
Updating Recursive XML Views of Relations
Byron Choi

Nanyang Technological University

kkchoi@ntu.edu.sg

Gao Cong
Univeristy of Edinburgh &

Microsoft Research Asia

gao.cong@ed.ac.uk

Wenfei Fan
University of Edinburgh &

Bell Laboratories

wenfei@inf.ed.ac.uk

Stratis D. Viglas
University of Edinburgh

sviglas@inf.ed.ac.uk

Abstract

This paper investigates the view update problem forXML views
published from relational data. We consider (possibly) recursively
definedXML views, compressed intoDAGs and stored in rela-
tions. We provide new techniques to efficiently supportXML view
updates specified in terms ofXPath expressions with recursion and
complex filters. The interaction betweenXPath recursion andDAG

compression ofXML views makes the analysis ofXML view up-
dates intriguing. Furthermore, many issues are still open even for
relational view updates, and need to be explored. In response to
these, we revise the update semantics to accommodateXML side
effects based on the semantics ofXML views, and present efficient
algorithms to translateXML updates to relational view updates.
Moreover, we propose a mild condition onSPJviews, and show
that under this condition the analysis of deletions on relational
views becomesPTIME while the insertion analysis isNP-complete.
Finally, we present an experimental study to verify the effective-
ness of our techniques.

1 Introduction

Views provide an abstraction of the data stored in a
database and are commonly used in practice. Commer-
cial DBMSshave identified the need for materializing and/or
providing ways of updating them, and propagating the up-
dates to the underlying data [13, 20, 23]. Indeed, the study
of relational views and their update mechanisms have re-
ceived considerable attention (see,e.g.,[10, 14, 18]). Re-
cently, a number of systems have been developed to publish
relational data toXML [1, 4, 11, 13, 20, 23]; the published
data is effectivelyXML viewsof the relational data. Thus,
the problem of transparently updating theXML views needs
to be revisited. Given anXML view of a relational database,
we want to propagate updates of theXML view to the origi-
nal relational tables, without compromising the integrity of
neither theXML nor the relational data.

While several commercial systems [13, 20, 23] allow
users to defineXML views of relations, their support for
XML view updates is either very restricted or not yet avail-
able. Previous work onXML view updates [2, 25, 26] has
focused on translatingXML view updates to relational view
updates and delegating the problem to the relationalDBMS;

course

prereq

db
...

...

course

takenBy

namesidnamesid

student student

sid

cno title

course

...cno
name

course

prereq takenBy

student

name

titlecno

"Bill" "03""02" "Bill"

"Logic""CS320"

"01" "Joe" "02" "Tom"

1

1 1

1 2 2

1

1

2

student

"Complexity"
22 2

"CS320"

1 1

2

2

32

31
2sid

1 2

3

"CS650"

Figure 1. Example XML view

however, most commercialDBMSs only have limited view-
update capability [13, 20, 23]. The state of the art inXML

view updates research explicitly focuses onnon-recursively
definedXML views andXML updates definedwithoutrecur-
siveXPath queries. These restrictions are unfortunate since
the recent proposals onXML update languages (e.g.,[24])
employ recursiveXPath queries whileDTDs (and thusXML

view definitions) found in practice are often recursive [6].
Given these requirements, we consider more generalXML

views and updates: possibly recursiveXML view definitions
and XML updates specified in terms ofXPath expressions
with recursion and complex filters, as illustrated below.

Example 1.1:Consider aregistrardatabase with the follow-
ing schema (keys are underlined): course(cno, title, dept),
student(ssn, name), enroll(ssn, cno), prereq(cno1, cno2),
where a tuple(c1, c2) in prereqindicates thatc2 is a pre-
requisite ofc1. As depicted in Fig. 1 (the dotted lines
will be explained shortly), anXML view T of the relational
database is published for theCS department. The view is
required to conform to theDTD below (the definition of el-
ements whose type isPCDATA is omitted):

<!ELEMENT db (course∗)>
<!ELEMENT course (cno, title, prereq, takenBy)>
<!ELEMENT prereq (course∗)>
<!ELEMENT takenBy (student∗)>
<!ELEMENT student (ssn, name)>

The view is defined recursively since theDTD is
recursive (course is indirectly defined in terms of it-
self via prereq). Consider anXML update∆X , which
inserts the subtree forcourse CS240, as a prerequi-
site of all courses given by the recursiveXPath query
course[cno=CS650]//course[cno=CS320]/prereq. To propa-
gate∆X means that we need to find an equivalent∆R over
the relational database that inserts the same information in
the underlying tables so that if the data is re-published in

1

XML it leads to the sameXML view as the one we have after
applying∆X onT . 2

The analysis becomes complicated since there are three
sub-problems that cannot be treated in isolation, namely:
(i) how are theXML views efficiently materialized, (ii) what
are the correct update semantics forXML views of relational
data over the materialization primitives, and (iii) how arethe
new semantics implemented and the updates propagated to
the materializedXML viewsand the relational database.

Efficient materialization of XML views. An XML doc-
ument published from a relational database has highcom-
pressionpotential. In the document of Fig. 1 (Example 1.1),
certain subtree instances can be shared; one can material-
ize each subtree shared by multiple nodes in the treeonly
once, as indicated in Fig. 1 (replacing the subtrees in the
dotted triangles by dotted edges –e.g.,the subtree for course
CS320). The compressed view becomes a directed acyclic
graph (DAG), which is often significantly (at times even ex-
ponentially) smaller than the original tree. Moreover, one
may want to store the view (DAG) in relations itself. Fur-
ther, the aim is to use recursiveXPath expressions for de-
noting the parts of the document to be updated. Trans-
lation from (recursive)XPath queries over recursiveXML

views to SQL queries is hard [17]. To our knowledge, no
efficient algorithm exists for evaluatingXPath queries with
complex filterson DAGs stored in relations. To this end, we
present an efficient algorithm for evaluatingXPath queries
with complex filtersonDAGs, based on a new and incremen-
tally maintained indexing structure to handle recursion and
a technique for handling filters.

XML update semantics. Update semantics should be re-
vised given theXML view materialization primitives. In
Example 1.1, we are to insertCS240as aprereqof only
thoseCS320nodes belowCS650; however,CS320nodes also
occur elsewhere. As theXML view is published from the
same relational database, all courses have uniqueprereqhi-
erarchies. An insertion onselected pathsof the hierarchy
will result in side effectsthat should be detected. The users
should then be consulted and, if they insist on continuing,
the insert semantics needs to be revised so that the inser-
tion will be performed ateveryCS320node. The details of
side effects on deletions are even more subtle and call for a
new semantics. In light of this we refine the update seman-
tics for XML views of relations to accommodateXML side
effects. In addition, we develop an algorithm to translatere-
cursiveupdates on apossibly recursively definedXML view
to updates on the relational representation of theXML view.

