Conditional Functional Dependenciesfor Data Cleaning
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Abstract CC AC PN NM STR CT ZIP

t1: | 01 | 908 | 1111111 | Mike | Tree Ave. | NYC 07974

; .t | 01 | 908 | 1111111| Rick | Tree Ave. | NYC | 07974
We propose a class of constraints, referred tccaadi o1 | 212 | 2229992 | Joe | Emst. | NYC | 01202

tional functional dependenciesKDs), and study their ap- ti; o1 | 212 | 22222221 Jim | Emst. | NYC | 01202
plications in data cleaning. In contrast to traditional fein  #5: | 01 | 215 | 3333333| Ben | OakAve. | PHI 02394
tional dependencies0s) that were developed mainly for te: | 44 | 131 | 4444444| lan | HighSt. | EDI | EH4 1DT
schema designgFDs aim at capturing the consistency of Figure 1. An instance of the cust relation
data by incorporating bindings of semantically related-val
ues. ForcrFDs we provide an inference system analogous to
Armstrong’s axioms forDs, as well as consistency analy-
sis. SincecrDs allow data bindings, a large number of in-
dividual constraints may hold on a table, complicating de-
tection of constraint violations. We develop techniques fo
detectingcFD violations insQL as well as novel techniques
for checking multiple constraints in a single query. We ex- Example 1.1: Consider the following schema, which spec-
perimentally evaluate the performance of atfp-based ifies a customer in terms of the customer’s phone (coun-
methods for inconsistency detection. This not only yields atry code CC), area codeAC), phone numberiN)), name
constraint theory focFps but is also a step toward a prac-  (NM), and address (stree¥TR), city (CT), zip code ZIP)).
tical constraint-based method for improving data quality. ~ An instance ofcust is shown in Fig. 1. Traditional func-
tional dependenciesbs) on acust relation may include:
1 Introduction fi: [CC,AC,PN] —[STR,CT, ZIP]
Recent statistics reveals that dirty date casssbusi- for [CCACT —[CT]
nesses billions of dollars annually (cf. [6]). It is also es- (Recall the semantics of &D: f, requires that two cus-
timated that data cleaning, a labor-intensive and complextomer records with the same country- and area-codes also
process, accounts for 30%-80% of the development timehave the same city name.) Traditiorris are to hold on
in a data warehouse project (cf. [19]). These highlight the all the tuples in the relation (indeed they do on Fig. 1). In
need for data-cleaning tools to automatically detect and ef contrast, the following constraint is supposed to hold only
fectively remove inconsistencies and errors in the data. when the country code is 44. That is, for customers in the
One of the most important questions in connection with uk, ZIP determine$STR:
_data cleaning is how to model t_he consistency of_the data, éo: [CC=44,ZIP] — [STR]
i.e., how to specify and determine that the data is clean?
This calls for appropriate application-specific integatyn-
straints [17] to model the fundamental semantics of the. data
Unfortunately little previous work has studied this issue.
CommerciakTL (extraction, transformation, loading) tools
have little built-in data cleaning capability, and a sigrafit
portion of the cleaning work has still to be done manually or
by low-level programs that are difficult to write and main- ¢1: [CC=01,AC=908,PN] — [STR, CT =MH, ZIP ]
tain [17]. A bulk of prior research has focused on the merge- #2: [CC=01,AC=212,PN] — [STR, CT =NYC, ZIP ]
purge problemé.g.,[9, 11, 16, 21]) for the elimination of ~ ¢s* [CC=01,AC=215]— [CT =PHI]
approximate duplicate®r on detecting domain discrepan- The first constraing; assures that only in thes (country
cies and structural conflicteg.,[18]). There has also been code 01) and for area code 908, if two tuples have the same
recent work orconstraint repaiff2, 5, 7, 20], which speci- PN, then they must have the sai®€R andZIP values and
fies the consistency of data in terms of constraints, and de-furthermore, the citynustbeMH. Similarly, ¢, assures that

tects inconsistencies in the data as violations of the con-
straints. However, previous work on constraint repair is
mostly based on traditional dependenciegy(,functional
and full dependencies, etc), which were developed mainly
for schema design, but are often insufficient to capture the
semantics of the data, as illustrated by the example below.

In other words g, is anFD that is to hold on the subset of
tuples that satisfies the pattet@C = 44", rather than on the
entirecust relation. It is generallyot considered a®D in
the standard definition sineg includes gatternwith data
valuesin its specification.

The following constraints are again not considered:



(a) Tableadr’; of p1 = (cust:[CC, ZIP ] — [STR], T1)
if the area code is 212 then the city mustipec; and ¢3 cC | zIP | STR
specifies that for all tuples in thes and with area code 215, aa| |
their city must berHi (irrespective of the values of the other
attributes). Observe that; and ¢, refinethe standardp (b) Tableaur of p2 = ([CC, AC, PN ] — [STR, CT, ZIP ], T%)
f1 given above, whiless refines therD f5. This refinement CC | AC | PN | STR| CT | zIP

essentially enforces a binding of semantically related dat : ; : : : :
values. Note that while tuplels andt, in Fig. 1 do not 01 | 908 | - ‘ _ MH i
violate f1, they violate its refined versiop,, since the city 01 | 212 ] - - | NYC
cannot benvc if the area code is 908. O

(c) Tableaul’s of p3 = ([CC, AC] — [CT], T5)
In this example, the constraints), ¢, ¢ and ¢s cap-

ture a fundamental part of the semantics of the data. How- CClac| cr
ever, they cannot be expressed as standasthnd are not o1 | 215 PHI
considered in previous work on data cleaning. Indeed, con- 44 | 141 | GLA
straints that hold conditionally may arise in a number of

domains. For example, an employee’s pay grade may de- Figure 2. Example CFDs

termine her title in some parts of an organization but not in
others; an individual’s address may determine his tax rate i ber of conditions to be checked efficiently on large data sets
some countries while in others it may depend on his salary, However, we also find that care must be taken to present the
etc. Further, dependencies that apply conditionally appea complicatedwhere clauses generated by our technique to
to be particularly needed when integrating data, since de-the optimizer in a way that can be easily optimized.
pendecies that hold only in a subset of sources will hold  Finally, we present some observations, includingian
only conditionally in the integrated data. completeness result, on constraint repair vittps, but de-
This paper introduces a novel extension of traditional fer further developmentto a later report (Section 6).
FDs, referred to asconditional functional dependencies ~ Our conclusion is thatFps are a promising tool for im-
(cFDs), that are capable of capturing the notion of “correct Proving data quality. We discuss related and future work in
data” in these situations. A formal framework for modelling Section 7. All proofs can be found in [8].
CFDs s the first contribution of this paper (Section 2). o ) _
Our second contribution consists of techniques for rea- 2- Conditional Functional Dependencies

soning aboutrps (Section 3). We show that the analysis e next definecFps. Consider a relation scheniade-
of crps introduces new challenges. For example, a set of fined over a fixed set of attributes, denotedabty(R).
CFDs may have conflictsife., inconsistencies), a problem : : .

