
Reasoning about Keys for XML

Peter Buneman1?, Susan Davidson1??, Wenfei Fan3? ? ?, Carmem Hara4, and
Wang-Chiew Tan1?

1 University of Pennsylvania, Philadelphia, PA 19104-6389, USA
2 Bell Laboratories, Murray Hill, NJ 07974-0636, USA

3 Universidade Federal do Parana, Curitiba, PR 81531-990, Brazil

Abstract. We study absolute and relative keys for XML, and investi-
gate their associated decision problems. We argue that these keys are im-
portant to many forms of hierarchically structured data including XML
documents. In contrast to other proposals of keys for XML, these keys
can be reasoned about e�ciently. We show that the (�nite) satis�ability
problem for these keys is trivial, and their (�nite) implication problem
is �nitely axiomatizable and decidable in PTIME in the size of keys.

1 Introduction

Keys are of fundamental importance in databases. They provide a means of
locating a speci�c object within the database and of referencing an object from
another object (e.g. relationships); they are also an important class of constraints
on the validity of data. In particular, value-based keys (as used in relational
databases) provide an invariant connection from an object in the real world to
its representation in the database. This connection is crucial for modifying the
database as the world that it models changes.

As XML is increasingly used to model real world data, it is natural to require
a value-based method of locating an element in an XML document. Key speci�-
cations for XML have been proposed in the XML standard [22], XML Data [23],
and XML Schema [26]. The authors have recently [4] proposed a key structure
for XML which has the following bene�ts:

1. Keys are de�ned with path expressions and may involve attributes, subele-
ments or more general structures. Equality is de�ned on tree structures in-
stead of on simple text, referred to as value equality .

2. Keys, in their general form, are de�ned relative to a set of context nodes,
referred to as relative keys . Such keys can be concatenated to form a hier-
archical key structure, common in scienti�c data sets. An absolute key is a
special case of a relative key, which has a unique context node: the root.

3. The speci�cation of keys does not depend on any typing speci�cation of the
document (e.g. DTD or XML Schema).

? Supported by NSF IIS 99-77408 and NSF DL-2 IIS 98-17444
?? Supported by NSF DBI99-75206

? ? ? Currently on leave from Temple University. Supported in part by NSF IIS 00-93168.



hdbi
hbook isbn=123i
htitlei HTML h/titlei
hauthori
hnamei
hfirst-namei Tim h/first-namei
hlast-namei Bray h/last-namei

h/namei
h/authori
hchapter number=1i text h/chapteri
hchapter number=10i text h/chapteri

h/booki

hbook isbn=234i
htitlei XML h/titlei
hauthori
hnamei
hfirst-namei Tim h/first-namei
hlast-namei Bray h/last-namei

h/namei
h/authori
hauthori
hnamei
hfirst-namei Jean h/first-namei
hlast-namei Paoli h/last-namei

h/namei
h/authori
hchapter number=1i text h/chapteri
hchapter number=12i text h/chapteri

h/booki
h/dbi

E E

A A

AE E E E E EEA E E

E

E E

EE

E

AA

E E E E

SS SS

"Tim"

first−name

SS

last−name

"Bray"

SS

authorauthor chapterchapter. . . chapter. . .title title

name name name

db

book

"1"
@number "text" @number

"10"
"text"

book

author chapter

@number
"1"

"text"
"12"

@number "text"

@isbn
"123"

@isbn
"234"

"XML"

"Paoli"

SS SS

first−name

"Tim"

last−namelast−name

"Bray" "Jean"

first−name
"HTML"

Fig. 1. Example of some XML data and its representation as a tree

In developing our notion of keys for XML, we start with a tree model of data
as used in DOM [21], XSL [25, 27], XQL [19] and XML Schema [26]. An example
of this representation for some XML data is shown in Fig. 1 in which nodes are
annotated by their type: E for element, A for attribute, and S for string (or
PCDATA). Some value-based keys for this data might include: 1) A book node
is identi�ed by @isbn; 2) An author node is identi�ed by name, no matter where
the author node appears; and 3) Within any subtree rooted at book, a chapter
node is identi�ed by @number. These keys are de�ned independently of any type
speci�cation. The �rst two are examples of absolute keys since they must hold
globally throughout the tree. Observe that name has a complex structure. As a
consequence, to test whether two authors violate this constraint involves testing
value-equality on the subtrees rooted at their name nodes. The last one is an
example of a relative key since it holds locally within each subtree rooted at a
book. It should be noted that a chapter @number is not a key for the set of all



chapter nodes in the document since two di�erent books have chapters with
@number= 1. It is worth remarking that proposals prior to [4] are not capable of
expressing the second and third constraints.

One of the most interesting questions involving keys is that of logical im-
plication, i.e., deciding if a new key holds given a set of existing keys. This is
important for minimizing the expense of checking that a document satis�es a
set of key constraints, and may also provide the basis for reasoning about how
constraints can be propagated through view de�nitions. Thus a central task for
the study of XML keys is to develop an algorithm for determining logical im-
plication. It is also desirable to develop a sound and complete set of inference
rules for generating symbolic proofs of logical implication. The existence of such
inference rules, referred to as axiomatizability , is a stronger property than the
existence of an algorithm, because the former implies the latter but not the
other way around [2]. Another interesting question is whether a set of keys is
\reasonable" in the sense that there exists some (�nite) document that satis�es
the key speci�cation (�nite satis�ability).

