
Adding Regular Expressions to Graph Reachability

and Pattern Queries

Wenfei Fan 1,2 Jianzhong Li 2 Shuai Ma 1 Nan Tang 1 Yinghui Wu 1

1University of Edinburgh 2Harbin Institute of Technology
{wenfei@inf., shuai.ma@, ntang@inf.,y.wu-18@sms.}ed.ac.uk lijzh@hit.edu.cn

Abstract—It is increasingly common to find graphs in which
edges bear different types, indicating a variety of relationships.
For such graphs we propose a class of reachability queries and
a class of graph patterns, in which an edge is specified with a
regular expression of a certain form, expressing the connectivity
in a data graph via edges of various types. In addition, we define
graph pattern matching based on a revised notion of graph
simulation. On graphs in emerging applications such as social
networks, we show that these queries are capable of finding
more sensible information than their traditional counterparts.
Better still, their increased expressive power does not come with
extra complexity. Indeed, (1) we investigate their containment
and minimization problems, and show that these fundamental
problems are in quadratic time for reachability queries and
are in cubic time for pattern queries. (2) We develop an
algorithm for answering reachability queries, in quadratic time
as for their traditional counterpart. (3) We provide two cubic-
time algorithms for evaluating graph pattern queries based on
extended graph simulation, as opposed to the NP-completeness
of graph pattern matching via subgraph isomorphism. (4) The
effectiveness, efficiency and scalability of these algorithms are
experimentally verified using real-life data and synthetic data.

I. INTRODUCTION

It is increasingly common to find data modeled as graphs in

a variety of areas, e.g., computer vision, knowledge discovery,

biology, cheminformatics, network traffic, social networks,

semantic Web and intelligence analysis. To query data graphs,

two classes of queries are being widely used:

(a) Reachability queries, asking whether there exists a path

from one node to another [12], [21], [22], [33].
(b) Graph pattern queries, to find all subgraphs of a data

graph that are isomorphic to a pattern graph [31], [37]

(see [17] for a survey).

In emerging applications such as social networks, edges in

a graph are typically “typed”, denoting various relationships

such as marriage, friendship, co-work, advice, support, ex-

change and co-membership [23]. In practice one often wants

to query the connectivity of a pair of nodes in such a graph

via edges of particular types, or to identify graph patterns with

edges of certain types, as illustrated by the following real-life

example taken from [6].

Example 1: Consider an Essembly network service [6], where

users post and vote on controversial issues and topics. Each

person has attributes such as userid, job, contact information,

as well as a list of issues they support or disapprove, denoted

by “sp” and “dsp”, respectively. There are four types of

relationships between a pair of persons: (1) friends-allies (fa),

Fig. 1. Querying Essembly Network

connecting one user to a friend, if she shares the same views on

most (more than half) topics her friend votes for; (2) friends-

nemeses (fn), from one user to a friend if she disagrees with

her friend on most topics; (3) strangers-allies (sa), relates a

user to a stranger she agrees with on most topics they vote;

and (4) strangers-nemeses (sn), from a user to a stranger with

whom she disagrees on most topics they both vote.

Figure 1 depicts a part of the network as graph G that

involves a debate on cloning research. In G each node denotes

a person, and each edge has a type in {fa, fn, sa, sn}. Consider

two queries Q1 and Q2 on G, also shown in Fig. 1.

(1) Query Q1 is a reachability query, which is to find all

biologists (nodes C) who support “cloning”, along with those

doctors (nodes B) who are friends-nemeses (via fn) of some

users supported by C within 2 hops (via fa≤2).

(2) Query Q2 is a pattern query, issued by a person D
identified by id “Alice001” who supports “cloning”. The

person would like to find all her friends-nemeses (via

fn) who are doctors, and are against “cloning”. She also

wants to know if there are people such that (a) they are

biologists (nodes C), support “cloning research”, and are

connected within 2 hops to someone via fa relationships,

who is in turn within 2 hops to person D via sa (edge

(C,D)); (b) they are in a scientist group with friends all

sharing the same view (edge (C,C)); and moreover, (c) these

biologists are against those doctor friends of her, and vice

versa, via paths of certain patterns (edges (C,B) and (B,C)).

Observe the following. (1) The graph G has multiple edge

types (fa, fn, sa, sn) indicating different relationships, which

are an important part of the semantics of the data. (2) Tradi-

tional reachability queries are not capable of expressing Q1.

Indeed, they characterize connectivity by the existence of a

path of arbitrary length, with edges of arbitrary types. In

contrast, Q1 aims to identify connectivity via a path



(a) containing edges of particular types and patterns, and
(b) with a bound on its lengths (hops).

Here Q1 bears richer semantics than its conventional counter-

parts. (3) Traditional graph pattern queries cannot express Q2

for the two reasons given above; moreover, to find sensible

information for person D, it should logically allow:

(c) its node to map to multiple nodes in G, e.g., from B in

Q2 to both B1 and B2 in G, and
(d) its edges map to paths composing of edges with certain

types, e.g., from (C,D) in Q2 to C3
fa
−→C1

sa
−→D1 in G.

That is, traditional pattern queries defined w.r.t. subgraph

isomorphism are no longer sufficient for expressing Q2. ✷

As suggested by the example, emerging applications high-

light the need for revising the traditional reachability and

graph pattern queries to incorporate edge types and bounds

on the number of hops. In addition, it is necessary to revise

graph pattern matching to accommodate the semantics of data

in new applications, and moreover, to reduce its complexity.

Indeed, the NP-completeness of subgraph isomorphism makes

it infeasible to match large data graphs.

Contributions & Roadmap. We propose a class of reacha-

bility queries and a class of graph pattern queries, defined in

terms of a subclass F of regular expressions.

(1) We introduce reachability queries (RQs) and graph pattern

queries (PQs) in Section II. In such a query, each node

specifies search conditions on the content of the graph nodes,

and each edge is associated with a regular expression in F ,

specifying the connectivity via a path of certain edge types

and of a possibly bounded length. Moreover, we define pattern

matching by extending graph simulation [19], instead of using

subgraph isomorphism. For instance, Q1 and Q2 in Fig. 1 can

be expressed as an RQ and a PQ, respectively.

(2) We study fundamental problems for these queries: con-

tainment, equivalence and minimization (Section III), along

the same lines as for XML tree pattern queries [24], [36]. We

show that these problems are in O(n2) time and O(n3) time

for RQs and PQs, respectively, where n is the size of the

queries. Contrast these low polynomial time (PTIME) bounds

with their counterparts for general regular expressions, which

are PSPACE-complete [25]. As an immediate application of

these analyses, we develop an O(n3) algorithm to minimize

PQs, and experimentally show its effectiveness.

(3) We develop two algorithms to answer RQs (Section IV).

One employs a matrix of shortest distances between nodes.

It is in quadratic time, the same as its traditional counterpart

[33]. That is, the increased expressive power of RQs does not

imply extra complexity. The other adopts bi-directional search

with an auxiliary cache (using hashmap as indices) to keep

track of frequently asked items. It is used when it is too costly

to maintain all shortest distances for large graphs.

(4) We provide two algorithms for evaluating PQs (Section V),

both in cubic time if a matrix of shortest distances between

nodes is used. One follows a join-based approach, while the

other adopts a split-based approach commonly used in labeled

transition systems. Contrast this with the intractability of graph

pattern matching based on subgraph isomorphism. These tell

us that the revised notion of graph pattern matching allows us

to efficiently find sensible patterns in emerging applications.

(5) Using both real-life data (YouTube and Global Terrorism

Database [1]) and synthetic data, we conduct an experimental

study (Section VI). We find that our evaluation algorithms for

RQs and PQs scale well with large data graphs, and are able

to identify sensible matches that their traditional counterparts

fail to find. We also find that the minimization algorithm of

PQs is effective in improving performance.

Related work. The idea of using regular expressions to query

graphs has been adopted by query languages for semistruc-

tured data such as UnQL [7] and Lorel [3]. There has also

been theoretical work on conjunctive regular path queries

(CRPQs, e.g., [16]) and extended CRPQs (ECRPQs) [5], which

also define graph queries using regular expressions. However,

these languages are defined with general regular expressions.