; . o ntax. ACFbyponRisapair(R: X — Y, T,), where
not encountered when dealing with traditiorak. We de- (S}/)X Y are seti of attributeps fr(()mtr(R)—>(2)7R ?)X oy
velop techniques for determini_ng the consi_;tencycebs. is a s7tandarc¢D, referred to as theD em’bedded ip; and
We also extend Armstrong's axioms for trad|t|_on¥ais (see, (3) T, is a tableau with all attributes iN andY’, referred to
€.g.[1) by_prowdlng a_sound and complete_ |_nference SYS™ as thepattern tableawf ¢, where for eact! in X orY and
tem, and give an algorithm to compute a minimal cover for each tuple € T, t[A] is either a constant ‘a’ in the domain
a set ofcrFps. These are not only useful for data cleaning dom(A) of A oz;'an unnamed variable’* If A appears in

asan optimization technique by minimizing the inpeDs, both X andY’, we usef[A;] and¢[Ax| to indicate thed
but also Y'eld aCF'_Dth?OW_ analogous to the theory Ebs. field of £ corresponding tod in X andY’, respectively. We
Our third contribution is the development sfyL tech- write p as(X — Y, T,) whenR is clear from the context.

nigues for detectingfFb violations (Section 4). SincerDs E le2.1: Th :
incorporate data values, they may in some cases be physEX@mple2.1: The constraintgy, f1, 91, ¢2, f2, ¢s Oncust

ically large, and straightforward techiques may lead to a given in Example 1.1 can be expresse«tass ¥ (for o),
very large number of detection queries. We develop non- ¥2 (for f1,¢1 and¢s, one per line, respectively) angs
trivial techniques tomergeand efficiently checla setof (for f2, ¢s and an addlthnaIC[C = 44,AC - 141]—> [CT=
CFDs even with a very large number of conditions. These GLA] to be used in Section 4), as shownin Fig. 2. O
guarantee: (a) aingle pair of SQL queries are generated, If we represent both data and constraints in a uniform
with a bounded size independent of the data values in thetableau format, then at one end of the spectrum are rela-
cFps, and (b) only two passes of the database are needed. tional tables which are composed of data values without
Our fourth contribution is an experimental study of the logic variables, and at the other end are traditional con-
performance of our detection techniques as data size andtraints which are defined in terms of logic variables but
constraint complexity vary (Section 5). We find that our Without data values, whilerps are in the between.
techniques allow violations afFDs with even a large num- ~ Semantics. Intuitively, the pattern tableail, of ¢ refines



the standaréD embedded ip by enforcing the binding of ¥ but contains no redundan€bs, patterns or attributes; it
semantically related data values. To define the semantics ofs typically more efficient to us&,,. instead of¥> when

o, we first introduce a notation. For a pattern tuplen detecting and removing inconsistencies from the data.

T,, we define an instantiation mappipgo be a mapping We answer these questions in this section. We show that
fromt. to adata tuplewith no variables, such that for each as opposed to standaris, a set ofcFbs can be incon-
attributeA in X UY, if t.[A] is*_, p maps it to a constant  sistent. Furthermore, the implication analysis &mDs is

in dom(A), and ift.[4] is a constantd’, p maps it to the  more complicated than thefp counterpart. However, we

samevalue ‘«’. For example, fort.[A, B] = (a,-), one show that in many practical cases the consistency of a set of
can define an instantiatignsuch thap(t.[A, B]) = (a,b), cFDscan be determined efficiently. We also provide a sound
which mapg.[A] to itself andi.[B] to a valueb in domB). and complete inference system for the implication analysis

A datatuplel is said tomatcha pattern tuplé., denoted  of crps, which is analogous to but is more involved than
byt < t., if there is an instantiatiop such thafp(t.) = t. Armstrong’s Axioms forFDs. Based on these we present a
For examplet[A, B] = (a,b) < t.[A, B] = (a, ). technique for computing a minimal cover of a setss.

A relation ] of R satisfiegsheCFD ¢, denoted by |= ¢, .
if for each pairof tuplesty, ¢, in the relation/, and for'Zach 3.1 Consistency of CFDs
tuplet. in the pattern tableafli, of o, if t1[X] = t2[X] < One can specify any set of standamk, without worry-
t.[X], thent1[Y] = t2[Y] < ¢.[Y]. Thatis, ift;[X] and ing about consistency. This is no longer the casecfams.
to[X] are equal and in addition, they both match the pattern gy ample 3.1: Considercrp ¢ = (R : [A] — [B],Ty),
t.[X], thent; [Y] andt,[Y'] must also be equal to each other \,here Ty consists of two pattern tuples, b) and (, c)
and both mgtch the p_attetQ[Y]. Moreover, if¥ isasetof  Thenno nonempty instandeof R can possibly satisfy.
CFDs, we write ] |= X if I |= ¢ for eachcFp ¢ € ¥. Indeed, for any tuplein I, while the first pattern tuple says
Example 2.2: The cust relation in Fig. 1 satisfiep;, and that¢[B] must beb no matter what valué[A4] has, the sec-
o3 of Fig. 2. However, it does not satisfy,. Indeed, tu-  ond pattern require§ B] to bec.
ple ¢, violates the pattern tuple. = (01,908, _, _, MH, _) Now assume thaiom(A) is bool. Consider twocFDs
in tableauT’ of ¢9: ¢1[CC, AC,PN] = ¢;[CC,AC,PN] =< e = ([A] — [B],T2) andys = ([B] — [A],T3), where
(01,908, ), butt; [STR, CT, ZIP] % (_, MH, _) sincet; [CT] T, has two patternstrue, by), (false, by), andT3 contains