In relational databases, these decision problems for keys (and more generally,
functional dependencies) have been well studied (cf. [2, 18]). The �nite satis�a-
bility problem is trivial: given any �nite set of keys over a relational schema, one
can always �nd a �nite instance of the schema that satis�es the keys. Implication
of relational keys is also easy, and is decidable in linear time.

For XML the story is more complicated since the hierarchical structure of
data is far more complex than the 1NF structure of relational data. In some
proposals keys are not even �nitely satis�able. For example, consider a key of
XML Schema (in a simpli�ed syntax): (==�; [id]), where \==�" (in XPath [24]
syntax) traverses to any descendant of the root of an XML document tree. This
key asserts that any node in an XML tree must have a unique id subelement
(of text value) and its id uniquely identi�es the node in the entire document.
However, it is clear that no �nite XML tree satis�es this key because any id

node must have an id itself, and this yields an in�nite chain of id nodes. For
implication of XML keys, the analysis is even more intriguing. Keys of XML
Schema are de�ned in terms of XPath [24], which is a powerful yet complicated
language. A number of technical questions in connection with XPath are still
open, including the containment of XPath expressions which is important in
the interpretation of XML keys. To the best of our knowledge, the implication
problem for keys de�ned in XML Schema is still open, as is its axiomatizability.

In contrast, we show in this paper that the keys of [4] can be reasoned
about e�ciently. More speci�cally, we show that they are �nitely satis�able and
their implication is decidable in PTIME. Better still, their (�nite) implication is
�nitely axiomatizable, i.e., there is a �nite set of inference rules that is sound and
complete for implication of these keys. In developing these results, we also in-
vestigate value-equality on XML subtrees and containment of path expressions,
which are not only interesting in their own right but also important in the study
of decision problems for XML keys.



Despite the importance of key analyses for XML, little previous work has
studied this issue. The only closely related work is [10, 11]. For a class of keys
and foreign keys, the decision problems were studied in the absence [11] and
presence [10] of DTDs. The keys considered there are de�ned in terms of XML
attributes and are not as expressive as keys studied in this paper.1 Integrity con-
straints de�ned in terms of navigation paths have been studied for semistructured
data [1] and XML in [3, 7{9]. These constraints are generalizations of inclusion
dependencies and are not capable of expressing keys. Generalizations of func-
tional dependencies have also been studied [13, 16]. However these generalizations
were investigated in database settings, which are quite di�erent from the tree
model for XML data. Surveys on XML constraints can be found in [6, 20].

The remainder of the paper is organized as follows. Section 2 de�nes value
equality and (absolute and relative) keys for XML. Section 3 establishes the
�nite axiomatizability and complexity results: First, we give a quadratic time
algorithm for determining inclusion of path expressions. The ability to determine
inclusion of path expressions is then used in developing inference rules for keys,
for which a PTIME algorithm is given. Finally, Sec. 4 identi�es directions for
further research. All the proofs are given in the full version of the paper [5].

2 Keys

As illustrated in Fig. 1, our notion of keys is based on a tree model of XML data.
Although the model is quite simple, we need to do two things prior to de�ning
keys: the �rst is to give a precise de�nition of value equality for XML keys; the
second is to describe a path language that will be used to locate sets of nodes in
an XML document. We therefore introduce a class of regular path expressions,
and de�ne keys in terms of this path language.

2.1 A Tree Model and Value Equality

An XML document is typically modeled as a node-labeled tree. We assume three
pairwise disjoint sets of labels: E of element tags, A of attribute names, and a
singleton set fSg denoting text (PCDATA).

De�nition 1. An XML tree is de�ned to be T = (V; lab; ele; att; val; r), where
(1) V is a set of nodes; (2) lab is a mapping V ! E [A [ fSg which assigns a
label to each node in V ; a node v in V is called an element (E node) if lab(v) 2 E,
an attribute (A node) if lab(v) 2 A, and a text node (S node) if lab(v) = S; (3)
ele and att are partial mappings that de�ne the edge relation of T : for any node
v in V ,

{ if v is an element then ele(v) is a sequence of elements and text nodes in V
and att(v) is a set of attributes in V ; for each v0 in ele(v) or att(v), v0 is
called a child of v and we say that there is a (directed) edge from v to v0;

1 We do not consider foreign keys and DTDs in the current paper.



{ if v is an attribute or a text node then ele(v) and att(v) are unde�ned;

(4) val is a partial mapping that assigns a string to each attribute and text node:
for any node v in V , if v is an A or S node then val(v) is a string, and val(v)
is unde�ned otherwise; (5) r is the unique and distinguished root node. An XML
tree has a tree structure, i.e., for each v 2 V , there is a unique path of edges
from root r to v. An XML tree is said to be �nite if V is �nite.

For example, Fig. 1 depicts an XML tree that represents an XML document.
With this, we are ready to de�ne value equality on XML trees. Let T =

(V; lab; ele; att; val; r) be an XML tree, and n1; n2 be two nodes in V . Infor-
mally, n1; n2 are value equal if they have the same tag (label) and in addition,
either they have the same (string) value (when they are S or A nodes) or their
children are pairwise value equal (when they are E nodes). More formally:

De�nition 2. Two nodes n1 and n2 are value equal, denoted by n1 =v n2, i�
(1) lab(n1) = lab(n2); (2) if n1; n2 are A or S nodes then val(n1) = val(n2); and
(3) if n1; n2 are E nodes, then (a) for any a1 2 att(n1), there exists a2 2 att(n2)
such that a1 =v a2, and vice versa; and (b) if ele(n1) = [v1; : : : ; vk], then
ele(n2) = [v0

1
; : : : ; v0k] and for all i 2 [1; k], vi =v v

0
i. That is, n1 =v n2 i� their

subtrees are isomorphic by an isomorphism that is the identity on string values.

