
Vectorizing and Querying Large XML Repositories

Peter Buneman Byron Choi Wenfei Fan∗ Robert Hutchison Robert Mann Stratis D. Viglas
University of Edinburgh

{opb@inf.ed,v1bchoi@inf.ed,wenfei@inf.ed,robert.hutchison@ed,rgm@roe,sviglas@inf.ed }.ac.uk

Abstract

Vertical partitioning is a well-known technique for optimizing
query performance in relational databases. An extreme form of
this technique, which we call vectorization, is to store each col-
umn separately. We use a generalization of vectorization as the
basis for a native XML store. The idea is to decompose an XML
document into a set of vectors that contain the data values and a
compressed skeleton that describes the structure. In order to query
this representation and produce results in the same vectorized for-
mat, we consider a practical fragment of XQuery and introduce
the notion of query graphs and a novel graph reduction algorithm
that allows us to leverage relational optimization techniques as
well as to reduce the unnecessary loading of data vectors and de-
compression of skeletons. A preliminary experimental study based
on some scientific and synthetic XML data repositories in the order
of gigabytes supports the claim that these techniques are scalable
and have the potential to provide performance comparable with
established relational database technology.

1 Introduction

This is a preliminary report on a method of storing large
XML datasets in a fashion that allows them to be queried
with efficiency that is comparable with – and may even sur-
pass – that of conventional relational database technology.
The method is based on a combination of two ideas: the
first is a generalization of a vertical or “vectorized” organi-
zation of tabular data toXML documents; the second is the
use of a compression technique that enables us to keep the
tree-like structure of anXML document in main memory.
As an example of what is achievable by this method, a sim-
ple select/projectXQueryon an 80 gigabyte astronomyXML

dataset took37 seconds, while the same query inSQLon the
same dataset stored in a relational database reportedly takes
over200 seconds on a comparable machine [17]. The rea-
son for this speedup is simple: theXML query performed the
equivalent of reading only3 columns of a368-column table,
and theI/O was thus reduced; the same efficiency could be
achieved by conventional vertical partitioning of relational
data. The novelty we claim is that the same technique can be
applied to a nativeXML store and will generalize to queries
on relatively complex hierarchical data.
∗Bell Laboratories,wenfei@research.bell-labs.com.

The idea of implementing a relational database by con-
tiguously storing the columns of a table is almost as old as
relational databases [4]. The benefit is that queries that only
involve a small number of columns require lessI/O. More-
over, there are dramatic performance improvements to be
made if main-memory vector manipulation techniques can
be applied to all or parts of these columns. The idea has
re-emerged in various places: in [8, 14] for object-oriented
databases and in [2] for speeding up transfer between main
memory caches. It has also been used commercially in
Sybase IQ [19] and recently in financial analysis software
where it is combined with vector processing language tech-
nology and has been successfully used to support data inte-
gration [10]. In order to extend the idea toXML we make
use of some ideas in two recent pieces of research:
XMILL . The “semantic compressor” developed by Liefke
and Suciu [20] extends the idea of vertical partitioning to
XML . The “columns” – we shall call themvectorsin this
case – are the sequences of data values appearing under all
paths bearing the same sequence of tag names. In addition
to storing these columns, one also needs to store the tree-
like structure of the document, theskeleton. In XMILL the
purpose of this decomposition was to compress theXML

document. Here wedo notcompress the columns, and we
use adifferent methodfor compressing the skeleton.
Skeleton Compression. We extend [9] in which the tree-
like structure of the skeleton is compressed into aDAG by
sharing common subtrees. In that paper the compressed
skeleton was then expanded in order to represent the result
of XPath evaluation. In contrast, here we generate anew–
usually highly contracted –skeletonto represent the result
of XQuerywithout decompression. In fact, query evaluation
proceeds along the same general lines as that of relational
algebra. Just as each evaluation step of the relational alge-
bra yields a new table, each evaluation step in our evaluation
process generates a new skeleton and a new set of vectors.

Our claim is that it is possible to construct a nativeXML

store and query engine that will match or outperform con-
ventional relational database systems on highly regular data
and will continue to work well on irregular data sets. We
should temper this claim with a few observations. First,
our results are highly preliminary and we can hope to do
little more than convince the reader of the credibility of
this claim. Second, while we support the claim that vector-

AXMLSBAWRHSBP XML BC P2P BC XStoreRH

bib

book

publisher author title publisher author title author title author author title

articlearticlebook

RHSBP Curation

book

publisher author title

RH XPathDD

author author title

article

Figure 1. An XML tree T

ized representations may provide better query performance,
this is something of a “cheap shot” at established relational
technology, which provides much more functionality than
efficient query languages. For example, updates and lock-
ing may cause grave problems in vectorized representations.
Fortunately, XML documents are typically static, and if not,
(see Sect. 6) there may be promising techniques for updat-
ing vectorized XML data. Finally, we note thatvertical par-
titioning is already a well-understood and widely-used tech-
nique in the relational context, andvectorizationis simply
an extreme case of vertical partitioning in which each col-
umn is a partition.

In the following sections we describe how this decom-
position ofXML can be used in efficient query processing.
The main contributions are as follows.

• graph reduction: we describe a useful fragment of
XQuery (Sect. 3) and an evaluation technique for vec-
torized data (Sect. 4);
• complexity results: lower and upper bounds for query

evaluation over vectorized data are given in Sect. 3;
• preliminary experimental results: the effectiveness of

this approach is demonstrated in Sect. 5.

Section 6 discusses related work and topics for future work.

2 A Vectorized Representation of XML

In this section we extend techniques from [20] and [9]
for representingXML documents. These will be the basis
for our implementation ofXQuery.

2.1 Vectorizing XML

Figure 2 illustrates the basic method of decomposing an
XML document. Consider the depth-first traversal (which
is equivalent to a linear scan of the document) of a node-
labeled tree representation of the document as depicted
in Fig. 1. Each time we encounter a text node, we ap-
pend the text to a vector whose name is the sequence of
tag values on the path to that node. For example, when
we first encounter the text nodeCuration we are on a
path /bib/book/title , so we appendCuration to
the vector named by this path. As we proceed through
the tree we subsequently encounter the text nodesXML

and AXML. These values are appended, in order, to the
/bib/book/title vector. At the end of the traversal
we have generated the vectors:

/bib/book/publisher: [SBP, SBP, AW]
/bib/book/author: [RH, RH, SB]
/bib/book/title: [Curation, XML, AXML]
/bib/article/author: [BC, RH, BC, DD, RH]
/bib/article/title: [P2P, XStore, XPath]

Each of these vectors corresponds to a path of labels that
leads to a non-empty text node.

Now suppose that during this traversal we also gener-
ate a tree in which each of the text nodes is replaced by a
mark (#) indicating the presence of text in the original doc-
ument. This tree is called theskeletonand the pair(S, V)
consisting of the skeleton and the vectors is the basis for the
decomposition inXMILL [20].

The important observation is that the originalXML tree
can be faithfully reconstructed from(S, V). To see this con-
sider a depth-first traversal ofS. As we traverseS we keep
a note of the sequence of path tags (a stack) from the root.
When we first encounter a node, we emit its start tag; when
we leave it we emit its end tag; and when we encounter a
text marker (#), we emit the next text value from the appro-
priate vector (we keep a cursor or index into each vector).