Update propagation. Since theXML view is materialized
in relations there is substantial work to be carried out in the
relational realm. To this end, we identify akey-preservation
condition onSPJ views, which is less restrictive than the
conditions imposed by previous work [10, 14]. We es-

relational view V
(compression)

∆ V

∆ R

∆ X

∆ X

∆ X ∆ V

∆ V ∆ R

reject reject

validation
DTD

translation:

translation:
to

RDB to

XML update report side effects

XML view T

Figure 2. Overview of XML view updates

tablish complexity results for the updatability problem to
extend the few existing ones [3, 8]. We show that under
key-preservation onSPJviews, while the problem for tuple
insertions isNP-complete, it becomestractable for group
deletions (which isNP-complete without key preservation).

Problem statement and proposed solution.Given anXML

view defined as a mappingσ : R → D from relations of
a schemaR to XML documents (trees) of aDTD D, a re-
lational instanceI of R, the XML view T = σ(I), and
updates∆X on theXML view T , we want to computere-
lational updates∆R such that∆X(T) = σ(∆R(I)). That
is, the relational updates∆R, when propagated toXML via
the mappingσ, yield the desiredXML updates∆X on the
view T . We propose a framework for processingXML view
updates, as shown in Fig. 2. For eachXML view definition
σ : R → D, we maintain a relational databaseI of R, and
the relational viewsV that encode theDAG compression of
T = σ(I). The users pose updates onT (Section 2). Given
a singleXML update∆X onT as input, we generate a group
update∆R onI such that∆X(T) = σ(∆R(I)) if such∆R

exists; otherwisereject∆X as early as possible. Specifi-
cally, the framework processes anXML update∆X on T
in three phases, namely,DTD validation (see [7]),transla-
tion from∆X to ∆V (Section 3), andtranslation from∆V

to ∆R (Section 4). If our algorithm detects a side effect,
we report it to the user. After the relational update∆R is
computed, we update the underlying databaseI using∆R,
update the relational viewsV using∆V , and finally,in the
background, invoke our incremental algorithm to maintain
our auxiliary structures. An experimental study is presented
in Section 5, followed by related work in Section 6 and fu-
ture work in Section 7. See the full version [7] for details.

2 View Updates Revisited in the XML Setting
We give a brief overview of publishingXML from re-

lational data and present a way of efficiently materializing
the XML view in relations. We then define the syntax and
semantics ofXML updates over this representation.

2.1 Schema-Directed XML View Definition

Our techniques are applicable toXML views published
from relations via any system (e.g., Attribute Translation
Grammars–ATG [1], SilkRoute, XPERANTO). We first
briefly review ATG, a DTD-directed method for defining
XML views; we then present a way of materializing the pub-
lishedXML view in a relational database.

DTDs. A DTD D is a triplet(E, P, r), whereE is a finite
set ofelement types; r ∈ E is called theroot type; P defines
the element types: for eachA in E, there is aproduction
A→ a, wherea is a regular expression of the form:

α ::= PCDATA | ǫ | B1, . . . , Bn | B1 + . . . + Bn | B∗

whereǫ is the empty word,B is a type inE (achild typeof
A), and ‘+’, ‘ ,’ and ‘∗’ denote disjunction, concatenation
and the Kleene star, respectively. ADTD is recursiveif a
type is defined (directly or indirectly) in terms of itself.

XML views. A publishing system implements a mapping
σ : R → D from instances of a relational schemaR to doc-
uments of the targetDTD D. (a) For each element typeA of
D, σ defines a semantic attribute$A whose value is a single
relational tuple of a fixed arity and type; intuitively,$A con-
trols the generation ofA elements in theXML view, and is
used to pass data downwards as the document is produced.
(b) For each productionp = A → α in D and each typeB
in α, σ specifies aSPJquery,Q(A B)($A), which extracts
data from a relational databaseI, using$A as a constant; it
generates theB children of anA element and their$B val-
ues. For example, for the productionprereq→ course*, the
SPJqueryQprereqcourse($prereq) can be specified as:

select distinct c.cno, c.title
from prereq p, course c
where p.cno1 = $prereq and p.cno2 = c.cno

Intuitively, at aprereqnodev with $prereq valuep, the sub-
tree ofv is constructed as follows: (1)Qprereqcourse(p)
is evaluated on the databaseI; (2) for each distinct tuplec
in the result of the query, acoursechild vc of v is gener-
ated, which carriesc as the value of its semantic attribute
$course; and (3)c is then used in a similar fashion to ex-
pand the subtree rooted atvc. The entireXML view is gen-
erated top-down starting from the rootdb, and conforms to
theDTD of Example 1.1 (see [1, 7] for details).

The subtree property and DAG compression.An XML

view of a relational database is determined by the under-
lying relational data.XML node uniqueness in this context
is reflected as thesubtree property. More specifically, con-
sider a mappingσ : R → D. For any databaseI of R and
any typeA of D, anA-element (subtree) in theXML view
σ(I) is uniquely determinedby the value of the semantic
attribute$A at its root. Thus, the publishing system in fact
defines a functionST() such that, given an element typeA
and a valuet of $A, ST(A, t) returns a subtree rooted at a
node taggedA and carryingt as its attribute.

As noted in Section 1, a subtreeST(A, $A) may appear
at multiple places in theXML view σ(I). It is natural and
more efficient tocompresstheXML tree by storing asingle
copyof ST(A, $A) no matter how many times it occurs in
the XML view. This leads to aDAG representation ofXML

view σ(I). In Fig. 1, for example,course1 andstudent2 are
shared subtrees (see dashed lines).

2.2 XML View Updates: Side Effects, Semantics

Syntax. We consider a class ofXML updates [24] specified
in terms ofXPath: (a)insert (A, t) into p, (b) delete p.
Here,A is an element type, andt is an instantiation of the
semantic attribute$A of A. Given the instantiation we can
uniquely identify the root of a subtree of typeA. We define
p as anXPath expression (q in p[q] is called afilter):

p ::= ǫ | A | ∗ | // | p/p | p[q],

q ::= p | p = ‘s’ | label() = A | q ∧ q | q ∨ q | ¬q,

Side effects. On detecting side effects, users can choose
either to abort the update, or to carry on under the semantics
we provide in the sequence. Detection of side effects will
be further elaborated in Section 3.2.

Recall that each subtree in theXML tree is uniquely
identifiedby the value of the semantic attribute of its root.
Moreover, underDAG compression, a single subtree may be
shared among multiple parents. Therefore any changes to
the subtree must be reflected toall instances of the subtree,
irrespectiveof the XPath specified in the update operation.
This forms the very basis for the appearance of side effects.

Example 2.1: In Example 1.1, a new subtree was to be
inserted to change the prerequisite hierarchy of only those
CS320nodes belowCS650. However, since there is a unique
CS320subtree, all changes to its prerequisite hierarchy must
be reflected toall CS320nodes, rather than only to those
belowCS650, leading to side effects.

