1)}). Note

that tuple t3 of Fig. 1(a) is marked by (ZAH, TAH).

Hence, if t3[AC, phn, type] is validated, then (ϕ3, s2) can

be applied to t3, yielding t3 →((ZAH,TAH),ϕ3,s2) t
′
3, where

t′3[str, city, zip] := s2[str, city, zip], and t′3 and t3 agree on

all the other attributes of R. 2

Note that if t→((Z,Tc),ϕ,tm) t
′, then t′[B] is validated

as a logical consequence of the application of ϕ and tm,

since t[Z] is validated. That is, t′[B] is assured correct

when applying rules to t′ in the process for fixing t (see

below). Hence we can extend (Z, Tc) by including B in
Z and by expanding each tc in Tc such that tc[B] = .

We denote the extended region as ext(Z, Tc, ϕ).

Example 7 Consider the region (ZAH, TAH) in Exam-

ple 6. Then ext(ZAH, TAH, ϕ3) is (Z ′, T ′), where Z ′ con-

sists of attributes AC, phn, type, str, city and zip, and T ′

has a single pattern tuple t′c = (0800, , 1, , , ). 2

Fixes. We say that a tuple t′ is a fix of t by (Σ, Dm)

w.r.t. (Z, Tc), denoted by t →∗((Z,Tc),Σ,Dm) t
′, if there

exists a finite sequence t0 = t, t1, . . ., tk = t′ of tuples

of R such that for each i ∈ [1, k], there exist ϕi ∈ Σ

and tmi ∈ Dm such that

(1) ti−1 →((Zi−1,Ti−1),ϕi,tmi )
ti, where (Z0, T0) = (Z,

Tc) and (Zi, Ti) = ext(Zi−1, Ti−1, ϕi); and

(2) for all ϕ ∈ Σ and tm ∈ Dm, t′ →((Zk,Tk),ϕ,tm) t
′.

These conditions ensure that (1) each step of the

process is justified; and (2) t′ is a fixpoint and cannot be

further updated. Note that ti−1 →((Zi−1,Ti−1),ϕi,tmi )
ti

assures that ti[Z] = t0[Z] = t[Z], i.e., t[Z] is assumed

correct and hence, remains unchanged in the process.

Unique fixes. We say that an R tuple t has a unique

fix by (Σ,Dm) w.r.t. (Z, Tc) if there exists a unique t′

such that t→∗((Z,Tc),Σ,Dm) t
′.

When there exists a unique fix t′ of t with a finite

sequence t0 = t, t1, . . ., tk = t′ of tuples of R, we refer to

Zk as the set of attributes of t covered by (Z, Tc, Σ,Dm).

Certain fixes. We say that an R tuple t has a certain

fix by (Σ,Dm) w.r.t. (Z, Tc) if (1) t has a unique fix

and (2) the set of attributes covered by (Z, Tc, Σ,Dm)

includes all the attributes in R.

A notion of deterministic fixes was addressed in [25,

28]. It refers to unique fixes, i.e., (1) above, without re-

quiring (2). Further, it is not defined relative to (Z, Tc).

Intuitively, a unique fix t′ becomes a certain fix when

the set of attributes covered by (Z, Tc, Σ,Dm) includes

all the attributes in R. We can find a certain fix for a

tuple t of R marked by a region (Z, Tc) if (a) t[Z] is

assured correct, (b) there is a unique fix t′; and (c) all

the remaining values of t′[R \ Z] are correctly fixed.

Example 8 By the set Σ0 of eRs of Example 5 and

the master data Dm of Fig. 1(b), tuple t3 of Fig. 1(a)

has a unique fix w.r.t. (ZAH, TAH), namely, t′3 given

in Example 6. However, as observed in Example 5,

if we extend the region by adding zip, denoted by

(ZAHZ, TAH), then t3 no longer has a unique fix by

(Σ0, Dm) w.r.t. (ZAHZ, TAH).

As another example, consider a region (Zzm, Tzm),

where Zzm = (zip, phn, type), and Tzm has a single tuple

( , , 2). As shown in Example 4, tuple t1 of Fig. 1(a)

has a unique fix by Σ0 and Dm w.r.t. (Zzm, Tzm),

by correctly applying (ϕ1, s1) and (ϕ2, s2). It is not

a certain fix, since the set of attributes covered by

(Zzm, Tzm, Σ0, Dm) does not include item. Indeed, the
master data Dm of Fig. 1(b) has no information about

item, and hence, does not help here. To find a certain

fix, one has to extend Zzm by adding item. In other

words, its correctness has to be assured by the users. 2

Certain regions. We next introduce the last notion of

this section. We say that a region (Z, Tc) is a certain re-

gion for (Σ,Dm) if for all tuples t of R that are marked

by (Z, Tc), t has a certain fix by (Σ,Dm) w.r.t. (Z, Tc).

We are naturally interested in certain regions since

they warrant absolute corrections, which are assured

either by the users (the attributes Z) or by master data

(the remaining attributes R \ Z).

Example 9 As shown in Example 8, (Zzm, Tzm) is not

a certain region. One can verify that a certain region

for (Σ0, Dm) is (Zzmi, Tzmi), where Zzmi extends Zzm by

including item, and Tzmi consists of patterns of the form

(z, p, 2, ) for z, p ranging over s[zip,Mphn] for all master

tuples s in Dm. For those tuples marked by the region,

certain fixes are warranted.
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A region with a list Z of distinct
(Z, Tc)

attributes and a pattern tableau Tc
Applying eR ϕ and master tuple tm to

t→((Z,Tc),ϕ,tm) t
′

input tuple t w.r.t. (Z, Tc), yielding t′

Tuple t′ is a fix of input tuple t by
t→∗((Z,Tc),Σ,Dm) t

′
(Σ, Dm) w.r.t. (Z, Tc)
All those attributes in t′ that are

attributes covered
validated by t→∗((Z,Tc),Σ,Dm) t

′

Table 2 Summary of notations of Section 3

Another certain region for (Σ0, Dm) is (ZL, TL),

where ZL = (fn, ln,AC, phn, type, item), TL consists of

pattern tuples of the form (f, l, a, h, 1, ), and (f, l, a, h)

is s[fn, ln,AC,Hphn] for all s ∈ Dm. 2

We summarize notations in Table 2.

4 Static Analyses of Fundamental Problems

Given a set Σ of eRs and a master relation Dm, we

want to make sure that they can correctly fix all errors

in those input tuples marked by a region (Z, Tc). This

motivates us to study fundamental problems associated

with certain fixes by (Σ, Dm) and (Z, Tc), and establish

their complexity and approximation bounds.

4.1 Reasoning about Editing Rules

We start with the problems for reasoning about editing

rules when regions are provided. Given (Σ, Dm) and a

region (Z, Tc), we want to know (a) whether (Σ, Dm)

and (Z, Tc) have any conflicts when put together (re-

ferred to as the consistency problem), and (b) whether

(Z, Tc) makes a certain region for (Σ, Dm) (known as

the coverage problem). We show that these problems

are intractable, but identify ptime special cases.

The consistency problem. We say that (Σ,Dm) is

consistent relative to (Z, Tc) if for each input R tuple

t marked by (Z, Tc), t has a unique fix by (Σ,Dm)

w.r.t. (Z, Tc). Intuitively, this says that Σ and Dm do

not have conflicts w.r.t. (Z, Tc), as illustrated below.

Example 10 There exist (Σ,Dm) and (Z, Tc) that are

inconsistent. Indeed, (Σ0, Dm) described in Example 5

is not consistent relative to region (ZAHZ, TAHZ) of Ex-

ample 8, since eRs in Σ0 suggest distinct values to up-

date t3[city] for tuple t3 of Fig. 1(a), i.e., conflicts arise,

as shown in Example 5. Hence t3 does not have a unique

fix by (Σ0, Dm) w.r.t. (ZAHZ, TAHZ). 2

The consistency problem for editing rules is to deter-

mine, given any (Z, Tc) and (Σ,Dm), whether (Σ,Dm)

is consistent relative to (Z, Tc).

The problem is obviously important, but is nontriv-

ial. It is known that for constraints defined with pattern

tuples, the presence of attributes with a finite domain

makes their static analysis hard [8, 19]. For instance,

when it comes to the problem for deciding whether a

set of cfds can be satisfied by a nonempty database, the

problem is np-complete if attributes in the cfds may

have a finite domain, but it becomes tractable when all

the attributes in the cfds have an infinite domain [19].

In contrast, below we show that the consistency prob-

lem for editing rules is intractable even when all the

attributes involved have an infinite domain.

Theorem 1 The consistency problem for editing rules

is conp-complete, even when data and master relations

have infinite-domain attributes only.

Proof: We first show that the complement of the prob-

lem is in np. We then show the problem is conp-hard,

even when only infinite-domain attributes are involved.

(I) We show that the problem is in conp by providing

an np algorithm for its complement. Given (Σ,Dm)

and (Z, Tc), the algorithm returns ‘yes’ iff (Σ,Dm) is

not consistent relative to (Z, Tc). Let dom be the set of

all constants appearing in Dm or Σ, and an additional

distinct constant that is not in dom (if there exists one).

The np algorithm works as follows:

(a) guess a pattern tuple tc in Tc, and an R tuple t such

that for each R attribute A, t[A] is a constant in dom;

(b) if t ≈ tc, then check whether (Σ,Dm) is consistent

relative to region (Z, {t[Z]}); and

(c) if the answer is ‘no’, the algorithm returns ‘yes’.

Otherwise reject the guess and repeat the process.

Obviously the algorithm returns ‘yes’ iff there exists

a tuple t marked by (Z, Tc) and it serves as a witness

of the inconsistency of (Σ,Dm). The algorithm returns

“no” when there exists no such a witness tuple.

As will be shown by Theorem 4 below, step (b) is

in ptime. From this it follows that the algorithm is in

np. Hence the consistency problem is in conp.

(II) We next show that the problem is conp-hard, by re-

duction from the 3SAT problem to its complement. It is

known that the 3SAT problem is np-complete (cf. [33].)

An instance φ of 3SAT is of the form C1 ∧ · · · ∧ Cn,

where the variables in φ are x1, . . . , xm, each clause Cj
(j ∈ [1, n]) is of the form yj1 ∨ yj2 ∨ yj3 , and moreover,

for i ∈ [1, 3], yji is either xpji or xpji for pji ∈ [1,m].

Here we use xpji to denote the occurrence of a variable

in the literal i of clause Cj . The 3SAT problem is to

determine whether φ is satisfiable.

Given a 3SAT instance φ, we construct an instance of

the consistency problem consisting of: (a) two schemas

R and Rm, (b) a master instance Dm of Rm, (c) a

pattern tableau Tc consisting of a single pattern tuple

tc for a list Z of distinct attributes of R, and (d) a set
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Σ of eRs. We show that (Σ,Dm) is consistent relative

to region (Z, Tc) iff the instance φ is not satisfiable.

(1) We first construct the consistency instance.

(a) The two schemas are R(A, X1, . . ., Xm, C1, . . ., Cn,

V , B) and Rm(Y0, Y1, A, V , B), respectively, where all

attributes have an (infinite) integer domain.

Intuitively, for each R tuple t, t[X1 . . . Xm], t[C1 . . .

Cn] and t[V ] specify a truth assignment ξ for the vari-

ables x1, . . ., xm of φ, the truth values of the clauses C1,

. . ., Cn, and the truth value of φ under ξ, respectively.

Attributes A and B will be used to match patterns of

eRs in Σ, and to demonstrate conflicts, respectively.

(b) The master relation Dm consists of three master

tuples tm1 , tm2 and tm3 , given as follows.

Y0 Y1 A V B
tm1

: 0 1 1 1 1
tm2

: 0 1 1 1 0
tm3

: 0 1 1 0 1

As will seen shortly, (i) data values 0 and 1 corre-

sponds to Boolean truth values true and false, respec-

tively; (ii) for R tuples t such that t[V ] = 1, there are

two distinct fixes since tm1
[V ] = tm2

[V ] = 1, but tm1
[B]

6= tm2
[V ]; and (iii) for R tuples t such that t[V ] = 0,

there is only one possible fix.

(c) The list of attributes Z = (A,X1, . . . , Xm) and the

pattern tuple tc[Z] = (1, , . . . , ).

(d) The set Σ is the union of n + 2 sets of eRs: Σ1 ∪
. . . ∪Σn ∪ΣC,V ∪ΣV,B .

◦ For each j ∈ [1, n], Σj defines eight eRs for clause

Cj of φ. Each eR ϕ(j,<b1b2b3>) is of the form ((A,A)

→ (Cj , Yj), t(pj,<b1b2b3>) [Xpj1Xpj2Xpj3 ] = (b1, b2, b3)),

where (1) for each i ∈ [1, 3], bi ∈ {0, 1}, and (2) Yj
= Y0 if (b1, b2, b3) makes Cj false by letting ξ(xpji)

= bi, and Yj = Y1 otherwise.

Intuitively, we enumerate all eight distinct truth as-

signments for each clause Cj (j ∈ [1, n]), and con-

struct an eR to assign the corresponding truth value

of Cj for each truth assignment.

◦ The set ΣC,V = {ϕ0, . . . , ϕn} consists of n+ 1 eRs,

where (1) for j ∈ [1, n], ϕj = ((A,A) → (V, Y0),

tpj [Cj ] = (0)), and (2) ϕ0 = ((A,A) → (V, Y1),

tp0 [C1 . . . Cn] = (1, . . . , 1)).

Intuitively, these eRs define the relationships be-

tween the truth values of φ and the clauses C1, . . .,

Cn. If there exists a clause Cj with truth value 0,

then the truth value of φ is 0; and if all clauses have

a truth value 1, then the truth value of φ is 1.