This method is faithful in that it is an order-preserving
reconstruction of the originalXML document. It can also
handle – though we have not illustrated this – attributes and
nodes with mixed content. The idea ofXMILL is to achieve
good compression of anXML document by separately com-
pressing the vectors and aserial representation of the skele-
ton using standard [31] text compression techniques. How-
ever, wedepart fromXMILL in that we do not compress
the vectors, and we use an entirely different technique for
compressing the skeleton1. Moreover, we study efficient
evaluation ofXQuery directly over compressed skeletons,
an challenging issue beyond the scope of [20].

2.2 Skeleton compression

Returning to Fig. 1, consider the threebook nodes.
Once we have replaced the text by markers, these three
nodes have identical structure. Therefore we can replace
them by a single structure and put three edges from the
bib node to the topbook node in this structure. Moreover,
since these edges occurconsecutivelywe can indicate this
with a single edge together with a note of the number of
occurrences. Thus, working bottom-up, we can compress

1There is some evidence [3] that vector compression in which the com-
ponents of a vector are individually compressed, can be used effectively in
conjunction with query evaluation.

bib0

book1

publisher4 author5 title6

article3article2

(3)

(2)

#

(2)

(a) (Compressed) SkeletonS

bib/book/publisher bib/book/author bib/book/title

bib/article/author bib/article/title

SBP
SBP
AW

RH
RH
SB

Curation
XML
AXML

BC
RH
BC
DD
RH

P2P
XStore
XPath

(b) Data vectors

...

(107)

360

}
(c) A tiny XML skeleton

Figure 2. An XML tree, its skeleton and storage

the skeleton into aDAG as shown in Fig. 2(a). Multiple
consecutive edges are indicated by an annotation(n), and
an edge without annotation occurs once (in theDAG). In
contrast to [20] theDAG skeleton iscompressedby sharing
subtrees with the same structure. In the sequel we consider
compressed skeletons only, also referred to as skeletons.

We define thevectorized representation(or vectorized
tree) of an XML treeT , denoted byVEC(T), to be a pair
(S, V), whereS is the skeleton ofT andV is the collection
of all data vectors ofT . It is easy to verify that for anyXML

treeT , there exists a vectorized representationVEC(T) of T
that isuniqueup to isomorphism.

The compressed skeleton can be implemented as a main-
memory data structure. It should be apparent that, with the
addition of a counter for multiply-occurring edges, a depth-
first traversal of the compressed skeleton can be arranged
with exactly the same properties of the original skeleton.
Thus we still have a lossless reconstruction of the original
XML document from its vectorized representation.

Some statistics for compression are reported in [9] for a
range ofXML data sets. The compressed skeleton almost
always fits comfortably into main memory, and even when
this is not possible, there are techniques for recursively vec-
torizing the skeleton and paying the price of an additional
join in the query processor (we do not report on this here).

The advantages of this compression are twofold. First,
the skeleton of regularly structured data compresses very
well. In an extreme case, the astronomy data set that we
use in Sect. 5 consists of a single table with roughly 360
columns and107 rows. The compressed skeleton, as shown
in Fig. 2(c), is tiny. In fact any reasonableXML represen-
tation of relational or array data will compress similarly. It
should be noted that this compression is independent of any
type/schema information such as aDTD, and moreover, base
type information, such as that provided byXML -Schema, is
certainly of help in further improving representation of the
vectors.

The second advantage is part of the basis for our results.
Although the skeleton can compress extremely well, it is
nontrivial to use its compressed form directly for querying.
In [9] the skeleton wasexpanded: new nodes were added to
represent the set of nodes in the original tree that would be
selected by an XPath query. Unfortunately uncompressed
skeletons, even after doing the obvious of encoding the tags,

can be prohibitively large. Thus ourXQueryevaluation will
generate new skeletons, which will typically be smaller than
the original compressed skeleton. Consider,e.g.,the query
that selects the books in Fig. 1 or a select-project query on
the astronomy table. In both cases the skeleton for the re-
sult will be smaller. Moreover, we shall see that in many
cases the smaller output skeleton can be constructed from
the input skeleton without intermediate decompression.

We end this section with two straightforward results that
are central to the later development.

Proposition 2.1: The vectorized representation and com-
pressed skeleton of anXML treeT can be computed in lin-
ear time in|T |. 2

The only nontrivial part of this observation is that the
compressed skeleton can be constructed in linear time. This
is essentially the folkloric “hash-cons” method.

Proposition 2.2: An XML treeT can be reconstructed from
its vectors and compressed skeleton in linear time in|T |. 2

Note that this is linear in the size of theoutput (i.e.
the original document.) It is easy to construct pathologi-
cal cases in which the compression is exponential. Unfor-
tunately we have not encountered any practicalXML that
compresses quite so well!

3 An XQuery Fragment

In this section we study the problem ofXQuery[12] eval-
uation over vectorized data, and show that this problem in-
troduces new optimization issues. To simplify the discus-
sion, we consider a fragment ofXQuery, denoted byXQ. Be-
low we first presentXQ. We then state the query evaluation
problem and establish complexity results for the problem.
Finally we introduce a graph representation ofXQ queries.

3.1 XPath and XQuery

XPath. We consider a fragment ofXQuerydefined in terms
of simple XPath [13] expressions. This class ofsimple
XPath expressions, denoted byP , is defined by:

p ::= l | p/p | p[q], q ::= p | p = c

wherel denotes anXML tag, ‘/’ stands for thechild-axis,
andq in p[q] is called aqualifier in which c is a constant of
text value (PCDATA).

A query p of P is evaluated at acontext nodev in an
XML treeT , and its result is the set of nodes ofT reachable
via p from v, denoted byv[[p]]. Qualifiers are interpreted as
follows: at a context nodev, [p] holds iff v[[p]] is nonempty,
i.e., there exists a node reachable viap from v; and[p = c]
is true iff v[[p]] contains a text node whose value equalsc.

A path termρ of P is an expression of the formv/p,
wherev is either a document namedoc or a variable$x,
andp is aP expression. By treatingv as the context node,
ρ computes the set of nodes reachable viap, i.e., v[[p]]. We
use[[ρ]] to denotev[[p]] whenv is clear from the context.

We shall also consider an extension ofP by allowing the
wildcard ‘∗’ and thedescendant-or-self-axis ‘//’. We use
P [∗,//] to denote this extension.

XQuery. We consider a class ofXQueryof the form:

<result>
for $x1 in ρ1,

$x2 in ρ2,
. . .
$xn in ρn

where ρ′1 = ρ′′1 and . . .and ρ′k = ρ′′k

return exp(%1, %2, . . . ,%m)
</result>

where

• ρi is a path term ofP ;
• ρ′j (ρ′′j) is either a text-value constant or a path term;
• ρ′ = ρ′′ holds iff the sets of nodes reachable viaρ and
ρ′ are not disjoint; that is, the intersection of[[ρ′]] and
[[ρ′′]] is nonempty (assume[[c]] = c);

• %s is a path term of the form$ys/ps, where$ys is one
of the variables$x1, . . . , $xn.
• exp is a sequence ofXML element templates, where

each template is the same as anXML element except
that it may contain%1, . . . , %m as parameters; the tem-
plate yields anXML element given a substitution of
concreteXML elements/values for%1, . . . , %m.

The semantics of such a queryQ is standard as defined
by XQuery [12]. Posed over anXML treeT , Q returns an
XML tree rooted at aresult node with children defined
by exp(%1, . . . , %m). More specifically, let%s be $ys/ps
for s ∈ [1,m]. Then for each tuple of values computed
by the for andwhere clauses for instantiating thevari-
able tuple〈$y1, . . . , $ym〉, the path termsp1, . . . , pm are
evaluated, their results are substituted for%1, . . . , %m, and
with the substitution a sequence ofXML elements defined
by exp(%1, . . . , %m) are added to the tree as children of the
result node. Let us refer to such a value tuple as anin-
stantiationof the variable tuple〈$y1, . . . , $ym〉.