Side effects are more subtle for deletions. Con-
sider deletecourse[cno=CS650]/prereq/course[cno=CS320]
on the sameXML tree, that aims to remove courseCS320
from the prerequisites of courseCS650. This cannot be
simply performed by physically removing allCS320nodes
as in previous work onXML view updates [2, 25, 26]:CS320
is itself an independentCScourse and may be a prerequisite
of other courses. For a correct deletion we need to find, for
the root of the subtree to be removed, all itsparentssuch
that they are reachable via theXPath of the delete statement,
i.e., thoseprereqnodes (prereq2) below CS650nodes, and
then removeCS320from thechildrenlist of only thosepar-
entnodes. Note thatCS320is not removed from thechildren
list of nodedb since it is not reachable via theXPath. 2

The semantics ofXML view updates. It is obvious that
a new semantics should be developed to cope withside ef-
fects. This semantics needs to respect the hierarchical na-
ture ofXML views. Note that this semantics isdifferentthan
the semantics of updates onXML data [24]. Given anXML

view T with root r, an insert operation: (a) finds the set
of all elementsreachable fromr via p in T , denoted by
r[[p]]; (b) for each elementv in r[[p]], it adds the new subtree
ST(A, t) as the rightmost child ofv; and moreover, (c) for
each elementu that has the same type and semantic attribute

value asv, it also addsST(A, t) as the rightmost child ofu
as required by the semantics ofXML views.

A deletion onXML views (a) computesr[[p]]; (b) for each
nodev ∈ r[[p]], it removes the subtreeST(A, t) from the
children list of the parent nodeu of v such thatu is reach-
able viaXPathp, whereA is the type ofv andt is the value
of $A at v; and (c) for any nodeu′ of the same type and
semantic attribute valueas theparentu of v, it removes
ST(A, t) from the children list ofu′.

Compared to previous work [2, 25, 26], we supportXML

view updates that (a) are defined with much richerXPath ex-
pressions withrecursion and complex filters, (b) operate on
(possibly) recursively definedXML views, and (c) possess
a new semantics that capturesside effects, if any, of XML

view updates. We also provide techniques todetectwhether
there are side effects and, in those cases, allow the users
to cancel the update; otherwise, the operation will carry on
with the semantics described earlier.

2.3 Relational Coding of Recursive XML Views

To reduce the update problem to a strictly relational one,
we employ relational views to represent theXML views de-
fined by a mappingσ : R → D from a relational schema
R to a DTD D. This is nontrivial: (a)σ is possibly recur-
sively defined; on such views the encoding methods of pre-
vious work (e.g.,[2]) may lead toinfinitelymany relational
views; (b) we considerDAG compressions ofXML views,
i.e.,a DAG representation ofσ(I) whereI is an instance of
R as opposed to treesassumed in previous work. To this
end we define a relational representationVσ for the map-
pingσ by means of the edge relations inσ(I) as follows.

(a) We assume a compact, unique value associated with the
tuple value of semantic attribute$A in σ(I). We assume
w.l.o.g. the existence of a Skolem function [1]gen id that,
given the tuple value of$A, computes a uniqueid A. We
usegen A to denote the set of the identities of all$A tuples.

(b) We encode anXML view definitionσ in terms ofVσ as
a set ofSPJ queriesQedge A B materializing the edge re-
lations ofσ. More specifically, for each productionA →
P (A) in theDTD of σ, and for each child typeB in P (A),
we create a relationedge A B with two columns,id A
and id B. Consider productions of the formA → B∗,
where $B ← Q($A) is the associatedSPJ query in σ.
Thenedge A B is the set of pairs(ia, ib) such thatia =
gen id(a), ib = gen id(b), wherea ∈ gen A, b ∈ Q(a).
The definition ofQedge A B is similar for productions of
other forms. One example of an edge-relation query for the
example of Fig. 1 isQedge prereq course:

select gen id(gp),gen id(c.cno, c.title)
from gen prereq gp, prereq p, course c
where p.cno1 = gp.cno and p.cno2 = c.cno

Observe the following aboutVσ. (1) Vσ encodes the
DAG compressionof XML view σ(I). Indeed, for any sub-

tree ST(A, $A) in σ(I), each edge(ia, ib) in ST(A, $A) is
storedonly oncein a relationedge A B no matter how
many timesST(A, $A) (and thus the edge) appears inσ(I).
(2) EachQedge A B in Vσ is defined by aSPJquery. Thus
Vσ consists of onlySPJviews. (3)Vσ consists of abounded
number ofrelational viewseven ifσ is recursivelydefined.

Updates on relational views. Given an update∆X on a
DAG compressedXML view σ(I), we convert it to updates
∆V on the relational viewV = Vσ(I). The relational view
updates∆V consist of edge tuples of the formt = (ia, ib) to
be inserted into or deleted from an edge relationedge A B.

To account for the side effects described earlier we com-
pute the relational view updates∆V such that (a) a newly
inserted subtree is only stored once inV no matter how
many times it appears in the updated view, and (b) a deleted
subtree is not physically removed: only the tuple(ia, ib)
in V representing the corresponding parent-child edge is
deleted from its edge relationedge A B. More specifically,
the tuple corresponding toia is not removed fromgen A
becauseia is a parent node inr[[p]] and needs to be kept in
the XML view. To cope with subtree sharing,ib is not re-
moved fromgen B when the edge(ia, ib) is removed from
edge A B; instead, upon the completion of processing∆V ,
our incremental maintenance algorithm runs in theback-
groundto remove tuples fromgen B’s that are not linked
from any node; at the completion of∆V gen B’s are up-
dated.

3 Mapping XML View Updates to Relations
We present a technique for translatingXML updates on

anXML view to updates on relational views representing the
DAG compression of theXML view. The technique consists
of four parts: (a) indexing structures for checking ancestor-
descendant relationships, (b) an efficient algorithm for eval-
uating XPath queries onDAGs and detecting side effects,
(c) algorithms to translate updates on theXML view to up-
dates on its relational representation, based on the indexing
structures and the evaluation algorithm, and (d) incremental
algorithms for maintaining the indexing structures.

3.1 Auxiliary Structures

To efficiently process recursion (‘//’) and filters in aDAG,
we introduce two auxiliary structures: atopological order
and areachability matrix.

Topological order. Recall from Section 2 the function
gen id(), which generates a unique id for each node based
on the value of its semantic attribute. Given a representation
of a DAG V , we create a listL consisting of all the distinct
node ids inV topologically sorted such thatu precedesv
in L only if u is not an ancestor ofv in the DAG, i.e., there
is no path fromu to v. As will be seen shortly,L is use-
ful in evaluatingXPath filters as well as in computing and

Input : the relational viewV and topological orderL.
Output : reachability matrixM .

1. M := ∅;
2. for(k := |L|; k > 0; k- -) /*processL from right to left */
3. d := L[k];
4. Ad := {a2| a2 ∈ anc(a1), a1 ∈ parent(d) };
5. insert (a, d) into M for eacha ∈ Ad;
6. return M

Figure 3. Algorithm Reach

maintaining the reachability matrix. The listL can be com-
puted inO(|V |) time (see,e.g.,[9]), where|V | is the size of
the relational views. Its size,|L|, is the number ofdistinct
nodesin the DAG, denoted byn. Note thatL is computed
once whenV is created and it is maintained incrementally.

