
Structural Properties of XPath Fragments

Michael Benedikt

Bell Laboratories

benedikt@research.bell-labs.com

Wenfei Fan

Bell Laboratories

wenfei@research.bell-labs.com

Gabriel M. Kuper

Universit�a di Trento

kuper@acm.org

Abstract

We study structural properties of each of the main
sublanguages of XPath [8] commonly used in practice.
First, we characterize the expressive power of these lan-
guage fragments in terms of both logics and tree pat-
terns. Second, we investigate closure properties, fo-
cusing on the ability to perform basic Boolean oper-
ations while remaining within the fragment. We give a
complete picture of the closure properties of these frag-
ments, treating XPath expressions both as functions of
arbitrary nodes in a document tree, and as functions
that are applied only at the root of the tree. Finally,
we provide sound and complete axiom systems and nor-
mal forms for several of these fragments. These results
are useful for simpli�cation of XPath expressions and
optimization of XML queries.

1 Introduction

XPath [8] is a language for specifying the selection of
element nodes within XML documents. It has been
widely used in XML query languages (e.g., XSLT [7],
XQL [22], XQuery [5]), XML speci�cations (e.g., XML
Schema [23]), and subscription systems (e.g., [6]). It
supports a number of powerful modalities and thus is
rather expensive to process [3, 18, 10]. In practice,
many applications do not need the excessive power
of the full language; they use only a fragment of
XPath. For example, XML Schema speci�es integrity
constraints with an XPath fragment that does not sup-
port upward modalities (the parent and ancestor axes).
It is thus necessary to study the expressiveness and opti-
mization of these XPath fragments, since their analysis
and simpli�cation are critical for eÆcient processing of
XML documents.

These considerations motivate us to consider a vari-
ety of fragments, focusing on several dichotomies:

� downward vs. upward: some fragments support
both downward and upward navigation, while oth-
ers allow only downward traversal.

� recursive vs. nonrecursive: some fragments al-
low navigation along the ancestor and descendant
axes, while others permit only parent and child
axes.

� quali�ed vs. non-quali�ed: fragments may or
may not include quali�ers (predicates testing prop-
erties of another expression).

The aim of our work is to show how these fragments
di�er from one another, in terms of expressiveness and
structural properties, and to develop methods for sim-
plifying XPath expressions in each fragment.

Our �rst contribution is a characterization of the ex-
pressiveness of these fragments in terms of logics as well
as tree patterns , a class of queries fundamental in many
areas of computer science [12, 14] and studied recently
in connection with LDAP and XML [1]. Extending the
preliminary results of [15], we show that the natural
XPath fragments with quali�ers can be characterized
via the positive existential fragment of �rst-order logic,
and that these fragments also match exactly the queries
formed using appropriate tree patterns. One surpris-
ing consequence of our logical characterization is that
equality quali�ers can be added to the fragments with
quali�ers, without increase in expressive power.

The second contribution is to outline the contain-
ments that hold between these fragments, and to dis-
cover what additional operations can be de�ned within
them. Using our logical and pattern characterizations,
we show that the containments holding between XPath
fragments can di�er signi�cantly depending on whether
their expressions are to be evaluated at arbitrary nodes
of an XML document tree or are restricted to work
only from the root of the tree; that is, we describe the
containments that hold under general equivalence and
root equivalence. In the process we show that every ex-
pression with upward modalities is root-equivalent to
one without upward navigation. This is important for,
among other things, processing streaming data.

Our third contribution is the delineation of the clo-

sure properties of XPath fragments. Knowing that a

1



fragment F is closed under a set of operations S is not
only helpful for optimization algorithms { manipula-
tions involving S can be done while remaining in the
fragment { it is also useful for XPath implementers, as
it indicates that the operations in S can be built on
top of the fundamental operations of the fragment. We
give a complete picture of the closure properties under
Boolean operations for all of our XPath fragments, mak-
ing use of the logical and pattern characterizations men-
tioned above. As with containment, we show that the
closure properties of a fragment under general equiva-
lence may di�er from those under root equivalence.

The �nal contribution of the paper is in connection
with simpli�cation of XPath expressions. We approach
this problem based on proof systems for XPath using a
set of axioms that allow simpli�cation of expressions.
This is an initial step toward establishing an algebraic
framework both for directing the optimization process,
and for allowing an optimizer to trade o� weaker sim-
pli�cation for lower optimization time. Note that each
individual fragment requires a separate analysis of the
axiomatizability of containment/equivalence. Indeed,
given fragments F1 � F2, F2 may admit a simple set
of simpli�cation rules although F1 does not, due to the
lack of certain closure properties in F1, and vice versa.

