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Abstract

This paper investigates the view update problenxior views
published from relational data. We consider (possiblyursosely
definedxmL views, compressed intbAGs and stored in rela-
tions. We provide new techniques to efficiently supgent view
updates specified in termsxath expressions with recursion and
complex filters. The interaction betweepath recursion anAG
compression okML views makes the analysis efL view up-
dates intriguing. Furthermore, many issues are still opeansfor
relational view updates, and need to be explored. In respaos
these, we revise the update semantics to accommodateside
effects based on the semanticxefL views, and present efficient
algorithms to translatexmL updates to relational view updates.
Moreover, we propose a mild condition @pJviews, and show
that under this condition the analysis of deletions on iielzl
views becomesTIME while the insertion analysis isP-complete.
Finally, we present an experimental study to verify thectffe-
ness of our techniques.

1 Introduction

Wenfei Fan
University of Edinburgh &

Stratis D. Viglas
University of Edinburgh
Bell Laboratories svi gl as@nf. ed. ac. uk

wenf ei @ nf. ed. ac. uk

db

coursg = course

cno, title; preregtakenBy; cno, title, Prereq,

takenBy2
"CS320"Logic" "CS650" Comple)ﬂ
/ QOUVSQ
course student; student, tu entzstudem3
>
/ cnol

resaar S|d2nam€2
/102" Bl S'ds"?g‘ﬂﬂ%

sid; name sid, name,
01" "Joe" 02" Bill"

Figure 1. Example XML view

however, most commercialeMss only have limited view-
update capability [13, 20, 23]. The state of the arkiL
view updates research explicitly focusesmamrecursively
definedxmL views andxML updates definedithoutrecur-
sive xPath queries. These restrictions are unfortunate since
the recent proposals oxmL update language®.Q.,[24])
employ recursivexpath queries whil®TbDs (and thusxmL
view definitions) found in practice are often recursive [6].
Given these requirements, we consider more genaval
views and updates: possibly recursiueL view definitions
and xML updates specified in terms @Path expressions
with recursion and complex filters, as illustrated below.

Example 1.1: Consider aegistradatabase with the follow-
ing schema (keys are underlined): course(ditte, dept),

Views provide an abstraction of the data stored in a student(ssn name), enroll(ssn, cip prereq(cnol, cng2
database and are commonly used in practice. Commerwhere a tuplgcl, c2)in preregindicates that2is a pre-

cial DBMSs have identified the need for materializing and/or

providing ways of updating them, and propagating the up-

requisite ofcl As depicted in Fig. 1 (the dotted lines
will be explained shortly), ammL view 1" of the relational

dates to the underlying data [13, 20, 23]. Indeed, the studydatabase is published for tl&s department. The view is
of relational views and their update mechanisms have re-required to conform to theTp below (the definition of el-

ceived considerable attention (seeg.,[10, 14, 18]). Re-

cently, a number of systems have been developed to publish , g/ EmMENT db

relational data tocmL [1, 4, 11, 13, 20, 23]; the published
data is effectivelyxmL viewsof the relational data. Thus,
the problem of transparently updating tkaL views needs
to be revisited. Given arMmL view of a relational database,
we want to propagate updates of theL view to the origi-
nal relationaltables, without compromising the integrity of
neither thexmL nor the relational data.

While several commercial systems [13, 20, 23] allow
users to definexmL views of relations, their support for
XML view updates is either very restricted or not yet avail-
able. Previous work ommL view updates [2, 25, 26] has
focused on translatingmL view updates to relational view
updates and delegating the problem to the relatiosals;

ements whose type BCDATA is omitted):

(coursg)>
<! ELEMENT course (cno, title, prereq, takenBy)
<! ELEMENT prereq (coursg>

<! ELEMENT takenBy (studefi)>
<! ELEMENT student (ssn, name)

The view is defined recursively since theTD is
recursive €ourseis indirectly defined in terms of it-
self via prereq. Consider anxmL update Ax, which
inserts the subtree forourse CS24Q as a prerequi-
site of all courses given by the recursiveeath query
course[cno€S65(//course[cno€S32(/prereq To propa-
gateA x means that we need to find an equival&nt over
the relational database that inserts the same information i
the underlying tables so that if the data is re-published in



XML update Ax rej ect report side effects rej ect

XML it leads to the sameML view as the one we have after T
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The analysis becomes complicated since there are three / |
sub-problems that cannot be treated in isolation, namely: < 4R | trendation:
(i) how are thexmL views efficiently materialized, (i) what Ay AR
are the correct update semanticsXorL views of relational Figure 2. Overview of XML view updates

data over the materialization primitives, and (iii) how tre

new semantics implemented and the updates propagated tBabliSh complexity_rgsults for the updatability problem to
the materializedkmML viewsandthe relational database. extend the fe\_/v eX|st|ng_ ones [33 8]. We show that under
key-preservation ospJviews, while the problem for tuple

Efficient materialization of XML views. An XML doc-  insertions isNP-complete, it becomesactable for group
ument published from a relational database has bih-  deletions (which is\P-complete without key preservation).