As a result, the problem for evaluating CRPQs is already NP-

complete, and it is PSPACE-complete for ECRPQs [5]. For those

queries the containment and minimization analyses are also

PSPACE-hard. We are not aware of any existing efficient algo-

rithms for answering graph pattern queries defined with regular

expressions. In contrast, this work defines graph queries in

terms of a subclass of regular expressions, and revises the

notion of pattern matching based on an extension of graph

simulation. It aims to strike a balance between the expressive

power needed to deal with common graph queries in emerging

applications, and the increased complexity incurred. This

allows us to conduct the static analyses (containment and

minimization) and evaluate queries efficiently, in low PTIME.

There have also been recent graph query languages that sup-

port limited regular expressions, e.g., GQ [18], SoQL [27] and

SPARQL [29]. GQ supports arbitrary attributes on nodes, edges

and graphs. SoQL is a SQL-like language that allows users to

retrieve paths satisfying various conditions. SPARQL [29] is

a query language tailored for RDF graphs coded as a set of

triples (subject, predicate and object). It is based on subgraph

isomorphism (NP-complete) for graph pattern search, which

differs from this work (in PTIME).

A number of algorithms have been developed for evaluating

reachability queries [12], [33]. These algorithms typically

associate certain coding with graph nodes, and detect connec-

tivity by inspecting the coding of relevant nodes. The coding,

however, tells us neither the distance between nodes nor the

types of edge on the shortest path. Distance queries [12],

[34] compute the distance between a pair of nodes, but do

not consider edge types. Recently, a class of label-constraint

reachability queries was proposed in [21], which asks whether

one node reaches another via a path whose edge labels are in a

set of labels. However, none of these can express reachability

characterized by regular expressions, such as Q1 in Fig. 1.

Graph pattern matching is typically defined in terms of

subgraph isomorphism [31], [37] (see [17], [28] for surveys).



Extensions of subgraph isomorphism are studied in [13], [15],

[37], which extend mappings from edge-to-edge to edge-to-

path. However, the problem remains NP-complete. Closer to

this work is bounded simulation studied in [14], which is

an extension of graph simulation [8], [19] for graph pattern

matching. Graph simulation has proved useful in e.g., pro-

cess calculus [19] and Web site classification [11]. Bounded

simulation [14] imposes bounds on the number of hops, and

makes graph pattern matching a PTIME problem. This work

further extends [14] by incorporating regular expressions as

edge constraints, and for these more expressive graph queries,

it develops efficient evaluation algorithms and settles their

fundamental problems (containment, equivalence and mini-

mization). No previous work has studied these.

The containment and minimization problems are classi-

cal problems for any query language (see, e.g., [2]). These

problems have been well studied for XPath (e.g., [9], [24],

[36]). However, we are not aware of previous work on these

problems for graph pattern queries.

II. GRAPH REACHABILITY AND PATTERN QUERIES

We start with data graphs, on which we then introduce

reachability queries (RQs) and graph pattern queries (PQs).

Data graphs. A data graph is a directed graph G = (V,E,
fA, fC), where (1) V is a finite set of nodes; (2) E ⊆ V × V
is a finite set of edges, in which (v, v′) denotes an edge from

node v to v′; (3) fA is a function defined on V such that for

each node v in V , fA(v) is a tuple (A1 = a1, . . . , An = an),
where Ai = ai (i ∈ [1, n]), representing that the node v has a

constant value ai for the attribute Ai, and denoted as v.Ai =
ai; and (4) fC is a function defined on E such that for each

edge e in E, fC(e) is a color symbol in a finite alphabet Σ.

Intuitively, the function fA carries node properties, e.g., la-

bels, keywords, blogs, comments and ratings [17]; the function

fC specifies edge types, i.e., relationships; and the alphabet

Σ denotes all possible edge types, e.g., marriage, friendship,

work, advice, support, exchange and co-membership [23].

Example 2: Figure 1 shows a data graph G = (V,E, fA,

fC), where (1) each edge e in E carries a color fC(e) in

{fa, fn, sa, sn}; and (2) each node v in V has a tuple fA(v),
such that (a) for each i ∈ [1, 2], fA(Bi) = (job = “doctor”,

dsp = “cloning”), (b) for each j ∈ [1, 3], fA(Cj) = (job =

“biologist”, sp = “cloning”), (c) fA(D1) = (uid = “Alice001”),

and (d) fA(H1) = (job = “physician”). ✷

We shall use the following notations for data graphs G.

(1) A path ρ in G is denoted as v0
e1−→v1

e2−→ . . . vn−1
en−→vn,

where (a) vi ∈ V for each i∈ [0, n], and (b) ej=(vj−1, vj) in

E for each j ∈ [1, n]. The length |ρ| of ρ is n, i.e., the number

of edges in ρ. We say a path ρ is nonempty if |ρ| ≥ 1.

(2) Abusing notations for trees, we refer to a node v2 as a

child of a node v1 (or v1 as a parent of v2) if there exists an

edge (v1, v2) in E, and refer to a node v2 as a descendant of a

node v1 (or v1 as an ancestor of v2) if there exists a nonempty

path from node v1 to node v2 in G.

Fig. 2. Results of the queries Q1 and Q2 on G

Reachability queries. A reachability query (RQ) is defined

as Qr = (u1, u2, fu1
, fu2

, fe), where (1) u1 and u2 are

two nodes; (2) fui
(i ∈ [1, 2]) is a predicate defined as a

conjunction of atomic formulas of the form of ‘A op a’ such

that A denotes an attribute of the node ui, a is a constant value,

and op is a comparison operator in the set {<,≤,=, 6=, >,≥};

and (3) fe is a regular expression drawn from the subclass:

F ::= c | c≤k | c+ | FF.
Here (1) c is either a color symbol in Σ or a wildcard , where

the wildcard is a variable standing for any color symbol in

Σ; it can be expressed as a regular expression c1 ∪ . . . ∪ cm,

when Σ = {ci | i ∈ [1,m]}; (2) k is a positive integer, and

c≤k denotes the regular expression c1 ∪ c2 ∪ . . . ∪ ck, where

cj (j ∈ [1, k]) denotes j occurrences of c; and (3) c+ denotes

one or more occurrences of c.
We use L(fe) to denote the regular language defined by fe,

i.e., the set of strings that can be parsed by fe.

Semantics. Consider an RQ Qr = (u1, u2, fu1
, fu2

, fe) posed

on a data graph G = (V,E, fA, fC).
We say that a node v in G matches the node u1 in Gr,

denoted as v ∼ u1, if for each atomic formula ‘A op a’ in

fu1
, there exists an attribute A in fA(v) such that v.A op a;

similarly for v ∼ u2. Intuitively, the predicates fu1
and fu2

specify search conditions on the content of nodes.

We say that a pair (v1, v2) of nodes in G matches the

regular expression fe, denoted as (v1, v2) ≈ fe, if there exists

a nonempty path ρ = v1
e1−→ v′1

e2−→ v′2 . . . v′n−1
en−→ v2 in G

such that the string fC(e1) . . . fC(en) is in L(fe).
The result Qr(G) of Qr on G is the set of node pairs

(v1, v2) in G such that v1 ∼ u1, v2 ∼ u2, and (v1, v2) ≈ fe.

That is, v1 (resp. v2) satisfies the conditions specified by u1

(resp. u2); and moreover, there exists a nonempty path from

v1 to v2 in G such that the edge colors on the path match the

pattern specified by the regular expression fe.

Example 3: The query Q1 shown in Fig. 1 is an RQ, in which

fe = fa≤2fn. The node C has the predicate sp = “cloning” and

job = “biologist”, and similar for the node B.

When Q1 is posed on the data graph G shown in Fig. 1

and described in Example 2, the answer Q1(G) is shown in

Fig. 2. Indeed, Bi ∼ B (i ∈ [1, 2]) and Cj ∼ C (j ∈ [1, 3]).

In addition, (C2, B1) ≈ fe since there exists a path C2
fa
−→

C3
fn
−→ B1 in G, and the string fa fn matches the regular

expression fa≤2fn. Similarly, (C1, B1) ≈ fe, (C1, B2) ≈ fe,

and (C2, B2) ≈ fe. Hence the query result Q1(G) = {(C1,

B1), (C1, B2), (C2, B1), (C2, B2)}. ✷

Remark. (1) Observe that a single edge in query Qr is mapped

to a nonempty path in the data graph G; moreover, the edge

colors on the path have to match the regular expression fe.



(2) RQs are more expressive than traditional reachability

queries studied in e.g., [21], [34], by capturing edge relation-

ships with regular expressions.

Graph pattern queries. Using RQs as building blocks, we

next define graph pattern queries.