As an example, in Fig. 1, the author subelement of the �rst book and the
�rst author subelement of the second book are value equal.

2.2 Path Languages

There are many options for a path language, ranging from very simple ones
involving just labels to more expressive ones such as regular languages or even
XPath. However, to develop inference rules for keys we need to be able to reason
about inclusion of path expressions (the containment problem). It is well known
that for regular languages, the containment problem is not �nitely axiomatizable;
and for XPath, although nothing is known at this point we strongly suspect that
it is not much easier. We therefore restrict our attention to the path language PL,
which is expressive enough to be interesting yet simple enough to be reasoned
about e�ciently. We will also use a simpler language (PLs) in de�ning keys, and
therefore show both languages in the table below.

Path Language Syntax

PLs � ::= � j l:�

PL q ::= � j l j q:q j �

In PLs, a path is a (possibly empty) sequence of node labels. Here � denotes
the empty path, node label l 2 E [A [ fSg, and \." is a binary operator that
concatenates two path expressions. The language PL is a generalization of PLs

that allows \ *", a combination of wildcard and Kleene closure. This symbol



represents any (possibly empty) �nite sequence of node labels. These languages
are fragments of regular expressions [14], with PLs contained in PL.

A path in PLs is used to describe a path in an XML tree T , and a path
expression in PL describes a set of such paths. Recall that an attribute node or
a text node is a leaf in T and it does not have any child. Thus a path � in PLs

is said to be valid if for any label l in �, if l 2 A or l = S, then l is the last
symbol in �. Similarly, we de�ne valid path expressions of PL. In what follows
we assume that the regular language de�ned by a path expression of PL contains
only valid paths. For example, book:author:name is a valid path in PLs and PL,
while � :author is a valid path expression in PL but it is not in PLs.

We now give some notation that will be used throughout the rest of the
paper. Let � be a path in PLs, P a path expression in PL and T an XML tree.
Length. The length of path �, denoted by j�j, is the number of labels in � (the
empty path has length 0). By treating \ �" as a special label, we also de�ne the
length of PL expression P , denoted by jP j, to be the number of labels in P .
Membership.We use � 2 P to denote that path � is in the regular language de-
�ned by path expression P . For example, book:author:name 2 book:author:name
and book:author:name 2 � :name.
Reachability. Let n1; n2 be nodes in T . We say that n2 is reachable from n1 by
following path �, denoted by T j= �(n1; n2), i� n1 = n2 if � = �, and if � = �0:l,
then there exists n in T such that T j= �0(n1; n) and n2 is a child of n with
label l. We say that node n2 is reachable from n1 by following path expression
P , denoted by T j= P (n1; n2), i� there is a path � 2 P such that T j= �(n1; n2).
For example, if T is the XML tree in Fig. 1, then all the name nodes are reachable
from the root by following book:author:name and also by following �.
Node set. Let n be a node in T . We use n[[P ]] to denote the set of nodes in T
that can be reached by following the path expression P from node n. That is,
n[[P ]] = fn0 j T j= P (n; n0)g. We shall use [[P ]] as abbreviation for r[[P ]], when r
is the root node of T . For example, referring to Fig. 1 and let n be the �rst book
element, then n[[chapter]] is the set of all chapter elements of the �rst book and
[[ � :chapter]] is the set of all chapter elements in the entire document.

De�nition 3. The value intersection of node sets n1[[P ]] and n2[[P ]], denoted by
n1[[P ]] \v n2[[P ]], is de�ned by:

n1[[P ]] \v n2[[P ]] = f(z; z0) j 9 � 2 P; z 2 n1[[�]]; z0 2 n2[[�]]; z =v z
0g

That is, n1[[P ]] \v n2[[P ]] consists of node pairs that are value equal and are
reachable by following the same simple path in the language de�ned by P starting
from n1 and n2, respectively. For example, let n1 and n2 be the �rst and second
book elements in Fig. 1, respectively. Then n1[[author]] \v n2[[author]] is the set
consisting of a single pair (x; y), where x is the author subelement of the �rst
book and y is the �rst author subelement of the second book.

2.3 A Key Constraint Language for XML

We are now in a position to de�ne keys for XML and what it means for an XML
document to satisfy a key constraint.



De�nition 4. A key constraint ' for XML is an expression of the form

(Q; (Q0; fP1; : : : ; Pkg));

where Q, Q0 and Pi are PL expressions such that for all i 2 [1; k], Q:Q0:Pi is
a valid path expression. The path Q is called the context path, Q0 is called the
target path, and P1, ..., Pk are called the key paths of '.

When Q = �, we call ' an absolute key, abbreviated to (Q0; fP1; : : : ; Pkg);
otherwise ' is called a relative key. We use K to denote the language of keys,
and Kabs to denote the set of absolute keys in K.