pres;iorpotentigl. In the document of Fig. 1 (Example l'l)’. roblem statement and proposed solutionGiven anxmL
certain subtree instances can be shared; one can materlal:;iew defined as a mapping : R — D from relations of

ize each _sut_)tree share_d by mult|plc_e nodes in themrﬂyz a schemaR to xmL documents (trees) of aTD D, a re-
once as indicated in Fig. 1 (replacing the subtrees in the lational instancel of R, the xmL view T — o(I), and
dotted triangles by dotted edges-g. the subtree for course updatesA x on theXML’ viewT. we want to comp’utee—
CS32(Q. The compressed view becomes a directed aCyC”CIational updatesA », such thatA;((T) — o(Ap(I)). That
graph OAG), which is often significantly (at times even ex- is, the relational updates », when propagated tK)I\;IL via

ot " he mapoig: i e desredon. updtes.. on h
o . o view T'. We propose a framework for processxigL view
;hoi{h;hfhglgalrststoog fﬁer%‘gugj'rziﬁ[trloeﬁp;reussé%?:&‘ Or-(l-jgns_update& as shown_in Fig. 2. Fc_)r eaahL view definition
lation from (recursive)xpath queries over recursi\néML o:R o D, we maintain a relational databasef R’. and
views toSOL gueries is hard [17]. To our knowledge, no the relational viewd’ that encode theac compression of
efficient algorithm exists for evalu.atirvgvath gueries wi,th r - o(l). The users pose updgtesi?r(Schon 2). Given
a singlexML updateA x onT as input, we generate a group

completx fllterﬁspr) DAthlsm'rtid ”11 relat|o|ns£ thl[iend, yve updateA  on T such that x (T) = o(Ax(I)) if suchA
present an efhicient algonithm for evaluatingath queries exists; otherwiseejectAx as early as possible. Specifi-

\tN||t|h (;:Trﬂlei);f'gﬁ?én;ﬁes’t?aste? otn inﬁ\glarr'd mcr:rier(r;er;]- cally, the framework processes amL updateAx onT
aly maintaine exing structure to handle recursiod an i, yhree phases, namely;yD validation (see [7]),transla-

a technique for handling filters. tion from A x to Ay (Section 3), andranslation fromA,
XML update semantics. Update semantics should be re- to Ar (Section 4). If our algorithm detects a side effect,
vised given thexmL view materialization primitives. In  we report it to the user. After the relational updalg; is
Example 1.1, we are to inse@tS240as aprereqof only computed, we update the underlying databhssingAg,
thoseCs320nodes belovCs650 howeverCS320nodes also  update the relational viewss usingAy, and finally,in the
occur elsewhere. As themL view is published from the  backgroundinvoke our incremental algorithm to maintain
same relational database, all courses have urpogredghi- our auxiliary structures. An experimental study is presdnt
erarchies. An insertion oselected pathsf the hierarchy in Section 5, followed by related work in Section 6 and fu-
will result in side effectshat should be detected. The users ture work in Section 7. See the full version [7] for details.
should then be consulted and, if they insist on continuing,

the insert semantics needs to be revised so that the inser2  View Updates Revisited in the XML Setting
tion will be performed aeveryCS320node. The details of We give a brief overview of publishingmL from re-

side effects on deletions are even more subtle and call for &5iona| data and present a way of efficiently materializing
new semantics. In light of this we refine the update seman-ina ymi view in relations. We then define the syntax and
tics for xML views of relations to accommodateiL side semantics okML updates over this representation.

effects. In addition, we develop an algorithm to transtate

cursiveupdates on ossibly recursively definedvL view 2.1 Schema-Directed XML View Definition

to updates on the relational representation ofxkie view. Our techniques are applicable oL views published

Update propagation. Since thexmL view is materialized  from relations via any system (e.g., Attribute Translation
in relations there is substantial work to be carried out m th GrammarsatG [1], SilkRoute, XPERANTO). We first
relational realm. To this end, we identifykay-preservation  briefly review ATG, a DTD-directed method for defining
condition onspPJviews, which is less restrictive than the XML views; we then present a way of materializing the pub-
conditions imposed by previous work [10, 14]. We es- lishedxMmL view in a relational database.



DTDs. A DTD D is a triplet(E, P, r), whereE is a finite
set ofelement types: € F is called thaoot type P defines
the element types: for each in E, there is aproduction
A — a, whereqa is a regular expression of the form:

PCDATA | ¢ | By,...,By | Bi+...+ B, | B*

o =

wheree is the empty wordp is a type inE (achild typeof
A), and 4+, ‘. and ‘«’ denote disjunction, concatenation
and the Kleene star, respectively. DAD is recursiveif a
type is defined (directly or indirectly) in terms of itself.

XML views. A publishing system implements a mapping
o : R — D frominstances of a relational scherRao doc-
uments of the targaeiTD D. (a) For each element typé of

D, o defines a semantic attributel whose value is a single
relational tuple of a fixed arity and type; intuitivel/4A con-
trols the generation oft elements in thexmL view, and is

2.2 XML View Updates: Side Effects, Semantics

Syntax. We consider a class ofvL updates [24] specified
in terms ofxpPath: (a)insert (A,t) into p, (b) delete p.
Here, A is an element type, andis an instantiation of the
semantic attribut§ A of A. Given the instantiation we can
uniquely identify the root of a subtree of type We define
p as anxpath expressiong(in p[q] is called dilter):

s= e | A = | /)| p/p | pld,
q = p|p:‘8'|label():A | q/\q|q\/q|_‘Q7

Side effects. On detecting side effects, users can choose
either to abort the update, or to carry on under the semantics
we provide in the sequence. Detection of side effects will
be further elaborated in Section 3.2.

Recall that each subtree in thevL tree is uniquely

used to pass data downwards as the document is produceyenifiedby the value of the semantic attribute of its root.

(b) For each productiopn = A — « in D and each typé&3

in o, o specifies asPiquery,Q4_g)($A4), which extracts

data from a relational databaggusing$ A as a constant; it

generates th& children of anA element and thei$ B val-

ues. For example, for the productipnereq— course? the

spJqueryQprereqcourséd$prereq) can be specified as:
select distinct c.cno, c.title

from  prereq p, course c
where p.cnol = $prereq and p.cno2 =c.cno

Intuitively, at apreregnodev with $prereq valuep, the sub-
tree ofv is constructed as follows: (XPprereqcoursép)

is evaluated on the databakge(2) for each distinct tuple

in the result of the query, aoursechild v. of v is gener-
ated, which carrieg as the value of its semantic attribute
$course; and (3)c is then used in a similar fashion to ex-
pand the subtree rootedat The entirexML view is gen-
erated top-down starting from the rodb, and conforms to
theDTD of Example 1.1 (see [1, 7] for detalls).