Reachability matrix . To efficiently evaluate ancestor-
descendant relationship between pairs of nodes in aDAG,
we use a conceptualrechability matrixencoded as a rela-
tion M(anc, desc), whereancis an ancestor node, anddesc
a descendant. We usedesc(a) (resp.anc(a)) to denote the
descendants (resp. ancestors) of nodea retrieved fromM .

Relation M can be computed inO(|V |2log|V |) time
fromV (see,e.g.,[9]). Capitalizing on the topological order
L we give AlgorithmReach, shown in Fig. 3, that computes
M in O(n |V |) time. It is based on dynamic programming:
for a noded, the ancestors of the nodes in the set of parents
of d, denoted byparent(d), are already known before we
compute ancestorsAd, such that we can computeAd by us-
ing those previously computed ancestors (lines 4-5). Given
the topological order guaranteed byL, this can be achieved
by traversingL backwards (line 2). Note thatparent(d) can
be computed from the edge relations inV .

Algorithm Reach runs in O(n |V |) time: (a) for each
node inL we visit its parents once and thus any nodev is
visited as many times as its in-degree,i.e., the number of
incoming edges tov in the DAG; (b) the sum of incoming
edges to all nodesv is |V |; (c) each visit takes at mostO(n)
time. In practice,|M | ≪ n2 ≪ |V |2, whereV is even up
to an exponential factor smaller than theXML treeT .

3.2 Evaluating XPath Queries on DAGs

To translate updates∆X on XML views to updates∆R

on relational views and detect whether the update will yield
side effects, we must evaluate theXPath expression used in
∆X . TheDAG compression ofXML views introduces new
challenges: previous work onXPath evaluation has mostly
focused on trees rather thanDAGs. While evaluation algo-
rithms were developed for path queries onDAGs [5, 21],
they cannot be applied in our setting because they (a) ei-
ther do not deal with complex filters which, as will be seen
shortly, require a separate pass of the inputDAG, or (b) do
not address maintenance of the indexing structures they em-
ploy, which is necessary when theDAG is updated. Path-
query evaluation algorithms were also developed for semi-

structured data (general graphs). However, these algorithms
neither treatDAGs differently from cyclic graphs (and thus
may not be efficient when dealing withDAGs), nor consider
XPath queries used inXML view updates.

To this end we outline an efficient algorithm for evaluat-
ing anXPath query on anXML tree that is (a) compressed
as aDAG, and (b) stored in edge relationsV . The algorithm
takes as input anXPath queryp overXML treeT , the rela-
tional viewsV , and the reachability matrixM . It computes
(a) a setr[[p]] consisting of, for each node reached byp, a
pair (B, v), wherev is the id andB the type of the node re-
spectively; (b) a setEp(r) consisting of, for eachv reached
by p, tuples of the form((C, u), v), whereu is the id of
a parent ofv in the DAG such thatp reachesv throughu,
andC is the type ofu; the setEp(r) is needed for handling
deletions; and (c) the set of nodesS in T which are affected
by the update but are not reachable viap. If the setS is not
empty, the update will generateXML side effects.

For XML data stored as a treeT , [16] developed an al-
gorithm that evaluates anXPath queryp in two passes ofT .
The basic idea of [16] is to first convertT to a binary-tree
representation (before the two-pass process is invoked), and
then run a bottom-up tree automaton on the binary tree to
evaluate filters, followed by a run of a top-down tree au-
tomaton to identify nodes reached byp. It has linear-time
complexity, the “optimal” one can expect [16]. We next
show thata comparable complexitycan be achieved when
evaluatingXPath queries on aDAG.

Our algorithm uses the following variables: (a) A list
Q of filters including all the sub-expressions of filters inp,
sorted such that for anyqi, qj in Q, qi precedesqj if qi is a
sub-expression ofqj . (b) For eachq in Q and each nodev in
L, two Boolean variablesval(q, v) anddesc(q, v) to denote
whether or not the filterq holds atv and at any descendantu
of v, respectively. The algorithm has two phases: a bottom-
up phase that evaluatesfilters in p and computesval(q, v)
anddesc(q, v) for each nodev ∈ L, followed by a top-down
phase that computesr[[p]] andEp(r). Due to lack of space
we only outline the algorithm below.

Bottom-up. The key idea is based on dynamic program-
ming. For each nodev in the topological orderL, and
for each sub-filterq in the topological orderQ, we com-
pute the values ofval(q, v) and desc(q, v). This can be
done by structural induction on the form ofq. For exam-
ple, whenq is label()= A, val(q, v) is true if and only if v
is in gen A. Whenq is q1 ∨ q2, val(q, v) := val(q1, v) ∨
val(q2, v). Whenq is a path expressionp, p can be rewritten
into a “normal form”η1/ . . . /ηn, where eachηi is either
(a) ǫ[qi], (b) a labelA, (c) wildcard ‘∗’, or (d) ‘//’. The
normal form can be obtained inO(|p|) time. Then, ifq is
rewritten as//η2/ . . . /ηn with η1 = //, val(q, v) is true

if either val(η2/ . . . /ηn, v) or desc(η2/ . . . /ηn, u) is true

for some childu of v; correspondingly,desc(q, v) is true

Input : an insertion of the form∆X = insert (A, t) into p
overT , and the relational viewV .

Output : a group insertion∆V overV .

1. ∆V := ∅;
2. EA := { ((B, gen id($u)), (C, gen id($v))) | (u, v)

is an edge inST(A, t), u, v with typeB, C resp.};
3. rA := the id ofST(A, t)’s root as generated bygen id(t);
4. for each ((B, ui), (C, vi)) ∈ EA

5. ∆V := ∆V ∪ { insert (ui, vi) into edge B C};
6. for each (B, ui) ∈ r[[p]]
7. ∆V := ∆V ∪ { insert (ui, rA) into edge B A};
8. return ∆V ;

Figure 4. Algorithm Xinsert

if either val(q, v) or desc(q, u) holds. The algorithm pro-
ceeds in the topological ordersL. Thus the truth values
of val(η2/ . . . /ηn, v) and desc(η2/ . . . /ηn, u) are already
available before evaluatingval(q, v) anddesc(q, v).

Top-down. We computer[[p]], Ep(r) and S as follows.
As mentioned,p can be rewritten asη1/ . . . /ηn, in which
all the filters have already been evaluated to a truth value
at each node. Starting from the rootr, we find nodesCi

reached after each stepηi and maintain a set of nodesS in
T that are not reachable viap but will be affected by the
update. Whenηi is ‘/’ (resp. ‘//’), S is extended with the
parent (resp. ancestor) nodes ofCi that are not reached via
p. These nodes can be found by using indexes on the edge
relationsV whenηi is A or ∗, and by means of the reach-
ability matrix M whenηi is ‘//’. The nodes reached by the
last stepηn are put inr[[p]], along with their types. The par-
ents through which they are reached viap are put inEp(r)
along with their types. There is a side effect iffS is not
empty. At that point, users may either abort the update, or
continue using our update semantics.

Complexity. In the bottom-up phase, each nodev is visited
at most as many times as its incoming edges. In the top-
down phase, each node is visited only once, except the final
step when a nodeu may be included inEp(r) at most as
many times as its the fan-out. The complexity of the algo-
rithm is thereforeO(|p| |V |).