To this end, we establish some preliminary results,
both positive and negative, for the axiomatizability of
our XPath fragments. We show that no �nite axiom-
atization can exist for any of our fragments; but we
give sound and complete computable axiom systems for
the downward non-quali�ed fragments. We show that
some fragments actually become �nitely axiomatizable
when the labels are restricted to come from a �xed �-
nite alphabet. We also provide normal forms for some
of these fragments, which are unique up to equivalence
of expressions.

Taken together, these results give a picture of the
advantages and disadvantages of working within a par-
ticular fragment.

Related work: There has been considerable work on
the expressiveness and complexity of XPath. One line
of investigation studies formal models of XPath [3, 18,
17, 16], abstracting away from the concrete syntax of
XPath into a powerful automaton model { complexity
bounds are then derived from bounds on the automata.
The results to date have generally given considerable
insight into the expressiveness and complexity of XPath
as a whole, but have shed little light on the distinction
between one fragment of XPath and another. To the
best of our knowledge, there is no previous work dealing

directly with the expressiveness of XPath fragments.

An active area of research with direct bearing on
XPath optimization has been the analysis of the con-

tainment problem for XPath: in a series of papers [1,
9, 15, 25], lower and upper bounds for the complexity
of containment have been established for a number of
XPath fragments. Note that understanding axiomatiz-
ability of containment in a fragment requires a funda-
mentally di�erent analysis from the semantic methods
used in these papers, since the existence of an axiom sys-
tem is a property of the fragment as a whole. Solving
containment itself is only a step toward optimization,
but developing a framework for, and thorough study
of, simpli�cation in the context of XPath fragments re-
mains an important open research issue.

Closest in spirit to our paper is [19]. It presents a
set of rewrite rules for eliminating upward modalities,
which is similar to some of our results in Section 5.
However, [19] focuses on a single large XPath fragment,
and their results do not apply to the smaller fragments
considered here. Normal forms for one simple fragment
of XPath are examined in [26]; for tree patterns, [1, 20]
present algorithms for achieving minimization, which
can be viewed as a certain normal form for tree patterns.

The issue of axiomatizing expression equivalence has
been investigated for a number of formalisms related
to XPath: [21] shows that there can be no �nite ax-
iom system for regular expressions, while [11] gives ax-
iom systems for propositional dynamic logic with con-
verse. Elimination of inverse roles (upward modality)
has been studied for description logics [4]. The results
of propositional dynamic logic and description logics do
not carry over here since they deal with general struc-
tures (graphs) instead of trees; furthermore, since those
languages support a negation operator, the expressive-
ness di�ers radically from XPath, which (as we shall
see) is not negation-closed.

Organization: Section 2 de�nes our XPath fragments,
followed by a characterization of their expressive power
in Section 3. Closure properties are investigated in Sec-
tions 4 under general equivalence. Section 5 revisits
expressiveness and closure properties under root equiv-
alence. Section 6 provides axiom systems and normal
forms for several fragments, and Section 7 summarizes
the main results of the paper. Proofs are in the ap-
pendix.

2



2 Notations

XPath expressions are built up from an in�nite set of
labels (tags, names) �. The largest fragment of XPath
studied in this paper, denoted by X "

r; [ ], is syntactically
de�ned as follows:

p ::= � j ; j l j # j " j #� j "� j

p=p j p [ p j p[q];

where �, ;, l denote the empty path, the empty set,
and a name in �, respectively; `[' and `=' stand for
union and concatenation, `#' and `"' for the child-axis
and parent-axis, `#�' and `"�' for the descendant-or-self-
axis and ancestor-or-self-axis, respectively; and �nally,
q in p[q] is called a quali�er and de�ned by:

q ::= p j label = l ;

where p is an X "
r; [ ] expression and l is a name in �.