The subtree property and DAG compression. An XML

Moreover, undeDAG compression, a single subtree may be
shared among multiple parents. Therefore any changes to
the subtree must be reflectedath instances of the subtree,
irrespectiveof the xPath specified in the update operation.
This forms the very basis for the appearance of side effects.

Example 2.1: In Example 1.1, a new subtree was to be
inserted to change the prerequisite hierarchy of only those
CS320nodes belowCS650 However, since there is a unique
CS320subtree, all changes to its prerequisite hierarchy must
be reflected tall CS320nodes, rather than only to those
belowCs65Q leading to side effects.

Side effects are more subtle for deletions. Con-
sider delete course[cno€S65(/prereq/course[cnazS32G
on the sameML tree, that aims to remove coures320
from the prerequisites of courseS650 This cannot be
simply performed by physically removing atiS320nodes
as in previous work omML view updates [2, 25, 26125320
is itself an independe@Scourse and may be a prerequisite
of other courses. For a correct deletion we need to find, for

view of a relational database is determined by the under-i,« (oot of the subtree to be removed all pirentssuch

lying relational dataxML node uniqueness in this context
is reflected as theubtree propertyMore specifically, con-
sider a mapping : R — D. For any databaskof R and
any typeA of D, an A-element (subtree) in themL view
o(I) is uniquely determinetby the value of the semantic
attribute$ A at its root. Thus, the publishing system in fact
defines a functiorsT() such that, given an element type
and a value of $A4, sT(A4, t) returns a subtree rooted at a
node taggedi and carrying as its attribute.

As noted in Section 1, a subtrea(A, $A) may appear
at multiple places in themL view o(I). It is natural and
more efficient tacompresshe XML tree by storing aingle
copyof sT(A, $A) no matter how many times it occurs in
thexMmL view. This leads to @AG representation oXmL
view o (I). In Fig. 1, for examplecourse andstudent are
shared subtrees (see dashed lines).

that they are reachable via theath of the delete statement,
i.e., thosepreregnodes prereg) below CS650nodes, and
then removecS320from thechildrenlist of only thosepar-
entnodes. Note thatS320is not removed from thehildren
list of nodedb since it is not reachable via theeath. O

The semantics ofXML view updates. It is obvious that

a new semantics should be developed to cope siith ef-
fects This semantics needs to respect the hierarchical na-
ture of XML views. Note that this semanticsdgferentthan

the semantics of updates amL data [24]. Given axmL

view T with root r, aninsert operation: (a) finds the set

of all elementseachable from- via p in T, denoted by
r[p]; (b) for each element in r[p], it adds the new subtree
ST(A,t) as the rightmost child of; and moreover, (c) for
each element that has the same type and semantic attribute



value as, it also addssT(A, ) as the rightmost child of
as required by the semanticsxfiL views.

A deletion onxML views (a) computes|p]; (b) for each
nodev € r[p], it removes the subtresT(A,t) from the
children list of the parent node of v such that is reach-
able viaxpathp, whereA is the type ofv andt is the value
of $A4 atwv; and (c) for any node/ of the same type and
semantic attribute valuas theparentw of v, it removes
ST(A, t) from the children list ofu’.

Compared to previous work [2, 25, 26], we suppaviL
view updates that (a) are defined with much rickeath ex-
pressions withrecursion and complex filtergb) operate on
(possibly) recursively definedML views, and (c) possess
a new semantics that capturgde effectsif any, of xmL
view updates. We also provide techniquedétectwhether

treesT(A,$A) in o(I), each edgéia, ib) in ST(A, $A4) is
storedonly oncein a relationedge_A_B no matter how
many timessT(A4, $4) (and thus the edge) appearsifY).
(2) EachQcqge_a_B in V, is defined by espiquery. Thus
V), consists of onlyspaviews (3) V,, consists of dounded
number ofrelational viewseven ifo is recursivelydefined.

Updates on relational views. Given an updaté\x on a
DAG compressedML view o (1), we convert it to updates
Ay on the relational view” = V,(I). The relational view
updates\y consist of edge tuples of the form= (ia, ib) to
be inserted into or deleted from an edge relatdpe_A_B.

To account for the side effects described earlier we com-
pute the relational view updates, such that (a) a newly
inserted subtree is only stored oncelinno matter how
many times it appears in the updated view, and (b) a deleted

there are side effects and, in those cases, allow the USerg ptree is not physically removed: only the tugle, ib)

to cancel the update; otherwise, the operation will carry on
with the semantics described earlier.

2.3 Relational Coding of Recursive XML Views

To reduce the update problem to a strictly relational one,
we employ relational views to represent thieL views de-
fined by a mapping : R — D from a relational schema
R to abTb D. This is nontrivial: (a)o is possibly recur-

sively defined; on such views the encoding methods of pre-

vious work €.g.,[2]) may lead toinfinitely many relational
views; (b) we consideDAG compressions okML views,
i.e.,aDAG representation of (1) where! is an instance of
R as opposed to treemssumed in previous work. To this
end we define a relational representatian for the map-
ping o by means of the edge relationsdtii/) as follows.

(a) We assume a compact, unique value associated with th
tuple value of semantic attribufed in o(I). We assume
w.l.0.g. the existence of a Skolem function [gdn_id that,
given the tuple value o A, computes a uniqual_A. We
usegen_A to denote the set of the identities of i tuples.