◦ The set ΣV,B consists of a single eR ϕV,B = ((V, V )

→ (B,B), ()), i.e., with an empty pattern tuple.

Intuitively, this eR says that for an R tuple t, (1) if

t[V ] = 0, there exists a unique fix t′ of t such that

t′[B] = 1; and (2) if t[V ] = 1, there exist two fixes

t′1 and t′2 of t such that t′1[B] = 1 and t′1[B] = 0.

Observe that Dm has a fixed size and Σ consists of

9n+ 2 eRs. Thus the reduction above is in ptime.

(2) We next show that (Σ,Dm) is consistent relative to

(Z, Tc) iff the 3SAT instance φ is not satisfiable.

Assume first that (Σ,Dm) is consistent relative to

(Z, Tc). We prove that φ is not satisfiable by contra-

diction. If φ is satisfiable, then there exists a satisfying

truth assignment ξ of the variables x1, . . . , xm. Let t be

an R tuple such that t[A,X1, . . . , Xm] = (1, ξ(x1), . . .,

ξ(xm)) and t[C1, . . ., Cn, V, B] be any (partial) tuple.

Observe the following. (a) By applying the eRs in

Σ1 ∪ . . . ∪ Σn and the master tuple tm1 (or one of

tm2
and tm3

) in Dm to tuple t, we have a fix t1 of t

such that t1[A,X1, . . . , Xm] = t[A,X1, . . . , Xm] and

t1[C1, . . . , Cn] = (1, . . . , 1). (b) By applying the eR

ϕn+1 in ΣC,V and the master tuple tm1
(or tm2

) in Dm

to tuple t1, we have a fix t2 of t1 such that t2[A,X1, . . .,

Xm, C1, . . . , Cn] = t1[A,X1, . . . , Xm, C1, . . . , Cn] and

t2[V ] = 1. (c) Finally, by applying the single eR in ΣV,B
and the master tuple tm1

inDm to tuple t2, we have a fix

t3,1 of t2 such that t3,1[A,X1, . . . , Xm, C1, . . . , Cn, V ]

= t2[A,X1, . . . , Xm, C1, . . . , Cn, V ] and t3,1[B] =

1. In contrast, by applying the eR in ΣV,B and

tm2 to t2, we have another distinct fix t3,2 of

t2 such that t3,2[A, X1, . . . , Xm, C1, . . . , Cn, V ] =

t2[A,X1, . . . , Xm, C1, . . . Cn, V ] and t3,2[B] = 0. That

is, (Σ,Dm) is not consistent relative to (Z, Tc), which

contradicts our assumption.

Conversely, assume that φ is not satisfiable. We

show that (Σ,Dm) is consistent relative to (Z, Tc). Let

t be an R tuple such that t[A,X1, . . . , Xm] is assured

correct. It suffices to consider the following two cases.

Case (a). There exists i ∈ [1,m] such that t[Xi] 6∈ {0, 1}.
Then there must exist Σj (1 ≤ j ≤ n) such that no eRs

in Σj and master tuples in Dm can be applied to the

tuple t. In particular, the eR ϕ0 in ΣC,V may not be

applied to t since the region (Z, Tc) cannot be expanded

to include all attributes C1, . . . , Cn. Hence it is easy to

verify that (Σ,Dm) is consistent relative to (Z, Tc).

Case (b). For each i ∈ [1,m], t[Xi] ∈ {0, 1}. Since φ is

not satisfiable, the eR ϕ0 in ΣC,V and any master tuple

in Dm cannot be applied to the tuple t. Thus again

(Σ,Dm) is consistent relative to (Z, Tc).

Taken together, (I) and (II) show that the con-

sistency problem for editing rules is conp-complete.

Moreover, the reduction of (II) uses infinite-domain at-

tributes only, and hence, the conp lower bound remains

intact when all the attributes of input tuples and mas-

ter tuples have an infinite domain. 2
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Theorem 1 tells us that the consistency analysis of

eRs is more intricate than its cfd counterpart, which

is in ptime when all attributes involved have an infi-

nite domain. It is also much harder than mds, since any

set of mds is consistent [18]. Nevertheless, it is still de-

cidable, as opposed to the undecidability for reasoning

about rules for active databases [39].

The coverage problem. The coverage problem is to

decide, given any (Z, Tc) and (Σ,Dm), whether (Z, Tc)

is a certain region for (Σ, Dm). That is, whether

(Σ,Dm) is able to fix errors in all the attributes of

input tuples that are marked by (Z, Tc).

The coverage problem is, however, also intractable.

Theorem 2 The coverage problem is conp-complete,

even for input tuples and master relations that have

infinite-domain attributes only.

The proof is similar to the proof of Theorem 1: the

conp upper bound is verified by providing a similar

conp algorithm, and the conp-hardness is shown by re-

duction from the 3SAT problem to its complement. As

opposed to its counterpart of Theorem 1, the reduction

uses negations in the pattern tuples of eRs. We defer

the proof to the appendix due to the space constraint.

Remark. Like the consistency and the coverage prob-

lems we have seen earlier, for all the problems to be

studied in the rest of the section, their complexity re-

mains the same in the presence of finite-domain at-

tributes and in their absence. Hence in the sequel, we

shall simply refer to their complexity bounds without

remarking the absence of finite-domain attributes.

Special cases. To better understand these problems,
we further investigate the following five special cases.

(1) Fixed Σ. In this setting, the set Σ of eRs is fixed.

Indeed, editing rules are often predefined in practice.

(2) Fixed Dm. In this case the master data Dm is fixed.

In real-life master data is changed less frequently than

(input) data relations.

(3) Positive Tc. This case assumes no pattern tuples in

Tc contain ā, i.e., in the absence of negations.

(4) Concrete Tc. This case requires that no pattern tu-

ples in Tc contain wildcard ‘ ’ or ā, i.e., they contain

a’s only. Note that a concrete Tc must be a positive Tc.

(5) Direct fixes. We consider in this setting that (a) for

all eRs ϕ = ((X,Xm) → (B,Bm), tp[Xp]) in Σ, Xp

⊆ X, i.e., the pattern attributes Xp are also required

to find a match in Dm, and (b) each step of a fixing

process employs (Z, Tc) without extending (Z, Tc), i.e.,

ti−1 →((Z,Tc),ϕi,tmi )
ti.

Among these, cases (1) and (2) assume that Σ and

Dm are fixed, respectively; (3) and (4) restrict the form

of patterns in Tc; and case (5) restricts the form of eRs

and adopts a simpler semantics for fixing input tuples.

One might think that fixed master data or positive

patterns would simplify the analysis of eRs. Unfortu-

nately, these do not help. Observe that in the lower-

bound proofs of Theorems 1 and 2, (a) the master re-

lation Dm is fixed, i.e., it is independent of 3SAT in-

stances, and (b) the tableau Tc consists of wildcard and

constants only. From these the next corollary follows.

Corollary 3 The consistency problem and the cover-

age problem remain conp-complete even for (1) fixed

master data Dm and (2) a positive tableau Tc.

In contrast, special cases (1) and (4) indeed make

our lives easier, as verified below.

Theorem 4 The consistency problem and the coverage

problem are in ptime for either (1) a fixed set Σ of eRs

or (2) a concrete pattern tableau Tc.

Proof: We consider a set Σ of eRs on schemas (R, Rm),

a master relation Dm of Rm, and a region (Z, Tc), where

there is a single tuple tc ∈ Tc only. When there are

multiple tuples in Tc, we can test them one by one by

using the ptime algorithms for a single-tuple Tc.

Below we first show that if the consistency problem

or the coverage problem is in ptime for a concrete Tc,

the problem is in ptime for a fixed Σ. We then show

that both problems are in ptime for a concrete Tc.

(I) We first show that when Σ is fixed, we can construct

a concrete T ′c from Tc such that (1) the size of T ′c is poly-

nomially bounded by the size of (Σ,Dm), (2) (Dm, Σ)

is consistent relative to (Z, Tc) iff it is consistent rela-
tive to (Z, T ′c), and (3) (Z, Tc) is a certain region for

(Σ,Dm) iff (Z, T ′c) is a certain region for (Σ,Dm).

The tableau T ′c is constructed as follows.

◦ Let ZΣ be the set of R attributes that appear in Σ,

Z ′ = Z ∩ ZΣ , and let dom be the active domain of

Σ and Dm as defined in the proof of Theorem 1.

◦ The tableau T ′c = { t′c | t′c[Z ′] = t[Z ′] for all possible

R tuples t such that t ≈ tc[Z
′], t[B] ∈ dom for

each attribute B ∈ Z ′, and t′c[Z \ Z ′] ≈ tc[Z \ Z ′]
consisting of constants drawn from dom only}. That

is, all and c̄ in tc are instantiated to all possible

values in dom, and hence all pattern tuples in T ′c
contain concrete data values only.

Observe that T ′c contains at most O(|dom||Σ|) pat-

tern tuples since the number of possible R tuples is

bounded by O(|dom||Σ|). Hence the size of T ′c is a poly-

nomial of the size of (Σ, Dm) when Σ is fixed.

We next show that (Dm, Σ) is consistent relative to

(Z, Tc) iff it is consistent relative to (Z, T ′c).
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Consider an R tuple t such that for each attribute

B ∈ Z, t[B] ∈ dom. If t 6≈ tc[Z], then it is easy to

see that t has a unique fix, but does not have a certain

fix. If t ≈ tc[Z], we can verify that t has a unique fix by

(Σ,Dm) w.r.t. (Z, Tc) iff it has a unique fix by (Σ,Dm)

w.r.t. (Z, T ′c). From these the statement follows.

Similarly, we show that (Z, Tc) is a certain region for

(Dm, Σ) iff (Z, T ′c) is a certain region for (Dm, Σ).

Putting these together, we have shown that if the

consistency or coverage problem is in ptime for a con-

crete Tc, the problem is in ptime for a fixed Σ.

(II) We next show that the consistency problem for a

concrete Tc is in ptime, by giving a ptime algorithm

that takes (Σ,Dm) and (Z, Tc) as input, and returns

‘yes’ iff (Σ,Dm) is consistent relative to (Z, Tc). Recall

that it suffices to consider single-tuple Tc = {tc}.
Below we first present the algorithm, and then show

that the algorithm runs in ptime. Finally, we verify the

correctness of the algorithm.

(1) We first present the algorithm.

(a) Let t be an R tuple such that t[Z] = tc and t[R \Z]

= ( , . . . , ), and let Zb = Z. As will be seen shortly,

any R tuple t with t[Z] = tc is allowed. We simply use

wildcards to denote that t is any R tuple marked by

tc. Here Zb is used to store the initial Z, and remains

unchanged in the entire process.

(b) Let a set dep(A) = ∅ for each attribute A ∈ R. Here

dep(A) is used to remember lhs(ϕ) for all ϕ ∈ Σ such

that t[A] is updated and validated by making use of ϕ

and some mater tuple tm in Dm.

(c) Let S = {(ϕ1, tm1), . . . , (ϕk, tmk)} be the set of all

rule-tuple pairs such that for each i ∈ [1, k], (1) tmi ∈
Dm and ϕi ∈ Σ, (2) (lhs(ϕi) ∪ lhsp(ϕi)) ⊆ Z, but

rhs(ϕi) 6∈ Z; (3) t[lhs(ϕi)] = tmi [lhsm(ϕi)]; and (4)

tuple t matches the pattern tuple in ϕi.

(d) The algorithm returns ‘yes’ if the set S is empty, i.e.,

the tuple t reaches a fix point. Otherwise it continues.

(e) If there exist i, j ∈ [1, k] such that rhs(ϕi) =

rhs(ϕj) and tmi [rhsm(ϕi)] 6= tmj [rhsm (ϕj)], then the

algorithm returns ‘no’, and it continues otherwise.

(f) For each i ∈ [1, k], let dep(rhs(ϕi)) := dep(rhs(ϕi))

∪ {lhs(ϕi)}, t[rhs(ϕi)] := tmi [rhsm(ϕi)]; and expand

Z := Z ∪ {rhs(ϕ1), . . ., rhs(ϕk)}.
(g) If there exist an eR ϕ in Σ and a master tuple tm in

Dm such that (1) ϕ and tm can be applied to tuple t;

(2) lhs(ϕ) ⊆ Z, rhs(ϕ) ∈ Z \Zb; and (3) tm[rhsm(ϕ)]

6= t[rhs(ϕ)], then the algorithm does the following.

◦ If for each attribute A ∈ lhs(ϕ), there exists an

X ∈ dep(A) with rhs(ϕ) 6∈ X, then it returns ‘no’.

(h) The algorithm repeats the process from step (c).

(2) To see that the algorithm is in ptime, observe the

following: (i) each time Z is expanded by at least one

more attribute; (ii) there are |Σ|×|Dm| rule-tuple pairs,

and once such a pair is applied to the tuple t at step (c)

or (g), it will not be considered again; and (iii) all steps

alone can be done in ptime. Putting these together, the

algorithm indeed runs in ptime.

(3) We next verify the correctness of the algorithm.

Assume first that the algorithm returns ‘no’. Then

we show that (Σ,Dm) is not consistent relative to

(Z, Tc). Note that the algorithm returns ‘no’ at steps (e)

and (g) only. In both cases, it is obvious that (Σ,Dm)

is not consistent relative to (Z, Tc).

Conversely, assume that the algorithm returns ‘yes’.