We useXQ for XQuery of this form when the XPath ex-
pressions are in the class P. Similarly, we useXQ[∗,//] to de-
note theXQuery fragment defined withP [∗,//] expressions.

Example 3.1: Posed over theXML data of Fig. 1, the fol-
lowing XQ queryQ0 finds all book and article titles by au-
thors who have written a book and an article, with the book
having been published by ‘SBP’.

<result>
for $d in doc("bib.xml")/bib

$b in $d/book
$a in $d/article

where $b/author = $a/author and
$b/publisher = ’SBP’

return $b/title, $a/title
</result>

The result of the query is shown in Fig. 3(a). 2

For anyXQ (or XQ[∗,//]) queryQ, there is an equivalent
XQ (or XQ[∗,//]) queryQ′ such thatQ′ does not contain any
qualifiers in its embedded XPath expressions. Indeed, the
XPath qualifiers inQ can be straightforwardly encoded in
Q′ by introducing fresh variables and new conjuncts in the
where clause ofQ′. Thus, w.l.o.g., in the sequel we only
consider queries without XPath qualifiers.

The fragmentsXQ and XQ[∗,//] can express manyXML

queries commonly found in practice. One can easily verify
that even the small fragmentXQ is capable of expressing all
relational conjunctive queries.

3.2 Query Evaluation over Vectorized Data

The problem ofXQueryevaluation over vectorizedXML

data can be stated as follows. Given the vectorized represen-
tationVEC(T) of anXML treeT and anXQueryQ, the prob-
lem is to compute thevectorized representationVEC(T ′) of
anotherXML treeT ′ such thatT ′ = Q(T), whereQ(T)
stands for applyingQ to T . Observe that both the input and
the output of the computation are vectorizedXML data.

Example 3.2:The vectorized representation of the result of
Q0 given in Fig. 3(a) is(S0, V0) shown in Fig. 3(b). 2

A naive evaluation algorithmfor XQueryover vectorized
XML trees works as follows. Given a vectorizedXML tree
VEC(T) and a queryQ,

1. decompressVEC(T) to restore the originalT ;
2. computeQ(T);
3. vectorizeQ(T).

Note that steps (1) and (3) take linear time in|T | and|Q(T)|
respectively. Thus the complexity for evaluating queries
over vectorizedXML trees does not exceed its counterpart
over the originalXML trees. From this and the proposi-
tion below we obtain an upper bound for evaluatingXQ[∗,//]

queries over vectorizedXML data.

Proposition 3.1: For anyXQ[∗,//] queryQ andXML treeT ,
Q(T) can be computed in at mostO(|T ||Q|) time. 2

Proof sketch:The complexity can be verified by a straight-
forward induction on the structure ofQ. 2

result

title title

'XStore' 'Curation'

title

'Curation'

title

'XPath'

title title

'XStore' 'XML'

title

'XML'

title

'XPath'

(a)Q0 result

result

title

Curation
XStore
Curation
XPath
XML
XStore
XML
XPath

/result/title

(4)

(b) (S0, V0)

$d

$b $a

'SBP'

/book /article

/author/author/publisher

(c) Query graph

result

*

title

$b/title $a/title

(d) Result skeleton

Figure 3. Result and representation of an XQ query

Can we do better than exponential time? Intuitively this
is possible under certain conditions: as mentioned in the last
section, vectorization can lead to an exponential reduction
in size. Furthermore, the proposition below gives us an up-
per bound for the size of the skeletons and the number of
data vectors in the vectorized query results.

Proposition 3.2: Let VEC(T) = (S, V) be the vectorized
representation of anXML treeT ,Q be an arbitraryXQ[∗,//]

query, andVEC(T ′) = (S′, V ′) be the vectorized represen-
tation ofT ′ = Q(T). Then|S′| is at mostO(|S| |Q|) and
the cardinality ofV ′, i.e., the number of vectors inV ′, is no
larger than the cardinality ofV . 2

Proof sketch:This is because the number ofdistinct sub-
trees inT ′ is bounded byO(|S| |Q|), and the number of
distinctpaths inT ′ is no larger than the cardinality ofV . 2

This suggests that if we can directly compute the vec-
torized representation ofQ(VEC(T ′)) without first decom-
pressingVEC(T ′), we may be able to achieve an exponential
reduction in evaluation time. This presents new optimiza-
tion opportunities as well as new challenges given rise by
query evaluation over vectorizedXML data.

Unfortunately, in the worst case the lower bound for
query evaluation is exponential, and may be as bad as un-
compressed evaluation, even forXQ queries.

Proposition 3.3: The lower bound for the time complex-
ity of evaluatingXQ queriesQ over vectorizedXML trees
VEC(T) is |T ||Q|. 2

Proof sketch:This can be shown by constructing a set of
XQ queries and a set ofXML trees such that for any query
Q and treeT in these sets, in the vectorized form(S′, V ′)
of Q(T), the size of a data vector inV ′ is |T ||Q|. 2

Putting these together, despite the worst-case complex-
ity (Prop. 3.3), one can often expect exponential reduction
in evaluation time by avoiding intermediate decompression
(Prop. 3.2). Moreover, as will be seen shortly, vectorization
allows lazy evaluation and thus reducesI/O costs.

3.3 Query Graphs

An XQ queryQ can be represented as a pair(Gq, Gr) of
graphs, called thequery graphand theresult skeletonof Q,
which characterize thefor , where clauses and the result
template ofQ, respectively.

Query graph. The query graphGq of an XQ queryQ is a
rooted acyclic directed graph (DAG), derived from thefor
andwhere clauses ofQ as follows.

• Theroot ofGq is a unique node labeleddoc indicating
a document root; to simplify the discussion we assume
thatQ accesses a single document; this does not lose
generality since one can always create a single virtual
root for multiple documents.
• For each distinct variable$x (and each constantc) in

the for andwhere clauses ofQ, there is a distinct
node inGq labeled by$x (or c).
• For each path termρ = v/p, wherev is eitherdoc or

a variable$z, there exists a nodee in Gq representing
theend pointof ρ, and there exists atree edgelabeled
p from v to e. If Q contains a clausefor $x in ρ,
then the node representing$x is the same ase.

• For each equalityρ = ρ′ in the where clause, there
is anequality edge, indicated by a dotted line, between
the end point ofρ and that ofρ′.

For example, Fig. 3(c) depicts the query graph of theXQ

query of Example 3.1. Here, circle nodes denote variable
nodes, and square nodes indicate end points.

Result skeleton. Abusing the notion of skeletons given
earlier, the result skeletonGr of Q is a tree template
that characterizes thereturn clause ofQ. For example,
Fig. 3(d) depicts the result skeleton of theXQ query of Ex-
ample 3.1. Note that for each instantiation of the variable tu-
ple 〈$y1, . . . , $ym〉, a sequence of new children of the form
exp(%1, . . . , %m) are generated for the root; this is indicated
by the ‘∗’ label tagging the edge below the root in Fig. 3(d).

The query graph and result skeleton of a query can be
automatically derived from the query at compile time. Note
that for any meaningfulXQ query, i.e., a query that is not
empty over allXML trees, its query graph and result skeleton
areDAGs. Moreover, each node has at most one incoming
tree edge. Thus we say that a nodev is theparentof w (and
w is achild of v) if there is a tree edge fromv tow.