(b) We encode amML view definitiono in terms of)),, as
a set ofspiqueriesQ.qq4._4a_p Materializing the edge re-
lations ofo. More specifically, for each productiod —
P(A) inthepTD of ¢, and for each child typd in P(A),
we create a relatiordge_A_B with two columns,id_A
andid_B. Consider productions of the ford — B*,
where$B — Q($A) is the associatedpJquery ino.
Thenedge_A_B is the set of pairgia, ib) such thata =
gen_id(a), ib = gen_id(b), wherea € gen_A, b € Q(a).
The definition ofQcqq4e_4_p is similar for productions of
other forms. One example of an edge-relation query for the
example Of Flg 1 iQedge_prereq_course:

select gen_id(gp), gen_id(c.cno, c.title)

from genprereq gp, prereq p, course C

where p.cnol =gp.cho and p.cno2 = c.cno

Observe the following abouy,. (1) V, encodes the

DAG compressiomf XML view o(I). Indeed, for any sub-

in V representing the corresponding parent-child edge is
deleted from its edge relatianige_A_B. More specifically,
the tuple corresponding ta is not removed fronyen_A
becauséa is a parent node in[p] and needs to be kept in
the XML view. To cope with subtree sharing} is not re-
moved fromgen_B when the edgéia, ib) is removed from
edge_A_B; instead, upon the completion of processikg,
our incremental maintenance algorithm runs in treek-
groundto remove tuples frongen_B’s that are not linked
from any node; at the completion @f,, gen_B’s are up-
dated.

3 Mapping XML View Updates to Relations
We present a technique for translatingiL updates on

gnxmL view to updates on relational views representing the

DAG compression of th&mML view. The technique consists
of four parts: (a) indexing structures for checking ancesto
descendant relationships, (b) an efficient algorithm fal-ev
uating xpath queries orbAGs and detecting side effects,
(c) algorithms to translate updates on theL view to up-
dates on its relational representation, based on the indexi
structures and the evaluation algorithm, and (d) increalent
algorithms for maintaining the indexing structures.

3.1 Auxiliary Structures

To efficiently process recursion (‘//’) and filters iag,
we introduce two auxiliary structures:tapological order
and areachability matrix

Topological order. Recall from Section 2 the function
gen_id(), which generates a unique id for each node based
on the value of its semantic attribute. Given a representati
of aDAG V, we create a lisL consisting of all the distinct
node ids inV topologically sorted such that precedes

in L only if u is not an ancestor af in the DAG, i.e., there

is no path fromu to v. As will be seen shortlyL is use-

ful in evaluatingxpath filters as well as in computing and



Input: the relational viewt” and topological ordef..

Output: reachability matrix)/ .

1. M:=0;

2. for(k:=|L|; k > 0; k--) I*processL from right to left */
3 d = L[k];

4, Aq = {az2| a2 € anc(a1), a1 € parent(d) };

5 insert (a, d) into M for eacha € Ag;

6. return M

Figure 3. Algorithm Reach

maintaining the reachability matrix. The listcan be com-
puted inO(|V]) time (seee.g.,[9]), where|V| is the size of
the relational views. Its sizeL|, is the number oflistinct
nodesin the DAG, denoted byn. Note thatl is computed
once wherV/ is created and it is maintained incrementally.

Reachability matrix. To efficiently evaluate ancestor-
descendant relationship between pairs of nodes bag,
we use a conceptuatchability matrixencoded as a rela-
tion M (anc desg, whereancis an ancestor node, adésc
a descendant. We uslesc(a) (resp.anc(a)) to denote the
descendants (resp. ancestors) of nedetrieved fromi/.
Relation M can be computed iO(|V |*log|V|) time
fromV (seeg.g.,[9]). Capitalizing on the topological order
L we give AlgorithmReach, shown in Fig. 3, that computes
M in O(n |V]) time. Itis based on dynamic programming:

structured data (general graphs). However, these algasith
neither treabAGs differently from cyclic graphs (and thus
may not be efficient when dealing withaGs), nor consider
XxPath queries used IRML view updates.

To this end we outline an efficient algorithm for evaluat-
ing anxpPath query on arxMmL tree that is (a) compressed
as aDAG, and (b) stored in edge relatiofr's The algorithm
takes as input arpPath queryp overxmL treeT, the rela-
tional viewsV, and the reachability matrix/. It computes
(a) a setr[p] consisting of, for each node reached jyya
pair (B, v), wherev is the id andB the type of the node re-
spectively; (b) a sek, (r) consisting of, for each reached
by p, tuples of the form((C, u),v), whereu is the id of
a parent ofv in the DAG such thatp reaches throughu,
andC is the type ofu; the setE, (r) is needed for handling
deletions; and (c) the set of nodgs$n 7" which are affected
by the update but are not reachable widf the setS is not
empty, the update will generaxeiL side effects.

For xmML data stored as a trég, [16] developed an al-
gorithm that evaluates arPath queryp in two passes of .
The basic idea of [16] is to first conveft to a binary-tree
representation (before the two-pass process is invokad), a
then run a bottom-up tree automaton on the binary tree to
evaluate filters, followed by a run of a top-down tree au-

for a noded, the ancestors of the nodes in the set of parentstomaton to identify nodes reached py It has linear-time

of d, denoted byparent(d), are already known before we
compute ancestor$;, such that we can computk; by us-

complexity, the “optimal” one can expect [16]. We next
show thata comparable complexityan be achieved when

ing those previously computed ancestors (lines 4-5). Givenevaluatingxpath queries on aAG.

the topological order guaranteed Bythis can be achieved
by traversingl backwards (line 2). Note thatrent(d) can
be computed from the edge relationsiin

Algorithm Reach runs inO(n |V|) time: (a) for each
node inL we visit its parents once and thus any nodie
visited as many times as its in-degrée,, the number of
incoming edges t@ in the DAG; (b) the sum of incoming
edges to all nodesis |V|; (c) each visit takes at moét(n)
time. In practice| M| < n? < |V|?, whereV is even up
to an exponential factor smaller than thaL treeT'.