is NYC rather tharvH; similarly for ¢;. O (by, false) and(bs, true). While 1), andys can be separately
This example tells us that while violation of a standard satisfied by a nonempty instance, there exists no nonempty
FD requirestwo tuples, asingletuple may violate aFb. instancel such thatl = {12,vs}. Indeed, for any tuple
Two special cases afFDs are worth mentioning. First, ¢ in I, no matter what Boolean valu¢A| has,» andis
a standardb X — Y can be expressed asc&D (X — together force[A] to take the other value from the finite do-
Y, T,) in which T}, contains a single tuple consisting of mainbool. This tells us that attributes with a finite domain
‘_ only. For example, if we lefl; of o3 in Fig. 2 contain ~ may complicate the consistency analysis. O
only (-, -, ), then it is thecFD representation of theb > Theconsistency problem farFps is to determine, given
givenin Example 1.1. Second, aninstance-leweX’ — Y a sety of cFps defined on a relation schenid, whether
studied in [14] is a speciatFD (X — Y, T},), whereT, there exists a nonempty instantef R such thatl |= 3.
consists of a single tuple consisting of only data values. This is a nontrivial problem that is not encountered when
. . dealing with standard@ps. It is intractable (by reduction
3 Basic Properties of CFDs from the non-tautology problem; see [8] for the proof), due
Having seen thatFDs are an extension of standafds, to finite-domain attributes involved iaFDs which, as Ex-

it is natural to ask whether or not we can still effectivelgre  ample 3.1 shows, complicate the consistency analysis.
son aboutrpsalong the same lines as the counterpart.  Theorem 3.1: The consistency problemiig-complete. O
Is there an inference system, analogous to Armstrong’s Ax-
ioms for FDs, to effectively determine whether or not a set
of crbs implies (entails) anothezFD? Does a set ofFDs
make sense.e.,are theCFDs consistent?

These questions are not only fundamentattms, but
are also important for data cleaning. Indeed, if an input se
3 of cFDs is found inconsistent, then there n® needto
check (validate) theFps against the data at all. Further, it Theorem 3.2: Given any set. of CFDs on a relation

For data cleaning in practice, the relation schema is often
fixed, and onlycrFps vary and are treated as the input. To
this end we develop an efficient algorithm for checking the
consistency of a given set ofbs, by generalizing the chase
tprocess forrDs (see,e.g.,[1] for chase). Due to the space
constraint we defer the details of the algorithm to [8].

helps the user discover errorsamp specification. Whei: scherga}_%, the consistency oE can be determined in
is consistent, an effective implication analysis wouldall ~ O(|[%) time, if either the schem& is predefined, or no
us to find aminimal coverX,,. of ¥ that is equivalent to  attributes in¥ have a finite domain. 0



FD1: If A € X, then(X — A, tp), wheret,[B] = ‘_ for all

Be XU{A}.

f(R: X — A, tp) andB € attr(R), then(R :

[X,B] — A, t},), wheret},[B] = ‘. and ,,[C] = t,[C]

foreachC' € X U {A}.

If (1) (X — A, t;) such thatt;[X] = ¢;[X] for all

i,7 € [1,k], 2) ([A1,...,Ax] — B,tp) and more-
over, (3) (t1[A1],...,tx[Ak]) = tplA1,..., Ag], then
(X — B, t3,), wheret [X] = t1[X] andt, [B] = tp[B].

If ([B,X] — A, tp), tp|B] ='_, andt,[A] is a constant,
then(X — A, t},), wheret, [X U {A}] = t,[X U {A}].

If ((B,X] — A,tp) andt,[B] ='_, then ([B,X] —
A, ty,), wheret, [C] = t,[C] foreachC € XU{A}—{B},
andt;[B] ="t for some b’ € dom(B).

If (X — A, tp) andt,[A] =‘a’, then(X — A, t;,), where
tp[A] =" andt), [ X] = t,[X].

If(1) S b7 (X, B] — A, t;) fori € [1, k], (2)dom(B) =
{b1,..., bk, brt+1,bm }, and(3, B = b;) is not consistent
except forl € [1,k], and (3) fori,5 € [1,k], t;[X] =
t;[X], andt;[B] = b;, thenX 7 ([X, B] — A, tp) where
tp[B] =" andt,[X] = t1[X].

If B € attr(R), dom(B) = {b;|i € [1,m]}, and
(X, B = b;) is consistent only fob;, thenX Fz (R :
B — B, (-, b1)).

FD2:

FD3:

FD4:

FD5:

FD6:

FD7:

FD8:

Figure 3. Inference Rules for CFDs
3.2 AnInference System for CFDs

Armstrong’s Axioms forFDs are found in almost every

database textbook, and are fundamental to the implication
analysis ofFDs. We next provide an inference system for

CFDs, analogous to Armstrong’s Axioms feDs.

Theimplication problem forcrFbs is to determine, given
a set™ of cCFbsand a singlecFD o on a relation schemag,
whether or not entailsy, denoted by = ¢, i.e.,whether
or not for all instances of R, if I = X thenT | .

Two setsY; andX, of CFDs areequivalentdenoted by
31 = Yo, ifforanyinstancd, I = X, iff 1 | Xs.

For the implication analysis ofFDs, we provide a set
of inference rules, denoted K in Fig. 3. To simplify the
discussion we considerrps of the form(R : X — A, T),),
where A is a single attribute and’, consists of a single
pattern tuplet,, written as(R : X — A,t,). This does
not lose generality since arb of the general formp =
(R : X — Y,T,) is equivalent to a set,, of CFDs of
the form above such that for each € Y andt, € T},
(R: X — A t,[XUA])isinX,. Thatis,X, = ¢.

Given a finite set U {¢} of cFDs, we useX 7 ¢ to
denote that is provable from® usingZ.

Example 3.2: Consider a set of CFDs consisting ofi); =
(A — B,(.,b)) andyy = (B — C,(,¢)), and a single
CFDp = (A — C, (a,-)), all defined on the same relation
schema. Thel 7 ¢ can be proved as follows:

(1) (A - 37 (—7 b)) 1/}1
(2 (B—=C, (,0) P2
) (A—C, (50) (1), (2) andFD3
@) (A— C, (a,c)) (3) andFD5
(

5) (A — C, (a,.)) (4)andFD6 O

The theorem below tells us that analogous to Arm-
strong’s Axioms forrDs, the inference rules of charac-
terize the implication analysis afFDs, i.e.,for any set® of
CFbsand a singleFD ¢, if ¥ = ¢ thenX 7 ¢ (complete-
ness), and vice versa (soundness; see [8] for a proof).