A graph pattern query (PQ) is a directed graph Qp =

(Vp, Ep, fv, fe), where (1) Vp is a finite set of nodes; (2)

Ep ⊆ Vp×Vp is a finite set of edges, where (u, u′) denotes

an edge from node u to u′; and (3) the functions fv and fe
are defined on Vp and Ep, respectively, such that for each edge

e=(u, u′)∈Ep, Qr=(u, u′, fv(u), fv(u
′), fe(e)) is an RQ.

Semantics. When the graph pattern query Qp is evaluated on

a data graph G = (V,E, fA, fC), the result Qp(G) is the

maximum set {(e, Se) | e ∈ Ep} that satisfies the following:

(1) for all edges e = (u1, u2) in Qp, Se ⊆ Qe(G), where Qe

= (u1, u2, fv(u1), fv(u2), fe(e)) is an RQ;

(2) for each edge e = (u1, u2) in Qp, if a pair (v1, v2) of

nodes in G is in Se, then (a) for each edge e1 = (u1, u3) in

Qp, there exists a node v3 in G such that (v1, v3) ∈ Se1 ; and

(b) for each edge e2 = (u2, u4) in Qp, there exists a node v4
in G such that (v2, v4) ∈ Se2 ; and

(3) there exists no edge e in Qp such that Se is empty.

Intuitively, QP (G) defines a relation R ⊆ Vp × V . To see

this, for each edge e = (u1, u2) in Qp, denote by Qe =
(u1, u2, fv(u1), fv(u2), fe(e)) its associated RQ embedded in

Gp. Then for a node u1 ∈ Vp and a node v1 ∈ V , (u1, v1)
is in R if for each edge e = (u1, u2) emanating from u1 in

Gp, there exists a nonempty path ρ from v1 to v2 in G such

that (1) the node v1 satisfies the search conditions specified

by fv(u1) in the RQ Qe; (2) the path ρ is constrained by

the regular expression fe(e); and (3) (u2, v2) is also in R. In

addition, R covers all the nodes in Vp and is maximum. The

result Qp(G) is simply R grouped by edges in Ep.

From this one can see that PQs are defined in terms of an

extension of graph simulation [19], by (a) imposing search

conditions on the contents of nodes; (b) mapping an edge in

a pattern to a nonempty path in a data graph (i.e., the child

u2 of u1 is mapped to a descendant of v2 of v1); and (c)

constraining the edges on the path with a regular expression.

This also differs from the traditional notion of graph pattern

matching defined in terms of subgraph isomorphism [17].

Example 4: The query Q2 given in Fig. 1 is a PQ. In Q2

each node carries search conditions, and each edge has an

associated regular expression, as shown in Fig. 1.

When Q2 is posed on the data graph G of Fig. 1, the result

Q2(G) is depicted in Fig. 2 and is shown in the table below:

edge matches edge matches

(B,C) {(B1, C3), (B2, C3)} (C,C) {(C3, C3)}
(B,D) {(B1, D1), (B2, D1)} (C,D) {(C3, D1)}
(C,B) {(C3, B1), (C3, B2)}

Indeed, one can verify that Bi ∼ B (i ∈ [1, 2]), Cj ∼ C (j ∈
[1, 3]) and D1 ∼ D. In addition, the edge from C to D (labeled

with fa≤2sa≤2) in Q2 is mapped to a path C3
fa
−→ C1

sa
−→ D1

in G; similarly for other edges in Q2.

Fig. 3. Example for containment and equivalence

Observe that the node pair (C1, B1) in G is not a match of

the edge (C,B) in Q2, since there exists no path in G from

C1 to B1 that satisfies fn. In light of this, (C1, D1) in G is

not a match of the edge (C,D) in Q2, although there exists

a path C1
fa
−→C2

fa
−→C1

sa
−→D1 in G that satisfies fa≤2sa≤2. ✷

Remark. (1) RQs are a special case of PQs, which consist of

two nodes and a single edge.

(2) Bounded simulation [14] is a special case of PQs, by only

allowing patterns in which (a) there is a single symbol c in

Σ, i.e., only a single edge type is allowed, and (b) all edges

are labeled with either c≤k or c+, where k is a positive integer.

One can readily verify the following, which confirms that

the semantics of PQs is well defined.

Proposition 1: For any data graph G and any graph pattern

query Qp, there is a unique result Qp(G). ✷

III. FUNDAMENTAL PROBLEMS FOR GRAPH QUERIES

We next investigate containment, equivalence and minimiza-

tion of graph queries. As remarked earlier, these problems

are important for any query language [2]. We focus on

graph pattern queries (PQs), but state the relevant results for

reachability queries (RQs), a special case of PQs.

A. Containment and Equivalence

We first study containment and equivalence of PQs.

Containment. Given two PQs Q1 = (V 1
p , E1

p , f
1
v , f

1
e ) and

Q2 = (V 2
p , E2

p , f
2
v , f

2
e ), we say that Q1 is contained in Q2,

denoted by Q1 ⊑ Q2, if there exists a mapping λ from E1
p to

E2
p such that for any data graph G and any edge e in Q1, Se ⊆

Sλ(e), where (e, Se) ∈ Q1(G), (λ(e), Sλ(e)) ∈ Q2(G), and

Q1(G), Q2(G) are the results of Q1, Q2 on G, respectively.

Intuitively, λ serves as a renaming function such that Q1(G)
is mapped to Q2(G) after the renaming. For an edge e =

(u1, u2) in Q1, let λ(e) = (w1, w2). Then Q1 ⊑ Q2 as long

as for any data graph G and any node v in G, (1) if v ∼ u1,

then v ∼ w1, denoted as u1 ⊢ w1; and (2) u2 ⊢ w2. Moreover,

(3) L(f1
e (e)) ⊆ L(f2

e (λ(e))), denoted as e |= λ(e).

Example 5: Consider three PQs given in Fig. 3, in which all

Bi’s (i ∈ [1, 3]) carry the same predicates; similarly for all

Cj’s (j ∈ [1, 6]). Denote by λi,j a mapping from Qi to Qj .

(1) Q2 ⊑ Q1: there exists a mapping λ2,1, where λ2,1 ((B2,

C4)) = (B1, C1). Note that the mapping is not unique, e.g.,

both λ2,1((B2, C4)) = (B1, C2) and λ2,1((B2, C4)) = (B1,

C3) are valid mappings.

(2) Q2 ⊑ Q3, by letting λ2,3((B2, C4)) = (B3, C5).

(3) Q3 ⊑ Q1, Indeed, one can define λ3,1((B3, C5)) = (B1,

C1) and λ3,1((B3, C6)) = (B1, C3).



(4) Q1 ⊑ Q3, by letting λ1,3((B1, C1)) = (B3, C5), λ1,3 ((B1,

C2))=(B3, C5) and λ1,3 ((B1, C3))=(B3, C6). ✷

Equivalence. For PQs Q1 and Q2, we say that Q1 and Q2 are

equivalent, denoted by Q1 ≡ Q2, if Q1 ⊑ Q2 and Q2 ⊑ Q1.

For instance, for Q1 and Q3 of Fig. 3, we have that Q1 ≡
Q3, since Q1 ⊑ Q3 and Q3 ⊑ Q1 by Example 5.

Observe that Q1 ≡ Q2 does not necessarily imply that

Q1(G) = Q2(G) for a data graph G. Nevertheless, there exist

mappings λ1,2 and λ2,1 such that λ1,2(Q1(G)) ⊆ Q2(G) and

λ2,1(Q2(G)) ⊆ Q1(G), where λ(Q(G)) stands for {(λ(e),
Sλ(e)) | (e, Se) ∈ Q(G)}. That is, Q1(G) and Q2(G) are

mapped to each other after the renaming by λ1,2 and λ2,1.

Complexity bounds. We next establish the complexity bounds

of the containment and equivalence problems for PQs. To do

this we first present a revision of similarity [19].

Consider two PQs Q1 = (V 1
p , E1

p , f
1
v , f

1
e ) and Q2 = (V 2

p ,

E2
p , f

2
v , f

2
e ). We say that Q2 is similar to Q1, denoted by Q1 E

Q2, if there exists a binary relation S ⊆ V 1
p × V 2

p such that

(1) for any (u1, w1) ∈ S, (a) w1 ⊢ u1, and (b) for each edge

e = (u1, u2) ∈ E1
p , there exists an edge e′ = (w1, w2) ∈ E2

p

such that (u2, w2) ∈ S and e′ |= e; and

(2) for each edge e′ = (w,w′) ∈ E2
p , there exists an edge e =

(u, u′) ∈ E1
p such that (a) (u,w), (u′, w′) ∈ S and (b) e′ |= e.