Then we prove that (Σ,Dm) is consistent relative to

(Z, Tc) by contradiction. Assume that (Σ,Dm) is not

consistent relative to (Z, Tc). Then there exist two dis-

tinct fixes t′ and s′ for an R tuple t such that (a)

t′ 6= s′, (b) t0 = t →∗((Z,Tc),Σ,Dm) tk = t′, and (c)

s0 = t →∗((Z,Tc),Σ,Dm) sh = s′. That is, there exist

two finite sequences L1 = [t0 = t, t1, . . . , tk = t′] and

L2 = [s0 = t, s1, . . . , sh = s′] such that k, h ≤ |R|, and

for each i ∈ [1, k], j ∈ [1, h], there exist ϕi, ϕj ∈ Σ and

tmi , tmj ∈ Dm that satisfy the following:

◦ ti[Z] = t0[Z] = t[Z] and sj [Z] = s0[Z] = t[Z];

◦ ti−1 →((Zi−1,Ti−1),ϕi,tmi )
ti, where (Z0, T0) = (Z,

Tc) and (Zi, Ti) = ext(Zi−1, Ti−1, ϕi);
◦ sj−1 → ((Zj−1,Tj−1),ϕj ,tmj )

sj , where (Z0, T0) = (Z,

Tc) and (Zj , Tj) = ext(Zj−1, Tj−1, ϕj); and

◦ for all ϕ ∈ Σ and tm ∈ Dm, t′ →((Zk,Tk),ϕ,tm) t
′ and

s′ →((Zh,Th),ϕ,tm) s
′.

To see that these lead to a contradiction, we first

define a partition {P1, . . . , Pg} of the rule-tuple pairs

(ϕi, tmi) (i ∈ [1, k]) and (ϕj , tmj ) (j ∈ [1, h]) involved

in the two sequences L1 and L2. Along the same lines as

step (c) of the algorithm, those pairs that are applicable

to t at the same time are processed together, and form

a distinct partition Pl (1 ≤ l ≤ g). Note that for any

l1 6= l2 ∈ [1, g], Pl1 ∩ Pl2 = ∅.
To see the contradiction, in L1 and L2, let B be the

first R attribute such that (i) ti[B] 6= sj [B] (i ∈ [1, k],

j ∈ [1, h]), (ii) ti−1 → ((Zi−1,Ti−1),ϕi,tmi )
ti, and (iii) sj−1

→ ((Zj−1,Tj−1),ϕj ,tmj )
sj . Assume that (ϕi, tmi) ∈ Pl1

and (ϕj , tmj ) ∈ Pl2 (l1, l2 ∈ [1, g]). There are three cases

to consider: (i) l1 = l2, (ii) l1 < l2, and (iii) l1 > l2.

(i) If l1 = l2, the conflict can be detected at step (e) of

the algorithm when it updates the attribute B. Thus

the algorithm would have returned ‘no’.

(ii) If l1 < l2, the conflict can be found at step (g) when

the algorithm updates the attribute B using (sj , tmj ).

Thus the algorithm would also have returned ‘no’.

(iii) If l1 > l2, the algorithm would have returned ‘no’
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as well, by the same analysis as (b).

That is, all three cases contradict our assumption.

Putting all these together, we have shown that the

algorithm correctly determines whether (Σ,Dm) is con-

sistent relative to (Z, Tc), in ptime.

(III) Finally, we show that the coverage problem for a

concrete Tc is also in ptime. Indeed, the ptime algo-

rithm given above can be adapted and applied here,

while it only returns ‘yes’ at step (d) if both the set S

is empty and if the tuple t consists of constants only. 2

Furthermore, special case (5) identified above also

simplifies the consistency and coverage analyses.

Theorem 5 The consistency problem and the coverage

problem are in ptime when direct fixes are considered.

Proof: Consider a set Σ of eRs defined on schemas (R,

Rm), a master relation Dm of Rm and a region (Z, Tc).

As in the proof of Theorem 4, we assume w.l.o.g. that

there is a single tuple tc ∈ Tc only.

Below we first show that the consistency problem for

direct fixes is in ptime, based on which we then show

that the same result holds for the coverage problem.

(I) We first show how to check the consistency for direct

fixes via a set of sql queries, which yields a ptime

algorithm for the problem.

Let ΣZ be the set of eRs ϕ in Σ such that lhs(ϕ) ⊆
Z, but rhs(ϕ) 6∈ Z. For any two eRs ϕ1 and ϕ2 in ΣZ
with rhs(ϕ1) = rhs(ϕ2), we define an sql queryQϕ1,ϕ2

such that (Σ,Dm) is consistent relative to (Z, Tc) iff all

the queries return an empty set.

We first define an sql query Qϕ for an eR ϕ = ((X,

Xm)→ (B,Bm), tp[Xp]) in ΣZ , as follows.

Qϕ: select distinct (Xm, Bm) as (X,B)
from Rm

where Rm.Xpm
≈ tp[Xp] and Rm.Xm ≈ tc[X],

where Xpm ⊆ Xm is the list of attributes corresponding

to Xp. Recall that Xp ⊆ X and X ⊆ Z for direct fixes.

Here Rm.Xpm ≈ tp[Xp] is a disjunction of (tp[A] = )

or (tp[A] = c and Rm.Am = tp[A]) or (tp[A] = c̄

and Rm.Am <> tp[A])) for each attribute A ∈ Xp,

where Am ∈ Xm is the attribute corresponding to A.

It is similar for Rm.Xm ≈ tc[X]. Intuitively, Qϕ returns

(partial) master tuples that both match the pattern

tuple tp of ϕ and the pattern tuple tc in Tc. We also use

Qϕ(X,B) and Qϕ(X) to denote the projected results

of Qϕ on X ∪ {B} and X, respectively.

We also define sql query Qϕ1,ϕ2
. Assume w.l.o.g.

that ϕ1 = ((X1X, Xm1Xm) → (B, Bm1), tp1 [Xp1 ])

and ϕ2 = ((X2X, Xm2
X ′m) → (B, Bm2

), tp2 [Xp2 ])

such that X1 ∩X2 = ∅ and |X| = |Xm| = |X ′m|. Note

that here X may be empty.

Qϕ1,ϕ2
: select R1.X1, R1.X, R2.X2

from Qϕ1
(X1X,B) as R1, Qϕ2

(X2X,B) as R2

where R1.X = R2.X and R1.B 6= R2.B.

Intuitively, Qϕ1,ϕ2
returns those (partial) master tu-

ples that may introduce conflicts when fixing R tuples.

When the semantics of direct fixes is considered,

(Σ,Dm) is consistent relative to (Z, {tc}) if for all eRs

ϕ1 and ϕ2 in ΣZ , the query Qϕ1,ϕ2
returns an empty

result. Note that (1) Qϕ can be evaluated by scanning

the master relation Dm once, and hence it can be done

in O(|ϕ||Dm|) time, where |ϕ| is the size of ϕ and |Dm|
is the number of master tuples in Dm, respectively; and

(2) Qϕ1,ϕ2 can be evaluated in O(|ϕ1||ϕ2||Dm|2) time.

Hence, the consistency problem is in O(|Σ|2|Dm|2) time

(ptime) for direct fixes, where |Σ| is the size of Σ.

(II) For the coverage problem, observe that (Z, Tc) is a

certain region for (Σ,Dm) iff

(1) (Σ,Dm) is consistent relative to (Z, Tc); and

(2) for each B ∈ R\Z, there exists an eR ϕ = ((X,Xm)

→ (B,Bm), tp[Xp]) in Σ such that (a) X ⊆ Z, (b) tc[X]

consists of constants only, (c) tp[Xp] ≈ tc[Xp], and (d)

there is a master tuple tm ∈ Dm with tm[Xm] = tc[X].

Conditions (1) and (2) can be checked in O(|Σ|2
|Dm|2) time and O(|R||Σ||Dm|) time, respectively.

Hence the coverage problem for direct fixes is in O(|Σ|2
|Dm|2) time (ptime) since |R| is bounded by |Σ|. 2

4.2 The Complexity of Computing Certain Regions

We next study three fundamental problems in connec-

tion with computing certain regions, when regions are

either partially given or not given at all.

To derive a certain region (Z, Tc) from (Σ,Dm), one

wants to know whether a given list Z of attributes could
make a certain region by finding a nonempty Tc.

The Z-validating problem is to decide, given (Σ,

Dm) and a list Z of distinct attributes, whether there

exists a non-empty pattern tableau Tc such that (Z, Tc)

is a certain region for (Σ,Dm).

Another question is to determine, if Z can make a

certain region by finding a nonempty Tc, how large Tc
is. Let (Z, Tc) be a certain region for (Σ, Dm). For any

pattern tuple tc ∈ Tc, we require the following:

(1) tc[A] = for all attributes A not appearing in Σ;

(2) tc[A] is replaced with v (resp. v̄) if tc[A] = c (resp.

c̄) and c is a constant not appearing in Σ or Dm. Here

v is a variable denoting any constant not in Σ or Dm.

Note that these requirements do not lose generality.

It is easy to verify for any certain region (Z, Tc), we can

find an equivalent one (with no more pattern tuples)

satisfying the two conditions. Moreover, these allow us

to deal with only a finite number of pattern tuples, and

to focus on the essential properties of the problems.
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The Z-counting problem is to count, given (Σ, Dm)

and a list Z of distinct attributes, the number of distinct

pattern tuples that can be found from (Σ,Dm) to build

a tableau Tc such that (Z, Tc) is a certain region.

Both problems are beyond reach in practice, as

shown below. In particular, the Z-counting problem is

as hard as finding the number of truth assignments that

satisfy a given 3SAT instance [33].

Theorem 6 The Z-validating problem is np-complete.

Proof: We first show that the problem is in np. We

then show that the problem is np-hard.

(I) We show that the problem is in np, by providing an

np algorithm that, given (Σ,Dm) and a list Z of dis-

tinct attributes as input, returns ‘yes’ iff there exists a

non-empty pattern tableau Tc such that (Z, Tc) is a cer-

tain region for (Σ,Dm). Let dom be the active domain

dom of Σ and Dm as given in the proof of Theorem 1.

The np algorithm works as follows.

(a) Guess a tuple tc such that for each attribute A ∈ Z,

tc[A] ∈ dom, i.e., tc consists of constants only.

(b) If (Z, {tc}) is a certain region for (Σ,Dm), then the

algorithm returns ‘yes’.

By Theorem 4, step (b) can be done in ptime. Hence

the algorithm is in np.

The correctness of the algorithm follows from the

observation below, which can be readily verified. Given

Z, there exists a non-empty pattern tableau Tc such

that (Z, Tc) is a certain region for (Σ,Dm) iff there

exists a pattern tuple tc consisting of values from dom
such that (Z, {tc}) is a certain region for (Σ,Dm).

(II) We next show that the problem is np-hard, by re-
duction from 3SAT. Given an instance φ of the 3SAT

problem as described in the proof of Theorem 1, we

construct an instance of the Z-validating problem con-

sisting of: (a) two relational schemas R and Rm, (b)

a master relation Dm of Rm, (c) a set Σ of eRs, and

(d) a list Z of distinct attributes of R. We show that

there exists a non-empty pattern tableau Tc that yields

a certain region (Z, Tc) for (Σ,Dm) iff φ is satisfiable.

(1) We first define the Z-validating instance.

(a) The two schemas are R(X1, . . . , Xm, C1, . . . , Cn, V )

and Rm(B1, B2, B3, C, V1, V0), respectively, in which all

the attributes have an integer domain.

Intuitively, for each R tuple t, t[X1 . . . Xm], t[C1 . . .

Cn] and t[V ] specify a truth assignment ξ for the vari-

ables x1, . . ., xm of φ, the truth values of the clauses C1,

. . ., Cn, and the truth value of φ under ξ, respectively.

(b) The master relation Dm consists of eight tuples:

Here (1) tm0
[C, V1, V0] = . . . = tm7

[C, V1, V0] = (1, 1, 0),

and (2) tm0 [B1, B2, B3], . . ., and tm7 [B1, B2, B3] to-

B1 B2 B3 C V1 V0

tm0
: 0 0 0 1 1 0

tm1
: 0 0 1 1 1 0

tm2
: 0 1 0 1 1 0

tm3
: 0 1 1 1 1 0

tm4
: 1 0 0 1 1 0

tm5
: 1 0 1 1 1 0

tm6
: 1 1 0 1 1 0

tm7
: 1 1 1 1 1 0

gether enumerate the eight truth assignments of a

three-variable clause, ranging from (0, 0, 0) to (1, 1, 1).

(c) The set Σ consists of 3n eRs.

We encode each clause Cj = yj1 ∨ yj2 ∨ yj3 (j ∈
[1, n]) of φ with three eRs: ϕj,1, ϕj,2 and ϕj,3, where

◦ ϕj,1 = ((Xpj1Xpj2Xpj3 , B1B2B3)→ (Cj , C), ()),

◦ ϕj,2 = ((Xpj1Xpj2Xpj3 , B1B2B3)→ (V, V1), ()),

◦ ϕj,3 = ((Xpj1Xpj2Xpj3 , B1B2B3) → (V, V0), tpj
[Xpj1Xpj2Xpj3 ]) such that tpj [Xpj1Xpj2Xpj3 ] is the

only truth assignment that makes clause Cj false.

(d) We define the attribute list Z as X1, . . . , Xm.

(2) We next show that there exists a non-empty tableau

Tc such that (Z, Tc) is a certain region for (Σ,Dm) iff

the 3SAT instance φ is satisfiable.

Assume first that there exists a non-empty Tc such

that (Z, Tc) is a certain region for (Σ,Dm). We show

that the 3SAT instance φ is satisfiable. Observe that for

any pattern tuple tc ∈ Tc, tc[Xi] ∈ {0, 1} for i ∈ [1,m]

since (Z, {tc}) is a certain region for (Σ,Dm). We prove

that tc[X1, . . . , Xm] is a satisfying truth assignment of

φ by contradiction. If tc[X1, . . . , Xm] does not satisfy

φ, then there exists a clause Cj (1 ≤ j ≤ n) such that

tc[Xpj1 , Xpj2 , Xpj3 ] makes Cj false. Then eRs ϕj,2 and

ϕj,3 are both applicable to any R tuples t if t ≈ tc,

which updates t[V ] to 1 by ϕj,2, but t[V ] to 0 by ϕj,3.