Observe the following: (a) When theDAG is a tree each
node has one incoming edge and our algorithm visits each
node at most twice,i.e., it has the same complexity as that
of [16]. When dealing withDAGs that do not have a tree
structure, it is necessary to visit all the edges in aDAG in the
worst case and thus our algorithm is optimal. (b) In contrast
to [16], our algorithm does not require the conversion to
binary trees and the construction of tree automata, which
are potentially very large. (c) Our algorithm works onDAGs
(including trees) while [16] cannot work onDAGs.

3.3 Translating Updates from XML to Relations

On account of the relational coding ofXML views, a sin-
gle XML update may be mapped to multiple relational up-
dates (a group update) over the edge relations. We next give

two algorithms,Xinsert andXdelete, for translatingXML

view insertions and deletions to relational view updates.

Insertion. Algorithm Xinsert is presented in Fig. 4. Given
∆X = insert (A, t) into p on theXML view T , the algo-
rithm returns the group insertions∆V overV (which will
then be tested for acceptance). We first compute the set of
edges in the newly inserted subtreeST(A, t) rooted atrA,
according to the publishing mapping (lines 2-3), through
function gen id(). We then generate the relational view
updates: for each edge(ui, vi) in the newly inserted sub-
tree, we add(ui, vi) to ∆V (lines 4-5); moreover, for each
(B, ui) ∈ r[[p]], we add(ui, rA) as a new edge in∆V

(lines 6-7). The setr[[p]] of pairs(B, ui) of node identifiers
along with their types reached byXPathp from the root ofT
(line 6) is computed using ourXPath evaluation algorithm.

Deletion. Given∆X = delete p, Algorithm Xdelete (not
shown due to space constraints – see [7]) returns the group
of deletions∆V over the edge relations, which will be tested
for acceptance (Section??). For each nodevi in r[[p]] and
each parentui of vi in Ep(r), Xdelete removes the edge
(ui, vi) from V (lines 2-3). The parent-child relation is
computed by using the setEp(r), whose computation is
coupled with that ofr[[p]] (see Section 3.2).

Example 3.1: Consider theXML update∆X1
= delete

//course [cno=CS320]//student[sid=S02] on the XML tree
in Fig. 1, which is to delete studentS02 from the CS320
subtree. Given this as input, AlgorithmXdelete yields
∆V1

= {(takenBy1, student2)}. 2

Complexity. Alg. Xinsert takesO(|EA| + |r[[p]]|) time
at most (|EA| is the number of edges inST(A, t)).
Alg. Xdelete takesO(|Ep(r)|) time. Added toO(|p| |V |)
for evaluatingp, this is the cost of generating∆V from ∆X .

3.4 Maintaining Auxiliary Structures

The maintenance of auxiliary structuresL and M is
performed in thebackgroundin parallel with the process-
ing of relational updates. What we ideally would like is
to incrementallyupdateM . Existing incremental tech-
niques [12, 15] for updating reachability information are
not applicable since they rely on special auxiliary structures
which are themselves expensive to construct and maintain
(e.g.,[12] requires the computation of a spanning tree, tak-
ing O(n |V |) time for each node insertion). Incremental al-
gorithms of updating topologically ordered lists (e.g.,[19])
takeO(|V |) time per edge insertion. We give a maintenance
algorithm forM with O(n |V |) complexity by usingL, and
for L with O(n) time for each edge insertion usingM .

Deletion. Incremental maintenance in response toXML

view deletions is given in Algorithm∆(M,L)delete (Fig. 5).
The algorithm efficiently produces the following by scan-
ning the elements of anXML deletion∆X : (a) deletions
∆M over M , (b) an updatedL, and (c) the set of edges

Input : a deletion of the form∆X = delete p overT , the rel.
view V , reachability matrixM and topological orderL.

Output : deletions∆′

V
overV , ∆M overM , and updated listL.

1. ∆′

V
:= ∅; ∆M := ∅;

2. LR := the sorted listdesc(r[[p]]) according to topological orderL;
3. keep(d) := true for eachd ∈ T ; /*initialize state */
4. for each d in LR traversed backwards
5. Pd := ∅;
6. for each a ∈ parent(d)
7. if ((C, a), d) /∈ Ep(r) andkeep(a) = true
8. then Pd := Pd ∪{a};
9. Ad := {a2 | a2 ∈ anc(a1), a1 ∈ Pd};
10. for each a ∈ anc(d) \ Ad

11. ∆M := ∆M ∪ { delete (a, d) from M};

12. if Pd = ∅ /*compute∆′

V
and updateL*/

13. then keep(d) := false;
14. deleted from list L;
15. for any childd′ (of typeH) of d (of type G)
16. ∆′

V := ∆′

V ∪ { delete (d, d′) from edge G H};
17. return (∆′

V
, ∆M , L)

Figure 5. Maintenance algorithm ∆(M,L)delete

∆′
V in the deleted subtree that are no longer connected to

any nodes in theDAG and are to be passed to the garbage
collector forbackgroundprocessing. The set∆′

V is a con-
sequence of deletions∆V computed byXdelete. The need
arises when a noded ∈ ∆V is to be completely removed.

The algorithm progresses by populating deletions∆M

while, simultaneously, removing elements fromL and
populating∆′

V . The first step is arranging all nodes in
all deleted subtrees in a listLR (line 2): we compute
desc(r[[p]]), i.e., the descendants of all nodes inr[[p]]; we
then sortLR according toL; this is always possible since
LR ⊆ L. For each noded in theXML treeT we associate a
statekeep(d), initialized totrue, that keeps track of whether
the node should be ultimately deleted or not (line 3).LR

is then traversed backwards (line 4); this processing order
ensures that eachd in LR is processed after its ancestors
thus guaranteeing correct deletion semantics. For eachd in
LR we compute its undeleted parents (lines 6-8)Pd (i.e.,
any nodea in its parent set for whichkeep(a) is true) and
then itsnewancestorsAd (line 9). If there is a node ind’s
current ancestorsanc(d) that is not inAd, it should be re-
moved fromM (lines 10-11). Ifd does not have any parents
(i.e., Pd = ∅) we setkeep(d) to false and delete it fromL
(lines 13-14). According to the semantics ofL, an element
removal does not affect the topological order, In addition,
all outgoing edges from a deleted noded are deleted from
V (lines 15-16); childrend′ of d can be readily identified
from the edge relation determined by the types ofd andd′.

Example 3.2: Recall ∆X1
of Example 3.1, Algorithm

∆M,Ldelete returns (1) ∆′
V1

= ∅, (2) an unchanged
L, and (3) ∆M1

= {(prereq2, student2), (prereq2, sid2),
(prereq2, name2), . . .}, i.e., the reachability information
from nodes prereq2, course1 and takenBy1 to nodes in
the S02 subtree (student2, sid2 and name2). Note that
the set of edges{(takenBy2, student2), (takenBy2, sid2),
(takenBy2, name2), . . .}, i.e., the edges between takenBy2

(and thus course2) and theS02subtree are still valid and are
therefore not included in∆M1

. 2

Insertion. Algorithm ∆(M,L)insert is shown in Fig. 6.
Given∆X = insert (A, t) into p, it finds the∆M overM to
maintain the reachability information, and updates the topo-
logical orderL in response to the insertion ofst(A, t).