A key ' = (Q; (Q0; fP1; : : : ; Pkg)) speci�es the following: (1) the context
path Q, starting from the root of an XML tree T , identi�es a set of nodes [[Q]];
(2) for each node n 2 [[Q]], ' de�nes an absolute key (Q0; fP1; : : : ; Pkg) that is
to hold on the subtree rooted at n; speci�cally,

{ the target path Q0 identi�es a set of nodes n[[Q0]] in the subtree, referred to
as the target set ,

{ the key paths P1; : : : ; Pk identify nodes in the target set. That is, for each
n0 2 n[[Q0]] the values of the nodes reached by following the key paths from
n0 uniquely identify n0 in the target set.

For example, the keys on Fig. 1 mentioned in Sec. 1 can be written as follows:
(1) @isbn is a key of book nodes: (book; f@isbng);
(2) name is a key of author nodes no matter where they are: ( �:author; fnameg);
(3) within each subtree rooted at a book, @number is a key of chapter relative
to book: (book; (chapter; f@numberg)).
The �rst two are absolute keys of Kabs and the last one is a relative key of K.

De�nition 5. Let ' = (Q; (Q0; fP1; : : : ; Pkg)) be a key of K. An XML tree T
satis�es ', denoted by T j= ', i� for any n in [[Q]] and any n1; n2 in n[[Q0]], if
for all i 2 [1; k] there exist a path � 2 Pi and nodes x 2 n1[[�]], y 2 n2[[�]] such
that x =v y, then n1 = n2. That is,

8n 2 [[Q]] 8n1 n2 2 n[[Q0]] ((
^

1�i�k

n1[[Pi]] \v n2[[Pi]] 6= ;)! n1 = n2).

As an example, let us consider K constraints on the XML tree T in Fig. 1.
(1) T j= (book; f@isbng) because the @isbn attributes of the two book nodes in
T have di�erent string values. However, T 6j= (book; fauthorg) because the two
books agree on the values of their �rst author.
(2) T 6j= ( � :author; fnameg) because the author of the �rst book and the �rst
author of the second book agree on their names but they are distinct nodes.
(3) T j= (book; (chapter; f@numberg)) because in the subtree rooted at each
book node, the @number attribute of each chapter has a distinct value.

Several subtleties are worth pointing out. First, observe that each key path
can specify a set of values. For example, consider  = (book; f@isbn; authorg)
on the XML tree T in Fig. 1, and note that the key path author reaches two



author subelements from the second book node. In contrast, this is not allowed
in most proposals for XML keys, e.g., XML Schema. The reason that we allow
a key path to reach multiple nodes is to cope with the semistructured nature
of XML data. Second, the key has no impact on those nodes at which some
key path is missing. Observe that for any n 2 [[Q]] and n1; n2 in n[[Q0]], if Pi

is missing at either n1 or n2 then n1[[Pi]] and n2[[Pi]] are by de�nition disjoint.
This is similar to unique constraints introduced in XML Schema. In contrast to
unique constraints, however, our notion of keys is capable of comparing nodes at
which a key path may have multiple values. Third, it should be noted that two
notions of equality are used to de�ne keys: value equality (=v) when comparing
nodes reached by following key paths, and node identity (=) when comparing
two nodes in the target set. This is a departure from keys in relational databases,
in which only value equality is considered.

Our de�nition of a key allows key values to be \scoped" by their paths. As
an example, the XML data in Fig. 2.a satis�es the key (part, f *.@idg), and
the XML data in Fig. 2.b satis�es the key (book, f *.isbng). Although in the
�rst example our de�nition of keys captures the intended meaning, we would
probably want the second example to violate the key2. That is, one might want
isbn to be a key for book no matter where it occurs in a book. It is possible
to reformulate our constraint language to be able to express both examples by
modifying the de�nition of value intersection (Def. 3), but we do not yet know
whether the proofs in this paper can be extended to a more general de�nition.

hparti
hwidget id=1ih/widgeti

h/parti
hparti

hgadget id=1ih/gadgeti
h/parti

(a)

hbook isbn=123i
h/booki
hbooki

hidentifier isbn=123/i
h/booki

(b)

Fig. 2. XML data and scope of key paths

2.4 Decision Problems

As mentioned in Sec. 1, the satis�ability and implication analyses of XML keys
are far more intriguing than their relational databases counterpart.

We �rst consider satis�ability of keys of our constraint language K. Let � be
a �nite set of keys in K and T be an XML tree. We use T j= � to denote that
T satis�es �. That is: for any  2 �, T j=  .

The (�nite) satis�ability problem for K is to determine, given any �nite set
� of keys in K, whether there exists a (�nite) XML tree satisfying �.

As observed in Sec. 1, keys de�ned in some proposals (e.g., XML Schema)
may not be �nitely satis�able at all. In contrast, any key constraints of K can
always be satis�ed by a �nite XML tree, including the single node tree. That is,

2 We are grateful to one of the referees for pointing this out and for providing the
example.



Observation. Any �nite set � of keys in K is �nitely satis�able.

Next, we consider implication of K constraints. Let � [ f'g be a �nite set
of keys of K. We use � j= ' to denote � implies '; that is, for any XML tree
T , if T j= �, then T j= '.

There are two implication problems associated with keys: The implication
problem is to determine, given any �nite set of keys � [ f'g, whether � j= '.
The �nite implication problem is to determine whether � �nitely implies ', that
is, whether it is the case that for any �nite XML tree T , if T j= �, then T j= '.