The semantics of XPath expressions is given with re-
spect to an XML document modeled as a node-labeled
tree, referred to as an XML tree. Each node n in an
XML tree T (denoted by n 2 T ) is labeled with a
name tag from some �nite alphabet �0 � � (we as-
sume w.l.o.g. that �0 has at least two symbols in it). It
also has a (possibly empty) list of children; it is called
a leaf of T if it has no children. A distinguished node
rt is called the root of T ; each node in T except for the
root has a parent. We do not consider order of nodes
in T since our XPath fragments ignore the order. In an
XML tree T , an X "

r; [ ] expression p is interpreted as a
binary predicate on the nodes of T . That is, for any n,
n0 2 T , T j= p(n; n0) i� one of the following is satis�ed:
(1) if p = �, then n = n0; (2) if p = ;, then T j= p(n; n0)
is false for any n0; (3) if p = l, then n0 is a child of n,
and is labeled with l; (4) if p = #, then n0 is a child
of n, and its label does not matter; (5) if p = ", then
n0 is the parent of n; (6) if p = #�, then n0 is either
n itself or a descendant of n; (7) if p = "�, then n0 is
either n itself or an ancestor of n; (8) if p = p1=p2, then
there exists x 2 T such that T j= p1(n; x) ^ p2(x; n

0);
(9) if p = p1 [ p2, then T j= p1(n; n

0) _ p2(n; n
0); (10) if

p = p1[q], then there are two cases: when q is p2, there
exists n00 2 T such that T j= p1(n; n

0)^p2(n0; n00); when
q is a label test \label = l", n0 is labeled with l. This
semantics is in the same spirit as the one given in [24].

Example. Referring to a node n in an XML tree T ,
some X "

r; [ ] expressions and their semantics are:

p1: #=A: all the grandchildren of n that are labeled A;

p2: "=A: all the A-siblings of n, including n itself

if it is labeled A;

p3: #=A[#]: all the non-leaf A-grandchildren of n;

p4: "[label = A]: the parent of n if it is labeled A,
and the empty set otherwise;

p5: #�=A=#�: all the descendants of n that have an
A-ancestor which itself is a descendant of n;

p6: #�=A[B[#�=C]]: all the A-descendants of n that
have a B-child which in turn has a C-descendant;

p7: #�=B="�: nodes having a B-descendant which
is also a descendant of n; note that these nodes
are not necessarily themselves descendants of n;

p8: #�=A["�=B]: all the A-descendants of n that
have an ancestor with a B-child.

If T j= p(n; n0) then we say that n0 is reachable from
n via p. We use n[[p]] to denote the set of all the nodes
reached from n via p, i.e., fn0jn0 2 T; T j= p(n; n0)g.

Example. For any leaf n in T , n[[#]] = ;, n[[#�]] = fng,
while rt [["]] = ; and rt [["�]] = frtg for the root rt of T .

Two XPath expressions p and p0 are generally equiv-

alent (or simply equivalent when it is clear from the
context), denoted by p � p0, i� for any XML tree T and
any node n 2 T , n[[p]] = n[[p0]]. We say two expressions
are equivalent over �0 (denoted by ��0) where �0 is a
�xed �nite alphabet, if the above holds for any tree T
whose labels are in �0. For example, # is equivalent to
A[B over the alphabet fA;Bg, but not in general. We
will usually work with the stronger notion of general
equivalence �, and specify when results also hold for
restricted equivalence | equivalence w.r.t. some �nite
alphabet �0.

We use the following notations for subclasses of
X "
r; [ ]: the subscript `[ ]' means that the subclass al-

lows quali�ers, i.e., expressions of the form p[q]; the
subscript `r' indicates the support for \recursion" #�;
and the superscript `"' denotes the support for upward
modality `"' (and `"�' in presence of the subscript r).

The subclasses of X "
r; [ ] considered in this paper can

be classi�ed into two categories: with or without re-
cursion. In the �rst category, X "

r is the subclass with-
out quali�ers; Xr; [ ] is the subclass with quali�ers but
without " and "�; and Xr is the subclass with neither
quali�ers, " nor "�. In the second category, X "

[ ] is the

subclass of X "
r; [ ] without #

� and "�; X[ ] and X " further

restrict X "
[ ] by disallowing, respectively, " and quali-

�ers; �nally, X is the subclass of X "
[ ] with neither " nor

quali�ers. All these fragments have been found to be
useful in practice. For example, Xr is used by XML
Schema [23] to specify integrity constraints.

3



X
[ ] X r

X r XX
[ ] 

Xr,

[ ] 

X

Xr,

[ ] 

Figure 1: Fragments of XPath

The proposition below justi�es the lattice depicted
in Fig. 1 (see the appendix for a proof).