It is simple to compute∆M , which consists of two
parts: (a) the reachability matrix for the newly insertedDAG

ST(A, t) is computed by invoking AlgorithmReach (line 3);
(b) for eacha ∈ anc(r[[p]]) (ancestors of nodes inr[[p]]) and
eachd ∈ ST(A, t), we add(a, d) to ∆M (lines 4-5).

MaintainingL is a bit cumbersome. As will be shown,
M is useful in maintainingL. Before considering to in-
sert aDAG (st(A, t)), we first consider how to maintainL
when one edge is inserted. For an edge insertion(u, v),
if v is already in front ofu in L, L remains valid with-
out any change; otherwise, special care is needed to update
node positions inL. We illustrate this by an example. Con-
sider part ofL: 〈. . . , du, u, au1

, a1, dv1
, au2

, v, . . .〉, where
au1

andau2
are ancestors ofu, dv1

is a descendant ofv,
du is a descendant ofu, anda1 is neither an ancestor of
u nor a descendant ofv. After (u, v) is inserted, we can
obtain a correct topological order by movingv and its de-
scendants (dv1

) betweenu andv such that they precedeu.
This yields〈. . . , du, dv1

, v, u, au1
, a1, au2

, . . .〉. Note that
dv1

must be neither an ancestor ofu (otherwise there is a
cycle) nor an ancestor ofa1. To formalize this, we denote
the nodes betweenu and v in L as L[u : v]. Given an
edge insertion(u, v), the correct topological order can be
obtained by moving nodes inL[u : v] ∩ desc(v) to beim-
mediatelyin front of u in L. The procedure of changing
L to reflect the insertion(u, v) is denoted asswap(L, u, v),
whereu precedesv in L before the move.

We next explain the algorithm for updatingL when in-
serting ST(A, t) (lines 6-14). LetLA be the topological
order for ST(A, t) (line 2) andNC be the set of common
nodes inL andLA. The basic idea of the algorithm is to
make the relative orders of nodes inNC consistent in lists
L andLA before we mergeL andLA to obtain the updated
L. To do this, we compute the topological orderLNC

for
nodes inNC by considering the edges that connect nodes
of NC in eitherT or ST(A, t) (line 7), and then alignL and
LA with LNC

to make their positions consistent withLNC

(lines 8-11). One subtlety is worth mentioning: when per-
forming the alignment we follow the order ofLNC

from the
right to the left. This processing order ensures that the po-
sition of aligned nodes will not be changed by subsequent
alignment. To be specific, the aligned nodes are not descen-
dants of nodes to be aligned and thus will not be moved
any more whenswap(L, u, v) is called in subsequent align-
ment (they are not descendants ofv). Furthermore, if the
root of ST(A, t) is already inT , we may need to change the
order ofL in response to the inserted edge(u, rA), where

Input : an insertion of the form∆X = insert (A, t) into p overT , the
rel. viewV , reachability matrixM and topological orderL.

Output : insertions∆M overM , and updated listL.

1. computeNA andrA, as lines 2-4 in AlgorithmXinsert;
2. LA := the topological order of nodes inST(A, t);
3. ∆M := reachability matrix forST(A, t); /*using AlgorithmReach*/
4. for each a ∈ anc(r[[p]]) andeachd ∈ NA /* computing∆M */
5. ∆M := ∆M ∪ { insert (a, d) into M};

6. NC := the set of common nodes in listsL andLA; /*updateL*/
7. LNC

:= the topological order of nodes inNC ;
8. for (k = |LNC

|; k > 1; k −−) /*align LA andL with LNC
*/

9. u := LNC
[k]; v := LNC

[k − 1];
10. if ordLA

(u) < ordLA
(v) then swap(LA, u, v);

11. if ordL(u) < ordL(v) then swap(L, u, v);
12. if rA ∈ L then for eachu in r[[p]]
13. if ordL(u) < ordL(rA) then swap(L, u, rA);
14.L := mergeLA into L;
15. return (∆M , L);

Figure 6. Maintenance algorithm ∆(M,L)insert

u ∈ r[[p]](u /∈ LA) (lines 12-13). After we obtain two con-
sistent listsL andLA, we can mergeLA into L to generate
the updatedL (line 14). This can be done by regarding the
nodes inNC as “pivots” and inserting the new nodes (i.e.
LA \NC) into L before their respective “pivots”.

Complexity. The worst-case time complexity of Algo-
rithm ∆(M,L)delete is O(n |V |), which is the cost of com-
puting new ancestors for nodes inLR. For each node in
LR we visit its parents once, which in total takesO(|V |)
time in the worst-case (in practice it is often much smaller
than|V |); at each visit, the algorithm takesO(n) time. The
worst-case time complexity of Algorithm∆(M,L)insert is
O(|EA|+ |ENC

|+(|NC |+ |r[[p]]|) n+ |NA||EA|+ |NA| n),
where (a)|NA| is the number of distinct nodes, and|EA|
is the number of edges in the inserted subtreeST(A, t),
(b) |NC | is the number of common nodes inL and LA,
|ENC

| is the number of those edges that connect nodes of
NC in eitherT or ST(A, t), and (c)n is the number of dis-
tinct nodes inT . In practice|NC | < |NA| < |EA| ≪
n ≪ |V |. The first and second factors are the cost of com-
puting LA and LNC

, respectively, and the third factor is
the cost of maintainingL, whereswap() is called at most
2|NC | + |r[[p]]| times and each takes at mostO(n) time.
The fourth factor is the cost of computing the reachability
matrix for ST(A, t), while the last factor is the cost of main-
taining the reachability betweenST(A, t) andT .

4 Updating Relational Views
We briefly outline the techniques for processingSPJview

updates under key preservation. Details can be found in [7].

Key preservation. Consider anSPJqueryQ(R1, . . . , Rk)
that takes base relationsR1, . . . , Rk of R as input, and re-
turns tuples of the schemaR(~a). We say thatQ is key pre-
servingif for eachRi, the primary key ofRi is included in
~a (with possible renaming).

Key preservation is far less restrictive than other condi-
tions proposed in earlier work for handling relational view
updates (e.g.,[10, 14]). A mappingσ : R → D from a

d bCF HC C CF HC C C.*a v g . 3 s h a r e dC c h i l d r e nm a x . 8r e c u r s i o n l e v e l s
(a) XML view

|C| |DAG | |Tree| |L| |M|

1K 25K 36.6K 25k 88K
10K 251K 366K 251k 900k
100K 2.5M 3.7M 2.5M 9.64M
1M 25.1M 36.6M 25.1M 102M

(b) Dataset statistics;|C| is measured in tu-
ples, the remaining in number of nodes.