Given any �nite set �[f'g of keys in K, if there is an XML tree T such that
T j=

V
�^:', then there must be a �nite XML tree T 0 such that T 0 j=

V
�^:'.

Thus key implication has the �nite model property (see [5] for a proof) and as
a result:

Proposition 1. The implication and �nite implication problems for keys coin-
cide.

In light of this we can also use � j= ' to denote that � �nitely implies '.

3 Key Implication

We now study the �nite implication problem for keys. Our main result is:

Theorem 1. The �nite implication problem for K is �nitely axiomatizable and
decidable in PTIME in the size of keys.

We provide a �nite axiomatization and a PTIME algorithm for determin-
ing �nite implication of K constraints. In contrast to their relational database
counterparts, the axiomatization and algorithm are nontrivial. A road map for
the proof of the theorem is as follows. We �rst study containment of path ex-
pressions in the language PL de�ned in the last section, since the axioms rely
on path inclusion. We then provide a �nite set of inference rules and show that
it is sound and complete for �nite implication of K constraints. Finally, taking
advantage of the inference rules, we develop a PTIME algorithm for determining
�nite implication. We shall also present complexity results in connection with
�nite implication of absolute keys in Kabs.

3.1 Inclusion of PL Expressions

A PL expression P is said to be included (or contained) in PL expression Q,
denoted by P � Q, if for any XML tree T and any node n in T , n[[P ]] � n[[Q]].
That is, the nodes reached from n by following P are contained in the set of the
nodes reached by following Q from n. We write P = Q if P � Q and Q � P .

In the absence of DTDs, P � Q is equivalent to the containment of the
regular language de�ned by P in the regular language de�ned by Q. Indeed, if
there exists a path � 2 P but � 62 Q, then one can construct an XML tree T with
a path � from the root. It is obvious that in T , [[P ]] 6� [[Q]]. The other direction
is immediate. Therefore, P � Q i� for any path � 2 P , � 2 Q.



P 2 PL

�:P � P P � �:P P:� � P P � P:�
(empty-path)

P 2 PL

P � P
(re
exivity)

P 2 PL

P � �
(star)

P � P 0 Q � Q0

P:Q � P 0:Q0
(composition)

P � Q Q � R

P � R
(transitivity)

Table 1. Ip: rules for PL expression inclusion

We investigate inclusion (containment) of path expressions in PL: given any
PL expressions P and Q, is it the case that P � Q? As will become clear
shortly, this is important to the proof of Theorem 1. It is decidable with a low
complexity:

Theorem 2. There are a sound and complete �nite set of inference rules and
a quadratic time algorithm for determining inclusion of PL expressions.

It is worth mentioning that PL is a star-free regular language (cf. [28] for a
de�nition). The inclusion problem for general star-free languages is co-NP com-
plete [15]. For inclusion of PL expression, we are able to provide a set of inference
rules in Table 1, denoted by Ip, and to develop a quadratic time algorithm.

Proof sketch: The soundness of Ip can be veri�ed by induction on the lengths
of Ip-proofs. The proof of completeness is based on a simulation relation de-
�ned on the nondeterministic �nite automata (NFA [14]) that characterize PL
expressions. More speci�cally, let the NFA for PL expressions P and Q be
M(P ) = (N1; C [ f g; �1; S1; F1) and M(Q) = (N2; C [ f g; �2; S2; F2) respec-
tively. Observe that the alphabets of the NFA have been extended with the
special character \ " which can match any letter in C. We de�ne a simulation
relation, �, on N1�N2. For any n1 2 N1 and n2 2 N2, n1�n2 i� the following
conditions are satis�ed: (1) If n1 = F1 then n2 = F2. (2) If �1(n1; ) = n1 then
�2(n2; ) = n2. (3) For any l 2 C, if �1(n1; l) = n0

1
for some n0

1
2 N1, then

either (a) there exists a state n02 2 N2 such that �2(n2; l) = n02 and n01 � n02,
or (b) �2(n2; ) = n2 and n0

1
� n2. The simulation is de�ned in such a way that

P � Q is equivalent to S1 � S2. Intuitively, this means that starting with the
start states of M(P ) and M(Q) and given an input string, every step taken
by M(P ) in accepting this string has a corresponding step in M(Q) according
to the simulation relation. In light of Ip and the claims, we provide in Algo-
rithm 1 a recursive function Incl(n1; n2) for testing inclusion of PL expressions.
We use visited(n1; n2) to keep track of whether Incl(n1; n2) has been evaluated
before, which ensures that each pair (n1; n2) is checked at most once. The func-
tion Incl(n1; n2) returns true i� n1 � n2. Since P � Q i� S1 � S2, P � Q i�
Incl(S1; S2). Its complexity is kept low by the use of the boolean visited. See
[5] for details.