That is, (Z, {tc}) is not a certain region for (Σ,Dm),

which contradicts the assumption above.

Conversely, assume that the instance φ is satisfi-

able. We show that there exists a pattern tuple tc
such that (Z, {tc}) is a certain region for (Σ,Dm). Let

tc[X1, . . . , Xm] be a satisfying truth assignment of φ,

which exists since φ is satisfiable. One can easily verify

that (Z, {tc}) is a certain region for (Σ,Dm). 2

A closer look at the reduction in the proof of The-

orem 6 tells us the following. In particular, in contrast

to Theorem 5, the Z-validating problem remains in-

tractable even when direct fixes are considered.

Corollary 7 The Z-validating problem remains np-

complete even when we consider (1) fixed master data

Dm, (2) a positive pattern tableau Tc, (3) a concrete

pattern tableau Tc, or (4) direct fixes.

However, when fixing Σ, the Z-validating problem

becomes much simpler, as shown below.
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Proposition 8 The Z-validating problem is in ptime

given a fixed set Σ of eRs.

Proof: We show that the problem is in ptime by pro-

viding a ptime algorithm that takes (Σ,Dm) and a list

Z of distinct attributes as input, returns ‘yes’ iff there

exists a non-empty pattern tableau Tc such that (Z, Tc)

is a certain region for (Σ,Dm). Let dom be the active

domain dom as given in the proof of Theorem 1.

The algorithm works as follows. Let tc be a pattern

tuple over attributes Z such that tc[A] = for all at-

tributes A ∈ Z not appearing in Σ, and tc[B] is either

c or c̄, where c is a value drawn from dom, for all the

other attributes B. For all such pattern tuples tc, the

algorithm checks whether (Z, {tc}) is a certain region

for (Σ,Dm), and if so, it returns ‘yes’.

To see that the algorithm runs in ptime, observe

the following: (1) the number of pattern tuples tc is

bounded by O(|dom||Σ|), a polynomial of Σ and Dm

when Σ is fixed; and (2) by Theorem 4, it is in ptime

to check whether (Z, {tc}) is a certain region.

For the correctness, observe that given Z, there ex-

ists a non-empty pattern tableau Tc such that (Z, Tc)

is a certain region for (Σ,Dm) iff there exists a pattern

tuple tc inspected by the algorithm, such that (Z, {tc})
is a certain region for (Σ,Dm). 2

We next investigate the Z-counting problem.

Theorem 9 The Z-counting problem is #p-complete.

Proof: The Z-counting problem is obviously in #p

since it is the counting version of the Z-validating prob-

lem, which is np-complete as shown by Theorem 6.

We next show that the Z-counting problem is #p-

hard by a parsimonious reduction [3] from the #3SAT

problem, which is #p-complete [3, 33]. Given a 3SAT

formula, the #3SAT problem counts the number of sat-

isfying truth assignments, i.e., the problem is the count-

ing version of the 3SAT problem. Recall that there ex-

ists a parsimonious reduction from counting problems

#A to #B if there is a polynomial time reduction f

such that for all instances x and its solution y of A,

|{y | (x, y) ∈ A}| = |{z | (f(x), z) ∈ B}| [3].

We show that the reduction given in the proof of

Theorem 6 is already parsimonious. As argued there,

for all pattern tuples tc such that (Z, {tc}) is a certain

region for (Σ,Dm), tc[A1 . . . Am] is a satisfying truth

assignment for the 3SAT formula, and vice versa. This

implies that the number of satisfying truth assignments

for the 3SAT formula is exactly equal to the number

of pattern tuples tc in a pattern tableau Tc such that

(Z, Tc) is a certain region for (Σ,Dm). 2

From Theorems 6, 9 and Corollary 7 it follows:

Corollary 10 The Z-counting problem remains #p-

complete even when we consider (1) fixed master data

Dm, (2) a positive pattern tableau Tc, (3) a concrete

pattern tableau Tc, or (4) direct fixes.

When only a fixed set Σ of eRs is considered, the

Z-counting problem becomes easier. This is consistent

with Proposition 8.

Proposition 11 The Z-counting problem is in ptime

given a fixed set Σ of eRs.

Proof: We show this by giving a ptime algorithm

that counts the number of pattern tuples tc such that

(Z, {tc}) is a certain region for (Σ, Dm).

The algorithm is a revision of the ptime algorithm

given in the proof of Proposition 8, by simply adding

a counter that keeps track of the number of pattern

tuples tc such that (Z, {tc}) is a certain region for (Σ,

Dm). The revised algorithm runs in ptime, and its cor-

rectness can be verified along the same lines as its coun-

terpart given in the proof of Proposition 8. 2

Certain regions with minimum Z. One would nat-

urally want a certain region (Z, Tc) with a “small” Z,

such that the users only need to assure the correctness

of a small number of attributes in input tuples.

The Z-minimum problem is to decide, given

(Σ,Dm) and a positive integer K, whether there ex-

ists a list Z of distinct attributes such that (a) |Z| ≤ K
and (b) there exists a non-empty pattern tableau Tc
such that (Z, Tc) is a certain region for (Σ,Dm).

This problem is also intractable, as shown below.

Theorem 12 The Z-minimum problem is np-

complete.

Proof: We first show that the problem is in np. We

then show that the problem is np-hard.

(I) We show that the problem is in np by giving an np

algorithm. Given (Σ,Dm) and a positive integer K, the

algorithm returns ‘yes’ iff there exists a list Z of distinct

attributes such that (a) |Z| ≤ K, and (b) there exists

a non-empty pattern tableau Tc such that (Z, Tc) is a

certain region for (Σ,Dm)

The algorithm works as follows.

(a) Guess a list Z of at most K distinct R attributes,

and guess a pattern tuple tc with attributes in Z as

described in the proof of Theorem 6.

(b) If (Z, {tc}) is a certain region for (Σ,Dm), then the

algorithm returns ‘yes’.

One can easily verify that the algorithm is correct.

In addition, the algorithm is in np since by Theorem 4,

step (b) can be done in ptime.
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(II) We next show the np-hardness of the Z-minimum

problem by reduction from the set covering (SC) prob-

lem, which is known to be np-complete (cf. [33]).

Given a finite set U = {x1, . . . , xn} of elements, a

collection S = {C1, . . . , Ch} of subsets of U , and a pos-

itive integer K ≤ h, the SC problem asks whether there

exists a cover for S of sizeK or less, i.e., a subset S′ ⊆ S
such that |S′| ≤ K, and every element of U belongs to

at least one member of S′.

Given an instance of the SC problem, we construct

an instance of the Z-minimum problem consisting of

(a) two relational schemas R and Rm, and (b) a master

relation Dm of Rm. We show that there exists a list Z

of distinct attributes such that (a) |Z| ≤ K and (b)

there exists a non-empty pattern tableau Tc such that

(Z, Tc) is a certain region for (Σ,Dm) iff there is a cover

of size K or less for the instance of the SC problem.

(1) We first define the Z-minimum instance as follows.

(a) We use R(C1, . . . , Ch, X1,1, . . ., X1,h+1, . . ., Xn,1,

. . ., Xn,h+1) as the schema of input data, and

Rm(B1, B2) as the master data schema, in which all

attributes have an integer domain.

Intuitively, attribute Cj (j ∈ [1, h]) is to encode

the member Cj in S, and the h+ 1 attributes Xi,1, . . .,

Xi,h+1 (i ∈ [1, n]) together denote the element xi in U .

(b) The master relation Dm consists of a single master

tuple tm = (1, 1).

(c) The set Σ consists of (h+ 1)
∑h
j=1 |Cj | + h eRs.

We encode each member Cj = {xj1 , . . . , xj|Cj |} (j ∈
[1, h]) of S with (h+ 1)|Cj |+ 1 eRs, where

◦ for each xji ∈ Cj , ϕj,i,1 = ((Cj , B1) → (Xji , B2),

()), where Xji ranges over {Xji,1, . . . , Xji,h+1}, and

◦ ϕj,2 = ((Xj1,1 . . . Xj1,h+1 . . . Xj|Cj |,1
. . . Xj|Cj |,h+1, B1

. . . B1)→ (Cj , B2), ()).

Intuitively, when identifying a list Z of h attributes or

less, these eRs ensure that the attributes are taken from

{C1, . . . , Ch} only.

(2) We now verify the correctness of the reduction.

Assume first that there exists a list Z of distinct

attributes such that |Z| ≤ K and there exists a non-

empty pattern tableau Tc such that (Z, Tc) is a certain

region for (Σ,Dm). Then we construct a cover of size

K or less for the instance of the SC problem. Let Z ′ =

Z∩{C1, . . . , Ch} and S′ be the set of subsets in S of the

SC instance denoted by Z ′. We prove that S′ is a cover

for the SC instance by showing that for each xi ∈ U ,

there exists a Cj ∈ S′ such that xi ∈ Cj . Indeed, if

there exists no such Cj , the set Σ of eRs requires us

to include all the h + 1 attributes Xil (l ∈ [1, h + 1])

in Z. This, however, would have made |Z| > h, which

contradicts the assumption that |Z| ≤ K ≤ h.

Conversely, assume that there is a cover S′ of size

K or less for the instance of the SC problem. We show

that there exists a list Z of distinct attributes of size K

or less and a non-empty pattern tableau Tc on Z such

that (Z, Tc) is a certain region for (Σ,Dm). Let Z be

the list of distinct attributes denoted by the cover S′,

and tc = (1, . . . , 1) be a pattern tuple. Then |Z| ≤ K,

and (Z, {tc}) is a certain region for (Σ,Dm).

Parts (I) and (II) together show that the Z-

minimum problem is np-complete. 2

Observe that the reduction in the proof of Theo-

rem 12 utilizes a fixed master relation Dm and a con-

crete tableau Tc. Hence we have the following.

Corollary 13 The Z-minimum problem remains np-

complete even when we consider (1) fixed master data

Dm, (2) a positive pattern tableau Tc, or (3) a concrete

pattern tableau Tc.

When direct fixes are considered, the Z-minimum

problem remains intractable, as opposed to Theorem 5.

Theorem 14 The Z-minimum problem remains np-

complete even when direct fixes are considered.

The problem is in np by Theorem 12. It is verified

np-hard by reduction from the SC problem along the

same lines as the proof of Theorem 12. We defer the

proof to the appendix due to the space constraint.

Having seen Propositions 8 and 11, it is not sur-

prising to find that the Z-minimum problem becomes

tractable for a fixed set Σ of eRs, as shown below.

Proposition 15 The Z-minimum problem is in ptime

given a fixed set Σ of eRs.

Proof: Consider a fixed setΣ of eRs defined on schemas

(R,Rm), and a master relation Dm of Rm. We provide

a ptime algorithm that, given K and (Σ,Dm), checks

whether there exist a list Z of no more than K distinct

attributes and a non-empty pattern tableau Tc, such

that (Z, Tc) is a certain region for (Σ,Dm).

Let ZΣ and ZΣ be two sets of R attributes that ap-

pear inΣ and do not appear inΣ, respectively. It is easy

to verify that it suffices to consider Z with ZΣ ⊆ Z,

since for any list Z of distinct R attributes, if ZΣ 6⊆ Z,

there exists no non-empty tableau Tc such that (Z, Tc)

is a certain region for (Σ,Dm).

Let S be the collection of all lists of distinct at-

tributes in ZΣ , i.e., for each Z ′ ∈ S, Z ′ ⊆ ZΣ . When

Σ is fixed, both S and ZΣ have a fixed size.

Based on these we give the algorithm as follows.

For each Z ′ ∈ S, we check whether there exists a non-

empty tableau Tc such that (Z, Tc) is a certain region

for (Σ,Dm), where Z = ZΣ ∪ Z ′. The algorithm is



15

in ptime. Indeed, by Proposition 8, when Σ is fixed,

the checking can be done in ptime. Moreover, as ar-

gued above, the cardinality of S is fixed. Hence the

Z-minimum problem is in ptime if Σ is fixed. 2

Approximation hardness. Worse still, there exist no

approximate algorithms for the (optimization version)

Z-minimum problem with a reasonable bound. To show

the approximation bound, we adopt L-reductions [33].

Let Π1 and Π2 be two minimization problems. An

L-reduction from Π1 to Π2 is a quadruple (f , g, α, β),

where f and g are two ptime computable functions,

and α and β are two constants, such that

◦ for any instance I1 of Π1, I2 = f(I1) is an instance

of Π2 such that opt
2
(I2) ≤ α · opt1(I1), where opt1

(resp. opt2) is the objective of an optimal solution

to I1 (resp. I2), and

◦ for any solution s2 to I2, s1 = g(s2) is a solution

to I1 such that obj1(s1) ≤ β · obj2(s2), where obj1()

(resp. obj2()) is a function measuring the objective

of a solution to I1 (resp. I2).

We say an algorithm A for a minimization problem

has performance guarantee ε (ε ≥ 1) if for any instance

I, obj(A(I)) ≤ ε · opt(I).

L-reductions retain approximation bounds [33].

Proposition 16 If (f, g, α, β) is an L-reduction from

problems Π1 to Π2, and there is a ptime algorithm for

Π2 with performance guarantee ε, then there is a ptime

algorithm for Π1 with performance guarantee αβε [33].

Leveraging Proposition 16, we next show the

approximation-hardness of the Z-minimum problem.