Proposition 2.1: The fragments form the lattice of
Fig. 1; that is, there is an edge from fragment F1 to F2
i� F1 � F2, i.e., if every expression of F1 is equivalent
to an expression in F2. 2

Example. The XPath expressions given above can be
classi�ed as follows: p1 is in all these fragments; p2 is
in X ", X "

[ ], X
"
r , X

"
r; [ ], but is not in the others; p3 is in

X[ ], X
"
[ ], Xr; [ ], and X "

r; [ ] only, while p4 is in X "
[ ] and

X "
r; [ ] only; p5 is in Xr, X "

r , Xr; [ ] and X "
r; [ ] but is not

in the others; p6 is in Xr; [ ], X
"
r; [ ] only while p7 is in X

"
r

and X "
r; [ ] only; �nally, p8 is only in X "

r; [ ].

A weaker equivalence relation is de�ned as follows:
p and p0 are root equivalent, denoted by p �r p

0, i� for
any XML tree T , rt [[p]] = rt [[p0]], where rt is the root
of T . In Section 5 we shall see that root equivalence

attens the hierarchy of Fig. 1.

The fragments studied by [15] do not support up-
ward traversals and union, and are properly contained
in Xr; [ ]. Note that because the fragments considered
in [15] do not deal with upward modalities such as "
and "�, the distinction between root equivalence and
general equivalence is not relevant to this prior work,
since these notions are the same in the absence of up-
ward modalities. Although [9] considers fragments sim-
ilar to X "

r; [ ], it does not study the closure properties
and axiom systems investigated here.

3 Logic and quali�ed fragments

In this section we characterize the expressiveness of each
of the fragments with quali�ers de�ned in the previous
section, by means of both predicate logic and tree pat-

terns. As we shall see, the logical characterization is not
only interesting in its own right, but is also useful in the
analysis of the closure properties of our fragments.

We begin with a simple observation. One might be
interested in extending quali�ers in an X "

r; [ ] expression
p[q] by including conjunction and disjunction:

q ::= p j label = l j q ^ q j q _ q;

with the semantics: at any node n in an XML tree T ,
[q1 ^ q2] is true i� there exist nodes n0 and n00 such that
both q1(n; n

0) and q2(n; n
00), and such [q1 _ q2] is true

i� q1(n; n
0) or q2(n; n

00). Let us denote this extension
of X "

r; [ ] by X
"
r; [^;_]. The next proposition shows, how-

ever, that conjunction and disjunction add no expres-
sive power over X "

r; [ ] (see the appendix for a proof).
This allows us to use conjunction and disjunction as
shorthands in quali�ers of X "

r; [ ] expressions. This also
carries over to all of the other fragments with quali�ers,
i.e., Xr; [ ], X

"
[ ], and X[ ].

Proposition 3.1: X "
r; [ ] and X

"
r; [^;_] are equivalent. 2

We next show that each of these fragments with
quali�ers can be captured using a version of positive-
existential �rst-order logic, and de�ne notions of tree
patterns that capture the expressive power of each of
these fragments. A precursor to this work is [15] where
in analyzing the subset of Xr; [ ] consisting of expressions
built up without the union operator `[', they observe
that this fragment is equivalent to the queries de�ned
using a natural notion of \unary tree pattern".

The formal de�nitions of our logics and pattern lan-
guages are given below.

Let 9+(child) be the fragment of �rst order logic
built up from the relations child, label predicates P (x)
for each name P as well as equality `=', by closing under
^, _ and 9, while 9+(child; desc) is the corresponding
fragment built up from child, desc, the label predicates
and `='. The semantics is the standard semantics of
�rst-order logic over trees (with child and desc given
their standard interpretation within a tree).

We use 9+(child)(c; s) to denote 9+(child) formulae
with exactly the variables c and s free, and similarly
for 9+(child; desc)(c; s). Note that an 9+(child)(c; s)
formula de�nes a function from a node c to a set of
nodes s.

A forest pattern pc is a forest with labels on nodes
and edges, where nodes are labeled by names or the
wildcard symbol `�' (that matches any node), and edges
are labeled with # or #�. It has a distinguished node
called the context node, and a distinguished subset of

4



nodes referred to as the selected nodes of pc. A pattern
pc thus has the form (V;E; l; c; S), where V is the un-
derlying forest domain, E the ordering, l the labeling
function, and c, S the context node and selected set,
respectively.