Figure 7. Description of the datasets

relational schema to aDTD employsSPJqueries [1]. Ev-
ery SPJquery can be made key-preserving by extending its
projection-attribute list to include the primary keys.

Analysis. Given a collection of viewsV defined asSPJ

queriesunder key preservation, a relational databaseI of
schemaR, and a group view update∆V , is there a group
update∆R on the databaseI such that∆V (V(I)) =
V(∆R(I))? In this setting,∆V consists of either only tuple
deletions or only tuple insertions, as produced by the trans-
lation algorithms of the last section. These deletions and
insertions in∆V are translated to deletions and insertions
in ∆R, respectively. We useV to denote the viewV(I). We
refer to this problem as theview updatability problem.

It is known [3] that without key preservation, the updata-
bility problem isNP-hard for a single deletion and a single
PJview, i.e.,when∆V consists of a single deletion andV is
a view defined with projection and join operators only. We
show that key preservation simplifies the updatability anal-
ysis for a collection ofSPJviews and group deletions. More
complexity results of view updates can be found in [8].

Theorem 4.1: For group view deletions∆V , the SPJview
updatability problem is inPTIME. 2

The problem is intractable for insertions under key
preservation; the lower bound is verified by reduction from
the non-tautology problem, which isNP-complete.

Theorem 4.2: The SPJ view updatability problem isNP-
complete even when∆V has a single insertion andV has a
single view. 2

We give aPTIME algorithm for computing database tuple
deletions∆R from a group of view deletions∆V in [7]. We
also provide in [7] a heuristic algorithm for handling group
view insertions by reducing theSPJview insertion problem
to SAT, one of the most studiedNP-complete problems. This
allows us to leverage a well-developedSAT solver [22] to
efficiently compute∆R if it exists.

5 Experimental Study

We conducted a preliminary experimental study of our
proposed view update mechanism in order to verify its ef-
fectiveness.

All experiments were conducted on a dataset of four base
relations:C(c1, · · · , c16), F (f1, · · · , f16), H(h1, h2) and
CU (c′1, · · · , c

′
16), where underlined attributes indicate keys.

The domain off1 was equal to that ofc1 and c′1. The

 0.1

 1

 10

 100

 1000 10000 100000 1e+006
R

un
tim

e
(s

ec
)

Relation size |C| (tuples)

W1(a)
W1(b)

W1(a+b)
W1(c)

(a) W1 deletion

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

R
un

tim
e

(s
ec

)

Relation size |C| (tuples)

W2(a)
W2(b)

W2(a+b)
W2(c)

(b) W2 deletion

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

R
un

tim
e

(s
ec

)

Relation size |C| (tuples)

W3(a)
W3(b)

W3(a+b)
W3(c)

(c) W3 deletion

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

R
un

tim
e

(s
ec

)

Relation size |C| (tuples)

W1(a)
W1(b)

W1(a+b)
W1(c)

(d) W1 insertion

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

R
un

tim
e

(s
ec

)

Relation size |C| (tuples)

W2(a)
W2(b)

W2(a+b)
W2(c)

(e) W2 insertion

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

R
un

tim
e

(s
ec

)

Relation size |C| (tuples)

W3(a)
W3(b)

W3(a+b)
W3(c)

(f) W3 insertion

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

R
aw

 d
at

a
pr

oc
es

si
ng

 (
se

c)

A
ux

ili
ar

y
st

ru
ct

ur
e

m
ai

nt
en

an
ce

 (
se

c)

|E_p(r)| (deletions) or |r[|p|]| (insertions)

Xdelete
Xinsert
delete
insert

M/L delete
M/L insert

(g) Varying |r[[p]]| or |EP (r)|

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5
 0

 10

 20

 30

 40

 50

 60

 70

R
aw

 d
at

a
pr

oc
es

si
ng

 (
se

c)

A
ux

ili
ar

y
st

ru
ct

ur
e

m
ai

nt
en

an
ce

 (
se

c)

|ST(A,t)| (in terms of C-subtrees)

Xdelete
Xinsert
delete
insert

M/L delete
M/L insert

(h) Varying |ST(A, t)|

Figure 8. Update performance as a function of the sizes of the relational database and the view update

remainingC and F attributes controlled how many join-
ing C andF tuples were filtered out. The domains ofh1

and h2 were the same as that ofc1. In addition (1) for
eachc ∈ C ∪ CU there would be on average three tu-
ples h ∈ H , wherec1=h1, and (2)h1<h2, where (h1,
h2) ∈ H . The universe ofC, namelyCU , consisting of
100M C-tuples, ensured that wheneverh2 joined with c1

it always yielded aC-tuple. The sizes ofF andH were
proportional to the size ofC, used for reporting the size of
the database; specifically, we report|C|, which ranges from
1,000 to 1,000,000 tuples, while|F | = |C| and|H | ≃ 3|C|.
We defined anXML view of C, F and H ; as indicated
in Fig. 7(a), theC nodes in the view were recursively de-
fined, and a recursion ofC in the view can be understood as
πc1,f1,h1,h2

(σc1=f1∧f1=h1∧h2=c′
1
∧c2=f2∧c3=f3∧c4=f4

(C ×
F × H × CU)). HereC subtrees are shared, and subtree
sharing accounted for 31.4% ofC instances. Figure 7(b)
lists some statistics on the number of publishedC subtrees
and their compressedDAGs, and the corresponding sizes of
the reachability matrixM and topological orderL.

Varying database size. We generated two random up-
date workloads over theXML view, one for insertions, and
one for deletions; each workload consisted of three update
classes, each class including ten operations. The classes
were characterized by theXPath queries used to define the
updates. ClassW1 usedXPath queries using the descen-
dant axis and value filters;XPath queries inW2 used the
child axis and value filters; finally,W3 containedXPath
queries using the child axis and both structural and value
filters. The times we report include: (a) the time to evaluate
XPath queries; (b) the time to translate∆X to ∆V (Algo-
rithms Xinsert andXdelete) and subsequently∆V to ∆R,
and the time to execute the update; and (c) the time to main-
tain the auxiliary structures in thebackground(Algorithms
∆(M,L)insert and∆(M,L)delete).

Figures 8(a), 8(b) and 8(c) show the performance of the
deletion algorithms forW1, W2 andW3, respectively. We
plot the runtime of performing the updates broken into their
(a), (b) and (c) above constituents for various database sizes.

Note that both axes use a logarithmic scale. The algorithms
scale linearly with the size of the relational database. As
shown, deletion time is dominated byXPath evaluation. Al-
though the cost for auxiliary structure maintenance is rela-
tively high, it is performed in the background.W1(b) is the
highest reported time among the three workloads since its
XPath queries generate more edges (i.e.,a greater|Ep(r)|),
which are then examined by Algorithmdelete.

Similar results are reported for insertions, as shown in
Figures 8(d), 8(e) and 8(f) forW1, W2 andW3, respectively
(again, using logarithmic scales). The size of the inserted
subtree was fixed. TheSAT solver [22] returned a truth as-
signment in 78% of the cases and we only report the time
for insertions where theSAT solver successfully returned a
truth assignment. As for deletions, our insertion algorithms
scale linearly with the size of the relational database.