Algorithm 1. Incl(n1; n2)

1. if visited(n1; n2) then return false else mark visited(n1; n2) as true;

2. process n1, n2 as follows:
Case 1: if n1 = F1 then

if n2 = F2 and (�1(F1; ) = ; or �2(F2; ) = F2)
then return true;
else return false;

Case 2: if �1(n1; a) = n0

1 and �2(n2; a) = n0

2 for letter a
and �1(n1; ) = ; and �2(n2; ) = ;

then return Incl(n0

1; n
0

2);

Case 3: if �1(n1; a) = n0

1 and �2(n2; ) = n2 and �2(n2; a) = n0

2 for letter a
then return (Incl(n0

1; n2) or Incl(n
0

1; n
0

2))
else if �1(n1; a) = n0

1 and �2(n2; ) = n2 and �2(n2; a) = ;
then return Incl(n0

1; n2);

3. return false

3.2 Axiomatization for Absolute Key Implication

Recall that an absolute key (Q0; S) is a special case of a K constraint (Q; (Q0; S)),
i.e., when Q = �. As opposed to relative keys, absolute keys are de�ned on
the entire XML tree T rather than on certain subtrees of T . The problem of
determining implication of absolute keys is simpler than that for relative keys.
Since most of the rules for relative key implication are an obvious generalization
of those for absolute keys, we start by giving a discussion on the rules for absolute
key implication. The set of rules, denoted by Iabs, is shown in Table 2.

(Q; S) P 2 PL

(Q; S [ fPg)
(superkey)

(Q; S [ fPi; Pjg) Pi � Pj

(Q; S [ fPig)
(containment-
reduce)

(Q:Q0; fPg)
(Q; fQ0:Pg)

(subnodes)
(Q; S) Q0 � Q

(Q0; S)
(target-path-
containment)

(Q; S [ f�; Pg) P 0 2 PL

(Q; S [ f�; P:P 0g)
(pre�x-
epsilon)

S is a set of PL expressions

(�; S)
(epsilon)

Table 2. Iabs: Rules for absolute key implication

{ superkey. If S is a key for the nodes in [[Q]] then so is any superset of S. This
is the only rule of Iabs that has a counterpart in relational key inference.

{ subnodes. Since we have a tree model, any node v 2 [[Q:Q0]] must be in
the subtree rooted at a unique node v0 in [[Q]]. Therefore, if a key path P
identi�es a node in [[Q:Q0]] then Q0:P uniquely identi�es nodes in [[Q]].



{ pre�x-epsilon. Note that n1 =v n2 if n1[[�]] \v n2[[�]] 6= ;. In addition, for
any n1; n2 2 [[Q]], if n1[[P:P

0]] \v n2[[P:P
0]] 6= ; and n1 =v n2, then n1[[P ]] \v

n2[[P ]] 6= ;. Thus by the de�nition of keys, S[f�; P:P 0g is also a key for [[Q]].
{ containment-reduce. For any nodes n1; n2 in [[Q]], if n1[[Pi]]\vn2[[Pi]] 6= ;, then
we must have n1[[Pj ]]\v n2[[Pj ]] 6= ; given Pi � Pj . Thus by the de�nition of
keys S [ fPig is also a key for [[Q]].

{ target-path-containment. A key for the set [[Q]] is also a key for any subset
of [[Q]]. Observe that [[Q0]] � [[Q]] if Q0 � Q.

{ epsilon. There is only one root, and thus any set of PL expressions forms a
key for the root.

We omit the proof of the following theorem. Details can be found in [5].

Theorem 3. The set Iabs is sound and complete for (�nite) implication of ab-
solute keys of Kabs. In addition, the problem can be determined in O(n4) time.

3.3 Axiomatization for Key Implication

We now turn to the �nite implication problem for K, and start by giving in
Table 3 a set of inference rules, denoted by I. Most rules are simply generaliza-
tions of rules shown in Table 2. The only exceptions are rules that deal with the
context path in relative keys. We brie
y illustrate these rules below.

{ context-path-containment . If (Q0; S) holds on all subtrees rooted at nodes in
[[Q]], then it also holds on subtrees rooted at nodes in subset [[Q1]] of [[Q]].

{ context-target . If in a tree T rooted at a node n in [[Q]], S is a key for
n[[Q1:Q2]], then in any subtree of T rooted at n0 in n[[Q1]], S is a key for
n0[[Q2]]. In particular, when Q = � this rules says that if the (absolute) key
holds on the entire document, then it must also hold on any sub-document.

{ interaction. By the �rst key in the precondition, in each subtree rooted at
a node n in [[Q1]], Q

0:P1; : : : ; Q
0:Pk uniquely identify a node in n[[Q2]]. The

second key in the precondition prevents the existence of more than one Q0

node under Q2 that coincide in their P1; : : : ; Pk nodes. Therefore, P1; : : : ; Pk

uniquely identify a node in n[[Q2:Q
0]] in each subtree rooted at n in [[Q1]].

Note that key inference in the XML setting relies heavily on path inclusion.
That is why we need to develop inference rules for PL expression inclusion.

Given a �nite set � [ f'g of K constraints, we use � `I ' to denote that '
is provable from � using I (and Ip for path inclusion).

We next show that I is indeed an axiomatization forK constraint implication.

Lemma 1. The set I is sound and complete for �nite implication of K con-
straints. That is, for any �nite set � [ f'g of K constraints, � j= ' i� � `I '.

Proof sketch: Soundness of I can be veri�ed by induction on the lengths of I-
proofs. For the proof of completeness, we show that if � 6`I ', then there exists
a �nite XML tree G such that G j= � and G j= :', i.e., � 6j= '. In other words,
if � j= ' then � `I '. See [5] for the details of the proof.

Finally, we show that K constraint implication is decidable in PTIME.