3.2 Evaluating XPath Queries on DAGs

To translate updated x on XML views to updated\ p

Our algorithm uses the following variables: (a) A list
Q of filters including all the sub-expressions of filterspn
sorted such that for any;, ¢; in Q, ¢; precedeg; if g; is a
sub-expression af;. (b) For eacly in () and each nodein
L, two Boolean variablegal(q, v) anddesc(q, v) to denote
whether or not the filteg holds atv and at any descendaint
of v, respectively. The algorithm has two phases: a bottom-
up phase that evaluatéiters in p and computesal(q, v)
anddesc(g, v) for each node € L, followed by a top-down
phase that computegp] and E,(r). Due to lack of space
we only outline the algorithm below.

Bottom-up. The key idea is based on dynamic program-
ming. For each node in the topological ordet.,, and

on relational views and detect whether the update will yield for each sub-filtery in the topological order), we com-

side effects, we must evaluate tkieath expression used in
Ax. TheDAG compression okML views introduces new
challenges: previous work axpath evaluation has mostly
focused on trees rather thaaGs. While evaluation algo-
rithms were developed for path queries baGs [5, 21],

pute the values ofal(q,v) and desc(q,v). This can be
done by structural induction on the form @f For exam-
ple, wheng is label()= A, val(q, v) is true if and only if v
is in gen_A. Wheng is q1 V q2, val(q,v) := val(q1,v) V
val(qz, v). Wheng is a path expressign p can be rewritten

they cannot be applied in our setting because they (a) ei-into a “normal form”#,/ ... /n,, where eachy; is either

ther do not deal with complex filters which, as will be seen (a) €[g;], (b) a label A, (c) wildcard *’,

shortly, require a separate pass of the inpat, or (b) do

or (d) /. The
normal form can be obtained if}(|p|) time. Then, ifq is

not address maintenance of the indexing structures they emrewritten as//ns/ ... /n, with n; = //, val(g,v) is true

ploy, which is necessary when tlmaG is updated. Path-

if either val(ne/ ... /n,,v) or desc(ne/ ... /nn,u) IS true

guery evaluation algorithms were also developed for semi-for some childu of v; correspondinglydesc(q, v) is true



Input: an inse”ioc? (r)]f thel fo_”mff = insert (A, ) into p two algorithms,Xinsert and Xdelete, for translatingxmL
Output'?S:Zd;%s;rﬁorr;a‘flzcgr}cew' view insertions and deletions to relational view updates.
1. Ay =0 Insertion. Algorithm Xinsert is presented in Fig. 4. Given
2. Ea:={((B,gen.id($u)), (C, genid($v))) | (u,v) AX = insert (A,t) into pon t_hexvvlL view T, the algo-

is an edge irsT(A, t), u, v with type B, C' resp}; rithm returns the group insertionsy, over V' (which will
3. ra:=theid ofsT(A,#)'s root as generated hyen_id(t); then be tested for acceptance). We first compute the set of
‘51- for eAaCUE(f:uLZJ), (@, Wt))( € E/; o edue O edges in the newly inserted subtre® A, t) rooted atr 4,
o for ea‘éHEB ‘;i) é;n[[sp?]r ut, vi) into edge-B-C; according to the publishing mapping (lines 2-3), through
7. Ay = Ay U {insert (ui, r4) into edge_B_A}; function gen_id(). We then generate the relational view
8. return Ay, updates: for each eddez, vi) in the newly inserted sub-

tree, we addui, vi) to Ay (lines 4-5); moreover, for each
(B,ui) € r[p], we add(ui,r4) as a new edge im\y

if either val(q, v) or desc(g, ) holds. The algorithm pro- (jines 6-7). The set[p] of pairs(B, ui) of node identifiers
ceeds in the topological ordefs. Thus the truth values along with their types reached Byathp from the root ofl
of val(nz/ ... /nn, v) anddesc(nz/ ... /nn,u) are already  (jine 6) is computed using owrath evaluation algorithm.

available before evaluatingl(g, v) anddesc(g, v). Deletion. Given Ay = delete p, Algorithm Xdelete (not
Top-down. We computer[p], E,(r) and S as follows.  shown due to space constraints — see [7]) returns the group
As mentionedp can be rewritten ag/ ... /n,, in which of deletionsA, over the edge relations, which will be tested
at each node. Starting from the rogtwe find nodes’;  each parenti of vi in E,(r), Xdelete removes the edge
reached after each stgpand maintain a set of nodésin (4 ) from V (lines 2-3). The parent-child relation is

T that are not reachable viabut will be affected by the  computed by using the sdt,(r), whose computation is

update. When); is */’ (resp. “/I'), S'is extended with the  ¢oypled with that of [p] (see Section 3.2).
parent (resp. ancestor) nodes(gfthat are not reached via

p. These nodes can be found by using indexes on the edg
relationsV whenmn; is A or x, and by means of the reach-

ability matrix M whenn; is ‘//'. The nodes reached by the . . ) ; .
last step;,, are putinr[p], along with their types. The par- subtree. Given this as input, Algorithiddelete yields
ents through which they are reached piare put inE,(r) Av, = {(takenBy, studenf)}. =
along with their types. There is a side effect #fis not Complexity. Alg. Xinsert takesO(|E4| + |r[p]|) time
empty. At that point, users may either abort the update, orat most (E,| is the number of edges irsT(A,t)).
continue using our update semantics. Alg. Xdelete takesO(|E,(r)|) time. Added toO(|p| |V|)
Complexity. In the bottom-up phase, each nadis visited for evaluatingp, this is the cost of generatinyyy from A x.
at most as many times as its incoming edges. In the top-
down phase, each node is visited only once, except the final

Figure 4. Algorithm Xinsert

xample 3.1: Consider thexmL updateAx, = delete
/course [cno=S32(¢//student[sid=S04] on the XML tree
in Fig. 1, which is to delete studesio2 from the CS320