Theorem 17 Unless np = p, the Z-minimum prob-
lem cannot be approximated within a factor of c log n

in ptime for a constant c.

Proof: It is known that the set covering (SC) problem

cannot be approximated within a factor of c log n in

ptime for a constant c unless np = p [35]. Hence it

suffices to show that there exists an L-reduction from

the SC problem to the Z-minimum problem.

We next construct such an L-reduction (f, g, α, β).

(1) Let f be the ptime reduction given in the proof

of Theorem 12. Given an SC instance I1 as input, I2 =

f(I1) is a Z-minimum instance. It was shown there that

for the instance I1, there is a cover of sizeK or less iff for

the instance I2, there exist a |Z| ≤ K and a non-empty

pattern tableau Tc such that (Z, Tc) is a certain region

for (Σ,Dm). That is, the optimal objective opt2(I2) is

equal to the optimal objective opt1(I1).

(2) We next define the function g. Let Z be a solu-

tion for the Z-minimum instance I2, i.e., a list of dis-

tinct attributes such that |Z| ≤ K and there exists

a non-empty pattern tableau Tc such that (Z, Tc) is a

certain region for (Σ,Dm). The function g constructs

a cover for the SC instance I1, as follows: Let Z ′ =

Z ∩ {C1, . . . , Ch} and S′ be the set of subsets in S of

the SC instance I1 denoted by Z ′.

The function g is obviously computable in ptime,

and it was shown in the proof of Theorem 12 that S′

is a cover for I1 with size K or less. Hence given a

solution s2 for I2, s1 = g(s2) is a solution for I1 such

that obj1(s1) ≤ obj2(s2).

(3) Let α = β = 1. Then we have opt2(I2) ≤ α ·opt1(I1)

and obj1(s1) ≤ β · obj2(s2).

This completes the construction of the L-reduction.

Thus by the approximation-hardness of SC [35] and

Proposition 16, the Z-minimum problem cannot be ap-

proximated within c log n in ptime unless np = p. 2

From Theorem 17 and Corollary 13, the result below

immediately follows.

Corollary 18 Unless np = p, the Z-minimum prob-

lem cannot be approximated within a factor of c log n

in ptime for a constant c even when we consider (1) a

fixed master relation Dm, (2) a positive pattern tableau

Tc, or (3) a concrete pattern tableau Tc.

Direct fixes do not make our lives easier when ap-

proximation is concerned either, similar to Theorem 14.

Theorem 19 Unless np = p, the Z-minimum prob-

lem cannot be approximated within a factor of c log n

in ptime for a constant c for direct fixes.

The proof is similar to the proof of Theorem 17.

It is verified by a L-reduction (f, g, α, β) from the SC

problem. As opposed to its counterpart of Theorem 17,

here f is a ptime function defined in terms of the ptime

reduction given in the proof of Theorem 14. We defer

the proof to the appendix for the lack of space.

Theorems 17, 19 and Corollary 18 tell us that to

find certain regions, it is necessary to develop heuristic

algorithms. Such algorithms are provided in [20].

Summary. The complexity results are summarized in

Table 3. Observe the following.

(1) The complexity bounds of all these problems remain

unchanged in the presence of finite-domain attributes

and in the absence of such attributes, as opposed to the

analyses of cfds [19], cinds [8] and mds [18].

(2) For a fixed set Σ of eRs, all the problems become

ptime computable, i.e., fixed eRs simplify the analyses.

(3) For fixed master data Dm or a positive tableau Tc,

all the problems remain intractable. That is, these spe-

cial cases do not make our lives easier.

(4) When we consider direct fixes or a concrete tableau
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General setting/Infinite-domain attributes only
Problems

General Fixed Σ Fixed Dm Positive Tc Concrete Tc Direct Fixes

conp-complete ptime conp-complete conp-complete ptime ptime
Consistency

(Theorem 1) (Theorem 4) (Corollary 3) (Corollary 3) (Theorem 4) (Theorem 5)
conp-complete ptime conp-complete conp-complete ptime ptime

Coverage
(Theorem 2) (Theorem 4) (Corollary 3) (Corollary 3) (Theorem 4) (Theorem 5)
np-complete ptime np-complete np-complete np-complete np-complete

Z-validating
(Theorem 6) (Proposition 8) (Corollary 7) (Corollary 7) (Corollary 7) (Corollary 7)
#p-complete ptime #p-complete #p-complete #p-complete #p-complete

Z-counting
(Theorem 9) (Proposition 11) (Corollary 10) (Corollary 10) (Corollary 10) (Corollary 10)
np-complete ptime np-complete np-complete np-complete np-complete

(Theorem 12) (Proposition 15) (Corollary 13) (Corollary 13) (Corollary 13) (Theorem 14)
Z-minimum

non-approx∗ ptime non-approx non-approx non-approx non-approx
(Theorem 17) (Proposition 15) (Corollary 18) (Corollary 18) (Corollary 18) (Theorem 19)

non-approx: cannot be approximated within c logn in ptime for a constant c, unless p = np

Table 3 Summary of complexity results

t[S] is correct

Return t

Generate new suggestionsRules
Editing

Master 
Data

A tuple t 

A certain
region

No

Yes

YesZ’ = R ?

sug

No

Fix t and extend Z’

A suggestion to the users

t[Z’,S] has a unique fix?

Z

Fig. 2 Framework overview

Tc, the consistency problem and the coverage problem

become tractable, while the other problems remain in-

tractable. That is, these special cases simplify the anal-

yses, but only to an extent. Due to the space constraint,

we encourage the interested reader to consult [20] for al-

gorithms and experimental results based on direct fixes,

which illustrate the practical impact of direct fixes.

5 An Interactive Framework for Certain Fixes

We next present a framework to find certain fixes for tu-

ples at the point of data entry, by making use of editing

rules and master data, and by interacting with users.

As depicted in Fig. 2, the framework is provided

with a master relation Dm of schema Rm and a set Σ

of eRs defined on (R,Rm). It takes a tuple t of schema

R as input, and warrants to find a certain fix for t.

The algorithm underlying the framework, referred

to as CertainFix, is shown in Fig. 3. The algorithm in-

teracts with users and finds a certain fix for t as follows.

(1) Initialization (lines 1-2). It first picks a precom-

puted certain region (Z, Tc), and recommends Z as the

first suggestion to the users (line 1). For an input tuple

t, if t[Z] is assured correct and if t[Z] matches a pattern

tuple in Tc, then a certain fix can be found for t. It also

uses a set Z ′ to keep track of the attributes of t that

are already fixed, which is initially empty (line 2).

As shown by Theorems 12 and 17, it is intractable

and approximation-hard to find a certain region with a

minimum set Z of attributes. Nevertheless, an efficient

heuristic algorithm is provided by [20], which is able to

derive a set of certain regions from Σ and Dm based

on a quality metric. Algorithm CertainFix picks the pre-

computed region (Z, Tc) with the highest quality. The

region is computed once and is repeatedly used as long

as Σ and Dm are unchanged.

(2) Generating correct fixes (lines 3-7). In each round

of interaction with users, a set sug of attributes is rec-

ommended to the users as a suggestion (line 4), initially

Z. The users get back with a set S of attributes that

are asserted correct (line 5), where S may not necessar-

ily be the same as sug. The algorithm validates t[S] by

checking whether t[Z ′ ∪ S] leads to a unique fix, i.e.,

whether t[S] is indeed correct. If t[S] is invalid, the users

are requested to revise the set S of attributes assured

correct (line 6). If t[Z ′ ∪ S] yields a unique fix, proce-

dure TransFix is invoked to find the fix, which extends

Z ′ by including the newly corrected attributes (line 7).

it finds the unique fix by invoking a procedure TransFix.

(3) Generating new suggestions (lines 8-9). If at this

point, Z ′ covers all the attributes of R, the entire tu-

ple t is validated and the fixed t is returned (lines 8,

10). Otherwise it computes a new suggestion from Σ

and Dm via procedure Suggest (line 9), which is recom-

mended to the users in the next round of interaction.

This process proceeds until a certain fix is found for

t. All the attributes of t are corrected or validated, by

using the users’ input, the eRs and the master data.

The framework aims to guarantee the following. (a)

The correctness. Each correcting step is justified by us-

ing the eRs and the master data. (b) Minimizing user

efforts. It requires the users to validate a minimal num-

ber of attributes, while automatically deducing other

attributes that are entailed correct. (c) Minimal delays.

It improves the response time by reducing the latency

for generating new suggestions at each interactive step.
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Input: A tuple t, a certain region (Z, Tc),
a set Σ of eRs, and a master relation Dm.

Output: A fixed tuple t.

1. sug := Z; /* Z is the initial suggestion */
2. Z′ := ∅; flag := true;
3. while flag do
4. recommend sug to the users;
5. input S, where t[S] is assured correct and S ∩ Z′ = ∅;
6. if t[Z′ ∪ S] does not yield a unique fix then

request new input from the users (back to line 4);
7. (t, Z′) := TransFix (t, Z′ ∪ S,Dm, G);
8. if Z′ = R then flag := false;
9. sug:= Suggest (t, Z′, Σ, Dm);
10. return t.

Fig. 3 Algorithm CertainFix

Note that the users are not necessarily domain ex-

perts, as long as they can assure the correctness of

certain attributes of input tuples that are required to

match eRs and master tuples. In practice, different peo-

ple may be responsible for entering and interpreting

different attributes. Hence distinct attributes are often

inspected and validated by different people.

In the rest of the section we present the details of

the procedures and optimization techniques employed

by CertainFix. Note that it is in ptime to check whether

t[Z ′ ∪ S] leads to a unique fix. Indeed, the ptime algo-

rithm given in the proof of Theorem 4 suffices to do the

checking when t[Z ′ ∪ S] is treated as a pattern tuple,

which consists of constants only and is hence concrete.

Therefore, below we focus on TransFix and Suggest.

5.1 TransFix: Generating Correct Fixes

We first present procedure TransFix. It takes as input

a tuple t, a master relation Dm, a set Σ of eRs, a set

Z ′ of attributes such that t[Z ′] has been validated. It

finds a unique fix for t and extends Z ′ by including

those newly validated attributes. While not all of the

attributes of t may be validated, the procedure ensures

that the attributes updated are correct.

Procedure TransFix represents Σ as a dependency

graph G, which tells us the order of applying eRs.

Dependency graph. The dependency graph G of a set

Σ of eRs is a directed graph (V,E). Each node v ∈ V de-

notes an eR ϕv = ((Xv, Xmv ) → (Bv, Bmv ), tpv [Xpv ]).

There exists an edge (u, v) ∈ E from node u to v if

Bu ∩ (Xv ∪ Xpv ) 6= ∅. Intuitively, (u, v) indicates that

whether ϕv can be applied to t depends on the outcome

of applying ϕu to t. Hence ϕu is applied before ϕv.

The dependency graph of Σ remains unchanged as

long as Σ is not changed. Hence it is computed once,

and is used to repair all input tuples until Σ is updated.

Example 11 The set Σ0 of eRs given in Example 3 con-

sists of 9 eRs, fully expressed as follows:

ϕ1

ϕ3

ϕ2 ϕ5

ϕ4ϕ6

ϕ7

ϕ8 ϕ9

Fig. 4 An example dependency graph

Input: A tuple t, a set Z′ of attributes, a master relation Dm,
and a dependency graph G(V,E).

Output: A (partially) fixed tuple t and validated attributes Z′.

/* node u: ϕu = ((Xu, Xmu
)→ (Bu, Bmu

), tpu [Xpu ]) */;
1. mark u.usable := false for each u ∈ V ;
2. vset := { u | u ∈ V and (Xu ∪Xpu) ⊆ Z′ };
3. mark u.usable := true for each u ∈ vset;
4. uset := { u | u ∈ V and (Xu ∪Xpu) 6⊆ Z′

and (Xu ∪Xpu) ∩ Z′ 6= ∅ };
5. while vset 6= ∅ do
6. v := an eR picked from vset; vset := vset \ {v};
7. if ∃tm ∈ Dm, (tm, ϕv) applies to t and Bv 6∈ Z′ then
8. t[Bv] := tm[Bmv

]; Z′ := Z′ ∪ {Bv};
9. for each edge (v, u) ∈ E do
10. if u ∈ uset and (Xu ∪Xpu) ⊆ Z′ then
11. vset := vset ∪ {u}; uset := uset \ {u};
12. u.usable := true;
13. else if u 6∈ uset and u.usable = false then
14. if {Bv} = (Xu ∪Xpu) then vset := vset ∪ {u};
15. else if Bv ∈ (Xu ∪Xpu) then uset := uset ∪ {u};
16. return (t, Z′);

Fig. 5 Procedure TransFix

ϕ1: ((zip, zip) → (AC,AC), tp1 = ());
ϕ2: ((zip, zip) → (str, str), tp2 = ());
ϕ3: ((zip, zip) → (city, city), tp3 = ());
ϕ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));
ϕ5: ((phn,Mphn) → (LN, LN), tp5[type] = (2));
ϕ6: (([AC, phn], [AC,Hphn])→(str, str), tp6[type,AC]=(1,0800));
ϕ7: (([AC, phn], [AC,Hphn])→(city, city), tp7[type,AC]=(1,0800));
ϕ8: (([AC, phn], [AC,Hphn])→(zip, zip), tp8[type,AC]=(1,0800));
ϕ9: ((AC,AC) → (city, city), tp9[AC] = (0800)).

The dependency graph of Σ0 is depicted in Fig. 4.