Theorem 3.3: The inference systefh is sound and com-
plete for implication oCFDs. |

While the rulesFD1, FD2 andFD3 in Z are extensions
of Armstrong’s Axioms forFbs, FD4—FD8 do not find a
counterpart in Armstrong’s Axioms. Below we briefly il-
lustrate the inference rules ih

FD1 andFD2 extend Armstrong’s Axiomseflexivity and
augmentation, respectively, and are self-explanatory. A
subtle issue arises whd® = A, when B appears in both
the LHs andRrHs of the embeddedD [X, B] — A. If so,
we usé,[B] =" instead oft,[B] =" to refer to theB at-
tribute in[ X, B] (recall from Section 2 that in a tuptg, the
occurrences oB in theLHS andRHS can be distinguished
by usingt, [B] andt,[Br], respectively).

FD3 extendstransitivity of Armstrong’s Axioms. To cope
with pattern tuples which are not found #Ds, it em-
ploys an order relatior<, defined as follows. For a pair
71,12 Of constants or_’, we say thatn; =< ns if either
m1 = 12 = a Wherea is a constant, on, = ‘. The < re-
lation is naturally extended to pattern tuples. For insganc
(a,b) < (-, b). Intuitively, the use of< in FD3 assures that
(t1[A1], ..., tk[Ak]) is in the “scope” oft,[A1, ..., Ak,
i.e., the patternt,[A,, ..., A;] is applicable. In Exam-
ple 3.2,FD3 can be applied becausgB] = b < t2[B] = _,
wherety, t, are the pattern tuples iny, 12, respectively.

FD4 tells us that for acFD ¢ = ([B,X] — A,t,), if
t,[B] = ‘. andt,[A] is a constantd’, then it can be sim-
plified by dropping theB attribute from the_.Hs of the em-
bedded-D. To see this, consider a relatidrandanytuple
tin I. Note that since,[B] = *_, if t{X] = ¢,[X] then
t[B, X] < t,[B, X] andt[A] has to be: regardless of what
valuet[B] has. Thusp entails(X — A, t,).

FD5 says that in ecFD ¢ = ([B,X] — A,t,) one can
substitute a constantfor ‘_" in ¢,[B]. To see this, consider
a relation/ and any tupleg;, to in I. If t1[X] = t:[X] =<
t,[X] and moreover{, [B] = t1[B] = t3[B] = b, then
certainlyt;[B, X| = t2[B, X] = t,[B, X|, and hencep
still applies. Thusp implies([B, X] — A, ;).

FDG6 tells us that in ecFD ¢ = ([B,X] — A,t,) we can

substitute ’ for a constant in ¢,[A]. This is because, for
any tupleg, t2 in arelationl, if t1[A] = t2[A] < t,[A] =



a, thent, [A] = t[A] < t}[A] =*_. Thusy |= ([B, X]| —
A, t},). Example 3.2 shows ho#D6 is applied.

FD7 andFD8 deal with attributes of finite domains, which
are not an issue for standafds sinceFDs have no pattern
tuples. They are givew.r.t. a set¥ of CFDs. Specifically
one needs to determine, givEron a relation schema, an
attribute B in attr(R) with a finite domain and a constant
b € dom(B), whether or not there exists an instaricef

R such that/ = ¥ and moreover, there is a tuptein
such thatt[B] = b. We say tha{X, B = b) is consistent
if and only if such an instance exists. That is, since the
values ofB have finitely many choices, we need to find out
for whichb € dom(B), ¥ and B = b make sense when
put together. For example, consider the Bet {1, ¢35}
givenin Example 3.1, and th®ol attributeA. Then neither
(X, A = true) nor (X, A = false) is consistent.

FD7 says that for an attributé? of a finite domain and
w.r.t. a given sett of CFDs, if ¥ Fz (X — A, ¢;) when
t;[B] ranges over alb € dom(B) such that(X, B = b)

is consistent, then;[B] can be “upgraded” to_". That is,
for any instancel, if I = X, then! = (X — A,t,),
wheret,,[B] =*_. This is because for all sensible values of
dom(B) that "' in ¢,[B] may take] = (X — A, t;).

FD8 handles a special case.r.t. a given sek of cFbsand
for an attributeB of a finite domain, if there is anique
valueb € dom(B) such tha{X, B = b) is consistent, then
forany instancd, if I = 3, we have that[B] = b for each
tuplet in I; this can be expressed ased (B — B, (_,b)).

Input: A setX of CFDS.
Output: A minimal cover ofX.

1. if X is not consistent

2. then return 0;

3. for eachcFDyp = (X — A, tp) €2

4. for each attributeB € X

5. X (X —{B} — A, (t[X — {B}],t(A)))

6. thenX:=% — {p} U{(X — {B} — A, (t,[X — {B}], t,(A)}:
7. mincover:=X;

8. for eachcFDp = (X — A, tp) € T

9. WS —{o}Ee

10.  then removey from mincover

11.return mincover

Figure 4. Algorithm MinCover

mal cover’,,. of a set™ of cFDs. The coverX,,. is equiv-
alent toY but does not contain redundancies, and thus is
often smaller thart. Since the costs of checking and re-
pairing CFDs are dominated by the size of tleDs to be
checked along with the size of the relational data, a non-
redundant and smallét,, . typically leads to less validating
and repairing costs. Thus finding a minimal cover of input
CFDs serves as an optimization strategy for data cleaning.
A minimal covert,,,. of a set® of CFDsis a set ofcFDs
such that (1) eackrD in ¥,,. is of the form(R : X —
A, t,) as mentioned earlier, (2),,. = %, (3) no proper
subset of%,,. implies ,,,., and (4) for eachpy = (R :
X — A, t,)in X, there exists n@ = (R : X' —
A, tp,[X" U A]) in X,,,c such thatX ¢ X'. Intuitively, 3,,.
contains no redundaatrDs, attributes or patterns.