A forest pattern can be given semantics by trans-
lating it into 9+(child; desc). The pattern (V;E; l; c; S)
is translated as follows: Letting V = v1 : : : vn be the
elements of V , assume, w.l.o.g., that v0 is the context
node, v1 : : : vk are the selected nodes, and vk+1 : : : vn
are the remaining nodes of V . Then let �(xv0 ; : : : ; xvk )
be the formula:

9xvk+1
: : : xvn (

^
P

^
v2V; l(v)=P

P (xv) ^

^
(v;v0)2E; l(v;v0)=child

child(xv ; xv0) ^

^
(v;v0)2E; l(v;v0)=desc

desc(xv ; xv0))

Special kinds of patterns we consider are:

� A tree pattern is a forest pattern consisting of a
single tree.

� A child pattern is one in which all edges are labeled
with #.

� A unary pattern is one in which the selected set S
has exactly one node in it.

A forest pattern query is a �nite set of forest pat-
terns, with all patterns having the same cardinality for
the selected set S (designed to model the arity of the
query). A forest pattern query t returns, given a tree
and a distinguished context node, the union of all out-
puts returned by the patterns in it, i.e., [t] =

S
tp2t[tp],

where [tp] is the relation de�ned by tp. By convention
we take the empty forest pattern query to be equiv-
alent to false . We likewise talk about a child pat-
tern query, unary tree pattern query, etc (note that a
tree pattern query is a �nite set of tree patterns). We
let
S
TP(child) be the set of unary child tree pattern

queries and
S
TP(child; desc) be the set of unary tree

pattern queries.

It is easy to see that a tree pattern query can be
expressed in 9+(child; desc), and that a child pattern
query can be expressed in 9+(child). A unary pattern
can be translated as above to a formula �(xv0 ; xvn):
renaming xv0 as c and xvn as s, we get a formula �(c; s).

The �rst result is for the fragment X "
r; [ ].

Theorem 3.2: The following languages are equivalent
in expressive power

� X "
r; [ ],

�
S
TP(child; desc),

� 9+(child; desc)(c; s).
2

Proof sketch: The proof consists of three parts.

1.
S
TP(child; desc) � X "

r; [ ].

It suÆces to show that each unary tree pattern
p = (V;E; l; c; s) has an equivalent formula in X "

r; [ ].
We handle the case where c is neither a descendant nor
an ancestor of s; the other two cases are similar but sim-
pler. We �rst de�ne a mapping Q from nodes v 2 V to
quali�ers. The mapping is de�ned inductively (starting
from the leaves) as follows:

Q(v) = (label = l(v)) -- if l(v) 6= `�0

^
^

(v;v0)2E; l(v;v0)=desc

#�=[Q(v0)]

^
^

(v;v)2E; l(v;v0)=child

#=[Q(v0)]

Now let w be the least upper bound of c and s
in (V;E), and t be the root node of V . Let c =
v0; : : : ; vn = w be the path from c to w, while w =
y0; : : : ; ym = s is the path from w to s. Finally,
let w = vn; : : : ; vr = t be the path from w to t.
Let ui : 0 � i � r � 1 be de�ned by: ui = " if
l(vi; vi+1) = child and "� otherwise. Let di = # if
l(yi; yi+1) = child and #� otherwise.

Then we translate the pattern p to

�[Q(v0)]=u0[Q(v1)] : : : =un�2[Q(vn�1)]=un�1[Q(w)]/

�[un[Q(vn+1)]= : : : =ur�1[Q(t)]]=

d0[Q(y1)]= : : : =dm[Q(s)].

That is, starting at context c, the X "
r; [ ] expression �rst

goes upward to the least upper bound w and then down-
ward to the selected nodes s, while asserting the path
from the root rt to w with the quali�er at w (i.e., un).
One can verify that this translation is correct.

2. X "
r; [ ] � 9+(child; desc)(c; s).

This is immediate from the de�nition (logic transla-
tion) of the semantics of X "

r; [ ] expressions given in the
previous section.

3. 9+(child; desc)(c; s) �
S
TP(child; desc).

We prove the more general fact that an arbitrary for-
mula �(c; s1; : : : ; sn) in 9+(child; desc) is equivalent to a
tree pattern query. Let � be a formula. We can assume

5



that it is of the form 9x1 : : : xn 
 where 
 is quanti�er-
free. We now create a graph whose vertices are the
variables of 
 and whose edges correspond to the atomic
formulae in 
 (with nodes and edges labeled by the cor-
responding unary and binary atomic formulae satis�ed
by these variables). By combining strongly-connected
components into a single node and identifying any two
variables that are forced by 
 to be the same, we can
get an equivalent formula for which the corresponding
graph is a tree. From this tree it is easy to generate a
tree pattern query. Details are in the appendix.