Example 6: Recall PQs Q1 and Q2 from Example 5. One can

verify that Q1 E Q2. Indeed, there exists a binary relation S =

{(B1, B2), (C1, C4), (C2, C4), (C3, C4)}, which satisfies the

conditions of the revised similarity given above:

(1) for each (u,w) ∈ S, w ⊢ u (the condition (1)(a) above);

(2) for each edge e in Q1 (i.e., (B1, C1), (B1, C2) and

(B1, C3)), there exists an edge e′ in Q2 (i.e., (B2, C4)) such

that e′ |= e, since L(h≤1) is contained in L(h≤1), L(h≤2)
and L(h≤3) (the condition (1)(b) above); and

(3) for the edge e′ = (B2, C4) in Q2, there is an edge e′ =

(B1, C1) in Q1 such that e′ |= e (the condition (2) above). ✷

The relationship between the revised graph similarity and

the containment of PQs is shown below.

Lemma 2: For PQs Q1 and Q2, Q1 ⊑ Q2 iff Q2 E Q1. ✷

It is known that graph similarity is solvable in quadratic time

[19]. Extending the techniques of [19] by leveraging Lemma 2,

one can verify the following:

Theorem 3: Given two PQs Q1 and Q2, it is in cubic time

to determine whether Q1 ⊑ Q2 and whether Q1 ≡ Q2. ✷

As a special case of PQs, the containment problem and the

equivalence problem for RQs are much easier.

Proposition 4: Given two RQs Q1 and Q2, it is in quadratic

time to check whether Q1 ⊑ Q2 or whether Q1 ≡ Q2 . ✷

Contrast this with the PSPACE-completeness of the contain-

ment problem for general regular expressions [20]. The gap

between the two complexity bounds justifies the choice of the

subclass F of regular expressions for RQs and PQs: those

regular expressions have sufficient expressive power to specify

edge relationships commonly found in practice, and moreover,

allow efficient static analyses of fundamental properties.

Fig. 4. Non-isomorphic equivalent minimum PQs

Algorithm minPQs

Input: PQ Q = (Vp, Ep, fv, fe).
Output: a minimum equivalent PQ Qm of Q.

1. compute the maximum revised graph similarity S over Q;
2. compute the node equivalent classes EQ based on S;
3. determine the edges for equivalent class pairs in EQ;
4. determine the number of copies for equivalent classes in EQ;
5. construct an equivalent query Qm;
6. remove redundant edges in Qm;
7. remove isolated nodes in Qm;
8. return Qm.

Fig. 5. Algorithm minPQs

B. Minimizing Graph Pattern Queries

A problem closely related to query equivalence is query

minimization, which often yields an effective optimization

strategy. It has been studied for, e.g., relational conjunctive

queries [2] and XML tree pattern queries [9], [24], [36]. For all

the reasons that query minimization is important for relational

queries and XML queries, we also need to study minimization

of graph queries.

For a PQ Q = (Vp, Ep), we define its size |Q| = |Vp|+ |Ep|,
a metric commonly used for pattern queries [9].

Minimization. Given a PQQ = (Vp, Ep, fv, fe), the minimiza-

tion problem is to find another PQ Qm = (V m
p , Em

p , fm
v , fm

e )
such that (1) Qm ≡ Q, (2) |Qm| ≤ |Q|, and (3) there exists

no other such Q′ with |Q′| < |Qm|. We refer to Qm as a

minimum equivalent PQ of Q.

Remark. (1) A PQ may have multiple minimum equivalent

PQs of the same size that are not isomorphic to each other.

As shown in Fig. 4, both Q2 and Q3 are minimum equivalent

PQs of Q1 with the same size, but they are not isomorphic.

(2) We ignore regular expressions in the minimization analysis

since for those in the particular subclass F used in RQs and

PQs, it takes linear time to minimize them. In addition, as will

be seen from our algorithms in Section V, minimizing RQs

has little impact on their complexity. This would be, however,

no longer the case if general regular expressions were adopted.

This further justifies the choice of F in the definition of PQs.

Below we focus on minimization of PQs since the case for

RQs is trivial. The last main result of the section is as follows.

Theorem 5: Given any PQ Q, a minimum equivalent PQ Qm

of Q can be computed in cubic time. ✷

To show Theorem 5, we develop an algorithm that, given a

PQ Q, finds a minimum equivalent PQ of Q in cubic time.

The algorithm, referred to as minPQs, is outlined in Fig. 5.

Due to space constraint we illustrate how the algorithm works

with an example.



Fig. 6. Example for minimizing graph pattern queries

Example 7: Consider the PQ Q1 shown in Fig. 6, where

(a) nodes B1 and B2 have the same predicate, (b) all nodes

labeled with C (Ci, i ∈ [1, 5]) have the same predicate, and

(c) all nodes with distinct labels (ignoring subscripts) have

different predicates. For clarity, we only explicitly annotate

the predicates of the nodes labeled with H and J . The query

Q4 given in Fig. 6 is a minimum equivalent PQ of Q1. Below

we show how algorithm minPQs finds Q4 step by step.

(1) The maximum similarity S on a PQ Q(Vp, Ep) is the

maximum relation S ⊆ Vp×Vp that satisfies the conditions of

the revised similarity. One can verify that there exists a unique

maximum one, along the same lines as [8].

The maximum similarity S on Q1 is {(R,R), (Bi1 , Bj1),
(Ci2 , Cj2), (D,D), (Hi3 , Hj3), (Ji4 , Jj4)}, where 1 ≤ i1, j1
≤ 2, 1 ≤ i2, j2 ≤ 5, 1 ≤ i3 ≤ j3 ≤ 3, and 1 ≤ i4 ≤ j4 ≤ 3.

(2) An equivalent relation EQ is derived from the similarity

relation S. More specifically, two nodes u,w in Q1 are in the

same equivalence class of EQ if (u,w) ∈ S and (w, u) ∈ S.

For Q1, EQ consists of eq0 = {R}, eq1 = {B1, B2}, eq2 =

{C1, C2, C3, C4, C5}, eq3 = {D}, eq4 = {H1}, eq5 = {H2},

eq6 = {H3}, eq7 = {J1}, eq8 = {J2}, and eq9 = {J3}.

(3) Consider two equivalent classes eq1 and eq2 in EQ, and let

E(eq1, eq2) be the set of edges in Q1 from the nodes in eq1
to the nodes in eq2. An edge e in E(eq1, eq2) is redundant if

there exist two edges e1, e2 in E(eq1, eq2) such that e1 6= e,

e2 6= e and L(e1) ⊆ L(e) ⊆ L(e2).

(4) The number N(eq) of the copies of an equivalent eq in

EQ is determined by the maximum number of non-redundant

edges in E(eq′, eq) for all eq′ ∈ EQ.

(5) After the non-redundant edges and the number of copies for

equivalent classes in EQ are determined, an equivalent query

Q2 for Q1 is constructed, shown in Fig. 6, by connecting

(copies of) equivalent classes with non-redundant edges.

(6) To remove the redundant edges from Q2, we first compute

the maximum similarity S′ on Q2. An edge e = (u, u′) in

Q2 is redundant if there exist two edges e1 = (u1, u
′
1) and

e2 = (u2, u
′
2) in Q2 such that (a) e1 6= e, e2 6= e, (b) (u, u1),

(u′, u′
1), (u2, u), (u

′
2, u

′) ∈ S′, and (c) e1 |= e and e |= e2.

After redundant edges are removed, Q2 becomes the query

Q3 shown in Fig. 6.

(7) A node u in Q3 is isolated if it does not have any edge.

After all isolated nodes are removed, the query Q3 becomes

Q4 shown in Fig. 6. The algorithm then returns Q4 as a

minimum equivalent query of the query Q1. ✷

Correctness & complexity. To show that algorithm minPQs

indeed finds a minimum equivalent PQ Qm of Q, (1) we first

show that Qm ≡ Q, by proving that the operations in the

algorithm preserve query equivalence; and (2) then show that

Qm is a smallest equivalent query, by contradiction.

Algorithm minPQs runs in cubic time since each step in the

algorithm can be done in cubic time in the size of the query.

From the correctness and complexity analysis of algorithm

minPQs, Theorem 5 immediately follows.