§.4 Maintaining Auxiliary Structures

step when a node may be included inE,(r) at most as The maintenance of auxiliary structurds and M is
many times as its the fan-out. The complexity of the algo- performed in thebackgroundn parallel with the process-
rithm is thereforeD(|p| |V]). ing of relational updates. What we ideally would like is

Observe the following: (a) When thenG is a tree each  to incrementallyupdate /. Existing incremental tech-
node has one incoming edge and our algorithm visits eachniques [12, 15] for updating reachability information are
node at most twicd,e., it has the same complexity as that not applicable since they rely on special auxiliary stroesu
of [16]. When dealing wittbAGs that do not have a tree  which are themselves expensive to construct and maintain
structure, it is necessary to visit all the edges ima in the (e.g.,[12] requires the computation of a spanning tree, tak-
worst case and thus our algorithm is optimal. (b) In contrast ing O(n |V|) time for each node insertion). Incremental al-
to [16], our algorithm does not require the conversion to gorithms of updating topologically ordered lists.g.,[19])
binary trees and the construction of tree automata, whichtakeO(|V']) time per edge insertion. We give a maintenance
are potentially very large. (c) Our algorithm works bAGS algorithm for M with O(n |V|) complexity by usind_, and
(including trees) while [16] cannot work amas. for L with O(n) time for each edge insertion usidg.

Deletion. Incremental maintenance in responsextoL
view deletions is given in Algorithmd 5, 1) delete (Fig. 5).
On account of the relational coding ®f1L views, a sin- The algorithm efficiently produces the following by scan-
gle xML update may be mapped to multiple relational up- ning the elements of arML deletionAx: (a) deletions
dates (a group update) over the edge relations. We next giveA ;; over M, (b) an updated., and (c) the set of edges

3.3 Translating Updates from XML to Relations



Input: a deletion of the formA x = delete p overT’, the rel.
view V, reachability matrix)\/ and topological ordef..

Output: deletionsA{, overV, Ay over M, and updated list.
1. AL =0, Ay =0
2. Lpg =the sorted listlesc(r[p]) according to topological ordek;

3. keep(d) :=true for eachd € T'; /[*initialize state */
4. foreachdin Ly traversed backwards

5. P; =0

6. for eacha € parent(d)

7. if ((C,a),d) ¢ Ep(r) andkeep(a) = true

8. then P, := Py U{a};

9. Ag:={a2 | a2 € anc(a1),a1 € Py};

10.  foreacha € anc(d) \ Aq

11. Apn=Ap U { delete (a, d) from M},

12.  if P4=0 /[*computeA(, and update.*/

13. then keep(d) := false;

14. deleted from list L;

15. for any childd’ (of type H) of d (of type G)
16. Af, = Al U { delete (d, d’) from edge . G_H};

17. return (A, Apy, L)

Figure 5. Maintenance algorithm A, 1)delete

A, in the deleted subtree that are no longer connected to

any nodes in th®AG and are to be passed to the garbage
collector forbackgroundprocessing. The set{, is a con-
sequence of deletionsy, computed byXdelete. The need
arises when a nodéc Ay is to be completely removed.
The algorithm progresses by populating deletidxg
while, simultaneously, removing elements from and
populatingAf,. The first step is arranging all nodes in
all deleted subtrees in a lisdty (line 2): we compute
desc(r[p]), i.e., the descendants of all nodesqifp]; we
then sortL iz according toL; this is always possible since
Lr C L. For each nodd in thexmL treeT we associate a
statekeep(d), initialized totrue, that keeps track of whether
the node should be ultimately deleted or not (line B);

(and thus coursg and theS02subtree are still valid and are
therefore not included iy, . O

Insertion.  Algorithm Ay y)insert is shown in Fig. 6.
GivenAx =insert (A, t) into p, it finds theA ,, overM to
maintain the reachability information, and updates thetop
logical orderL in response to the insertion ef( A, t).

It is simple to computeA,,, which consists of two
parts: (a) the reachability matrix for the newly insertexs
ST(A, t) is computed by invoking AlgorithrReach (line 3);
(b) for eachu € anc(r[p]) (ancestors of nodes ifp]) and
eachd € sST(A,t), we add(a, d) to Ay, (lines 4-5).

Maintaining L is a bit cumbersome. As will be shown,
M is useful in maintainingL. Before considering to in-
sert aDAG (st(A,t)), we first consider how to maintaih
when one edge is inserted. For an edge insertion),
if v is already in front ofu in L, L remains valid with-
out any change; otherwise, special care is needed to update
node positions irL. We illustrate this by an example. Con-
sider part ofL: (..., dy,u, Gy, ,a1,dy, , Guy, v, .. .), Where
a,, anda,, are ancestors of, d,, is a descendant af,
d, is a descendant af, anda, is neither an ancestor of
u nor a descendant af. After (u,v) is inserted, we can
obtain a correct topological order by movingand its de-
scendantsd,,, ) betweenu andwv such that they precede
This yields(...,dy,dy,, v, 4, Gy, , a1, Qy,, - . .). Note that
d,, must be neither an ancestor of(otherwise there is a
cycle) nor an ancestor af;. To formalize this, we denote
the nodes between andv in L asL[u : v]. Given an
edge insertior(u, v), the correct topological order can be
obtained by moving nodes ifi[u : v] N desc(v) to beim-
mediatelyin front of » in L. The procedure of changing

is then traversed backwards (line 4); this processing ordery g reflect the insertioftu, v) is denoted aswap(L, u, v),

ensures that eachhin Ly is processed after its ancestors
thus guaranteeing correct deletion semantics. For dach
Li we compute its undeleted parents (lines 6F3)(i.e.,
any nodeq in its parent set for whiclkeep(a) is true) and
then itsnewancestorsd, (line 9). If there is a node ia’s
current ancestorsnc(d) that is not inA4,, it should be re-
moved fromM (lines 10-11). Ifd does not have any parents
(i.e., P; = 0) we setkeep(d) to false and delete it fromL
(lines 13-14). According to the semanticslofan element
removal does not affect the topological order, In addition,
all outgoing edges from a deleted nodare deleted from
V (lines 15-16); children?’ of d can be readily identified
from the edge relation determined by the typed ahdd’.