This completes the proof of the theorem. 2

We now consider the situation for X "
[ ]. Part of the

previous result goes through as before. To capture the
expressive power of X "

[ ] precisely, let 9
+(child)[loc] be

the �rst-order logic built up from child and the label
predicates via conjunction, disjunction and the quan-
ti�cation 9x 2 B(c; n) (local quanti�cation), for every
integer n. Here 9x 2 B(c; n) �(x; ~y) holds i� there is
a connected set of nodes of size at most n in the tree
that contains x and c (we say \x is in the ball of radius
n around c" in this case). We let 9+(child)[loc](c; ~s) be
the fragment of 9+(child)[loc] with the further restric-
tion that each si is restricted to be in the ball of radius
n around c. It is clear that every property expressible in
9+(child)[loc] can be expressed in 9+(child) (by making
the chain leading to c explicit). Then we have (see the
appendix for a proof):

Theorem 3.3: The following languages are equivalent
in expressive power

� X "
[ ],

�
S
TP(child),

� 9+(child)[loc](c; s). 2

As an immediate result of Theorems 3.2 and 3.3, it
follows that equality test in quali�ers adds no expressive
power over X "

[ ] and X "
r; [ ]. XPath allows quali�ers of

the form [q1 = q2] with the following semantics: at any
node n in an XML tree T , [q1 = q2] is true i� there
exists a node n0 such that both q1(n; n

0) and q2(n; n
0)

hold, i.e., n[[q1]] and n[[q2]] are not disjoint. Note that
the semantics of equality test in XPath is quite di�erent
from that of quali�er conjunction.

Corollary 3.4: The extensions of X "
[ ] and X "

r; [ ] to
allow the equality test q1 = q2 in quali�ers are the same
as X "

[ ] and X
"
r; [ ], respectively. 2

Proof sketch: This follows from the fact that the
statements of the form [q1 = q2] can clearly be expressed

in 9+(child) and 9+(child; desc): let �1(s1) and �2(s2)
be the 9+(child) (resp. 9+(child; desc)) formulae repre-
senting q1 and q2, with free variables s1 and s2 denot-
ing the selected nodes; then [q1 = q2] is equivalent to
9x(�1(x) ^ �2(x)). 2

For example, the expression

[A=#�=B=#� = A=#�=C=#�]

can be converted to

[A=#�=B=#�=C=#� [ A=#�=C=#�=B=#�]:

There is an additional equivalence between the full
logic 9+(child) and forest patterns, which can be veri-
�ed along the same lines as Theorems 3.2 and 3.3.

Theorem 3.5: Every formula in 9+(child) is equivalent
to a child forest query, and vice versa. 2

We now turn to the downward fragments. Let us
de�ne

S
TP(child; desc)[down] to be tree pattern queries

where the node labeled c is restricted to be at the root
of each query. Let 9+(child; desc)[down](c; s) be the
fragment of 9+(child; desc)(c; s) in which every bound
variable as well as s is syntactically restricted to be
a descendant-or-self of the node c. Then similarly to
Theorem 3.2 we have (see the appendix for a proof):

Theorem 3.6: The following languages are equivalent
in expressive power:

� Xr; [ ],

�
S
TP(child; desc)[down],

� 9+(child; desc)[down](c; s).
2

Now we give the characterizations for X[ ]. We de�neS
TP(child)[down] to be the fragment of

S
TP(child)

with the node c at the root of each tree pattern, and let
9+(child)[loc; down] be the intersection of the languages
9+(child)[loc] and 9+(child; desc)[down], i.e., every vari-
able and also s are syntactically restricted to be a �xed
descendant of c. Then similar to Theorem 3.3, we have
(see the appendix for a proof):

Theorem 3.7: The following languages are equivalent
in expressive power

� X[ ],

�
S
TP(child)[down],

� 9+(child)[loc; down](c; s).
2

6



4 Closure properties

An XML query frequently involves union, intersection
and complementation of XPath expressions. This moti-
vates the study of the closure properties of XPath under
these Boolean operations, i.e., whether the Boolean op-
erations preserve our XPath fragments. This is impor-
tant for, among other things, query optimization. The
XPath 2.0 draft [2] proposes adding all these operations;
however closure properties of the fragments studied here
will remain relevant, given that most applications will
use only a portion of XPath 2.0, and that XPath and
XQuery implementations will focus their optimization
e�orts on particular subsets of the language.