IV. EVALUATING REACHABILITY QUERIES

We show that the increased expressive power of RQs

with regular expressions does not incur extra complexity, by

developing two simple methods to answer RQs. One employs

a matrix of shortest distances between nodes. It is in quadratic

time, the same as its counterpart for traditional reachabil-

ity queries [33]. The other adopts bi-directional breadth-first

search (BFS), and utilizes an auxiliary cache to maintain the

most frequently asked items. It is used when maintaining a

distance matrix is infeasible for large data graphs.

Consider an RQ Qr = (u1, u2, fu1
, fu2

, fe) and a data

graph G. For nodes v1, v2 of G, we want to determine whether

vi matches ui (i∈ [1, 2]) and moreover, whether there exists a

path from v1 to v2 that matches fe (see Section II). Below we

start with a special case when fe carries a single edge color,

and then consider the general case with multiple colors.

Matrix-based method. We use a 3-dimensional matrix M ,

where 2 dimensions range over data graph nodes and 1
dimension is for edge colors. For two nodes v1, v2 in graph

G, M [v1][v2][c] (resp. M [v1][v2][ ]) records the length of the

shortest path from v1 to v2 via edges of color c (resp. arbitrary

colors). Capitalizing on M one can detect in constant time

whether v1 reaches v2 via a path satisfying fe.

Assume that there are m distinct edge colors in G. The

matrix can be built in O((m+ 1)|V |2 + |V |(|V |+ |E|)) time

by using BFS [4], where m is typically much smaller than |V |.
This matrix is pre-computed and shared by all queries.

Leveraging the matrix M , Qr can be answered in O(|V |2)
time by inspecting those nodes that satisfy the search condi-

tions specified by u1 and u2, using a nested loop.

Bi-directional search. The space overhead O((m+1)|V |2) of

the distance matrix, however, may hinder its applicability. To

cope with large graphs, we propose to maintain a distance

cache using hashmap as indices, which records the most

frequently asked items. If an entry for a node pair (v1, v2) and

a color c is not cached, it is computed at runtime and the cache

is updated with the least recently used (LRU) replacement



strategy. To do this we adopt a bi-directional BFS at runtime as

follows. Two sets are maintained for v1 and v2, respectively.

Each set records the nodes that are reachable from (resp. to)

v1 (resp. v2) only via edges of color c. We expand the smaller

set at a time until either the two sets intersect (i.e., the

distance is the number of total expansions), or they cannot

be further expanded (i.e., unreachable). This procedure runs

in O(|V | + |E|). A similar technique is used in [10], but it

does not consider edge colors.

Compared with traditional BFS, the bi-directional search

strategy can significantly reduce the search space, especially

when edge colors are considered. For instance, in data graph

G at Fig. 1, if a user asks whether there exists a path from

C2 to D1 satisfying the constraint fa+, we can immediately

answer no since no incoming edge to D1 is colored with fa.

Next we extend the two methods to evaluate a general RQ

Qr. Assume that the number of edge colors in fe is h.

Matrix-based method. We decompose Qr into h RQs: Qri =
(xi, yi, fxi

, fyi
, fei) (i ∈ [1, h]), where x1 = u1, yk = u2, and

we add yj = xj+1 (j ∈ [1, h−1]) as dummy nodes between u1

and u2. Here each fei (i ∈ [1, h]) carries a single edge color,

and a dummy node d bears no condition, i.e., for any node v
in G, v matches d. Using the procedure for answering single-

colored RQs, we evaluate Qri from h to 1; we then compose

these partial results to derive Qr(G). This is in O(h|V |2) time,

where h is typically small and omitted.

Example 8: Recall the RQQ1 from Fig. 1 with edge constraint

fe = fa≤2fn. The query Q1 can be decomposed into Q1,1 and

Q1,2 by inserting a dummy node d between C and B, where

Q1,1 (resp. Q1,2) has an edge (C, d) (resp. (d,B)) with edge

constraint fa≤2 (resp. fn).

When evaluating Q1,2 on the data graph G of Fig. 1, we

get Q1,2(G) = {(C3, B1), (C3, B2)}, since M [C3][B1][fn]=1
and M [C3][B2][fn] = 1. Similarly, by C3 ∼ d derived from

Q1,2(G), we get Q1,1(G) = {(C1, C3), (C2, C3)}. Combining

Q1,1(G) and Q1,2(G), we find Q1(G). ✷

Bi-directional search. When a distance matrix is not avail-

able, runtime search is used instead, for evaluating an RQ

Qr = (u1, u2, fu1
, fu2

, fe). The bi-directional search method

can handle the regular expression fe, without decomposing it.

Intuitively, this can be done by evaluating fe by iteratively

expanding from (resp. to) the nodes that may match u1 (resp.

u2). In each iteration, the candidate match set with a smaller

size will be expanded, and fe is partially evaluated. When fe
is fully evaluated, we examine the intersection of the two sets

to derive the result. This takes, however, O(h|V |2(|V |+ |E|))
time. Nonetheless, as will be seen in Section VI, this method is

able to process queries on large data graphs, when maintaining

a distance matrix for those graphs is beyond reach in practice.

These tell us that despite the increased expressiveness, RQs

have the same complexity as their traditional counterparts [33].

Also note that although existing (index-based) solutions for

traditional reachability queries cannot answer RQs directly,

they can be used as filters, i.e., only those connected nodes

(possibly constrained by a set of labels) identified by those

techniques are further checked by our algoithms.

V. ALGORITHMS FOR GRAPH PATTERN QUERIES

We next provide two algorithms to evaluate PQs. Given

a data graph G = (V,E, fA, fC) (simply written as (V,E))
and a PQ Qp = (Vp, Ep, fv, fe) (written as (Vp, Ep)), the

two algorithms compute the result Qp(G) of Qp on G, in

cubic time in the size of G. One algorithm is based on join

operations. The other is based on split, an operation commonly

used in labeled transition system (LTS) verification [26].

A. Join-based Algorithm

We start with the join-based algorithm. It first computes, for

each node u in the PQ Qp, an initial set of (possible) matches,

i.e., nodes that satisfy the search conditions specified by u.

It then computes Qp(G) as follows. (1) If Qp is a directed

acyclic graph (DAG), the query result is derived by a reversed

topological order (bottom-up) process, which refines the match

set of each query node by joining with the match sets of all

its children, and by enforcing the constraints imposed by the

corresponding query edges. (2) If Qp is not a DAG, we first

compute the strongly connected components (SCC) graph of

Qp, a DAG in which each node represents an SCC in Qp.

Then for all the query nodes within each SCC, their match sets

are repeatedly refined with the join operations as above, until

the fixpoint of the match set for each query node is reached.

The algorithm utilizes the reverse topological join orders and

nontrivial tricks to achieve the cubic-time complexity.

Algorithm. The algorithm, referred to as JoinMatch, is shown

in Fig. 7. Besides Qp and G, it also takes a boolean flag as

input, indicating whether one opts to use a distance matrix.

Based on flag, the algorithm decides to use which method

given in Section IV to evaluate RQs embedded in Qp.

The algorithm uses the following notations. We use u, v to

denote nodes in the query Qp, and x, y, z for nodes in the data

graph G. (1) For each node u in Qp, we initialize its match set

mat(u) = {x |x ∈ V and x ∼ u} (recall ‘∼’ from Section II).

(2) For each edge e = (u′, u) in Qp, we use a set rmv(e) to

record the nodes in G that cannot match u′ w.r.t. e. (3) An

SCC graph of Qp = (Vp, Ep) is denoted as Qs = (Vs, Es),
where Cs ∈ Vs presents an SCC in Qp, and (C ′

s, Cs) ∈ Es if

there exists v′ ∈ C ′
s, v ∈ Cs such that (v′, v) ∈ Ep.

Algorithm JoinMatch first checks flag. If one wants to use

a distance matrix M but it is not yet available, M is computed

and Qp is normalized as Q′
p (line 2), by decomposing each

RQ of Qp into simple RQs (i.e., each edge only carries one

color) via inserting dummy nodes. Otherwise no normalization

is performed (line 1). The sets mat() and rmv() are then

initialized (lines 3-4). The SCC graph Qs of Q′
p is then

computed, by using Tarjan’s algorithm [30] (line 5).