Note that, for instance, there is an edge from ϕ1 to ϕ6

since the rhs of ϕ1 (i.e., {AC}) is the subset of lhs of

ϕ6 (i.e., {AC, phn}); similarly for the other edges. 2

Procedure. Procedure TransFix is given in Fig. 5. It

validates attributes of t as follows. It first marks all the

nodes in the dependency graph as unusable (line 1). It

then collects those nodes (eRs) whose lhs and pattern

attributes are validated, puts them in a set vset (line 2),

and marks them as usable (line 3). Intuitively, for the

eR ϕv represented by a usable v, the attributes in t[Xv∪
Xpv ] have already been validated, and hence, ϕv can be

possibly applied to t. The procedure uses another set

uset to maintain those eRs that are not yet usable but

may become usable later on (line 4).

The procedure iteratively makes use of eRs in vset
to fix attributes of t, and upgrades eRs from uset to

vset (lines 5-15). In each iteration, a node v is randomly

picked and removed from vset (line 6). If a master tuple
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tm can be found such that (tm, ϕv) applies to t, and

moreover, if for the rhs attribute Bv of ϕv, t[Bv] is not

yet validated (line 7), then t[Bv] is fixed using ϕv and

tm, and Bv is included in Z ′ (line 8).

The procedure then inspects each edge (v, u) ema-

nating from v, to examine whether ϕu becomes usable

(lines 9-15). If u is in the candidate set uset, and more-

over, if rhs(ϕu) and rhsp(ϕu) are included in the ex-

tended Z ′ (line 10), then u is added to vset, removed

from uset (line 11), and is marked usable (line 12). Oth-

erwise, if u is in neither vset nor uset (line 13), node u

is added to vset if Xu ∪Xpu is a singleton set contain-

ing Bv (line 14), or to uset if Xu ∪Xpu contains other

attributes besides Bv (line 15). Finally, the tuple t is

returned along with the extended Z ′ (line 16).

Example 12 Consider tuple t1 and the master data Dm

of Fig. 1, and the set Σ0 of eRs given in Example 11.

Assume that Z consists of zip only. Given Dm, Z and

the dependency graph G of Fig, 4, we show how proce-

dure TransFix fixes attributes of t1. As indicated in the

table below, in iteration 0, uset is empty, while ϕ1 is in

vset since its X ∪Xp ⊆ Z ′; similarly for ϕ2 and ϕ3.

iteration Z′ vset uset
0 zip ϕ1, ϕ2, ϕ3 ∅
1 zip,AC ϕ2, ϕ3, ϕ9 ϕ6, ϕ7, ϕ8

2 zip,AC, str ϕ3, ϕ9 ϕ6, ϕ7, ϕ8

3 zip,AC, str, city ϕ9 ϕ6, ϕ7, ϕ8

4 zip,AC, str, city ∅ ϕ6, ϕ7, ϕ8

In iteration 1, TransFix picks and removes ϕ1 from

vset. It finds that ϕ1 and master tuple s1 (in Fig. 1) can

be applied to t1. Hence it normalizes t1[AC] := s1[AC] =

131, and expands Z ′ by including AC. It adds ϕ9 to vset
since X ∪Xp of ϕ9, i.e., {AC}, is validated. Moreover,

ϕ6–ϕ8 are added to uset, since while AC is validated,

attributes phn and type are not yet.

In iteration 2 (resp. 3), ϕ2 (resp. ϕ3) is selected from

vset, and str (resp. city) is fixed by matching s1. Here

t1 is updated by t1[str] := s1[str] = 51 Elm Row.

In iteration 4, ϕ9 is selected and removed from vset.
No change is incurred to t since city is already validated.

TransFix terminates since vset is now empty. 2

Correctness. Observe the following. (1) Each eR is

used at most once. When a node is removed from vset,
it will not be put back. Since the size of vset is at most

the number card(Σ) of eRs in Σ, the while loop (lines 5-

15) iterates at most card(Σ) times. (2) When applying

(tm, ϕ) to t, t[X∪Xp] have already been validated; thus

t[B] is ensured correct. (3) All the eRs that are possibly

usable are examined. Hence, when TransFix terminates,

no more attributes of t could be fixed given Z.

Complexity. Let G(V,E) be the dependency graph

of Σ. Note that |V | = card(Σ). The initialization of

TransFix runs in O(|Σ|) time (lines 1-4), by employing

a hash table. As argued above, at most |V | iterations

of the outer loop (lines 6-15) are executed, since each

iteration consumes at least one eR in Σ. The inner loop

(lines 10-15) is run at most |V | times for each outer

iteration (i.e., checking all eRs in Σ). In addition, ob-

serve the following: (a) checking containment and in-

tersection of two attribute sets (Xu ∪ Xpu) and Z ′ is

in O(|Xu ∪Xpu |) time if we use a hash table; and (b)

it takes constant time to check whether there exists a

master tuple that is applicable to t with an eR, by using

a hash table that stores tm[Xm] as a key for tm ∈ Dm.

Putting these together, each outer iteration is in O(|Σ|)
time, and hence, TransFix is in O(|V ||Σ|) time, which

is at most O(|Σ|2). In practice, |Σ| is typically small.

5.2 Suggest: Generating New Suggestions

To present procedure Suggest, we first define sugges-

tions and state the problem of finding suggestions.

Suggestions. Consider a tuple t, where t[Z] has been

validated. A suggestion for t w.r.t. t[Z] is a set S of

attributes such that there exists a certain region (Z ∪
S, {tc}), where tc is a pattern and t[Z] satisfies tc[Z].

That is, if the users additionally assert that t[S] is

correct and t[Z ∪ S] matches some certain region, then

a certain fix is warranted for t.

Example 13 Recall from Example 12 that t1[Z] is fixed

by using Σ0 and Dm, where Z = {zip,AC, str, city}.
Let S = {phn, type, item}. One can verify that S

is a suggestion for t1 w.r.t. t1[Z]. Indeed, (Z ∪ S,

{tc}) is a certain region for (Σ0, Dm), where tc =

(EH7 4AH, 131, 51 Elm Row,Edi︸ ︷︷ ︸
Z

, 079172485, 2,︸ ︷︷ ︸
S

). 2

The users would naturally want a suggestion as

“small” as possible, so that they need to make mini-

mal efforts to ensure some attributes of t to be correct.

This motivates us to study the following problem.

The S-minimum problem is to decide, given

(Σ,Dm), a set t[Z] of attributes that has been vali-

dated, and a positive integer K, whether there exists a

non-empty set S of attributes such that (a) Z ∩ S = ∅,
(b) |S| ≤ K and (c) S is a suggestion for t w.r.t. t[Z].

Observe that the Z-minimum problem (Section 4) is

a special case of the S-minimum problem when no at-

tribute is fixed initially (i.e., Z = ∅). From this and

Theorems 12 and 17 it follows that the S-minimum

problem is np-complete and approximation-hard.

These complexity bounds suggest that we develop

heuristic algorithms to compute suggestions, along the

same lines as computing certain regions, as discussed
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in [20]. When computing Z-minimum certain regions,

all eRs need to be considered [20]. When it comes to

suggestions, in contrast, attributes t[Z] are already val-

idated, which can be used to reduce the search space of

eRs by refining some eRs and leaving the others out.

To do this we use the following notations. For an eR

ϕ = ((X,Xm) → (B,Bm), tp[Xp]) and a list Xi of at-

tributes in X, we use λϕ(Xi) to denote the correspond-

ing attributes in Xm. For instance, when (Xi, Xmi) =

(ABC,AmBmCm), λϕ(AC) = AmCm. We also write

ϕ+ = ((X,Xm)→ (B,Bm), t+p [X+
p ]), where Xp ⊆ X+

p ,

i.e., ϕ+ differs from ϕ only in the pattern.

Consider a set Σ of eRs, a master relation Dm, an

input tuple t, and attributes Z such that t[Z] is fixed

using TransFix. For an eR ϕ in Σ, (1) if there exists no

tuple tm ∈ Dm such that (ϕ, tm) applies to t, then ϕ

cannot be used to fix t; otherwise, (2) we may extend

the pattern of ϕ and refine its values with t[Z], which

yields ϕ+. Hence we introduce the following notion.

The set of applicable rules for t[Z] w.r.t. Σ, denoted

as Σt[Z], consists of eRs ϕ+ defined as follows. For each

ϕ in Σ, ϕ+ is derived from ϕ if (a) B 6∈ Z; (b) tp[Xp ∩
Z] ≈ t[Xp ∩ Z]; and (c) there exists a master tuple

tm ∈ Dm, where tm[λϕ(Xp ∩ X)] ≈ tp[Xp ∩ X] and

tm[λϕ(X ∩ Z)] = t[X ∩ Z]. Here in ϕ+, (i) X+
p = Xp ∪

(X ∩ Z) and (ii) t+p [X+
p ∩ Z] = t[X+

p ∩ Z].

Intuitively, ϕ+ can be derived from ϕ if ϕ does

not change the validated attributes (i.e., (a) above),

matches them (i.e., (b)), and moreover, if there exists

some master tuple that can be applied to t with ϕ (i.e.,

(c)). The refined rule ϕ+ extends the pattern attributes

of ϕ with Z (i.e., (i) above), and enriches its pattern

values using the specific values of t[Z] (i.e., (ii)).

Example 14 For t1[zip,AC, str, city] validated in Exam-

ple 12, applicable rules in Σt1[zip,AC,str,city] include:

ϕ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));
ϕ5: ((phn,Mphn) → (LN, LN), tp5[type] = (2));

ϕ+
6 : (([AC, phn], [AC,Hphn]) → (str, str), tp6[type,AC]=(1,131));

ϕ+
7 : (([AC, phn], [AC,Hphn])→(city, city), tp7[type,AC]=(1,131));

ϕ+
8 : (([AC, phn], [AC,Hphn]) → (zip, zip), tp8[type,AC]=(1,131));

Here ϕ4 and ϕ5 are taken from Σ0, while ϕ+
6 is derived

from ϕ6 by refining tp6[AC] (from 0800 to 131), when

t1[AC] is known to be 131; similarly for ϕ+
7 and ϕ+

8 . 2

We show below that it suffices to consider Σt[Z].

Proposition 20: When t[Z] is assured correct, S is a

suggestion for t iff there exists a pattern tuple tc such

that (Z ∪S, {tc}) is a certain region for (Σt[Z], Dm). 2

Proof: Assume that there exists tc such that (Z ∪
S, {tc}) is a certain region for (Σt[Z], Dm). We show that

S is a suggestion by constructing a pattern tuple t′c such

that (Z ∪ S, {t′c}) is a certain region for (Σ,Dm). Con-

sider t′c, where t′c[Z] = t[Z] and t′c[S] = tc[S]. One can

Input: Tuple t, attributes Z, eRs Σ, and master data Dm.
Output: A set sug of attributes as suggestion.

1. derive Σt[Z] using t, Z and Σ;
2. compute a certain region (Z′, Tc) using Σt[Z] and Dm;
3. return sug := Z′ \ Z;

Fig. 6 Procedure Suggest

easily verify the following. (1) (Z ∪ S, {t′c}) is a certain

region for (Σt[Z], Dm); (2) the set of attributes covered

by (Z∪S, {t′c}, Σ,Dm) is the same as the set covered by

(Z ∪ S, {t′c}, Σt[Z], Dm); and (3) (Σt[Z], Dm) is consis-

tent w.r.t. (Z ∪ S, {t′c}) iff (Σ,Dm) is consistent w.r.t.

(Z ∪S, {t′c}). From these it follows that (Z ∪S, {t′c}) is

also a certain region for (Σ,Dm).

Conversely, assume that S is a suggestion. Then

there exists a certain region (Z ∪ S, {tc}) for (Σ,Dm).

We define a pattern tuple t′c, where t′c[Z] = t[Z] and

t′c[S] = tc[S]. One can show that (Z ∪ S, {t′c}) is a cer-

tain region for (Σt[Z], Dm). Indeed, this can be verified

along the same lines as the argument given above. 2

Procedure Suggest. Leveraging Proposition 20, we

outline procedure Suggest in Fig. 6. It takes Σ,Dm, Z

and t as input, and finds a suggestion as follows. It first

derives applicable rulesΣt[Z] fromΣ and t[Z] (line 1). It

then computes a certain region for (Σt[Z], Dm) (line 2),

by employing the algorithm provided in [20]. Finally, it

constructs and returns a new suggestion (line 3).

Correctness and Complexity. The correctness of

Suggest follows from the definition of suggestions and

Proposition 20. For its complexity, observe the follow-

ing. (1) The set Σt[Z] can be derived from Σ and t[Z]

in O(|Σ| + |t|) time, by employing the indices devel-

oped for Procedure TransFix. Indeed, the conditions

for applicable rules can be checked in constant time.

(2) The algorithm of [20] computes a certain region

in O(|Σt[Z]|2|Dm|log(|Dm|)) time, where |Σt[Z]| ≤ |Σ|.
Hence Suggest is in O(|Σ|2|Dm|log(|Dm|)) time.

Optimization. It is quite costly to compute a certain

region in each round of user interactions. This motivates

us to develop an optimization strategy, which aims to

minimize unnecessary recomputation by reusing certain

regions computed earlier. In a nutshell, when process-

ing a stream of input tuples of schema R, we maintain

certain regions generated for them. When a new input

tuple t arrives, we check whether some region computed

previously remains a certain region for fixing t. If so,

we simply reuse the region, without computing a new

one starting from scratch. We compute new suggestions

only when necessary. As will be verified by our exper-

imental study, this reduces the cost significantly, since

it is far less costly to check whether a region is certain

than computing new certain regions [20].
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Fig. 7 A sample BDD

We maintain previously computed certain regions

by using a binary decision diagram (BDD) [29]. A BDD
is a directed acyclic graph Gb = (Vb, Eb). Each node u

in Vb represents either a condition or a call for Suggest,
and it has at most two outgoing edges. The root of Gb is

denoted as start. Each edge (u, v) is labeled with a pair

(bval, act), where bval is either Boolean value true or

false; and act is an action, which provides a suggestion

if bval is true, and generates new suggestions otherwise.