Formally, a fragment F of XPath is closed under
intersection i� for any expressions p1, p2 in F , there
exists an expression p in F , denoted by p1\p2, such that
n[[p]] = n[[p1]]\n[[p2]] for any XML tree T and any node
n 2 T . Similarly, F is closed under complementation

i� for any p in F , there exists p0 in F , denoted by :p,
such that n[[p0]] = fn0 j n 2 T; n 62 n[[p]]g for any XML
tree T and n 2 T . Closure under union can be de�ned
similarly; all of our fragments are closed under union
since they all contain the operator `['.

Theorem 4.1: The fragments X , X[ ], X
"
[ ], Xr, Xr; [ ],

and X "
r; [ ] are closed under intersection, whereas X

" and
X "
r are not. 2

Proof sketch: Theorems 3.2, 3.3, 3.6 and 3.7 charac-
terize the quali�ed fragments X "

r; [ ], X
"
[ ], Xr; [ ] and X[ ]

with the logics 9+(child; desc)(c; s) and 9+(child)(c; s)
as well as their restrictions 9+(child; desc)[down](c; s)
9+(child)[loc; down](c; s), respectively. In particular,
for expressions p1 and p2 in any of these fragments,
their intersection can be expressed in the correspond-
ing logic as 9y1�1(x; y1) ^ 9y2�2(x; y2), where �1 and
�2 are the codings of p1 and p2 respectively. From this,
it immediately follows that these fragments are closed
under intersection since the logics are clearly closed un-
der conjunction.

We now show that Xr is closed under intersection
using an automata-theoretic approach. A similar argu-
ment also works for X .

Let p be an expression in Xr. Acceptance of a node
n by such a p depends only on the labels on a path
from the context node c to n, hence p can be mod-
eled by an automaton that accepts strings with c being
its start state. The automaton corresponding to p can
be taken to be acyclic, with the exception of self-loops
which can be followed regardless of the alphabet sym-

bol (corresponding to the symbol #�). Conversely, any
such automaton can be converted to an Xr-expression
by taking the union of all paths from the start to an ac-
cepting state, introducing #� wherever such a self-loop
occurs. We now show that these restricted automata are
closed under the standard product construction. LetM
and M 0 be two such automata, and let M 00 be the re-
sult of the standard Cartesian product construction of
the intersection [13]. We show that M 00 corresponds to
an Xr-expression. To see this, assume by contradiction
that the transition graph ofM 00 has a cycle which is not
a self-loop. Let (q1; q

0
1), : : : , (qn; q

0
n) be a cycle in M 00

with n > 1 with all pairs distinct. Then q1, : : : , qn, q1
and q01, : : : , q

0
n, q

0
1 are cycles inM andM 0, respectively.

But then, q1 = q2 = � � � = qn and q01 = q02 = � � � = q0n,
using the fact that M and M 0 have no non-self-loop
cycles. From this we get a contradiction.

To show the negative results, consider the intersec-
tion � \ "=A="=# of two X " expressions { this expres-
sion returns the context node alone, but only if it has a
sibling labeled `A'. We shall show that this intersection
cannot be expressed in X "

r , and thus not in X " either.
To see this, suppose that p were such an X "

r expression.
Let T be the tree with root rt , having children n1 (la-
beled B), n2 (labeled A), and n3 (labeled B). Let n1
be the context node; clearly n1[[p]] = fn1g. Then there
must exist a simple path p0, i.e., a sequence of labels
and ", such that n1[[p

0]] = fn1g and for every tree T
and node n, n[[p0]] � n[[p]]. Let v1 : : : vk be a sequence of
nodes starting and ending n1 that witnesses n1 2 n1[[p

0]].
If none of the vi is rt , then n1 will be in n1[[p]] even if
we delete the node n2 from the tree, a contradiction. If
some vj is rt , then replace each subsequent occurrence
of n1 in the path by n3, and it follows that n1[[p

0]] must
include the node n3, once more a contradiction. This
concludes the proof. 2

For complementation, on the other hand:

Theorem 4.2: None of the fragments is closed under
complementation. 2

Proof sketch: We consider here the case of equivalence
over a �xed �nite alphabet �0 { the proofs will also work
for general equivalence, but in such a case one could
simply show that the complement of the simple path
\A" cannot be represented in any of the fragments.