In a reverse topological order, JoinMatch processes each

node Cs of Qs as follows: the match set of each query node

in Cs is recursively refined until the fixpoint is reached (lines 7-

14). For each node u in Cs and each edge e = (u′, u)
(line 8), it computes the nodes in mat(u′) that fail to satisfy

the constraints of e, by invoking a procedure Join. The nodes



Input: a query Qp = (Vp, Ep), a data graph G = (V,E) and flag.
Output: the result Qp(G).

1. if !flag then Q′

p(V
′

p , E
′

p) := Qp;
2. else Q′

p := Normalize(Qp); compute the distance matrix M ;
/* if the matrix is not yet available */

3. for each u ∈ V ′

p do mat(u) := {x | x ∈ V , x ∼ u};
4. for each e ∈ E′

p do rmv(e) := ∅;
5. Qs := Sccgraph(Q′

p);
6. for each Cs of Qs in a reverse topological order do
7. do

8. for each edge e = (u′, u) ∈ E′

p where u ∈ Cs do

9. rmv(e) := Join(e,mat(u′),mat(u));
10. mat(u′) := mat(u′) \ rmv(e);
11. if mat(u′) = ∅ return ∅;
12. for each e′ = (u′′, u′) ∈ E′

p do

13. rmv(e′) := rmv(e′) ∪ Join(e′,mat(u′′),mat(u′));
14. while there exists e=(u′, u)∈E′

p s.t. u∈Cs and rmv(e) 6=∅;
15. for each edge e = (u′, u) ∈ Ep s.t. u ∈ Cs do

16. Se :={(x′, x) | x′∈mat(u′), x∈mat(u) and (x′, x)≈fe(e)};
17. return Qp(G) := {(e, Se) | e ∈ Ep}.

Procedure Join

Input: edge e = (u′, u) ∈ Ep, mat(u′), mat(u).
Output: premv(e) (a set of nodes that cannot match u′).

1. premv(e) := ∅;
2. for each x′ ∈ mat(u′) do

3. if there does not exist x ∈ mat(u) s.t. (x′, x) ≈ fe(e) do

4. premv(e) := premv(e) ∪ {x′};
5. return premv(e);

Fig. 7. Algorithm JoinMatch

returned by Join are maintained in rmv(e) (line 9), which is

then used to refine mat(u′) (line 10). If the match set of any

query node is empty, an empty result is returned (line 11)

and the algorithm terminates. Otherwise, the rmv() sets of

edges (u′′, u′) are checked for possible expansion due to nodes

that cannot match u′ (lines 12-13). The query result is finally

collected (lines 15-16) and returned (line 17).

Procedure Join identifies nodes in mat(u′) that do not

satisfy the edge constraint imposed by e = (u′, u) or the match

set mat(u). It examines each node x′ in mat(u′) (line 2). If

there exists no node x in mat(u) such that (x′, x) matches

the regular expression fe(u
′, u) (line 3), x′ is pruned from

mat(u′) and is recorded in premv(e) (line 4). The algorithm

returns premv(e) (line 5). Note that if a distance matrix is used

(when flag is true), one can check (x′, x) ≈ fe(e) (line 3) in

constant time, for any edge color and wildcard. Otherwise we

use bi-directional search to check the condition (Section IV).

Note that we provide the following options to handle

regular expressions. (1) If a distance matrix M is available, a

regular expression is decomposed into a set of simpler regular

expressions, each containing a single color, to leverage M .

(2) Otherwise, the regular expressions are evaluated straight-

forwardly using bi-directional search (see Section IV).

Example 9: Recall Q2 and the data graph G from Fig. 1. We

show how JoinMatch evaluates Q2 on G. For each node u in

Q2, the initial and final match sets are as follows:
node initial mat() final mat()

B {B1, B2} {B1, B2}
C {C1, C2, C3} {C3}
D {D1} {D1}

In a reversed topological order (lines 6-14), JoinMatch

repeatedly removes from mat() those nodes that do not make

a match, by using premv() from procedure Join. There are two

SCCs: SCC1 and SCC2, consisting of nodes {D} and {B,C},

respectively. JoinMatch starts from node D and processes

edge (C,D). The node C1 is removed from mat(C), since it

cannot reach D1 within two hops colored fa followed by edges

within two hops colored sa. When processing the edge (B,D),
no nodes in mat(B) can be pruned. In SCC2, the match sets

mat(B) and mat(C) are refined by recursively using the edges

(B,C), (C,B) and (C,C), and C2 is removed from mat(C)
as C2 cannot reach any node in mat(B) with 1 hop colored

fn. The result Q2(G) found is the same as in Example 4. ✷

Correctness & complexity. The algorithm returns Qp(G).
Indeed, one can verify that for any query edge e, after the for

loops (lines 6-16), each node pair in Se is a match of e, and the

result (e, Se) is complete. The algorithm takes O(m|V ||E|+
|E′

p||V |2) time when a distance matrix is used, where m is

the number of distinct edge colors and is typically small in

practice. When the distance matrix is not available, it can be

computed in O((m+ 1)|V |2 + |V |(|V |+ |E|)) time (line 2).

Putting these together, the algorithm runs in O(|V |3) time.

B. Split-based Algorithm

We next present the split-based algorithm. It treats query

nodes and data graph nodes uniformly, grouped into “blocks”,

such that each block B contains a set of nodes in V ∪ Vp

from a data graph G = (V,E) and a PQ Qp = (Vp, Ep). The

algorithm creates a block for each query node u, denoted as

B(u), initialized with all nodes x ∈ V such that x ∼ ui. It then

computes a partition-relation pair 〈par, rel〉, where par is set

of blocks and rel a partial order on par. The pair 〈par, rel〉 is

recursively refined by splitting the blocks in par and rel using

the constraints imposed by query edges. The process proceeds

until a fixpoint is reached. The result of Qp is then collected

from the corresponding blocks of query nodes in Vp and the

partial order on the blocks in rel.

The idea of split was first explored in LTS verification [26].

Our algorithm extends the algorithm of [26] in the following:

(1) in contrast to [26] that works on edge-edge matching in one

graph, our algorithm finds edge-path matching specified with

regular expressions, across two graphs (a pattern graph and

a data graph) with different models; and (2) it also develops

nontrivial tricks to achieve the cubic-time complexity.

Algorithm. The algorithm SplitMatch is shown in Fig. 8. It

also needs mat() and rmv() used by JoinMatch.

The algorithm first checks flag, and accordingly normalizes

the query Qp and computes the distance matrix if needed

(lines 1-3), along the same lines as JoinMatch. It then initial-

izes the match set and block set of each query node (line 5).

In addition, it constructs the partition-relation pair 〈par, rel〉
(line 6); it also initializes rmv() for each query edge (line 7), a

step similar to its counterpart in JoinMatch. It then iteratively

selects and processes those query edges with a nonempty

remove set, i.e., edges for which the match set can be refined

(lines 8-14). The set of blocks par is split based on rmv(e)



Input: a PQ Qp = (Vp, Ep), a data graph G = (V,E) and flag.
Output: the result Qp(G).

1. par := ∅; rel := ∅;
2. if !flag then Q′

p(V
′

p , E
′

p) := Qp;
3. else Q′

p := Normalize(Qp); compute the distance matrix M ;
/* if the matrix is not yet available */

4. for each u ∈ V ′

p do
5. mat(u) := {x | x∈V and x∼u}; B(u) := {u} ∪mat(u);
6. par := par ∪ B(u); rel := rel ∪ {(B(u),B(u)};
7. for each e = (u′, u) ∈ E′

p do compute rmv(e);
8. while there exists e = (u′, u) where rmv(e) 6= ∅ do
9. rmv := rmv(e); rmv(e) := ∅;
10. Split(e, 〈par, rel〉, rmv);
11. for each B ⊆ rmv do rel(B(u′)) = rel(B(u′)) \ B;
12. for each e′ = (u′′, u′) and each B ⊆ rmv do

13. for each x′′∈B(u′′) s.t. no x′∈B(u′), (x′′, x′)≈fe(e
′) do

14. rmv(e′) = rmv(e′) ∪ {x′′};
15. for each e = (u′, u) ∈ Ep do

16. Se := {(x′, x) | x′ ∈ V, x ∈ V,B(x) ∈ rel(B(u)),
B(x′) ∈ rel(B(u′)) and (x′, x) ≈ fe(e)};

17. if Se = ∅ then return ∅;
18. return Qp(G) := {(e, Se) | e ∈ Ep}.

Procedure Split

Input: edge e = (u′, u) ∈ E′

p, pair 〈par, rel〉, a node set SpltN ⊆ V .
Output: updated pair 〈par, rel〉.