(Q; (Q0; S)) P 2 PL

(Q; (Q0; S [ fPg))
(superkey)

(Q; (Q0:Q00; fPg))
(Q; (Q0; fQ00:Pg))

(subnodes)

(Q; (Q0; S [ fPi; Pjg)) Pi � Pj

(Q; (Q0; S [ fPig))
(containment-reduce)

(Q; (Q0; S)) Q1 � Q

(Q1; (Q
0; S))

(context-path-containment)

(Q; (Q0; S)) Q2 � Q0

(Q; (Q2; S))
(target-path-containment)

(Q; (Q1:Q2; S))

(Q:Q1; (Q2; S))
(context-target)

(Q; (Q0; S [ f�; Pg)) P 0 2 PL

(Q; (Q0; S [ f�; P:P 0g))
(pre�x-epsilon)

(Q1; (Q2; fQ
0:P1; : : : ; Q

0:Pkg))
(Q1:Q2; (Q

0; fP1; : : : ; Pkg))
(Q1; (Q2:Q

0; fP1; : : : ; Pkg))
(interaction)

Q 2 PL, S is a set of PL expressions

(Q; (�; S))
(epsilon)

Table 3. I: Inference rules for key implication

Lemma 2. There is an algorithm that, given any �nite set � [ f'g of K con-
straints, determines whether � j= ' in PTIME.

Proof sketch: In Algorithm 2 we provide a function for determining �nite impli-
cation of K constraints. The correctness of the algorithm follows from Lemma 1
and its proof. It applies I rules to derive ' if � j= '. The overall cost of the
algorithm is O(n8), where n is the size of keys involved, and therefore we have
a PTIME algorithm. The details of the proof can be found in [5].

Theorem 1 follows from Lemmas 1 and 2.

4 Discussion

We have investigated the (�nite) satis�ability and (�nite) implication problems
associated with the XML key constraint language introduced in [4]. These keys
are capable of expressing many important properties of XML data; moreover, in
contrast to other proposals, this language can be reasoned about e�ciently. More
speci�cally, keys de�ned in this language are always �nitely satis�able, and their



Algorithm 2. Finite implication of K constraints

Input: a �nite set � [ f'g of K constraints, where ' = (Q; (Q0; fP1; :::; Pkg))
Output: true i� � j= '

// Epsilon rule.
1. if Q0 = � then output true and terminate

// Containment-reduce rule.
2. for each (Qi; (Q

0

i; Si)) 2 � [ f'g do
repeat until no further change

if Si = S [ fP 0; P 00g such that P 0 � P 00 then Si := Si n fP
00g

3. X := ;;

// Use the containment rules, context-target, superkey, subnodes, pre�x-epsilon, and interaction.
4. repeat until no keys in � can be applied in cases (a)-(d).

for each � = (Q�; (Q
0

�; fP
0

1; :::; P
0

mg)) 2 � do
// Prove ' when Q� contains a pre�x of Q.
(a) if there is Qt; Rp in PL such that Q � Q�:Qt, Qt:Q

0:Rp � Q0

�, Rp = � if m > 1 and
for all j 2 [1; m] there is s 2 [1; k] such that either
(i) Ps � Rp:P

0

j or
(ii) there exists l 2 [1; k] and Rj in PL such that Pl = � and Ps � Rp:P

0

j :Rj

then output true and terminate

// Prove ' when Q is contained in a pre�x of Q�.
(b) if there are Qc; Qt; Rp in PL such that

Q:Qc � Q�, Q
0:Rp � Qc:Q

0

�, Rp = � if m > 1, Q0 = Qc:Qt and
for all j 2 [1; m] there is there is s 2 [1; k] such that either
(i) Ps � Rp:P

0

j or
(ii) there exists l 2 [1; k] and Rj in PL such that Pl = � and Ps � Rp:P

0

j :Rj ;
and moreover, there is (Q; (Qc; fQt:P1; :::; Qt:Pkg)) in X

then output true and terminate

// Produce intermediate results in X when Q� contains a pre�x of Q.
(c) if there are Qc; Qt; Rp in PL such that Q � Q�:Qc, Qc:Q

0 � Q0

�:Rp, Q
0 = Qt:Rp and

for all j 2 [1; m] there is s 2 [1; k] such that either
(i) Rp:Ps � P 0

j or
(ii) there exists l 2 [1; k] and Rj in PL such that Pl = � and Rp:Ps � P 0

j :Rj

then
(1) if m = 1 then X := X [ f(Q; (Q1; fQ2:Rp:P1; : : : ; Q2:Rp:Pkg))g

where Qt = Q1:Q2 for some Q1; Q2 2 PL;
(2) if m > 1 then X := X [ f(Q; (Qt; fRp:P1; : : : ; Rp:Pkg))g;
(3) � := � n f�g;

// Produce intermediate results in X when Q is contained in a pre�x of Q�.
(d) if there are Qc; Qt; Rp in PL such that Q:Qc � Q�, Q

0 � Qc:Q
0

�:Rp, Q
0 = Qc:Qt:Rp and

for all j 2 [1; m] there is s 2 [1; k] such that either
(i) Rp:Ps � P 0

j or
(ii) there exists l 2 [1; k] and Rj in PL such that Pl = � and Rp:Ps � P 0

j :Rj ;
and moreover, there is (Q; (Qc; fQt:Rp:P1; :::; Qt:Rp:Pkg)) in X

then
(1) if m = 1 then X := X [ f(Q; (Q1; fQ2:Rp:P1; : : : ; Q2:Rp:Pkg))g

where Qc:Qt = Q1:Q2 for some Q1; Q2 2 PL;
(2) if m > 1 then X := X [ f(Q; (Qc:Qt; fRp:P1; : : : ; Rp:Pkg))g;
(3) � := � n f�g;

5. output false



(�nite) implication is �nitely axiomatizable and decidable in PTIME in the size
of keys. We believe that these key constraints are simple yet expressive enough
to be adopted by XML designers and users.