From these one can see that due to the richer sem:’;\nticg)@‘mIOIe 3.3: Let X consist ofy, ¢; andy given in Ex-

of CFDs, 7 is more complicated than Armstrong’s Axioms.
Itis thus not surprising that the implication analysis<ebs

is more intriguing than their standar counterpart. The
intractability of the theorem below is verified by reduction

from the non-tautology problem to the complement of the

implication problem (see [8] for the proof).

Theorem 3.4: The implication problem foCcFDs is conP-
complete.

The good news is that when the relation schema is prede

ample 3.2. A minimal coveE,,. of X consists ofy}
(0 — B,(b)) andyy = (0 — C,(c)). This is because
(1) {v1,¥2} E ¢ (Example 3.2), (2)/1 can be simplified
to ¢} by removing the redundant attributé (by the rule
FD4 in Z), and (3) similarlyy), can be simplified ta),. O

We give an algorithmMinCover, for computing a min-
imal cover in Fig. 4. It is an extension of its standaml
counterpart [15]. FirstMinCover checks whether or nat
is consistent (lines 1-2). IE is consistent, it proceeds to

removes redundant attributes in thebs of X (lines 3-6).

fined as commonly found in data cleaning applications, the use(t,[X — {B}],t,(A)) to denote the pattern tuple

implication analysis ofcFDs can be conducted efficiently,

as stated by the next theorem. The implication checking al-

t;, such thatt) [A] tp[A] andt,[C] t,[C] for each

C € X — {B}. Next, it removes redundatFbs from

gorithm is based on a generalization of the chase proces%ines 8-10). From Theorems 3.2 and 3.5 it follows that

for FD implication (see [8] for the details of the algorithm).

Theorem 3.5: Given a sety of CcFDs and a singlecFD
 defined on a schem&, whether or notZ = ¢ can be
decided inO((|X| + |¢|)?) time, if either the schemg& is
predefined, or no attributes iR have a finite domain. O

3.3 Computing Minimal Coversof CFDs

MinCover is able to computes a minimal cover efficiently
when the schema is predefined (| X|?) time.

4 Detecting CFD Violations

A first step for data cleaning is the efficient detection of
constraint violations in the data. In this section we depelo
techniques to detect violations ofbs. Given an instancé

As an application of consistency and implication analy- of a relation schem& and a sekt of cFbson R, itis to find

ses ofcFbs, we present an algorithm for computing a mini-

all theinconsistent tuples I, i.e., the tuples that (perhaps



ng select ¢ from custt, 1oty
where ¢[CC] =< t,[CC] AND t[AC] < t,[AC] AND
t[PN] =< t,[PN] AND
(t[STR] % tp[STR] ORt[CT] % t,[CT] ORt[ZIP] % t,[ZIP])
QY, selectdistinct ¢[CC],¢[AC],¢[PN] from custt, Tb tp

where ¢[CC] < t,[CC] AND t[AC] < t,[AC] AND ¢[PN] < ¢, [PN]
group by t[CC], t[AC], t[PN]
having count(distinct ¢[STR], ¢t[CT], ¢[ZIP])> 1

Figure 5. SQL queries for checking CFD ¢»

together with other tuples ih) violate somecFDin X. We
first provide ansqQL technique for finding violations of a
singlecFb, and then generalize it to validate multigdeDs.

4.1 Checkinga Single CFD with SQL

Consider ecFD ¢ = (X — Y, T;,). The following two
sQL queries suffice to find the tuples that violate
QY sdect t from R t, Tptp
where ¢[X1] < tp[X1] AND ... AND t[X},] < tp[Xn] AND

(t[Y1] # tp[Y1] OR... ORE[Yn] # tp[Yn])

select distinct t.X from R t, Tty
where ¢[X1] < ¢p[X1] AND ... AND t[X5] < tp[Xn]
group by ¢.X  having count(distinct Y)> 1

Qp

whereX; (resp.Y;) ranges over attributes iX (resp.Y’);
t[X;] = t,[X;] is a short-hand for theQL expression#( X;]
=t,[Xi] OR t,[X;] =), while ¢[Y;] # t,[Y;] is a short-
hand for ([Y;] # £,[Y;] AND 1,[Y;] # ).

Intuitively, detection is a two-step process, each con-
ducted by a query. Initially, quer@g detectssingle-tuple
violations,i.e.,the tupleg in I that match some pattern tu-
plet, € T, on theX attributes, but does not match, in
theY attributes due to eonstantaluet, [Y;] different from
valuet[Y;]. Thatis,Q¢ finds inconsistent tuples based on
differences in the constants in the tuples dhgatterns.

On the other hand, quer@g finds multi-tuple viola-
tions, i.e., tuplest in I for which there exists a tupl€ in
I such that[X] = t'[X] and moreover, bothand¢’ match
a patterrt,, on theX attributes, but[Y;] # t'[Y;] for some
attributeY; in Y. QueryQZ uses thegroup by clause to
group tuples with the same value éa and it counts the
number of distinct instantiations ivi. If there is more than
one instantiation, then there is a violation. It catche$ibot
tuplest and¢’ mentioned above as violations, although it is
possible that botpassthe test of quer)Qg.

To be preciseQZ returns only theX attributes of incon-
sistent tuples (this is caused by tir@up by . However, this
has the advantage that the ouput is more concise than whe
we would return the complete tuples. Moreover, the com-
plete tuples can be easily obtained from the result of the two
gueries by means of a simpd@L query.

Example 4.1: RecallCFD 4 given in Fig. 2. Over aust

: T g v .
mstanc_e[, thesqQL quenesQW_ a_nd Qg, shown in Fig. 5
determine whether or nat satisfiesp,. Executing these
queries over the instance of Fig. 1, it returns tuplgst
(due toQS,), andts andt, (due toQY). O

p4 = (cust:[CC, AC, PN] — [STR, CT, ZIP ], T4), whereT} is
CC| AC|PN|STR| CT | ZIP

o1 | 908 | . I VT

o1 | 212 | _ Invc| .
_ _ @ @ - @
01 | 215 | @ @ PHI @

Figure 6. Merged ¢, and 3 CFDs

A salient feature of ousQL translation is that tabledl,
is treated an ordinary data table. Therefore, each query is
bounded by the size of the embeddanl X — Y in the
CcFD, and isindependenof the size (and contents) of the
(possibly large) tableail,.