Example 15 Consider the evolution of a BDD depicted

in Fig. 7. When no tuples have been processed, the BDD
is shown in Fig. 7(a). Here the set Z of attributes taken

from the precomputed certain region is treated as the

first suggestion, as described in procedure TransFix. For

the first input tuple t1, if t1[Z] does not match any

certain region, a new suggestion needs to be computed;

hence the call for procedure Suggest.
Assume that t1 is fixed with two suggestions S1 and

S2. Then BDD is expanded, as shown in Fig. 7(b). Con-

sider a newly arrived tuple t2. If t2[Z] does not satisfy

any certain region, TransFix expands the set Z ′ of vali-

dated attributes. We check whether S1 is a suggestion

w.r.t. t2[Z ′]. If so, the true branch is followed and S1 is

recommended to the users; otherwise Suggest is invoked

to generate a new suggestion. Similarly, S2 is checked.

If t2 still cannot be fixed with S2, Suggest is invoked for

both the true and the false branches to produce a new

suggestion. The new suggestion is added to the BDD.

After more tuples are fixed, the BDD may evolve to

Fig. 7(c), which collects those certain regions generated

when processing these tuples. As shown above, these

regions are reused when processing new tuples. 2

Capitalizing on BDD, we present an optimized

Suggest, denoted as Suggest+, which is outlined in Fig.8.

It takes t, Z,Σ,Dm, a BDD Gb and a node u on Gb as

input, and finds a suggestion as follows.

Suggest+ traverses Gb top-down starting from its

root, i.e., the input u is initialized at start node. At

each round of interaction, a node u of Gb is visited,

at which it checks whether a precomputed suggestion

associated with u remains a suggestion for t. If not,

Input: Tuple t, attributes Z, eRs Σ, master data Dm,
a BDD Gb(Vb, Eb), and a node u in Vb.

Output: A set sug of attributes as suggestion.

1. while u is not a suggestion and u has a false branch do
2. u := v where the edge (u, v) is a false branch;
3. if u is a suggestion then
4. get sug from u; u := v where (u, v) is a true branch;
5. else sug := Suggest(t, Z,Σ,Dm); maintain Gb with sug;
6. return sug;

Fig. 8 Procedure Suggest+

it checks other previously computed regions via a false
branch (lines 1-2). Otherwise, it recommends the same

suggestion to the users, and moves to the child of u via

a true branch (lines 3-4). In the next round of interac-

tion, if needed, checking resumes at node u. Suggest is

invoked to compute new suggestions when no known re-

gions can be reused, and Gb is also maintained (line 5).

Finally, a suggestion is returned (line 6).

It implements a strategy to decide what suggestions

are maintained by a BDD (line 5), to strike a balance

between checking a set of suggestions and recomputing

a certain region. It also compresses BDD to reduce the

space cost. We omit the details for space limit.

We revise CertainFix by using Suggest+ instead of

Suggest, and refer to it as CertainFix+.

6 Experimental Study

We next present an experimental study, using real-life

data. Two sets of experiments were conducted, to ver-

ify (1) the effectiveness of our method in terms of the

quality of suggestions generated, measured by the num-

ber of attributes that are correctly fixed in a round of

user interactions; and (2) the efficiency and scalability

of our algorithm for finding fixes and suggestions.

For the effectiveness study, we compared with the

following: (a) GRegion that greedily finds a certain re-

gion. It chooses attributes according to one rule: at each

stage, choose an attribute which may fix the largest

number of uncovered attributes; and (b) IncRep, the al-

gorithm in [14] for data repairing; given a dirty database

D and a set of constraints, it is a heuristic method to
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make D consistent, i.e., finds a repair D′ that satis-

fies the constraints and “minimally” differs from D. It

adopts a metric to minimize (1) the distance between

the original values and the new values of changed at-

tributes and (2) the weights of the attributes modified.

Experimental data. Real-life datasets were employed

to examine the applicability of our method in practice.

(1) hosp (Hospital Compare) is publicly available from

U.S. Department of Health & Human Services1. We

used three tables: HOSP, HOSP MSR XWLK, and

STATE MSR AVG, which record the hospital infor-

mation, the score of measurement of each hospi-

tal and the average score of each hospital measure-

ment, respectively. We created a big table by join-

ing the three tables with natural join, among which

we chose 19 attributes for the schema of both the

master relation Rm and the relation R: zip, ST
(state), phn, mCode (measure code), measure name,
sAvg (StateAvg), hName (hospital name), hospital type,
hospital owner, provider number, city, emergency service,
condition, Score, sample, id, address1, address2, address3.

We designed 21 eRs for the hosp data, with five

representative ones as follows:

ϕ1 : ((zip, zip) → (ST, ST), tp1[zip] = (nil));

ϕ2 : ((phn, phn) → (zip, zip), tp2[phn] = (nil));
ϕ3 : (((mCode, ST), (mCode, ST)) → (sAvg,sAvg), tp3 = ());
ϕ4 : (((id, mCode), (id, mCode)) → (Score,Score), tp4 = ());
ϕ5 : ((id, id) → (hName,hName), tp5 = ()).

(2) dblp is from the dblp Bibliography2. We first

transformed the xml data into relations. We then cre-

ated a big table by joining the inproceedings data (con-

ference papers) with the proceedings data (conferences)

on the crossref attribute (a foreign key). Besides, we also

included the homepage info (hp) for authors, which was

joined by the homepage entries in the dblp data.

From the big table, we chose 12 attributes to specify

the schema of both the master relation Rm and the data

relation R, including ptitle (paper title), a1 (the first

author), a2 (the second author), hp1 (the homepage

of a1), hp2 (the homepage of a2), btitle (book title),

publisher, isbn, crossref, year, type, and pages.
We designed 16 eRs for the dblp data, shown below.

φ1 : ((a1, a1) → (hp1, hp1), tp1[a1] = (nil));

φ2 : ((a2, a1) → (hp2, hp1), tp2[a2] = (nil));

φ3 : ((a2, a2) → (hp2, hp2), tp3[a2] = (nil));

φ4 : ((a1, a2) → (hp1,hp2), tp4[a1] = (nil));
φ5 : (((type, btitle, year), (type, btitle, year)) →

(A, A), tp5[type] = (‘inproceeding’));
φ6 : (((type, crossref), (type, crossref) →

(B, B), tp6[type] = (‘inproceeding’));
φ7 : (((type, a1, a2, title, pages), (type, a1, a2, title, pages)) →

1 http://www.hospitalcompare.hhs.gov/
2 http://www.informatik.uni-trier.de/∼ley/db/

(C, C), tp7[type] = (‘inproceeding’)).

where the attributes A,B and C range over the sets

{isbn, publisher, crossref}, {btitle, year, isbn, publisher}
and {isbn, publisher, year, btitle, crossref}, respectively.

Observe that in eRs φ2 and φ4, the attributes are

mapped to different attributes. That is, even when the

master relation Rm and the relation R share the same

schema, some eRs still could not be syntactically ex-

pressed as cfds, not to mention their semantics.

A dirty data generator was developed. Given a clean

dataset (hosp or dblp), it generated dirty data con-

trolled by three parameters: (a) duplicate rate d%,

which is the probability that an input tuple matches

a tuple in master data Dm, indicating the relevance

and completeness of Dm; (b) noise rate n%, which is

the percentage of erroneous attributes in input tuples;

and (c) the cardinality |Dm| of master dataset Dm.

User interactions. User feedback was simulated by

providing the correct values of the given suggestions.

Implementation. All algorithms were implemented in

C++. The experiments were run on a machine with an

Intel(R) Core(TM)2 Duo P8700 (2.53GHz) CPU and

4GB of memory. Each experiment was repeated 5 times

and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness. The tests were conducted by

varying d%, |Dm| and n%, The default values for d%,

|Dm| and n% were 30%, 10K and 20%, respectively.

When all these parameters were fixed, we generated

10K tuples for this set of experiments, but allowed the

dataset to scale to 10M tuples in the scalability study.

This set of experiments includes (1) the effectiveness

of certain regions generated by our algorithm compared

with GRegion; (2) the initial suggestion selection; (3)

the effectiveness of suggestions in terms of the number

of interaction rounds needed; (4) the impact of dupli-

cate rate d%; (5) the impact of master data size |Dm|;
(6) the impact of noise rate n%; and (7) the effective-

ness of our method compared with IncRep.

The studies were quantified at both the tuple level

and the attribute level. Since we assure that each fixed

tuple is correct, we have a 100% precision. Hence the

first measure we used is recall, defined as follows:

recallt = #-corrected tuples / #-erroneous tuples
recalla = #-corrected attributes / #-erroneous attributes

The number of corrected attributes does not include

those fixed by the users.

To compare with IncRep, we also used F-measure3

to combine recall and precision, since the precision of

3 http://en.wikipedia.org/wiki/F-measure
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repairs produced by IncRep is not 100%. Precision and

F-measure are given as follows:

precisiona = #-corrected attributes / #-changed attributes
F-measure = 2 · (recalla · precisiona)/(recalla + precisiona)

(1) The effectiveness of certain regions. The table be-

low shows the number of attributes in the certain region

found by our method CompCRegion [20] and its coun-

terpart found by GRegion. It shows that the certain re-

gion computed by CompCRegion has far less attributes

than its counterpart by GRegion, which thus minimizes

user efforts, as expected. Indeed, CompCRegion found

the best certain region (i.e., with the least number of

attributes) for both datasets as a suggestion.

Dataset CompCRegion GRegion
HOSP 2 4
DBLP 5 9

(2) The initial suggestion selection. We evaluated the

impact of initial suggestions by using the certain region

with the highest quality (denoted by CRHQ) vs. the

one with the median quality (CRMQ). As shown in the

table below, when CRHQ is used as the initial sugges-

tion, CertainFix yields higher F-measure values than its

CRMQ counterpart. That is, CRHQ allows CertainFix
to automatically fix more attributes than CRMQ.

Dataset
F-measure

CRHQ CRMQ
HOSP 0.74 0.70
DBLP 0.79 0.69

(3) The effectiveness of suggestions. Fixing the three

parameters, we studied recall w.r.t. user interactions.

Figure 9(a) shows the tuple-level recalls. The x-axis

indicates the number of interactions and the y-axis rep-

resents recall values. It tells us that few rounds of in-

teractions are required to fix the entire set of attributes

of an input tuple, e.g., at most 4 (resp. 3) rounds for

hosp (resp. dblp). Most tuples could be correctly fixed

within few interactions, e.g., 93% (resp. 100%) of tuples

are fixed in the third round for hosp (resp. dblp).

Figure 9(b) reports the attribute-level recalls, to

complement Figure 9(a). Among the errors fixed, some

were automatically corrected by our algorithm, while

the others by user feedback during the interactions. As

remarked earlier, the errors fixed by the users were not

counted in our recall values. Hence recalla is typically

below 100%. As shown in Fig. 9(b), our method could

fix at least 50% of the errors within 2 rounds of inter-

actions, although the errors were distributed across all

attributes, and moreover, only a portion of the errors

were fixable by the given Σ and Dm given that the

duplicate rate d% is only 30%. One can see that the

recall value at the 4th (resp. 3rd) round of interaction

for hosp (resp. dblp) is unchanged, indicating that the
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Fig. 9 Recall values w.r.t. the number of interactions

users corrected the attributes that are irrelevant to Σ

and Dm. As will be seen later, when d% is increased,

the attribute-level recall gets higher.

These experimental results verify that our method is

able to provide effective suggestions, such that all errors

could be fixed within few rounds of user interactions,

by using eRs and master data, even when the master

data is not very relevant (when d% = 30%).

(4) Impact of d%. Fixing |Dm| = 10K and n% = 20%,

we varied duplicate rate d% from 10% to 50%. Fig-

ures 10(a) and 10(d) (resp. Figures 11(a) and 11(d))

report the tuple-level recalls (resp. F-measure) after k

rounds of interactions for hosp and dblp, respectively.

Figures 10(a) and 10(d) show that the larger d% is,

the higher the recall is, as expected, since a larger d%

means a higher probability that an input tuple matches

some master tuple such that its errors can be fixed. A

closer examination reveals that early interactions are

more sensitive to d%, e.g., when k = 1, the percent-

age of fixed tuples increases from 0.1 to 0.5, when d%

varies from 10% to 50%. In later interactions, e.g., the

last round when k = 4, the users have to ensure the

correctness of those attributes that cannot be fixed by

eRs and Dm. Hence recallt remains unchanged there.

Figures 11(a) and 11(d) further verify this observa-

tion: most attributes are fixed by our method in early

interactions, while those fixed in later rounds are by the

users’ feedback. Moreover, the gap between the first two

rounds of interactions (when k = 1 and k = 2) shows

that the suggestions generated are effective.

The results tell us that our method is sensitive to

duplicate rate d%: the higher d% is, the more errors

could be automatically fixed, in early interactions.

(5) Impact of |Dm|. Fixing d% = 30% and n% = 20%,

we varied |Dm| from 5K to 25K. The tuple-level recalls

(resp. F-measure values) are reported in Figures 10(b)

and 10(e) (resp. Figures 11(b) and 11(e)) after k rounds

of interactions for hosp and dblp, respectively.

Figures 10(b) and 10(e) show that in the first round

of interactions, i.e., k = 1, recallt is insensitive to |Dm|.
Indeed, whether a certain fix exists or not in the first in-

teraction is determined by the duplicate rate d%, rather

than |Dm|. As shown in both figures, the recallt is 0.3
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Fig. 10 Tuple-level fixes when varying one of d%, |Dm| and n%
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Fig. 11 Attribute-level fixes when varying one of d%, |Dm| and n%

when k = 1, exactly the same as d%. However, when

interacting with the users, the recall values increase for

larger Dm. This verifies that TransFix is effective, which

identifies eRs and master data to fix errors.