For further research, a number of issues deserve investigation. First, our re-
sults are established in the absence of DTDs. Despite their simple syntax, there
is an interaction between DTDs and our key constraints. To illustrate this, let
us consider a simple DTD D:

<!ELEMENT foo (X, X)>

<!ELEMENT X (empty)>

and a simple (absolute) key ' = (X; ;). Obviously, there exists a �nite XML
tree that conforms to the DTD D and there exists another �nite XML tree that
satis�es the key '. However, there is no XML tree that both conforms to D and
satis�es ', because D requires an XML tree to have two distinct X elements,
whereas ' requires that the path X , if it exists, must be unique at the root.
This shows that in the presence of DTDs, the analysis of key satis�ability and
implication can be wildly di�erent. It should be mentioned that keys de�ned in
other proposals for XML, such as XML Schema [26], also interact with DTDs
or other type systems for XML. This issue was recently investigated in [10].

Second, one might be interested in using a di�erent path language to ex-
press keys. The containment problem for the full regular language is PSPACE-
complete [12], and it is not �nitely axiomatizable. Another alternative is the
language of [17], which simply adds a single wildcard to PL. Despite the seem-
ingly trivial addition, containment of expressions in their language is only known
to be in PTIME. It is possible to develop an inclusion checking algorithm with
a complexity comparable to the related result in this paper. For XPath [24]
expressions, questions in connection with their containment and equivalence, as
well as (�nite) satis�ability and (�nite) implication of keys de�ned in terms of
these complex path expressions are, to the best of our knowledge, still open.

Third, along the same lines as our XML key language, a language of foreign
keys needs to be developed for XML.

A �nal question is about key constraint checking. An e�cient incremental
checking algorithm for our keys is currently under development.

Acknowledgments. The authors thank Michael Benedikt, Chris Brew, Dave
Maier, Keishi Tajima and Henry Thompson for helpful discussions. They would
also like to thank one of the referees for pointing out the possible need for a
more general de�nition of a key constraint (Sec. 2.)

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufman, 2000.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.



3. S. Abiteboul and V. Vianu. Regular path queries with constraints. Journal of
Computer and System Sciences (JCSS), 58(4):428{452, 1999.

4. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In
WWW'10, 2001.

5. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about ab-
solute and relative keys for XML. Technical Report TUCIS-TR-2001-002, Temple
University, 2001.

6. P. Buneman, W. Fan, J. Sim�eon, and S. Weinstein. Constraints for semistructured
data and XML. SIGMOD Record, 30(1), 2001.

7. P. Buneman, W. Fan, and S. Weinstein. Path constraints on semistructured and
structured data. In PODS, 1998.

8. P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type con-
straints. In PODS, 1999.

9. P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured
databases. Journal of Computer and System Sciences (JCSS), 61(2):146{193, 2000.

10. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs. In
PODS, 2001.

11. W. Fan and J. Sim�eon. Integrity constraints for XML. In PODS, 2000.
12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.
13. C. S. Hara and S. B. Davidson. Reasoning about nested functional dependencies.

In PODS, 1999.
14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addision Wesley, 1979.
15. H. Hunt, D. Resenkrantz, and T. Szymanski. On the equivalence, containment, and

covering problems for the regular and context-free languages. Journal of Computer
and System Sciences (JCSS), 12:222{268, 1976.

16. M. Ito and G. E. Weddell. Implication problems for functional constraints on
databases supporting complex objects. Journal of Computer and System Sciences
(JCSS), 50(1):165{187, 1995.

17. T. Milo and D. Suciu. Index structures for path expressions. In ICDT, 1999.
18. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill

Higher Education, 2000.
19. J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). Workshop on

XML Query Languages, Dec. 1998.
20. V. Vianu. A Web odyssey: From Codd to XML. In PODS, 2001.
21. W3C. Document Object Model (DOM) Level 1 Speci�cation. Recommendation,

Oct. 1998. http://www.w3.org/TR/REC-DOM-Level-1/.
22. W3C. Extensible Markup Language (XML) 1.0, Feb 1998.

http://www.w3.org/TR/REC-xml.
23. W3C. XML-Data. Note, Jan. 1998. http://www.w3.org/TR/1998/NOTE-XML-data.
24. W3C. XML Path Language (XPath). Working Draft, Nov. 1999.

http://www.w3.org/TR/xpath.
25. W3C. XSL Transformations (XSLT). Recommendation, Nov. 1999.

http://www.w3.org/TR/xslt.
26. W3C. XML Schema. Working Draft, May 2001. http://www.w3.org/XML/Schema.
27. P. Wadler. A Formal Semantics for Patterns in XSL. Technical report, Computing

Sciences Research Center, Bell Labs, Lucent Technologies, 2000.
28. S. Yu. Regular languages. In G. Rosenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1, pages 41{110. Springer, 1996.