4.2 Validating Multiple CFDs

A naive way to validate a set of CFDs is to use one
query pair for eaclcFD ¢ in 3. This approach requires
2 x |X| passes of the underlying relation. We next present
an alternative approach that only requires two passes. The
key idea is to generatesinglequery pair to check all the
constrainsirt. The proposed solution works in two phases.
In its first phase, it performs a linear scan of all the tabkeau
belonging tocFbs in ¥ andmergeshem, generating a sin-
gle tableau called;. Intuitively, tableauls, is such that it
captures the constraints expressed by all the tableauxof th
CFDsin X. Then, in its second phase, it generates a query
pair that finds inconsistent tuples violatiogbsin X.

4.2.1 Merging Multiple CFDs

Consider a set which, w.l.o.g, contains just twoCFDs
pandy’ on R, wherep = (X — Y, T) andy' =
(X’ — Y’, T'). There are two main challenges for the
generation of the merged tabledit. The first challenge
is that tableaux” and 7’ may not beunion-compatible
i.e., X # X' orY #Y’. We thus need to extend tableAu
(resp.T”) with all the attributes irZ = (X UY) — (X'UY")
(resp.(X'UY’) — (X UY) for T"). For each attributel
in Z and each tuplé. in the original tablead”, we set the
value oft.[A] to be aspecial symbalenoted by ‘@’, which
denotes intuitively alon’t carevalue. After this extension,
the resulted tableaux are union-compatible. Then, tableau
T is defined to be their union. Figure 6 shows how the
CFDs 5 andes of Fig. 2 can be made union-compatible.

Given the presence of “@”, we need to reformulat®
satisfaction. Consider a tuplg[X, Y] in a tableau that in-
cludes ‘@’. We useX/"* and three to denote the sub-
Bet of X andY attributes oft. that is ‘@’-free, i.e., it
has no ‘@’ symbol. A relation of R satisfiesthe CFD
v, denoted byl |= ¢, if for each pairof tuplest;,ts in
the relationI, and foreachtuplet. in the pattern tableau
T, of o, if t1[X/"] = to[X] "] te[ X7 ], then
tl[}/t{ree] _ t2 [}/t{ree] - tc[}/t];ree].

For the second challenge, consider the translation of a
singlecFbD into ansqQL query pair. Note that the translation
assumes implicit knowledge of which attributes are in the

~



id | CC| AC | CT  id| CT | AC
1 _ _ @ 1 _ @
2 01 215 @ 2 PHI @
3 44 | 141 @ 3 GLA @
4 @ @ _ 4 @ _

(a) Tableaul'y (b) Tableaur'y’

Figure 7. Tx, for CFDs 3 and 5

X andY sets and treats the translation of each attribute set

differently. Now, consider two simplerbs on R, namely,
¢ =(A— B,T)andy = (B — A,T’). Suppose that
we have made the tableaux of thebs union-compatible.

One might want to take the union of these two tableaux to

generatdy.. How can we translate tabledy; into ansqQL

query pair? Clearly, we cannot directly use the translation

given earlier since we do not know how to treat the join
of an attribute like, sayA. Attribute A is in X for tuples
coming fromyp, while it is part ofY” for tuples coming from

¢’. Thus we need to distinguish the two sets of tuples and

treat the translation of each set separately.

We accommodate this by splitting the tabléawf each
CFby = (R : X — Y, T) into two parts, namely]X
andT?, one tableau for thé&( and one fory” attributes of
¢. Then, tableaux’¥ (and similarly7y) is generated by
making all theTX tableaux in¥X union-compatible. Note
that an attribute can appear in batff and7y . To be able
to restore pattern tuples frofi¥ and7y , we create a dis-
tinct tuple id¢.id for each pattern tuple, and associates it
with the corresponding tuples iiY andTy . For example,
considercrD g3 shown in Fig. 2 andbs = (cust : [CT] —
[AC], T5), whereT5 consists of a single tuplé, ). Fig-
ure 7 shows their mergefly and7y tableaux. Note that
attributesCT andAC appear in both tableaux.

4.2.2 Query Generation

clause ofsQL (supported by commercialBms like DB2).

Consider the merged tableaifi and7y from a set®
of CFDs over a relation schem& and let/ be an instance
of R. Then, the following twaosQL queries can be used to
detect inconsistent tuples éfviolating ¢:

QY sdect ¢t from R ¢, TX X, TY 1Y
wheretX.id =tY".id AND
t[X1] < 65 [X1] AND ... ¢[X 5] < tX[Xn] AND
(U] # £ [Vi] OR ... t[¥n] # £ [Va))
Qg select distinct t™.X from Macro tM
group by tM . X
having count(distinct Y)> 1
whereMacro is:
select (casetéf [X;] when “@” then “@” else¢[X;] end )AS X ...
(caset, [Y;] when “@” then “@” elset[Y;] end )ASY] ...
from R ¢, T8 ¥, T tY
wheretX id =t} ".id AND
HX1] < X [X1] AND ... AND ¢[X,] < £X [X0]
wheret[X;] =< t,[X;] now accounts for the ‘@’ and is a
short-hand for {{X;] = ¢,[X;] OR ¢,[X;] = ‘" OR t,[X}]
='@’), while t[Y;] # t,[Y;] is a short-hand fort(Y;] #
t,[Y;] AND £,[Y;] # 2 AND 1,[Y;] # ‘@)

More specifically, quen@$ is similar in spirit to the
SQL query that checks for inconsistencies of constants be-
tween the relation and the tableau, for a singkp. The
only difference is that now the query has to account for the
presence of the ‘@ 'symbol in the tableau. Now, we turn our
attention to relatioMacro which is of the same sort &85
and7Ty (we rename attributes that appear in both tableaux
SO as not to appear twice). Relatibtarco is essentially the
join on X of relation with the result of the join on tuple
id ¢.id of the two tableaux. The value of each attribute, for
each tuple™ in Marco, is determined by thease clause.