Example 3.2: Recall Ax, of Example 3.1, Algorithm
A rdelete returns (1) Ay, ?, (2) an unchanged
L, and (3) Ap, = {(prereg,student), (prereq, sidc),

(prereq,name), ...}, i.e., the reachability information
from nodes prereg course and takenBy to nodes in
the S02 subtree (studept sid, and namg). Note that
the set of edgeg(takenBy, studen}), (takenBy,, sid:),

(takenBy,, name), ...}, i.e., the edges between takenBy

whereu precede® in L before the move.

We next explain the algorithm for updatidgwhen in-
sertingsT(A4,t) (lines 6-14). LetL 4 be the topological
order forsT(A,t) (line 2) andN¢ be the set of common
nodes inL. and L 4. The basic idea of the algorithm is to
make the relative orders of nodesNr- consistent in lists
L andL 4 before we mergé, andL 4 to obtain the updated
L. To do this, we compute the topological ordey_ for
nodes inN¢ by considering the edges that connect nodes
of N¢ in eitherT or sT(A,t) (line 7), and then aligi. and
L 4 with Ly, to make their positions consistent withy,,
(lines 8-11). One subtlety is worth mentioning: when per-
forming the alignment we follow the order défy, from the
right to the left. This processing order ensures that the po-
sition of aligned nodes will not be changed by subsequent
alignment. To be specific, the aligned nodes are not descen-
dants of nodes to be aligned and thus will not be moved
any more wheswap(L, u, v) is called in subsequent align-
ment (they are not descendantsudf Furthermore, if the
root of ST(A, t) is already inT’, we may need to change the
order of L in response to the inserted edge r4), where



Input: an insertion of the form\ x = insert (A, t) into p overT, the
rel. view V', reachability matrix\/ and topological ordef..
Output: insertionsA 5, over M, and updated lisL.

computeN 4 andr 4, as lines 2-4 in AlgorithnXinsert;

L 4 := the topological order of nodes BI(A, t);

A = reachability matrix forsT(A, ¢); /*using Algorithm Reach*/

for eacha € anc(r[p]) andeachd € N4 /* computingA s */
Apy = A U {insert (a, d) into M};

N¢ = the set of common nodes in lisisand L 4;

L ., = the topological order of nodes iN¢;

for (k =|Ln,|;k > 1;k——) [*align L4 andL with Ly */
= Lchk:]; v:= Ly [k —1];

10. ifordr , (u) < ordp ,(v) thenswap(La,u,v);

11.  if ordp (u) < ordp (v) thenswap(L,u,v);

12.if ro € L then for eachu in rp]

13.  ifordp(u) < ordr(ra) thenswap(L,u,74);

14. L :=mergeL 4 into L;

15.return (Aps, L);

[*update L*/

©CHON GhwWNE

Figure 6. Maintenance algorithm Ay )insert

u € r[p](u ¢ L4) (lines 12-13). After we obtain two con-
sistent lists. and L 4, we can mergé. 4 into L to generate
the updated. (line 14). This can be done by regarding the
nodes inN¢ as “pivots” and inserting the new nodes (i.e.
L4 \ N¢) into L before their respective “pivots”.

Complexity. The worst-case time complexity of Algo-
rithm Ay, )delete is O(n |V]), which is the cost of com-
puting new ancestors for nodes Irg. For each node in
L we visit its parents once, which in total takéx|V'|)
time in the worst-case (in practice it is often much smaller
than|V|); at each visit, the algorithm také¥(n) time. The
worst-case time complexity of Algorithm | )insert is
O(Ea|+|Enc|+ (Nl +|r[pl]) n+|NallEa| +|Nal n),
where (a)| V4| is the number of distinct nodes, anf 4 |

is the number of edges in the inserted subtsa€A, t),
(b) |N¢| is the number of common nodes in and L 4,

db
v ok
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Figure 7. Description of the datasets

relational schema to aTbp employsspJiqueries [1]. Ev-
ery spiquery can be made key-preserving by extending its
projection-attribute list to include the primary keys.

Analysis. Given a collection of views’ defined asspJ
gueriesunder key preservatiqra relational databask of
schemaR, and a group view updatAy, is there a group
update Ap on the databasé such thatAy (V(I))
V(ARr(I))? Inthis settingAy consists of either only tuple
deletions or only tuple insertions, as produced by the trans
lation algorithms of the last section. These deletions and
insertions inAy, are translated to deletions and insertions
in A g, respectively. We us¥ to denote the view(I). We
refer to this problem as thagew updatability problem

It is known [3] that without key preservation, the updata-
bility problem isnpP-hard for a single deletion and a single
PJview, i.e.,whenAy consists of a single deletion amtis
a view defined with projection and join operators only. We
show that key preservation simplifies the updatability anal
ysis for a collection oEpaviews and group deletions. More
complexity results of view updates can be found in [8].

Theorem 4.1: For group view deletiond,, the spaview
updatability problem is irPTIME. a

The problem is intractable for insertions under key

|En.| is the number of those edges that connect nodes ofpreservation; the lower bound is verified by reduction from

N¢ in eitherT or ST(A, t), and (c)n is the number of dis-
tinct nodes inT. In practice| N¢| < |Na| < |Ea| <

n < |V|. The first and second factors are the cost of com-

puting L4 and Ly, respectively, and the third factor is
the cost of maintainind., whereswap() is called at most
2|N¢| + |r[p]| times and each takes at mastn) time.
The fourth factor is the cost of computing the reachability
matrix for ST(A, t), while the last factor is the cost of main-
taining the reachability betweesT(A, t) andT.