Conceptual evaluation. The result skeleton of a queryQ
can be readily understood as a function that takes an in-
stantiation of its variables as input and constructs the re-
sult XML tree by expanding the skeleton. Evaluation of the
query graph ofQ is to instantiate variables needed by the

result skeleton. We next present a conceptual strategy for
evaluating the query graph ofQ overvectorizedXML data.

A query graph imposes a dependency relation on its vari-
ables: if$y is the parent of$x, then the value of$x cannot
be determined before the value of$y is fixed. Furthermore,
if there is an equality edge associated with a variable, then
the equality condition cannot be validated before the vari-
able is instantiated.

Given a vectorized treeVEC(T) = (S, V), the conceptual
evaluation strategy traverses the query graphGq top-down,
mapping the nodes ofGq to the nodes ofS or data values in
the vectors ofV . It starts from the rootdoc ofGq and maps
doc to the root ofS. For each nodev encountered inGq,
suppose thatv is mapped to a nodew in S. Then it picks
the leftmost childv′ of v whose evaluation does not violate
the dependency relation. Suppose that the tree edge fromv
to v′ is labeled pathp. It traversesS from w to a nodew′

reachable viap. If w′ is in S, then it mapsv′ to w′, i.e.,v′

is instantiated to bew′, and it inductively evaluates the chil-
dren ofv′ in the same way. Ifw′ is a text node, then it loads
and scans the corresponding data vector ofV and picks a
data value to instantiatev′. It moves upward to the parent
of v and proceeds to process the siblings ofv after all the
children ofv have been processed, or when it cannot find
such a nodew′ (backtrack). It checks equality conditions
ρ′ = ρ′′ by checking whether[[ρ′]] and[[ρ′′]] are disjoint or
not, scanning data vectors if necessary. If all these condi-
tions are satisfied, an instantiation of the variable tuple is
produced and passed to the skeleton function to increment
the resultXML tree. The process terminates after all the in-
stantiations are exhaustively computed. Note that process
always terminates since the query graph is aDAG.

Example 3.3: Consider evaluating the query graph of
Fig. 3(c) over the vectorizedXML data(S, V) of Figs. 2(a)
and 2(b). The variable$d is first mapped to thebib
node ofS. It then traversesS via the pathbook to in-
stantiate$b; similarly for $a. For each$b value, the
data vector fordoc/book/publisher is scanned and the
equality condition is checked; furthermore, the data vec-
tors doc/book/author and doc/article/author are
scanned to check whether or not$b and $a have a com-
mon author. An instantiation ($b, $a) is passed to the result
skeleton if it satisfies all these conditions. Given these in-
stantiations, the result skeleton constructs the output tree
and vectorizes it, yielding Fig. 3(b). 2

Several subtleties are worth mentioning. First, to sim-
plify the discussion, in a query graph we ignore the order
imposed by nestedfor loops in the query, which is easy to
incorporate. Note that the query graph captures the depen-
dency relation on variables via tree edges, which is consis-
tent with the order of nestedfor loops. Second, evaluation
of XQ queries over vectorized data is more intriguing than

evaluation of XPath queries, which was studied in [9]. An
XQ query needs to construct a new skeleton; moreover, each
instantiation of the variable tuple of its result skeleton incre-
ments its outputXML document, following a certain order;
furthermore, it can be verified that the skeleton of the vec-
torized output document cannot be decided by the query and
source skeleton alone. These are not the concerns of [9].

This conceptual evaluation strategy is obviously ineffi-
cient. First, the same data vector is repeatedly scanned for
each variable instantiation; this overhead is evident when
the main memory has limited capacity to hold all the rele-
vant data vectors, which is typical in practice. Second, at
each node encountered during the evaluation, there are typ-
ically multiple children available to be processed, and these
children can be evaluated in different orderings; experience
from relational optimization tells us that different evalua-
tion orderings may lead to vastly different performance. We
shall study these optimization issues in the next section.

Another optimization issue concerns query graph mini-
mization. Similar to minimal tableau queries [1], a notion of
minimal query graphs, i.e.,graphs with the least number of
nodes, can be defined forXQ queries. Intuitively, a minimal
query graph can be evaluated more efficiently than query
graphs with redundant nodes. The problem ofquery graph
minimizationis, given the query graph of anXQ query, to
find a minimum query graph equivalent to the input graph.
Unfortunately, the problem is intractable.

Proposition 3.4: The problem of query graph minimization
is NP-hard forXQ queries. 2

Proof sketch:By reduction from tableau query minimiza-
tion, which is intractable [1]. 2

4 Query Evaluation by Graph Reduction

We next present an algorithm for evaluatingXQ queries
over vectorizedXML data. In light of the inherent difficulty
of the problem observed in the previous section, our opti-
mization algorithm is necessarily approximate,i.e., it does
not always find the optimum evaluation plan. Our key tech-
nical idea is to exploit lazy evaluation, to avoid unneces-
sary scanning of data vectors and to reduce decompression
of skeletons. To this end we propose a novelgraph reduc-
tion framework that allows us to apply relational optimiza-
tion techniques to querying vectorizedXML data. To sim-
plify the discussion we considerXQ queries; but the tech-
nique can be readily extended toXQ[∗,//] and largerXQuery
classes.

4.1 An Evaluation Algorithm

Consider the query graphGq of an XQ query,
e.g.,Fig. 3(c). Observe that each edge inGq can be readily
understood as an extension of an operation in the relational
algebra:

• A tree edge from a variable$y to $x labeled with an
XPath expressionp, denoted byp($y, $x), is like a
projection: extracting thep descendant of the$y node.
• A tree edge from a variable$y to a constantc, de-

noted byp($y, c), is reminiscent ofselection: checking
whether$y has ap descendant with valuec.
• An equality edge between nodesv1 andv2, denoted by
eq(v1, v2), is similar to ajoin.

To evaluate the query one needs to find an efficient plan
for processing these operations. The naive algorithm given
in Sect. 3 evaluates each operation fora node at a time. For
instance, for a projection operation,i.e.,a tree edge labelled
p from $y to $x, it repeatedly evaluatesp for each$y value,
and thus it repeatedly scans the same data vector for the
same operationw.r.t. each variable instantiation.

To avoid scanning data vectors unnecessarily, we evalu-
ate each operation fora collection at a time. Referring to the
projection operation above, we first compute the sequence
of all values of$y, called theinstantiation of$y; we then
evaluatep and compute all instantiations for$x once for
the entire collection of$y values, scanning the correspond-
ing data vector once. Reflected in the query graph, this can
be understood asmergingthe $y and$x nodes into a sin-
gle node ($y, $x), which holds the instantiations of$y and
$x. In other words, this is toreducethe graph by removing
one edge from it. Thus we refer to this idea asgraph re-
duction. In a nutshell, we evaluate a query by reducing its
graph one edge at a time; the reduction process terminates
after the graph is reduced to a single node, which holds the
instantiation of the query, namely, a sequence of all value
tuples for the variable tuple of the result skeleton. At this
point the query instantiation is passed to the result skeleton,
which constructs the resultXML tree with the instantiation.

The next question is: in what order should we evaluate
the operations in a query graph? Certainly such an order-
ing should observe the dependency relation on the variables
in the graph, as described in Sect. 3. But there are typi-
cally multiple possible orderings. Leveraging on the con-
nection between edges in a query graph and operations of
the relational algebra, we use the well-developed techniques
for relational query optimization. In particular, in our algo-
rithm we topologically sort the operations in a query graph
by using algebraic optimization rules [30],e.g.,perform-
ing selections before join. This sorting operation could be
cost/heuristics-based, by means of a mild generalization of
cost functions and heuristics for relational operations.