In more detail*[X;] is set to be ‘@’ ift, [ X;] is ‘@, and

During the second phase of our approach, we translateis ¢[Xi] otherwise; similarly fort*[Y;]. Note that relation

tableauTy, into a singlesQL query pair. This translation,
however, introduces new challenges. Recall that q%y
forsomecFDp = (R : X — Y, T'), requires agroup by
clause over all theéX attributes. Now, consider tabledy’

in Fig. 7. Itis not hard to see that if we use theoup by
clause over all the attributes iy, we are not going to de-
tect all (if any) inconsistencies since, for example, far th
first three tuples ifY the ‘@’ in attributeCT indicates
that, while detecting inconsistencies, we should only grou
by the first two attributes and ignore the value of attribute
CT. Similarly for the last tuple i7%Y , the ‘@’ in attributes
CCandAC indicates that while detecting inconsistencies for
these tuples, we should only consider the valu€®f The
example suggests that osioL query should change the set

I is not joined onY” with the tableaux. Thus if for some
tuplet with ¢[X] = ¢,'[X], there exists an attribufe; with
tY'[Y;] a constant andY;] # ¢ [Y;] (i.e.,t is inconsistent
w.rt.t,) thent*[Y;] is set to be[Y;]. This creates no prob-
lems since this inconsistent tuple is already detected Py
Intuitively, Macro considers each tuple in the tableau,

and uses it as maskover the tuples of the relation. If the
tableau tuple indicatesaon't carevalue for an attribute, all
the (possibly different) attribute values in the relatiaples
are masked and replaced by an ‘@’ Macro. Figure 8
shows the result of joining the fourth tuple of tablealix
and 7Y in Fig. 7 with thecust relation of Fig. 1. Note
that the query masks the attributes value<Caf and AC.
This masking allows the subsequenbup by over X to

of group by attributes, based on the contents of each tu- essentially consider, for each tuple, only the subseXof
ple. In what follows, we show how this can be achieved that does not have amon’t carevalues. Note that although
while still keeping the query size bounded by the size of X = {CC,AC, CT}, thegroup by by queryQ¥ essentially
the embeddedbd X — Y andindependenof the size of performs agroup by over only attribute CT. The query
the tableau. Central to our approach is the use oftcHse returns thenvc tuples which violateps.



CC | AC CT CT" | AC
@ @ | NYC @ 908
@ @ | NYC @ 212
@ @ PHI @ 215
@ @ EDI @ 131

Figure 8. Marco relation instance

In this way we generate single pairof sQL queries to
validate asetX: of CFDs, while guaranteeing that the queries
are bounded by the size of the embedded in X, inde-
pendentof the size of the tableaux iR. Furthermore, to
validateX: only two passes of the database is required.

5 Experimental Study

In this section, we present our findings about the perfor-
mance of our schemes for detectiogD violations over a
variety of data sizes, and number and complexitg ebs.

Setup: For the experiments, we used DB2 on an Apple
Xserve with 2.&Hz PowerPC dual CPU ands# of RAM.

Data: Our experiments used an extension of the relation in
Fig. 1. Specifically, the relation used models individual's
tax-records and includes 8 additional attributes, nantiedy,
stateST a person resides in, her marital staldR, whether
she has dependent#i, her salarySA, tax rateTX on her

note that thevhere clause of ousQL detection queries is

in conjunctive normal formd@NF). It is known that database
systems do not execute efficiently querie<irF since the
presence of th®R operator leads the optimizer to select
inefficient plans that do not leverage the available indexes
A solution to this problem is to convert conditions in the
where clause into disjunctive normal fornb{F). This
conversion might cause an exponential blow-up in the num-
ber of conjuncts, but in this case, the blow-umis.t. the
number of attributes in therb, which is usually very small.

CNF vs. DNF: In this experiment We considered both eval-
uation strategies, under various settings, to determiee th
most efficient one. In more detail, we considered relations
with sz from 10K to 100K tuples, in 10K increments, and
5% NOISE. We considered twoepresentativecFDs, each
with NUMATTRs 3, where the firsicFD had NUMCONSTs
100% (tuples with only constant) while the second had
NUMCONSTs 50% (half the tuples had variables). In terms
of CFD size, we setraBsz to 1K. Figures 9(a) and 9(b)
show the evaluation times for both evaluation strategs, f
each of the twacFDs. As both graphs show, irrespective of
data size and the presence of constants or variablesMine
strategy clearly out-performs tleanF one. Furthermore, the

salary, and 3 attributes recording tax exemptions, based orfigures illustrate the scalability of our detection quetigs

marital status and the existence of dependents.
To populate the relation we collected real-life data: the
zip and area codes for major cities and towns for all US

states. Further, we collected the tax rates, tax and income® )
a10K increments, and 5% 0ISE. For theCcFD, we con-

brackets, and exemptions for each state. Using these dat
we wrote a program that generates synthetic tax records.

We vary two parameters of the data instance in our ex-

periments, denoted bgz andNOISE. sz determines the
tuple number in the tax-records relation andise the per-

centage of dirty tuples. As the data is generated, with prob-

ability NOISE, an attribute on th&Hs of a cFD is changed
from a correctto incorrect value(g.,a tax record foralyc
resident with a Chicago area code).

CFDs. We usedcFbs that represent real-world constraints

ij VS. Qg: In this experiment, we investigated how the
detection time is split between tl@g anng queries. We
onsidered relations witez from 10K to 100K tuples, in

Sider one withNUMATTRs equal to 3,TABSZ to 1K and
NUMCONSTs 100% (we made similar observations for other
values ofNUMCONSTs). Figure 9(c) shows the evaluation
times for each query in isolation and shows that both queries
have similar loads and they follow the same execution trend.

Scalability in TABSz: This was to study the scalability of
the detection queries with respecttassz. In more de-
tail, we fixedsz to 500K with 5%No0ISE. We considered
two CFDs whose sizes varied from 1K to 10K, in 1K incre-

such as (a) Z|p codes determine states, (b) Z|p codes anments. ThesuMATTRswas 3 for the ﬁrSt, and 4 for the sec-

cities determine states (a city by itself does not sufficeesin

ond cFD considered. For altFDs, NUMCONSTs was 50%.

many states have cities with the same name), (c) statedigure9(d) shows the detection times for therbs. As is
and salary brackets determine tax rates (a tax rate dependgbvious from the figureTABsz has little impact on the de-
on both the state and employee salary), etc. We variedtection times and dominant factors here are (a) the size of

our CFDs using the following parameterstuMCFDs deter-
mined the number ofFDs considered in an experimental
setup,NUMATTRs the (max) attribute number in therDs,
TABSZ the (max) tuple number in theFps, and NUM-

the relation, which is much larger than the tableaux, and (b)
the number of attributes in the tableau, since these rasult i
more complicated join conditions in the detection queries.