Figures 11(b) and 11(e) show that more attributes

can be fixed by increasing |Dm|, i.e., F-measure gets

higher, even when the recallt is unchanged (e.g., k = 1),

i.e., when not the entire tuple could be fixed. These

results also confirm the observations above about the

sensitivity of later rounds of interactions to |Dm|.
These results tell us that the amount of master data

is important to generating effective suggestions. The

more the master data, the higher possibility that eRs

could find master tuples to fix attributes, as expected.

(6) Impact of n%. Fixing d% = 30% and |Dm| = 10K,

we varied the noise rate n% from 0.1 to 0.5. Fig-

ures 10(c) and 10(f) (resp. Figures 11(c) and 11(f))

show the tuple-level recalls (resp. F-measure) after k

rounds of interactions for hosp and dblp, respectively.

The results show that our method is sensitive to

n% at neither the tuple level nor the attribute level. At

the tuple level (Figures 10(c) and 10(f)), recallt is the

ratio of the number of corrected tuples to the number

of erroneous tuples. For a set of attributes asserted by
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(b) Varying |Dm| for dblp
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Fig. 12 Efficiency and Scalability

the users, the attributes fixed by our algorithm remain

the same for all input tuples, irrelevant to what at-

tributes are originally erroneous. At the attribute-level

(Figures 11(c) and 11(f)), since the precision of our al-

gorithm is 100%, F-measure is determined by the recall

values. As recallt is insensitive to n%, so is F-measure.

(7) Comparison with IncRep. To favor IncRep, we fixed

k = 1, since IncRep does not interact with the users.

Since IncRep measures recall at the attribute level only

[14], we focus on F-measure. Figures 11(a) and 11(d)

(resp. Figures 11(b) and 11(e)) show the F-measure val-

ues when varying d% (resp. |Dm|) while fixing the other

two parameters. The results tell us that IncRep has

slightly higher F-measure values than our method. This

is because IncRep attempts to repair the entire tuple,

while our method only corrects those attributes when

the fixes are certain in the first round of interaction,

and defers the repairing of the other attributes to later

rounds upon the availability of user feedback.

Figures 11(c) and 11(f) show that when the noise

rate n% is increased, the F-measure values of IncRep
get substantially lower, and are worse than ours. This is

because IncRep introduces more errors when the noise

rate is higher. Our method, in contrast, ensures that

each fix is correct, and hence is insensitive to n%.

Exp-2: Efficiency and scalability. This set of ex-

periments evaluated the efficiency of our method by

varying the size of Dm (resp. a set D of input tuples)

in Fig. 12(a) and Fig. 12(a) for hosp (resp. Fig. 12(b)

and Fig. 12(d) for dblp). We report the average elapsed

time for each round of interaction, i.e., the time spent

on fixing tuples in D and for generating a suggestion.

Here CertainFix and CertainFix+ denotes the algorithm

that does not use BDD and employs BDD, respectively.

Figures 12(a) and 12(b) show that our method takes

no more than a second to fix attributes of a tuple and

to come up with a suggestion. Further, the optimiza-

tion strategy by using BDD is effective: it substantially

reduces the response time. Moreover, both CertainFix
and CertainFix+ scale well with master data.

As shown in Figures 12(c) and 12(d), CertainFix is

insensitive to |D|, since each input tuple is processed

independently. For CertainFix+, when |D| is very small

(e.g., 10), BDD does not help us find suggestions, and

the elapsed time of CertainFix+ is similar to the time of

CertainFix; when |D| increases from 10 to 100, the re-

sponse time is significantly reduced since more sugges-

tions could be found with BDD; when |D| > 100, BDD
can provide effective suggestions such that the average

elapsed time remains unchanged, around 0.1 second.

Summary. The experimental results show the fol-

lowings. (1) The initial suggestions computed by our

method are more effective than those found by greedy

approaches. (2) Our method is effective: it mostly takes

less than four rounds of user interactions to find a cer-

tain fix for an input tuple. (3) The number of interac-

tions highly depends on the relevance of an input tuple

to the master data, i.e., d%, and |Dm| to a lesser ex-

tent. (4) Our method is insensitive to the error rate

n%. It outperforms the repairing method of [14] when

the error rate is high, even with two or three rounds

of interactions. (5) Our algorithm scales well with the

size of Dm. (6) The optimization strategy with BDD is

effective in finding suggestions with low latency.

It should be remarked that data monitoring incurs

extra overhead of fixing input tuples for the database

engine. Nevertheless, as pointed out by [37], it is far

less costly to correct a tuple at the point of data entry

than fixing it afterward. The need for this is particularly

evident when it comes to critical data. In addition, as

verified by our experimental results, the extra cost is

rather small since effective suggestions (Exp-1 (1-3))

and certain fixes (Exp-2) can be generated efficiently,

below 0.2 second in average with CertainFix+ (Fig. 12).

7 Conclusion

We have proposed editing rules that, in contrast to

constraints used in data cleaning, are able to find cer-

tain fixes for input tuples by leveraging master data.

We have identified fundamental problems for deciding

certain fixes and certain regions, and established their

complexity bounds. We have also developed a frame-

work to compute certain fixes at the point of data entry,

by interacting with users, along with its underlying al-

gorithm and optimization techniques. Our experimental

results with real-life data have verified the effectiveness,
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efficiency and scalability of our method. These yield a

promising method for data monitoring.

This work is just a first step towards repairing data

with correctness guarantees. One topic for future work

is to efficiently find certain fixes for data in a database,

i.e., certain fixes in data repairing rather than monitor-

ing. Another topic is to develop data repairing and mon-

itoring methods with correctness guarantees in the ab-

sence of high-quality master data. Finally, effective al-

gorithms have to be in place for discovering editing rules

from sample inputs and master data, along the same

lines as discovering other data quality rules [12,26].
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APPENDIX: Additional Proofs

Proof of Theorem 2

We first show that the complement of the problem is

in np. We then show the problem is conp-hard, even

when only infinite-domain attributes are involved. The

proof is similar to the one given for Theorem 1.

(I) We show that the problem is in conp by providing

an np algorithm for its complement.

The algorithm is the same as the one given in the

proof of Theorem 1, except that at step (b), it checks

whether (Z, t[Z]) is a certain region for (Σ,Dm). As will

be shown by Theorem 4, this step is doable in ptime.

(II) We next show that the problem is conp-hard by

reduction from the 3SAT problem to its complement.

Given an instance φ of the 3SAT problem as de-

scribed in the proof of Theorem 1, we construct an in-

stance of the coverage problem consisting of: (a) two

relational schemas R and Rm, (b) a master relation

Dm of Rm, (c) a pattern tableau Tc consisting of a sin-

gle pattern tuple tc for a list Z of distinct attributes of

R, and (d) a set Σ of eRs. We show that (Z, Tc) is a

certain region for (Σ,Dm) iff φ is not satisfiable.

(1) We first define the instance of the coverage problem.

(a) The schemas R and Rm, the master relation Dm,

and the region (Z,Tc) are the same as their counterparts

constructed in the proof of Theorem 1.

(b) The set Σ is the union of n + 2 sets of eRs: Σ1 ∪
. . . ∪Σn ∪ΣC,V ∪ΣV,B , constructed as follows.

◦ Each clause Cj of φ is encoded by Σj , which de-

fines eight eRs ϕ(j,<b1b2b3>) of the form of ((A,A) →
(Cj , Yj), t(pj,<b1b2b3>)[Xpj1Xpj2Xpj3 ]), such that (1)

for each i ∈ [1, 3], bi ∈ {0, 1}, and t(p,(b1b2b3))[Xpji ]

= 1̄ if bi = 0, and t(p,(b1b2b3))[Xpji ] = 1 if bi = 1; and

(2) Yj = Y0 if (b1, b2, b3) makes Cj false when ξ(xpji)

= bi for each i ∈ [1, 3], and Yj = Y1 otherwise.

This Σj differs from its counterpart given in the

proof of Theorem 1 in the following: (1) for an R

tuple, if it does not match the single pattern tc in

Tc, it has a unique fix, but does not have a certain

fix; and (2) to assure that the R tuple has a certain

fix, we need to guarantee that for any R tuple, it

must match the pattern tc in Tc; this is enforced by

means of negations in the pattern tuples of eRs.

◦ The ΣC,V and ΣV,B are the same as their counter-

parts given in the proof of Theorem 1.

(2) We next show that (Z, Tc) is a certain region for

(Σ,Dm) iff the 3SAT instance φ is not satisfiable.

Assume first that (Z, Tc) is a certain region

for (Σ,Dm). Then we can verify that φ is not sat-

isfiable, along the same lines as the proof of Theorem 1.

Conversely, assume that φ is not satisfiable, and

we show that (Z, Tc) is a certain region for (Σ,Dm).

Note that the set Σ of eRs guarantees that for any

tuples t1 and t2 of R such that t1[A,X1, . . . , Xm]

= t2[A,X1, . . . , Xm], if t1 →∗((Z,Tc),Σ,Dm) t′1 and

t2 →∗((Z,Tc),Σ,Dm) t′2, then t′1 = t′2. That is,

t′1[C1, . . . , Cn, V, B] = t′2[C1, . . . , Cn, V, B] and all R at-

tributes in t′1 and t′2 are corrected. Therefore, (Z, Tc) is

indeed a certain region for (Σ,Dm).

From (I) and (II) it follows that the coverage prob-

lem is conp-complete. Note that the reduction of (II)

uses infinite-domain attributes only. Thus the problem

remains intractable when all the attributes of input tu-

ples and master tuples have an infinite domain. 2

Proof of Theorem 14

The problem is in np by Theorem 12. We show that the

problem is np-hard by reduction from the SC problem.

Given an instance of the SC problem, we construct an

instance of the Z-minimum problem, along the same

lines as the proof Theorem 12.

(1) We first define the Z-minimum instance as follows.

(a) The two schemas are R(A,C1, . . . , Ch, X1,1, . . .,

X1,h+1, . . . , Xn,1, . . . , Xn,h+1) and Rm(B1, B2), where

all attributes have an integer domain.

Schema R differs from its counterpart given in the

proof Theorem 12 only in that it introduces an addi-

tional attribute A to cope with direct fixes.

(b) The master relation Dm consists of a single master

tuple tm = (1, 1), as in the proof Theorem 12.

(c) The set Σ consists of (h+1)
∑h
j=1 |Cj | + h eRs. We

encode each element Cj (j ∈ [1, h]) of S with 1 + (h+

1)|Cj | eRs, where

◦ ϕj,1 = ((A,B1)→ (Cj , B2), ()); and

◦ ϕj,i,2 = ((Cj , B1) → (Xi, B2), ()), where Xi ranges

over {Xi,1, . . . , Xi,h+1}, for each xi ∈ Cj .
Intuitively, these eRs are used to ensure that attributes

of Z are taken from {A,C1, . . . , Ch} only.

(2) We next show the correctness of the reduction.

Assume first that there exists a list Z of distinct

attributes such that |Z| ≤ K+1 and there exists a non-

empty pattern tableau Tc such that (Z, Tc) is a certain

region for (Σ,Dm). We show that there is a cover of

size K or less for the instance of the SC problem. Let

Z ′ = Z∩{C1, . . . , Ch} and S′ be the set of subsets in S

of the SC instance denoted by Z ′. Note that attribute

A must appear in Z since it does not appear in the rhs

of any eRs in Σ. Hence the size of S′ is no larger than

K. Along the same lines as the proof of Theorem 12,
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one can verify that S′ is a cover for the SC instance,

when only direct fixes are allowed.

Conversely, assume that there is a cover S′ of size

K or less for the instance of the SC problem. We show

that there exists a list Z of distinct attributes such

that |Z| ≤ K + 1 and a non-empty pattern tableau

Tc such that (Z, Tc) is a certain region for (Σ,Dm). Let

Z = Z ′ ∪{A}, where Z ′ is the list of distinct attributes

denoted by the cover S′, and tc = (1, . . . , 1) be a pat-

tern tuple on Z. It is obvious that |Z| ≤ K + 1, and

(Z, {tc}) is a certain region for (Σ,Dm). 2

Proof of Theorem 19

Along the same lines as the proof of Theorem 17, it

suffices to show that there exists an L-reduction from

the SC problem to this problem. We next construct such

an L-reduction (f, g, α, β).

(1) Let f be the ptime reduction given in the proof of

Theorem 14 such that given an SC instance I1 as input,

I2 = f(I1) is a Z-minimum instance. It was shown there

that for the instance I1, there is a cover of size K or

less iff for the instance I2, there exist a |Z| ≤ K + 1

and a non-empty pattern tableau Tc such that (Z, Tc)

is a certain region for (Σ,Dm). From this it follows that

opt2(I2) = opt1(I1) + 1, where opt2(I2) (resp. opt1(I1))

is the optimal objective of I2 (resp. I1).

(2) Let g be the ptime function g given in the proof of

Theorem 17. One can verify that given a solution s2 for

I2, s1 = g(s2) is a solution for I1 such that obj1(s1) ≤
obj2(s2), following the proof of Theorem 14.

(3) Let α = 2 and β = 1. Then we have opt2(I2) ≤ α ·
opt1(I1) (since opt1(I1) ≥ 1) and obj1(s1) ≤ β ·obj2(s2).

Finally, let c be a constant such that the SC problem

cannot be approximated within 2c log n in ptime un-

less np = p [35]. By Proposition 16, we know that the

Z-minimum problem cannot be approximated within

c log n in ptime unless np = p. 2