Another question concerns simplification of a query
graph at compile time. There are possiblyredundant vari-
ablesin a query graph. Consider,e.g.,a tree edge labelled
p from $y to $z followed by a tree edge labelledp′ from
$z to $x, where$z is not used anywhere else in the query.
Since there is no need to instantiate$z, at compile time we
shortcut the redundant$z by merging the two edges into a

Input: the vectorizedXML representation(S, V) of T ;
and anXQ queryQ represented as(Gq, Gr), which
are the query graph and result skeleton ofQ.

Output: the vectorized representation(S′, V ′) of Q(T).

1. S′ :=Gq; V ′ = ∅;
2. remove redundant variables fromGq;

3. topologically sort operations inGq w.r.t. variable dependency
and by means of relational algebraic optimization rules;

4. letL be the sequence of operations in the topological order;
5. for eache ∈ L do
6. reduce (Gq, e);

7. letI be the instantiation of the query from the reduction;
8. for each t ∈ I do
9. S′ := expand (S′, t);
10. V ′ := populate (V ′, t);
11.return (S′, V ′);

Figure 4. Algorithm eval

single edge labelledp/p′ from $y to $x. We use this sim-
ple strategy because it is beyond reach to find an efficient
algorithm to minimizeXQ queries by Prop. 3.4.

Putting these together, we outline our evaluation algo-
rithm, Algorithm eval , in Fig. 4. The algorithm takes as
input a vectorized representationVEC(T) of anXML treeT
and a graph representation(Gq, Gr) of anXQ queryQ; it re-
turns as output the vectorized representation(S′, V ′) of the
query resultQ(T). Specifically, it first simplifiesGq and
then topologically sorts the operations inGq (steps 2–3) as
described above. It then evaluatesGq following the order-
ing (steps 4–6), reducing each operation by invoking a pro-
cedurereduce , which will be given shortly. This graph re-
duction process yields an instantiationI of the query, which
is associated with the single node that has resulted from
graph reduction, and consists of a sequence of value tuples
for the variable tuple of the result skeleton. With each tu-
ple t in I the result skeleton ofQ is expanded to increment
the skeletonS′ of the output tree, sharing subtrees when-
ever possible (steps 7–9). Note that compression is con-
ductedstepwise for each tuplet, instead of first generating
the entire result tree and then compressing it. This leads to
substantial reduction in decompression ofT . Similarly, the
data vectorV ′ of the query result is populated with eacht
(step 10). These are conducted by proceduresexpand and
populate (due to the space constraint we defer the details
of these procedures and the full treatment of stepwise com-
pression to the full version of the paper). The evaluation
process always terminates since a query graph is aDAG.

Example 4.1: Given the query(Gq, Gr) of Figs. 3(c) and
3(d) and the vectorizedXML tree(S, V) of Figs. 2(a) and
2(b), Algorithmeval first sorts the operations ofGq:

/bib(doc, $d), book($d, $b), publisher($b, ‘SBP’),
author($b,), article($d, $a), author($a,),
eq($b/author, $a/author).

Hereauthor($b,) only detects whether or not$b has an
author, and ‘’ indicates an unnamed variable which is not

$d

$b $a

'SBP'

/book /article

/author/author/publisher

step 1

($d, $b)

$a

'SBP'

/article

/author
/author

/publisher
$a

/article

/author
/author

($d, $b)

step 2 step 3

($d, $b, $b/author)
/article

$a
/author

($b, $b/author, $a)

/author

($b, $b/author, $a, $a/author) ($b, $a)

step 4 step 5 step 6 step 7

Figure 5. Reduction steps in Example 4.1

instantiated. Based on relational optimization heuristics,
publisher($b, ‘SBP’) is scheduled before the equality
testeq($b/author, $a/author) . Given this ordering the op-
erations are then conducted, reducingGq into a single node
($b, $a) in seven steps, as depicted in Fig. 5 (the details
of the reduction steps will be seen shortly). When the re-
duction process is completed, the instantiation of the query
is available as〈(Curation , XStore), (Curation , XPath),
(XML, XStore), (XML, XPath)〉. With each value tuple in
the sequence, the algorithm expands the result skeleton and
data vectors of the output tree. Finally the algorithm returns
the vectorized tree shown in Figs. 3(a) and 3(b). 2

Algorithm eval has several salient features. First, as
will be seen shortly from the procedurereduce , it exploits
lazy evaluation: data vectors are scanned only when they are
needed; one does not have to load the entireXML document
into memory. Second, its graph reduction strategy allows us
to scan necessary data vectors once for each operation (and
may further reduce scanning by grouping multiple opera-
tions using the same vector). Third, it allows seamless com-
bination with relational algebraic optimization techniques.
Fourth, with stepwise compression it avoids unnecessary
decompression of the input vectorizedXML tree.

4.2 Graph Reduction

We next focus on graph reduction and provide more de-
tails about the procedurereduce . The procedure pro-
cesses an operationop(v1, v2) in a query graph, whereop is
either an XPath expressionp (for projection, selection) oreq
(for equality/join), andv1, v2 are either nodes inGq for pro-
jection and selection, or path terms$y/p1, $x/p2 for join
eq. If v2 is a variable$x, its instantiation,i.e., a sequence
of nodes (or values) inVEC(T), is computed byreduce
(op(v1, v2)); the instantiation is denoted byinst($x) .

The key challenge for graph reduction is how to cor-
rectly combine individual variable instantiations in order
to produce the final value-tuple instantiationI. To do
so, we extend each variable instantiationinst($x) by
including paths from the document root to the document
nodes inVEC(T) that are mapped to$x. More specifically,
w.l.o.g. we assume that each noden in the skeletonVEC(T)

$d $b card

0 1 (2)

(a) inst(/bib/$d/$b)

$d $b value card

0 1 RH (2)

(b) inst(/bib/$d/$b/author)

Figure 6. Sample extended vectors

has a unique id, denoted bynid(n), as shown in Fig. 2(a).
For eachn in inst($x) , wheren is either a node in the
skeleton ofVEC(T) or a value in a data vector ofVEC(T),
we encoden with anextended vector, which is essentially
a path inVEC(T) consisting of not onlynid(n) (or n for
a text valuen), but also the ids that are mapped to the an-
cestors of$x in Gq. Now inst($x) is a bag consisting
of extended vectors instead of nodes/values. Referring to
Example 4.1, at step 4 of the reduction,inst($b) and
inst($b/author) consist of extended vectors given in
Fig. 6, in whichcard indicates the cardinility of each ex-
tended vector. As will be seen shortly, extended vectors al-
low us to generate value tuples for the result skeleton while
preserving the semantics of the query.

Observe the following. First, extended vectors are de-
fined for nodes in aquery graphin contrast to data vectors
for values in anXML data tree. Second, extended vectors
are computed during query evaluation (graph reduction);
initially only the instance of the root of the query graph is
available, which is the id of the root of theXML data tree.

We now move on to procedurereduce (Gq, e), which
evaluates the operatione over a vectorized treeVEC(T) =
(S, V). Consider the following cases ofe = op(v1, v2).
Projection p($y, $x). The procedure does the follow-
ing: (1) compute inst($x) ; (2) filter inst($y)
w.r.t. inst($x) ; (3) merge$y and $x into a new node
($y, $x); and (4) modifyGq in response to the merging.