Scalability in NUMCONSTs: We studied the impact of vari-

CONSTs the percentage of tuples with constants vs. tuples gples on the detection times. We considered a relation with

with variables in eaclkaFD.

SQL query evaluation: There are two alternative evalu-
ation strategies for theQL detection queries of Section 4.

Key distinction between these two strategies is how we eval-

uate thewhere clause in each detection query. Specifically,

sz 100K andNoOISE 5% and acFbps with TABSz 1K, and
NUMATTRs = 3. We variedNUMCONSTs between 100% (all
constants) and 10% and we measured the detection times
over the relation. Figure 9(e) shows that variables do &ffec
detection times and (not shown in the figure) moreover, as
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Figure 9. Experimental results

we increased both the percentage of variables and the numrepair operations oi [2]. Following [3, 7, 20] we allow
ber of attributes with variables, detection times increase attribute-value modifications as repair operations.
noticeably. This is apparent, given that variables retstinie RepairingCFDs is nontrivial. Indeed, consider therb
use of indexes while joining the relation with the tableau. repairing problemwhich is to determine, giveh, 3 and a
Scalability in NOISE: Here, we variedhoISE between 0%  Positive integet, whether or not there exists an instari¢e
and 9% in a relation witlsz 100K, and we measured detec- Of &2 such that (1} = ¥ and (2)!" is obtained from/ by
tion time, for acFD with TABSZ 30K (we used all possible ~ at mostk repair operations. This problem is intractable (by
zip to state pairs, so as not to miss a violatiom)maTTRs  reduction from the set cover problem; see [8] for a proof).
2, andNUMCONSTs 100%. As we can see in Fig.9(f), the Theorem 6.1: The repairing problem isiP-complete. O

level of NOISE has negligable effects on detection times. Repairing CFDs introduces challenges not encountered
Merging cFDs. Our experiments indicate (not shown) that when repairing standambs. For example, it is known [3]
CFD merging is mainly beneficial for highly-relatezF s, that if a pairty, to of tuples violate arD X — A, one can

as might be expected. However, the performance of theresolve the inconsistency by modifyimg A] or ¢2[A] such
merged scheme is hampered by the difficulty faced by ourthat¢,[A] = t¢3[A]. That is,FD violations can always be
optimizers when handlinghere clauses ircNF. The con- resolved by modifying values of somg(or ¢) attributes in
version toDNF is not an option here, because each disjunct therHsof FDs, without changing theHs such that; [ X] #
in CNF consists of 3 terms, and thus the translatiorcsf t2[X]. In contrast, this strategy no longer works foFDs.
to DNF results in avhere clause with3* conjuncts, where  To see this, consider a schetRawith attr(R) = (4, B, C),

k is the number of attributes in therD. In practice this is an instancé of R consisting of(a1, b1, ¢1) and(ay, ba, ¢2),
much worse than the” increase that results from translat- and a set. of crps including (4 — B, (_,_)) and(C' —
ing QS or QY into DNF. We speculate that improvements B, {(c;,b1), (c2,b2)}). ThenI [ % and moreover, any
in CNF evaluation may make the merge technique more use-repairl’ has to modify values of some attributes in thes
ful. Also, we are investigating techniques to factor outkvor of the Fbs embedded in theFDs.

from multiple CFD violation detections in a manner similar In light of Theorem 6.1 we have developed a heuristic
to [4], and expect the merged representation to be a convealgorithm for finding a repair of a database, overcoming the
nient basis for optimizations of this form. new challenges. We defer report on the heuristic pending

.. . . the completion of implementation and experimental study.
6 CFD Repairing: Discussion

To clean data, an effective method should be in place /7 Concluding Remarks
for removing inconsistencies from the data, in addition to ~ We have introducedrbs and shown thatFbs can ex-
inconsistency detection. That is, if a databa®sé a relation press semantics of data fundamental to data cleaning. For
schemaR violates a sek of cFbson R, we wantto finda  reasoning aboutFbDs we have provided techniques and a
minimal repairI’ of I such that!’ = X andI’ minimally sound and complete inference system for their consistency
differs from the original databade obtained by performing  and implication analyses. For applicationsasDs in data



cleaning, we have developswL-based techniques for de-
tecting inconsistencies as violationsafbs. We have also
experimentally evaluated our detection techniques.

There has been work on data cleaning based on con-
straints (e.g., [2, 5, 7, 20]). Research in this area haslynost
focused on two topics, both introduced in [2Epair is to
find another database that is consistent and minimally dif-
fers from the original database.§.,[2, 5, 7]); andconsis-
tent query answeis to find an answer to a given query in
every repair of the original databased.,[2, 20]). Most ear-
lier work (except[7, 20]) considers traditional full (swls-
ing functional) dependencies and denial constraints, lwhic
do not allow patterns with data values and are quite dif-
ferent fromcFps. Beyond traditional dependencies, logic
programming is studied in [7] for fixing census data. Closer
to CFDs is the tableau representation of full dependencies,
which also allow data values [20]. The work of [20] differs
from ours in that it focuses on condensed representation of

repairs and consistent query answers. As remarked in Sec- 7]

tion 2, a class of instance-levebsis studied in [14], which
are a special case afDs. [14, 7, 20] consider neither con-
sistency analysis and inference system, nor detectionof in
consistencies by means ®@L queries.

Codd tables, variable tables and conditional tables have
been traditionally used in the context of incomplete infor-

mation [12, 10]. The key difference between these table [10]

formalisms and pattern tableaux ©FDs is that each of

these tables is used as a representation of possibly iffinite [11]

many relation instances, one instance for each instamtiati
of variables. No instance represented by these table for-

malisms can include two tuples that result from different [12]

instantiations of a table tuple. In contrast, a patterncabl
is used to constrain—as part ofc&b—a singlerelation in-
stance, which can contain any number of tuples that are all

instantiations of the same pattern tuple. Closer to our pat- [14]

tern tableau is the notion efapping tablestudied for data
sharing [13], for which no inference system is developed.

As remarked in Section 1, there have been. tools

[13]

[15]

dependencies. Third, we are developing automated meth-
ods for discoveringFbs and repairing inconsiste it Ds.
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