4 Updating Relational Views
We briefly outline the techniques for processgrpview

updates under key preservation. Details can be found in [7].

Key preservation. Consider arspiqueryQ(Ry, ..., Ry)
that takes base relatiort®,, . . ., R of R as input, and re-
turns tuples of the schenmi@(a). We say that) is key pre-
servingif for each R;, the primary key ofR; is included in
a (with possible renaming).

the non-tautology problem, which is>-complete.

Theorem 4.2: The spJiview updatability problem isvp-
complete even whefsy, has a single insertion and has a
single view. =]

We give apTIME algorithm for computing database tuple
deletionsA i from a group of view deletiondy in [7]. We
also provide in [7] a heuristic algorithm for handling group
view insertions by reducing therJview insertion problem
to SAT, one of the most studiedr-complete problems. This
allows us to leverage a well-developedT solver [22] to
efficiently computeAy if it exists.

5 Experimental Study

We conducted a preliminary experimental study of our
proposed view update mechanism in order to verify its ef-
fectiveness.

All experiments were conducted on a dataset of four base

Key preservation is far less restrictive than other condi- relations: C(cy, - -+, c16), F(f1, -+, fi6), H(h1, he) and

tions proposed in earlier work for handling relational view
updates €.9.,[10, 14]). A mappings : R — D from a

Cu(cy, -+, ci6), where underlined attributes indicate keys.
The domain off; was equal to that of; and¢}. The
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Figure 8. Update performance as a function of the sizes of the relational database and the view update

remainingC' and F' attributes controlled how many join-
ing C and F' tuples were filtered out. The domains /of
and hy were the same as that of. In addition (1) for
eachc € C U Cy there would be on average three tu-
plesh € H, whereci=hy, and (2) hy<hs, Where @1,
ho) € H. The universe ol’, namelyCy, consisting of
100M C-tuples, ensured that wheneveer joined with ¢,

it always yielded aC-tuple. The sizes of’ and H were
proportional to the size of’, used for reporting the size of
the database; specifically, we rep@rt, which ranges from
1,000to 1,000,000 tuples, whil€'| = |C| and|H| ~ 3|C].
We defined anxmL view of C, F and H; as indicated
in Fig. 7(a), theC' nodes in the view were recursively de-
fined, and a recursion @f in the view can be understood as
7TC1,f1,h17h2(Jclzfl/\fl:h1/\hzzc'l/\02:f2A03:f3A04:f4(C X

F x H x Cy)). HereC subtrees are shared, and subtree
sharing accounted for 31.4% ¢f instances. Figure 7(b)
lists some statistics on the number of publisiiédubtrees
and their compressanhGs, and the corresponding sizes of
the reachability matri¥\/ and topological ordef..

Varying database size. We generated two random up-
date workloads over themL view, one for insertions, and

Note that both axes use a logarithmic scale. The algorithms
scale linearly with the size of the relational database. As
shown, deletion time is dominated lxpath evaluation. Al-
though the cost for auxiliary structure maintenance is-rela
tively high, it is performed in the backgrount/; (b) is the
highest reported time among the three workloads since its
xpath queries generate more edges. (a greatetE,(r)|),
which are then examined by Algorithdelete.

Similar results are reported for insertions, as shown in
Figures 8(d), 8(e) and 8(f) fdi#/;, W5 andWs, respectively
(again, using logarithmic scales). The size of the inserted
subtree was fixed. TheaT solver [22] returned a truth as-
signment in 78% of the cases and we only report the time
for insertions where theAT solver successfully returned a
truth assignment. As for deletions, our insertion algarith
scale linearly with the size of the relational database.

Varying update size. For these experiments, we fix¢d|

to 100K tuples. Figure 8(g) shows the performance of
each algorithm as we varidd, (r)| (see Section 3.2) for
deletions andr[p]| for insertions, while keepingT(A, t)
constant to a singl€’-subtree. The runtimes for Algo-
rithmsXinsert, Xdelete, delete andinsert are shown on the

one for deletions; each workload consisted of three updateleft y-axis and the runtimes for algorithrds ,  yinsert and
classes, each class including ten operations. The classeA y, | delete are shown on the right one. The translation

were characterized by therath queries used to define the
updates. Clas$l; usedxpath queries using the descen-
dant axis and value filtersgpath queries ini¥/; used the
child axis and value filters; finally}}’; containedxPath

time from Ax to Ay for Algorithm Xinsert (resp. Algo-
rithm Xdelete) increases slightly ag-[p]| (resp.|E,(r)|)
increases. The slope for Algorithdelete is large, as the in-
crease oflE,(r)| involves more queries to determine the

queries using the child axis and both structural and valuesource tuples to be deleted. The performance of Algo-
filters. The times we report include: (a) the time to evaluate rithm insert is dominated by the coding time. A€| is

xpPath queries; (b) the time to translatey to Ay (Algo-
rithms Xinsert and Xdelete) and subsequentlgxy to Ag,

far larger than|sT(A4,t)| and |r[p]|, and the number of
database queries required remains fixed, the coding time re-

and the time to execute the update; and (c) the time to main-mains roughly constant though the size of the resulting cod-

tain the auxiliary structures in theackgroundAlgorithms
Am,pyinsert andA | ydelete).

ing increases; that only results in a non-observable irserea
in the SAT solver’s runtime keeping the curve relatively flat.

Figures 8(a), 8(b) and 8(c) show the performance of the The performance of Algorithr  )insert (which can be

deletion algorithms fo#;, W, and W3, respectively. We
plot the runtime of performing the updates broken into their
(a), (b) and (c) above constituents for various databass siz

found in [7]) and AlgorithmA ) delete is almost unaf-
fected by|r[p]| (resp.|E,(r)|) since|ST(A,t)| is fixed.
Similar results are shown in Fig. 8(h) where we var-
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