First, the instantiationinst($x) is computed by
traversing the skeletonS of VEC(T), following the pathp
and starting from$y elements ininst($y) ; it may also
scan the data vector fromV identified by the pathp′/p,
wherep′ is the path from document root to the instanti-
ated$y elements, ifp′/p leads to text nodes. The extended
vectors are created forinst($x) by concatenating the ex-
tended vectors ofinst($y) and the nodes/values mapped
to $x during the evaluation. Note that by the variable depen-
dency embedded in the topological ordering,inst($y)
must be available when the operationp($y, $x) is ready
to be evaluated. It should be remarked that the evaluation
is lazy: only the needed data vector is scanned, and it is
scanned once for computing the entireinst($x) .

Second, we decrease the cardinality of those extended
vectors ininst($y) (and remove them if their cardinal-
ity is 0) that are not a prefix of any vectors ininst($x) ,
i.e.,removing those$y elements that do not have ap descen-
dant. Note that this is not an issue for relational projection:
relational data is regular and thus there is no need to check
the existence of columns. ForXML – typically semistruc-
tured – this is not only necessary for the correctness of query

evaluation, but also reduces the evaluation cost. We denote
this process asfilter (inst($y) ,inst($x)).

Third, $y and $x are merged into a single nodev =
($y, $x), which carries the instantiations (inst($y) ,
inst($x)) with it. In general, during graph reduction, a
node inGq is labeled with (X, I), whereX is a sequence
of nodes inGq andI is their corresponding instantiations.
In a nutshell,X contains (1) variables that are in the vari-
able tuple of the result skeleton; or (2) nodes that indicate
unprocessed operations. We denote this asmerge ($y, $x).

Fourth, the query graph is modified: the new nodev is
inserted intoGq, the nodes$y, $x are removed fromGq,
and edges to/from$y, $x are redirected to be to/fromv. We
refer to this process asmodify (Gq, v).

Examples of projection processing include reduction
steps 2, 4, 5 and 6 of Fig. 5. Note that$d is dropped from
the root node at step 5 since it no longer has outgoing edges
(i.e.,unprocessed operations) to the rest of the query graph.

Selectionp($y, c). The procedure (1) computesinst(c) ,
and (2) filtersinst($y) w.r.t. inst(c) to remove/adjust
those extended vectors that do not have ac descendant
reachable viap. Note that all this selection operation does
is to filter inst($y) . The constantc is removed fromGq
if it no longer has unprocessed incoming edges.

For example, the step 3 of Fig. 5 filtersinst($b) by
decrementing the cardinality of the extended vector(0, 1)
from 3 to 2 since onebook node has no “SPB” publisher .

Join eq($y/p1, $x/p2). Again by the variable dependency
in the topological ordering, when this operation is pro-
cessed bothinst($y) andinst($x) are available. This
operation is processed as follows: (1) compute projec-
tionsp1($y, $y1) andp2($x, $x1), as well as instantiations
of new variablesinst($y1) and inst($x1) ; (2) com-
pute join of inst($y1) and inst($x1) , and (3) filter
inst($y) and inst($x) by adjusting/removing those
extended vectors that do not participate in the join. Note
that the join result is not materialized. The join is used as a
predicate to reduce the cardinality of participating instanti-
ationsinst($y) andinst($x) .

For example, the step 7 of Fig. 5 removes the extended
vector(0, 2) from inst($a) (not shown in Fig. 5) since it
does not participate in the join withinst($b/author) .

Value tuples for the result skeleton. Finally, when the
query graphGq is reduced to a single nodev, we need
to generate value tuples for the variable tuple of the result
skeleton. Observe that the nodev now carries(X, I), where
X is the sequence of all the variables in the result skeleton,
andI consists of their corresponding instantiations. For ex-
ample, after step 7 in Fig. 5, the single node inGq carries
(X, I), whereX is ($b, $a) andI consists of

inst($b) : (0, 1,card=2) inst($a) : (0, 3,card=2)

To generate valuetuplesfor the result skeleton, we need

Input: the query graphGq of anXQ queryQ,
and an operationop(v1, v2) in Gq.

Output: the reducedGq; whenGq has a single node, it returns
the instantiationI of the query, consisting of
value tuples for the result skeleton ofQ.

1. casethe operatione = op(v1, v2) of
2. (1) projectionp($y, $x):
3. computeinst($x) usinginst($y) andVEC(T);
4. inst($y) := filter (inst($y) , inst($x));
5. v := merge ($y, $x);
6. Gq := modify (Gq, v);

7. (2) selectionp($y, c):
8. computeinst(c) usinginst($y) andVEC(T);
9. inst($y) := filter (inst($y) , inst(c));
10. Gq :=Gq with c and its incoming edges removed;

11. (3) joineq($y/ρ1, $x/ρ2):
12. compute projecttionsρ1($y, $y1) ρ2($x, $x1) and

instantiationsinst($y1) andinst($x1) ;
13. temp := join of inst($y1) andinst($x1) ;
14. inst($y) := filter (inst($y) , temp);
15. inst($x) := filter (inst($x) , temp);
16. Gq :=Gq with the equality edge removed;

17. if Gq has a single node carrying (X, I)
18. then return group (I);

19. return Gq;

Figure 7. Procedure reduce

to group these individual instantiations. This is where we
need extended vectors: grouping is conducted based on
the lowest common ancestor of the participating variables.
For our example above, we will mergeinst($b) and
inst($a) on the identifier of their ancestor, namely,$d.
It is fairly simple for this example since there is only one
$d node; but the usefulness of extended vectors is evident
for more complicated cases. The grouping for this example
yields the query instantiation〈(1, 3)〉 with card = 4. Note
that ancestor ids are dropped now since they are no longer
needed. This instantiation is passed to the result skeleton,
which extractstitles of these nodes and obtains the query
result: 〈(Curation , XStore), (Curation , XPath), (XML,
XStore), (XML, XPath)〉. The process of generating value
tuples from extended vectorsI is referred to asgroup (I).

Putting these together, we outline procedurereduce in
Fig. 7, which operates on a vectorizedXML tree VEC(T).
For the lack of space we omit the details ofgroup , merge ,
modify andfilter , which have been described above.

5 Experimental Study

We next present a preliminary experimental evaluation of
our framework. We focus on query evaluation as the com-
pression aspects of our work have been addressed in [9, 20].

We implemented the vectorization scheme (VX) on top of
the Shore [11] storage manager. Each vector was stored as a
separate clustered file. The hardware we used for our exper-

Dataset XML Size # Nodes # Skel. Nodes # Skel. Edges # of Vectors Vectors’ Size

XMark (S.F. = 1)/(S.F. = 10) (XK) 111MB/1.2GB 1.7M/16.7M 73K/163K 381K/1.4M 410/410 79MB/782MB
Penn Treebank (TB) 54MB 7.1M 475K 1.3M 221,545 7.1MB

MedLine (ML) 1.5GB 36M 586K 5.8M 75 627MB
SkyServer (SS) 80GB 5.2G 372 371 368 29GB

Table 1. Description of the datasets used in our experiments

iments was a Linux box running RedHat 9. The CPU was
a 1.8Ghz Pentium 4, while the system had 2GB of physical
memory. The disk we used was a 200GB HDD; the oper-
ating system was on a separate disk. The raw disk speed,
as measured by Linux’shdparam , was 32.5 MB/sec. We
also installed two additional systems for comparison: the
Galax [16] (GX) XQuery interpreter, which is a main mem-
ory implementation of XQuery, and Berkeley DBXML [5]
(BDB), which is a nativeXML document store while, at
the same time, provides XPath 1.0 querying functionality.
We used the optimizedGX executable and turned off type
checking to obtain better performance. For every query
evaluated onBDB, the appropriate index was built on the re-
trieved path. We used a buffer pool size of 1GB for Shore.
GX could use all available memory.