1. for each B ∈ par do
2. B1 := B ∩ SpltN; B2 := B \ SpltN;
3. par := par ∪ {B1} ∪ {B2}; par := par \ {B};
4. rel(B1) := rel(B2) := {B1,B2};
5. return 〈par, rel〉;

Fig. 8. Algorithm SplitMatch

in procedure Split, and rel is updated accordingly (line 10).

SplitMatch further extends the remove sets of edges e′(u′′, u′)
by checking if any node in mat(u′′) has no descendants

satisfying the constraints of e′ (lines 12-14). If extended, the

rmv(e′) will be used to refine par.

The process (lines 8-14) iterates until par can no longer be

split. The result is collected (line 16) and returned (line 18).

SplitMatch terminates and returns an empty set, if the match

set of any query edge is empty (line 17).

Procedure Split refines pair 〈par, rel〉 when given a set of

nodes SpltN ⊆ V . Each block B ∈ par is replaced by two

blocks B1 = B ∩ SpltN and B2 = B \ SpltN (line 2). Since B

is split and new blocks are generated, par and rel are updated

(lines 3-4), and the refined pair 〈par, rel〉 is returned (line 5).

Example 10: We show how SplitMatch evaluates the PQ Q2

on the graph G of Fig. 1. For each node u in Q2, SplitMatch

initializes par, the set of blocks (Blks) as shown in the table

below, together with the relation rel on the blocks. We also

show the rmv() set of each edge, with empty rmv() omitted.
initial par initial rel edge rmv() sets

Blk1 : {B,B1, B2} {Blk1,Blk1} (C,B) {C1, C2}
Blk2 : {C,C1, C2, C3} {Blk2,Blk2}
Blk3 : {D,D1} {Blk3,Blk3}

After the process of SplitMatch, the final par and rel are

shown in the following table. All the rmv() sets for query

edges are ∅. One can verify that during the while loop (lines 8-

14), the block set of node C is refined by using rmv(C,B),
getting a new block set from which nodes C1 and C2 are

absent. The other blocks are refined similarly.

final par final rel

Blk1 : {B,B1, B2} {Blk1,Blk1}
Blk2 : {C,C3} {Blk2,Blk2}
Blk4 : {C1, C2} {Blk4,Blk2}, {Blk4,Blk4}
Blk3 : {D,D1} {Blk3,Blk3}

It finds the same result as reported in Example 4. ✷

Correctness & complexity. The algorithm returns Qp(G),
since (1) all blocks are initialized with query nodes and all

their possible matches; (2) the loop (lines 8-14) only drops

those nodes that fail to match query nodes constrained by the

query edges; (3) each graph node remaining in a block is a

match to the corresponding query node, and (4) the size of

each block decreases monotonically.

The algorithm takes O(|parout||V |2) time in the worst case,

when the distance matrix is used. Indeed, SplitMatch consists

of three phases: pre-processing (lines 1-7), match computation

(lines 8-14), and result collection (lines 15-18), which are in

time O((m+ 1)|V |2 + |V |(|V |+ |E|) + |V ′
p ||V |+ |E′

p||V |2),
O(|parout||V |2) and O(|E′

p||V |2)), respectively. Observe that

|parout| is bounded by O(|V ||V ′
p |) and |V ′

p | ≪ |V | in practice.

Hence SplitMatch is in O(|V |3) time.

VI. EXPERIMENTAL EVALUATION

We next present an experimental study using both real-life

and synthetic data. Five sets of experiments were conducted,

to evaluate: (1) the effectiveness of PQs, compared with a

subgraph isomorphism algorithm SubIso [32] and a simulation

based pattern matching algorithm Match [14]; (2) the effec-

tiveness of minimization as an optimization strategy; (3) the

efficiency of RQ evaluation; (4) the efficiency of algorithms

JoinMatch and SplitMatch, employing distance matrix and

distance cache as indices; and (5) the scalability of algorithms

JoinMatch and SplitMatch.

Experimental setting. We used real-life data to evaluate the

performance of our methods in real world, and synthetic data

to vary graph characteristics, for an in-depth analysis.

(1) Real-life data. We used two sets of real-life data as follows:

(a) YouTube dataset with 8350 nodes and 30391 edges, where

each node denotes a video with attributes such as uploader

(uid), category (cat), length (len), comment number (com)

and age (the number of days since uploaded); edges between

videos represent relationships such as friends recommendation

fc (resp. reference fr) from earlier (resp. later) videos to later

(resp. earlier) related ones, while their uploaders are friends;

edge relationships also include strangers recommendation sc

and reference sr defined similarly; (b) a terrorist organization

collaboration network, from 81800 worldwide terrorist attack

events in the last 40 years recorded in Global Terrorism

Database [1], where each node represents a terrorist organi-

zation (TOs) with attributes such as name (gn), country, target

type (tt), and attack type (at); and edges bear relationships,

e.g., international (resp. domestic) collaborations ic (resp. dc),

from organizations to the ones they assisted or collaborated in

the same country (resp. different countries). The network has

818 nodes and 1600 edges.



(a) Real-life result of PQs: Youtube and Terrorist Organization
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(e) RQs over Youtube
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(f) Varying |Vp| on YouTube
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(g) Varying |Ep| on YouTube

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5

Ti
m

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(h) Varying |pred| on YouTube
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(i) Varying b on YouTube
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(j) Synthetic G(|V |, 20K)
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(k) Synthetic G(8K, |E|)
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Fig. 9. Performance Evaluation

(2) Query generator. We designed a query generator to pro-

duce meaningful PQs. The generator has five parameters: |Vp|
for the number of pattern nodes, |Ep| the number of pattern

edges, |pred| the number of predicates each pattern node

carries, and bounds b and c such that each edge is constrained

by a regular expression e≤b
1 . . . e≤b

k , with 1 ≤ k ≤ c. An RQ

is a special case of a PQ as remarked earlier.

(3) Synthetic data. We implemented a generator to produce

data graphs, controlled by 4 parameters: the number of nodes

|V |, the number of edges |E|, the average number of attributes

associated with a node, and a set Σ of edge colors that an edge

may carry. The size of synthetic graphs scales from 1K nodes,

20K edges to 1M nodes, 4M edges.

(4) Implementation. We have implemented the following

in Java: (a) the bi-directional search based method (BI-

BFS) for RQs, with a distance cache employing hashmap

to index frequently asked items; (b) algorithms JoinMatch

and SplitMatch with distance matrix as indices, denoted as

JoinMatchM and SplitMatchM, respectively; (c) algorithms

JoinMatch and SplitMatch using distance cache, denoted

as JoinMatchC and SplitMatchC, respectively; (d) SubIso,

a subgraph isomorphism algorithm [32]; and (e) Match, a

simulation based pattern matching algorithm [14].

All experiments were run on a machine with an AMD

Athlon 64×2 Dual Core 2.30GHz CPU and 4GB of memory,

using Scientific Linux. For each experiment, 20 patterns were

generated and tested. The average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of PQs. In this set of experiments, we

evaluated the effectiveness of PQs. In contrast with SubIso and

Match, we show that PQs can identify meaningful matches in

real-life data. For quantitative comparison, the F-Measure [35]

is adopted, which is defined as follows:

F-Measure = 2 · (recall · precision) / (recall+ precision)
recall = #true matches found / #true matches

precision = #true matches found / #matches

Here #matches is the number of distinct node pairs (u, v),
where u is a query node and v is a graph node that matches

u; and #true matches is the number of meaningful results,

i.e., matches satisfying constraints on nodes and edges.

Figure 9(a) depicts two real-life PQs Q1 and Q2. Query

Q1 finds the videos A in the category “Film & Animation”,

having more than 20 comments and being uploaded more

than 300 days. Videos A are related to videos B uploaded by

“Davedays” via friends references (fr) or friends recommenda-

tions (fc), which in turn are related to videos C via constraint

sr≤6fr. Moreover, B and C both reference videos D, which

are viewed over 160K times having less than 300 comments.

Similarly, query Q2 poses a request on a terrorist network

searching for TOs related with a specified TO “Hamas” via

various relations e.g., ic≤2dc+ic≤2.

Partial results of Q1 and Q2 are drawn in Fig. 9(a). Inter-

estingly, the result of Q2 reflects some (indirect) connections

from different TOs to the Hamas TO in the middle east.

Existing approaches e.g., SubIso and Match, are not sufficient



to express such queries. For a fair comparison, we allow

different edge colors in a data graph but restrict the color

constrained by a query edge of 1, to favor SubIso and Match.