Varying update size. For these experiments, we fixed|C|
to 100K tuples. Figure 8(g) shows the performance of
each algorithm as we varied|Ep(r)| (see Section 3.2) for
deletions and|r[[p]]| for insertions, while keepingST(A, t)
constant to a singleC-subtree. The runtimes for Algo-
rithmsXinsert, Xdelete, delete andinsert are shown on the
left y-axis and the runtimes for algorithms∆(M,L)insert and
∆(M,L)delete are shown on the right one. The translation
time from ∆X to ∆V for Algorithm Xinsert (resp. Algo-
rithm Xdelete) increases slightly as|r[[p]]| (resp.|Ep(r)|)
increases. The slope for Algorithmdelete is large, as the in-
crease of|Ep(r)| involves more queries to determine the
source tuples to be deleted. The performance of Algo-
rithm insert is dominated by the coding time. As|C| is
far larger than|ST(A, t)| and |r[[p]]|, and the number of
database queries required remains fixed, the coding time re-
mains roughly constant though the size of the resulting cod-
ing increases; that only results in a non-observable increase
in theSAT solver’s runtime keeping the curve relatively flat.
The performance of Algorithm∆(M,L)insert (which can be
found in [7]) and Algorithm∆(M,L)delete is almost unaf-
fected by|r[[p]]| (resp.|Ep(r)|) since|ST(A, t)| is fixed.

Similar results are shown in Fig. 8(h) where we var-

Sizes Incremental (Sec.) Recomputation (Sec.)
|C| Insertion Deletion L M

1K 1.0 1.0 6.3 9.8
10K 4.6 3.1 86 288
100K 22.7 16.9 631 3,600
1M 84.2 61.5 8611 14,000

Table 1. Incremental maintenance of L and M

ied the size of|ST(A, t)| while fixing |Ep(r)| = 1 and
|r[[p]]| = 1. The performance of AlgorithmXdelete re-
mains unchanged and its runtime is negligible for a fixed
|Ep(r)|. Algorithm Xinsert scales linearly with the update
size |ST(A, t)| as it needs to processST(A, t) to generate
∆V . Algorithms∆(M,L)insert and∆(M,L)delete evidently
scale linearly with the update size for similar reasons.

Effectiveness of incremental maintenance. The cost of
incrementally maintaining the reachability matrixM and
the topological orderL is shown in Table 1. The first col-
umn is the size of the database. The total time needed for
incrementally maintaining both auxiliary structures is given
in the second column for Algorithm∆(M,L)insert and in the
third column for Algorithm∆(M,L)delete. The time for re-
computing each structure is shown in the last two columns.
The advantages of incremental maintenance become more
prominent as the size of the data increases.

6 Related Work
Commercial database systems [13, 20, 23] provide sup-

port for definingXML views of relations and restricted view
updates.IBM DB2 XML Extender [13] supports only propa-
gation of updates from relations toXML but not vice-versa.
Oracle XML DB [20] does not directly allow updates on
XML (XMLType) views. In SQL Server [23], users specify
the “before” and “after”XML views usingupdategramin-
stead of update statements; the system then computes the
difference and generatesSQL update statements. The views
supported are very restricted: only key-foreign key joins
are allowed; neither recursive views nor updates defined in
terms of recursiveXPath expressions are supported.

There have been recent studies on updatingXML views
published from relational data [2, 26]. In [2],XML views are
defined asquery treesand are mapped to relational views.
XML view updates are propagated to relations only ifXML

views are well-nested (i.e.,key-foreign key joins), and if the
query tree is restricted to avoid duplication. An analysis on
deciding whether or not an update onXML views is translat-
able to relational updates, along with detection algorithms,
are provided in [26] and demonstrated in [25].

There has been a host of work ([10, 13, 14, 18, 20, 23])
on relational view updates. [10] provides algorithms for
handling restricted view updates without side effects in the
presence of functional dependencies. The algorithm in [14]
studies updates (with side effects) on a restricted class of
SPJview: key-foreign key joins and join attributes must be
preserved. Our key preservation condition is less restrictive

than that of [10, 14]. CommercialDBMSs [13, 20, 23] allow
updates on very restricted views.

7 Conclusions
We have proposed new techniques for updatingXML

views published from relational data. We plan to extend
our techniques to handle more generalXML updates in [24].

References
[1] P. Bohannon, B. Choi, and W. Fan. Incremental evaluationof

schema-directed XML publishing. InSIGMOD, 2004.
[2] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From

XML view updates to relational view updates: old solutions
to a new problem. InVLDB, 2004.

[3] P. Buneman, S. Khanna, and W. Tan. On propagation of dele-
tions and annotations through views. InPODS, 2002.

[4] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian. XPERANTO: Middleware for pub-
lishing object-relational data as XML documents. InVLDB,
2000.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms
for pattern matching on dags. InVLDB, 2005.

[6] B. Choi. What are real DTDs like. InWebDB, 2002.
[7] B. Choi, G. Cong, W. Fan, and S. D. Viglas. Updating Re-

cursive XML Views of Relations, 2006. Full paper.
[8] G. Cong, W. Fan, and F. Geerts. Annotation propagation re-

visited for key preserving views. InCIKM, 2006.
[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to algorithms. McGraw-Hill, 2001.
[10] U. Dayal and P. A. Bernstein. On the correct translationof

update operations on relational views.TODS, 7(3), 1982.
[11] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient eval-

uation of XML middleware queries. InSIGMOD, 2001.
[12] G.F.Italiano. Finding paths and deleting edges in directed

acyclic graphs.Inf. Process. Lett., 28, 1988.
[13] IBM. IBM DB2 Universal Database SQL Reference.
[14] A. Keller. Algorithms for translating view updates to

database updates for views involving selections, projections,
and joins. InPODS, 1985.

[15] V. King and G. Sagert. A fully dynamic algorithm for main-
taining the transitive closure. InACM Symposium on Theory
of Computing, 1999.

[16] C. Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree automata-
based approach. InVLDB, 2003.

[17] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL
query translation literature: The state of the art and open
problems. InXsym, 2003.

[18] J. Lechtenborger and G. Vossen. On the computation of re-
lational view complements.TODS, 28(2):175–208, 2003.

[19] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Main-
taining a topological order under edge insertions.Inf. Pro-
cess. Lett., 59(1), 1996.

[20] Oracle.SQL Reference.
[21] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation

and incremental maintenance of the HOPI index for complex
XML document collections. InICDE, 2005.

[22] B. Selman and H. Kautz. Walksat home page, 2004.
http://www.cs.washington.edu/homes/kautz/walksat/.

[23] SQL server.MSDN Library.
[24] W3C. XQuery Update Facility. W3C Working Draft, May

2006.http://www.w3.org/TR/xqupdate/.
[25] L. Wang, E. A. Rundensteiner, and M. Mani. Ufilter: A

lightweight XML view update checker. InICDE, 2006.
[26] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML

views published over relational databases: Towards the exis-
tence of a correct update mapping.DKE, to appear.