We experimented with four datasets: the XML bench-
mark XMark [24] (XK), the Penn TreeBank (TB) natural
language processing dataset, the MedLine (ML) biological
dataset, and the SkyServer (SS) astronomical dataset. The
datasets and their properties are summarized in Table 1. The
XK dataset is a recognizedXML benchmark; we chose the
remaining three datasets to point out different aspects of our
framework. The TB dataset has a highly irregular structure.
Although the smallest in terms of rawXML size, it is decom-
posed into 221,545 data vectors. The SS dataset is a highly
regular dataset. Though the largest in size, it is decomposed
into only 368 vectors. The ML dataset is somewhere in
the middle. An interesting approximation of each dataset’s
complexity is the ratio between its number of nodes in the
raw XML document and the number of skeleton nodes in its
compressed representation. The lower the ratio, the higher
the complexity. For instance, this ratio for TB is 15, while
the ratios for ML and SS are 61 and14 · 106 respectively.

We use numbers reported in [24] and [17] for the XK2

and SS dataset comparisons. The systems used in these pa-
pers were the Monet [23] system3 and an SQL Server setup,
respectively. Although our setup will differ, we use it to
provide a rough comparison between the frameworks.

The numbers we report are cold numbers. Each query
was run five times; the average of those five runs is reported.
We calculated that all timings are within5% of the average
value with99% confidence. The queries are summarized in
Table 2 (see Appendix A for the full list of queries). Not all
systems were able to process all queries. For instance, TQ2
was a join query thatBDB could not process simply because

2The reported numbers are for an XMark scaling factor of 1.
3Available athttp://monetdb.cwi.nl .

Query Dataset Failing system (reason)

KQ1 XK —
KQ2 XK BDB (No XQuery support)
KQ3 XK Same as above
KQ4 XK —
TQ1 TB —
TQ2 TB BDB (No XQuery support)
TQ3 TB same as above
MQ1 ML GX (OoM)
MQ2 ML BDB (No XQuery support),GX (OoM)
SQ1 SS BDB (Could not load doc.),GX (OoM)
SQ2 SS Same as above
SQ3 SS Same as above
SQ4 SS Same as above

Table 2. Experimentation query workload;
‘OoM’ = out of memory

XQuery functionality is not available for that system. We
provide the reasons for system failures.

A simple scalability experiment is described in Fig. 8.
The x-axis shows the XMark scaling factor for the XK
dataset; they-axis the query evaluation time.VX scales
linearly as the input size increases. Intuitively, this makes
sense: a linear increase in document size and, hence, in the
cardinality of the relevant vector(s) leads to a linear increase
in query evaluation time. The cumulative results across all
thirteen queries of the workload are presented in Table 3.
A shaded cell denotes that the system failed to process the
query for the reasons explained in Table 2. ’N/A’ denotes
that we could not use the system for the query.

In [24] what is called an association-based mapping is
used.XML parent-child relationships are captured in binary
relations. A dataguide-like structure is then computed so
that groupings of binary relations into paths are tracked.
The result is that for each path in the query a single ta-
ble will be scanned. Queries KQ1, KQ2 and KQ3 are all
value-based filtering queries that do not return any complex
XML ; by taking advantage of the “dataguide” each query is
reduced to the equivalent relational operation on binary ta-
bles. In contrast,VX always has to scan and navigate the
skeleton in addition to any data vectors. To be complete,
we have put in parentheses the time spent byVX perform-
ing the value-based evaluation. Though the evaluation time
for these queries is always comparable to Monet’s, it can be
seen that the bulk ofVX ’s processing is in skeleton naviga-
tion. Path indexes on the skeleton present an interesting ex-
tension of our system. In Query KQ4, on the other hand, the
dominance ofVX is evident. Query KQ4 is an entireXML

subtree retrieval with a complex navigational component,
which cannot be mapped to a single table scan in Monet;

KQ1 KQ2 KQ3 KQ4 TQ1 TQ2 TQ3 MQ1 MQ2 SQ1 SQ2 SQ3 SQ4
VX 4.4 (1) 9.8 (1.5) 9.4 (1.1) 9.2 (4.5) 9.6 139.4 158.1 133.4 385 36.9 61.4 32.7 30

BDB 83.9 47.7 51.2 6005
GX 894 > 50000 > 50000 671 445.3 2870 2594

Monet 0.2 8.7 7.5 1500 N/A N/A N/A N/A N/A N/A N/A N/A N/A
SQL Server N/A N/A N/A N/A N/A N/A N/A N/A N/A 248.5 40.5 1.5 170.3

Table 3. The timing results for the queries of Table 2; elapsed time is measured in seconds

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 1

0

Evaluation Time (seconds)

X
M

ar
k

Sc
al

in
g

Fa
ct

or

K
Q

1
K

Q
2

K
Q

3
K

Q
4

Figure 8. Scalability results

a reconstruction penalty has to be paid. As a consequence,
VX outperforms Monet by almost 2.5 orders of magnitude.

GX is a native XQuery processor; however, it has to
load the entire document before processing it.VX , on the
other hand, accessed only the relevant vectors to evaluate
the query. That gives it superior performance for the queries
that GX could evaluate, even if the document loading time
is ignored. For instance, the loading time of the TB dataset
in GX was 439 seconds; even if that time is subtractedGX is
still outperformed byVX .

A robust storage manager likeBDB was not able to even
load documents whose textual representation was signifi-
cantly smaller than available memory, which is whatBDB

requires to have at load-time. In order to gather perfor-
mance results we “chunked” each dataset and inserted it
into the sameBDB container. BDB was then able to per-
form XPath queries – after having built its special index
structures. In all cases, however, it was significantly out-
performed byVX .

The real “win” for VX comes when it is compared to a
commercial relational database. We have to note here that
in [17] SQL Server was rigorously tuned for the SS dataset.
In Queries SQ1 and SQ4VX outperforms SQL Server by
almost a factor of six. In Query SQ2VX is outperformed
by SQL Server though performance remains comparable.
The performance ofVX , however, is not always dominant
or even comparable to that of a commercial system; the rea-
son is that we do not leverage all relational evaluation tech-

niques – indexing in particular. Query SQ3 is a join between
two relational tables. In [17] an index over one of the join
attributes is built and index-nested loops is employed as the
evaluation algorithm. The join predicate is highly selective
returning only a small portion of the inner relation so the
join is evaluated fast. The lack of indexing inVX means
that both vectors need to be scanned. There is nothing that
prevents efficient vector indexes to be incorporated into our
system, and this is one of the enhancements we are currently
investigating.

6 Concluding Remarks

We have proposed a new technique, vectorization, for
building a nativeXML store over which a practical subset
of XQuery can be evaluated efficiently using graph reduc-
tion and established relational database techniques. Our
preliminary experimental results indicate that this method
provides an effective approach to storing and querying sub-
stantialXML data repositories.

There is a host of work on using aRDBMS to store and
queryXML data (e.g.,[7, 15, 26]). Along the same lines [23]
encodes parent-child edges (associations) in a binary re-
lation, and it mapsXQuery to OQL. The key challenge to
the so-called “colonial” approach is how to convertXML

queries toSQL queries [27]. Furthermore, most of the colo-
nial systems ignore the order ofXML data (one exception
is [28]), which is often critical to the semantics of theXML

data. Our work differs from the colonial approach in that
we do not require the availability of the relational infras-
tructure, and thusXQuery-to-SQL translation is not an issue;
in addition, vectorization preserves the order ofXML data.