Figure 9(b) shows the F-Measure values of different ap-

proaches for various such queries. The pair (|Vp|, |Ep|) in

the x-axis denotes the number of nodes |Vp| and edges |Ep|
in a query. The y-axis represents the F-Measure values. The

number of predicates at each query node is 2 or 3. The result

shows that (1) PQs can always find meaningful matches, as

expected; (2) SubIso has low F-Measure, e.g., SubIso found 33

true matches among 245 when the x-value is (3, 3). This is

mainly due to its low recalls. For the other queries, SubIso

cannot find any match. Its precision is always 1 if some

matches can be identified. (3) The F-Measure of Match is

better than that of SubIso. This is because its recall is high,

i.e., it can identify all true matches. However, its precision is

relatively low, e.g., among the 374 matches found by Match

when the x-value is (3, 3), only 245 are true matches.

Figure 9(c) reports the elapsed time of all the algorithms, us-

ing Terrorism data. The matrix-based methods were employed,

i.e., SplitMatchM, JoinMatchM and MatchM. It shows that

JoinMatchM and SplitMatchM outperform MatchM, and are

much faster than SubIso.

These results us tell that PQs are not only more effective,

but also more efficient than its conventional counterparts.

Exp-2: The effectiveness of PQ minimization. We evaluated

the effectiveness of the minimization algorithm minPQs (Sec-

tion III), using YouTube data. The queries were generated by

varying |Vp| and |Ep|. The average number of predicates |pred|
is 3. Here c is between 2 and 4, and b = 5, i.e., each edge is

constrained by the expression c≤5
1 . . . c≤5

k , where 2 ≤ k ≤ 4.

The results are reported in Fig. 9(d). In Fig. 9(d), the x-

axis is the same as its counterparts in Fig. 9(b), and the y-axis

represents the elapsed time for query evaluation. For space

limitation, we only show the results of using the algorithm

JoinMatchM, the others reflect similar trend and are thus

omitted. The minimization process was performed instantly.

The results tell us the following: (1) minPQs can reduce the

size of queries and thus speed up the query evaluation; and (2)

generally, the larger the queries are, the better the performance

can be improved. This is because larger queries have a higher

probability to contain redundant nodes and edges. Indeed, it

took 18 seconds to handle queries with 12 nodes and 18
edges, while the running time was cut by over a half for the

minimized queries, which have 7 nodes and 9 edges in average.

This set of experiments verified that the minimization algo-

rithm can effectively optimize PQs. In the rest of experiments,

all tested queries were minimized.

Exp-3: Efficiency of RQs. In this set of experiment, we tested

the efficiency of the two algorithms presented in Section IV for

evaluating RQs. Fixing the bound b at 5 and the cardinality of

node predicates at 3, we varied the number of colors c from 1
to 4 per edge. More specifically, the tested regular expressions

have the form c1
≤b . . . ci

≤b (i ∈ [1, 4]).
Figure 9(e) shows the average elapsed time of evaluating

RQs on YouTube data. The x-axis represents the number of

distinct colors and y-axis the elapsed time. The term DM means

the method employing distance matrix. The results tell us the

following. (1) The method based on distance matrix is most

efficient, and BI-BFS is more efficient than BFS, as expected.

(2) BI-BFS scales better than BFS with the number of colors c,
since by searching from two directions, BI-BFS produces less

intermediate nodes than BFS. The trend of the curves of BI-BFS

and BFS indicates that BI-BFS works better for more complex

regular expressions. (3) As maintaining distance matrix is

costly for large graphs, BI-BFS makes a rational solution by

balancing the tradeoff between time and space.

Exp-4: Efficiency of PQs on YouTube. This set of experi-

ments varied the parameters |Vp|, |Ep|, |pred|, c and b, whose

default values are 6, 8, 3, 4 and 5, respectively.

Figures 9(f), 9(g), 9(h) and 9(i) depict the elapsed time

when varying one of the parameters: |Vp|, |Ep|, |pred| and

b, respectively. See Fig. 9(e) for the tests for varying c. The

M -index represents the time of computing a distance matrix,

which is shared by all patterns and thus is not counted in the

algorithms JoinMatchM and SplitMatchM.

Observe the following about these experimental results:

(1) Figure 9(f) shows that the matrix-based algorithms

JoinMatchM and SplitMatchM outperforms the distance-cache

based JoinMatchC and SplitMatchC, respectively, since the

former answers node distance in constant time, while the latter

needs to compute it from scratch if the result is not cached.

(2) The join-based methods outperform the split-based meth-

ods. As shown in the figures with various parameters, in most

cases JoinMatchM is the fastest, followed by SplitMatchM;

and JoinMatchC outperforms SplitMatchC. This indicates that

the computational cost of the join-based method is reduced by

adopting the reverse topological order (see Section V).

(3) The elapsed time is more sensitive to the number of pattern

edges (see Fig. 9(g)) than pattern nodes (see Fig. 9(f)), since

the number of edges dominates the number of joins or splits

to be conducted. Moreover, the elapsed time is sensitive to the

number of predicates (see Fig. 9(h)) since predicates impose

a strong constraint in initializing the match set. The more the

predicates, the less graph nodes will satisfy them, resulting

in smaller candidate matches and faster evaluation. The time

is sensitive to the bound (see Fig. 9(i)) since the number of

matches gets larger when b is increased.

(4) From these figures, we can expect that all algorithms have

good scalability and they will work well when the numbers of

|Vp|, |Ep| |pred| and b become much larger.

(5) The M -index can be computed efficiently, and it improves

the performance, when the dataset is relatively small.

Exp-5: Scalability of PQs on synthetic data. In the last set

of experiments, we evaluated the scalability of both algorithms

over (large) synthetic data. The default values of |Vp|, |Ep|, c,
|pred| and b are 6, 8, 4, 3 and 5, respectively.

(1) We first tested both distance-cache based and matrix-based

algorithms w.r.t. |V | and |E| of data graphs with default values



8K and 20K, respectively. Figures 9(j) and 9(k) show that all

algorithms scale well with |V | and |E|, respectively.

(2) We then tested the distance-cache based algorithms on

large data graphs since the matrix-based algorithms do not

work due to their high space overhead. Two additional param-

eters are used: (a) candidate rate (cr) such that the number of

matches of a pattern node is bounded by |V | × cr, and (b) the

density α of data graphs such that |E| = |V |α. The default

values of |V |, cr and α are 50K, 0.01 and 1.1, respectively.

Figures 9(l), 9(m), 9(n) and 9(o) show that (a) the distance-

cache based algorithms scale well with b, |V |, α and cr,

respectively; (b) they are sensitive to all these parameters; and

(c) JoinMatch consistently outperforms SplitMatch.

Summary. We have the following findings. (1) PQs are able

to identify far more sensible matches in emerging application

than the conventional approaches can find. (2) The minimiza-

tion algorithm can effectively identify and remove redundant

nodes and edges, and thus can improve performance for query

answering. (3) With distance matrix as indices, the evaluation

of RQs is very efficient. Moreover, BI-BFS is rational when

working on large graphs. (4) PQs can be efficiently evaluated,

and the distance-cache based algorithms scale well even with

large graphs with 1M nodes and 4M edges.

VII. CONCLUSION

We have proposed extensions of reachability queries (RQs)

and graph pattern queries (PQs), by incorporating a subclass

of regular expressions to capture edge relationships commonly

found in emerging applications. We have revised graph pattern

matching by introducing an extension of graph simulation.

We have also settled fundamental problems (containment,

equivalence, minimization) for these queries, all in low PTIME.

In addition, we have shown that the increased expressive power

does not incur higher evaluation complexity. Indeed, we have

provided two algorithms for evaluating RQs, one in quadratic

time, the same as their traditional counterparts [21]. We have

also developed two cubic-time algorithms for evaluating PQs,

as opposed to the intractability of graph pattern matching

via subgraph isomorphism. We have verified experimentally

that these queries are able to find more sensible information

than their traditional counterparts, and that the algorithms are

efficient when evaluating RQs and PQs on large graphs.

One topic for future work is to extend RQs and PQs

by supporting general regular expressions. Nevertheless, with

this comes increased complexity. Indeed, the containment and

minimization problems become PSPACE-complete even for

RQs. Another topic is to identify application domains in which

simulation-based PQs are most effective. A third topic is to

study incremental algorithms for evaluating RQs and PQs.
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