There has also been recent work on nativeXML systems
(e.g., [21, 22, 25]). These systems typically support text
search and value filtering only, and they adopt vastly differ-
ent representations for the structure and the text values of
XML data. As a result their query evaluator has to “switch”
processing paradigms as it moves from the realm of trees to
the realm of text values; this, at times, poses a high over-
head. In contrast, our system supports a uniform interface
for querying both the structure and data values.

We have remarked in Sect. 1 on the connection between
this work, XML compression [20] and skeleton compres-
sion [9]. Skeletons in [20] were compressed, but not in a
form suitable for query evalation; in [9] the skeleton was
expanded to represent the results of XPath evaluation. By
contrast the query evaluation technique we have developed

here yields new, usually smaller, skeletons to represent the
result ofXQueryevaluation.

There is an analogy between our graph reduction strat-
egy and top-down datalog evaluation technique (in partic-
ular, QSQ [1]). The major difference is that our technique
is for evaluatingXQueryover vectorizedXML data, whereas
QSQ is for datalog queries over relational data. We plan
to improve our evaluation strategy by incorporating datalog
techniques such as magic sets [1]. Finally, the graph reduc-
tion technique we have described here differs fundamentally
from graph reduction used in functional programming [18]
in that with each reduction step, associated data – which is
not manifest in the graph – is also evaluated.

There is naturally much more to be done. First, we have
not capitalized on all the technology that is present in rela-
tional query optimization. For example, we currently make
no use of indexing, and there is no reason why we cannot
use it with the same effect as it is used in relational sys-
tems. It may also be that we can incorporate limited vec-
tor compression as suggested in [3] to further reduce I/O
costs. Second, there are interesting techniques for further
decomposition of the skeleton and making use of both rela-
tional and vector operations for exploiting this decomposi-
tion. Third, we intend to extend our graph-reduction tech-
nique to largerXQueryclasses. Fourth, it is certain that we
can exploit base type information (XML Schema [29]) and
leverage structural and integrity constraints to develop bet-
ter compression. Finally, we recognize the challenges in-
troduced by updating vectorizedXML data, and we are cur-
rently studying incremental [6] and versioning techniques
for efficient maintenance of vectorized data. It should be
mentioned that vectorization may simplify schema evolu-
tion, e.g.,adding/removing a column.
Acknowledgements The authors would like to thank
Christoph Koch for allowing us to use his skeleton construc-
tion and XPath evaluation code from [9] and the anonymous
referees for their comments. This work was supported in
part by EPSRC grant GR/S13194/01 and a Royal Society
Wolfson Merit Award.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of
Databases. Addison-Wesley, 1995.

[2] A. Ailamaki et al. Weaving Relations for Cache
Performance. InVLDB, 2001.

[3] A. Arion et al. Efficient query evaluation over compressed
XML data. InEDBT, 2004.

[4] D. S. Batory. On searching transposed files.TODS,
4(4):531–544, 1979.

[5] Berkeley DB XML v1.2, 2004.http://www.
sleepycat.com/products/xml.shtml .

[6] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation
of schema-directed XML publishing. InSIGMOD, 2004.

[7] P. Bohannon et al. From XML Schema to Relations: A
Cost-Based Approach to XML Storage. InICDE, 2002.

[8] P. A. Boncz, A. N. Wilschut, and M. L. Kersten. Flattening
an object algebra to provide performance. InICDE, 1998.

[9] P. Buneman, M. Grohe, and C. Koch. Path Queries on
Compressed XML. InVLDB, 2003.

[10] P. Buneman et al. Data integration in vector (vertically
partitioned) databases.IEEE Data Eng. Bull., 25(3):19–25,
2002.

[11] M. Carey, D. J. DeWitt, J. F. Naughton, and et al. Shoring
up persistent applications. InSIGMOD, 1994.

[12] D. Chamberlin et al. XQuery 1.0: An XML Query
Language. W3C Working Draft, June 2001.

[13] J. Clark and S. DeRose. XML Path Language (XPath).
W3C Working Draft, Nov. 1999.

[14] G. P. Copeland and S. Khoshafian. A decomposition storage
model. In S. B. Navathe, editor,SIGMOD, 1985.

[15] D. Florescu and D. Kossmann. Storing and Querying XML
Data using an RDMBS.IEEE Data Eng. Bull.,
22(3):27–34, 1999.

[16] Galax: An implementation of XQuery, 2003.
http://db.bell-labs.com/galax/ .

[17] J. Gray et al. Data mining the SDSS Skyserver database.
Technical Report MSR-TR-2002-01, Microsoft, 2002.

[18] S. L. P. Jones.The Implementation of Functional
Programming Languages. Prentice-Hall, 1987.

[19] P. Krneta. A new data warehousing paradigm for user and
data scalability. Technical report, Sybase, 2000.

[20] H. Liefke and D. Suciu. XMILL: An Efficient Compressor
for XML Data. In SIGMOD, 2000.

[21] J. F. Naughton et al. The Niagara Internet Query System.
IEEE Data Eng. Bull., 24(2):27–33, 2001.

[22] S. Paparizos et al. TIMBER: A Native System for Querying
XML. In SIGMOD, 2003.

[23] A. Schmidt et al. Efficient relational storage and retrieval of
XML documents. InWebDB, 2002.

[24] A. Schmidt et al. XMark: A benchmark for XML data
management. InVLDB, 2002.

[25] H. Scḧoning and J. Ẅasch. Tamino - An Internet Database
System. InEDBT, 2000.

[26] J. Shanmugasundaram et al. Relational Databases for
Querying XML Documents: Limitations and Opportunities.
In VLDB, 1999.

[27] J. Shanmugasundaram et al. Querying XML Views of
Relational Data. InVLDB, 2001.

[28] I. Tatarinov et al. Storing and querying ordered XML using
a relational database system. InSIGMOD, 2002.

[29] H. Thompson et al. XML Schema. W3C Working Draft,
May 2001.http://www.w3.org/XML/Schema .

[30] J. D. Ullman.Database and Knowledge Base Systems.
Computer Science Press, 1988.

[31] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression.IEEE Trans. of Information Theory,
23(3):337–349, 1977.

A Queries of the Test Suite

QueriesKQ1,KQ2, KQ3, KQ4 renameQ5, Q11, Q12 and
Q13 in [24], while SQ1, SQ2, SQ3, SQ4areQ3, Q6, SX6 and
SX13 in [17], respectively. The remaining queries are:

TQ1: /alltreebank/FILE/EMPTY/S/NP[JJ=’Federal’]
TQ2: for $s in /alltreebank/FILE/EMPTY/S

for $nn in $s//NN
for $vb in $s//VB

where $nn = $vb return $s
TQ3: for $s in /alltreebank/FILE/EMPTY/S

for $nn1 in $s/NP/NN

for $nn2 in $s//WHNP/NP/NN
where $nn1 = $nn2 return $s

MQ1: /MedlineCitationSets/MedlineCitation/
[Language = "dut"][PubData/Year = 1999]

MQ2: for $x in /MedlineCitationSet/MedlineCitation
$y in /MedlineCitationSet/MedlineCitation/

CommentCorrection/CommentOn
where $x/PMID = $y/PMID return $x/MedlineID