We distinguish between two groups of fragments {
those with recursion (#� and possibly "�), and those
without.

First, consider a non-recursive fragment. Let p1 be
the simple path \A". We claim that p = :(p1) cannot

7



X r

Xr, [ ] [ ] 
Xr,

X r

X
[ ] 

X

X
[ ] 

X

Figure 2: XPath fragments under root equivalence

be represented in this fragment. To see this, let m be
the size of p. It is easy to see that p cannot match any
path of length > m, a contradiction.

In the case of recursive fragments, when fragments
are considered w.r.t. equivalence over a �xed �nite al-
phabet �0, this argument does not work: if the al-
phabet is fA;A2; : : : ; Ang, :A can be represented as
�[A2 [ � � � [An [#=#=#

�. We use a di�erent approach,
and let p1 = #�=A=#�. Note that p1 does not make use
of " or of quali�ers, and hence is in all of the recursive
fragments. We claim that the complement of p1 can-
not be expressed in X "

r; [ ], and hence not in any of the
smaller recursive fragments.

We show this by proving that the complement of p1
cannot be expressed in 9+(child; desc)(c; s). Let p be
a representation of the complement of p1 in this logic,
of size m. Consider two structures T1 and T2. The
structure T1 consists of a root rt followed by a chain
of length 2m+1, with all these nodes labeled B (and
hence the end of the chain is in the complement with
respect to context node rt). The structure T2 is similar,
except that a node in the middle of the chain is labeled
A (and hence the node at the end of the chain is not in
the complement). A simple argument shows that every
m-quanti�er 9+(child; desc)(c; s) sentence holding in T1
also holds in T2, a contradiction. 2

5 Root equivalence

Recall the notion of root equivalence de�ned in Sec-
tion 2. Under this weaker equivalence relation, the hi-
erarchy of Fig. 1 collapses: the XPath fragments form
the lattice of Fig. 2. This follows from:

Theorem 5.1: Under root equivalence,

1. X "
r � Xr; [ ] but Xr; [ ] 6� X "

r ;

2. X " � X[ ]; moreover, in the absence of label tests,
i.e., quali�ers of the form [label = l], X " = X[ ];

3. Xr; [ ] = X "
r; [ ];

4. X[ ] = X "
[ ]. 2

As an immediate consequence, any XPath expres-
sion with upward modalities in any of these fragments
is root-equivalent to an XPath expression with neither
" nor "�. This is important for, among other things,
processing streaming data.

Proof sketch:

1. X "
r � Xr; [ ].

This result follows from part 3., but we include also
a direct proof via rewriting. First note that p=(p1 [
p2)=p

0 �r p=p1=p
0 [ p=p2=p

0. Thus, w.l.o.g., we assume
that any X "

r expression is of the form p1[� � �[pk, where
each pi (1 � i � k) has the form �1= � � � =�m, and each
�j is one of ;, �, l, #, #�, ", or "�. It suÆces to show
that each pi can be converted to an equivalent Xr; [ ]

expression. The conversion is done from left to right,
starting with the �rst occurrence of " or "�, using the
following rewriting rules (we omit the trivial rules for ;
and �):

"=p ) ;; if " is the �rst symbol of pi ;

"�=p ) p; if "� is the �rst symbol of pi ;

p=�=" ) p[�]; where � is # or a label ;

�1= � � � =�n="
� ) �1[�2= � � � =�n] [ � � �

[ �1= � � � =�i[�i+1= � � � =�n] [ � � �

[ �1= � � � =�n;

where �i is #, #
� or a label.

In other words, if �1 is " (resp. "
�), the �rst (resp. sec-

ond) rule is applied to eliminate it; otherwise we elimi-
nate " and "� by introducing quali�ers using the other
rules. In these rules, p, p1, and p2 denote X "

r expres-
sions without upward modalities, and the left-to-right
conversion implies that a rewriting rule is applied only
if its left-hand side matches the pre�x of an X "

r expres-
sion. Although the rewriting may introduce `[', one
needs only to consider pi's that do not contain `[' be-
cause of the rewriting rules for `[' referred to earlier.
It is straightforward to verify that each rewriting rule
is root-equivalence preserving and that pi can be con-
verted to an Xr; [ ] expression in a �nite number of steps,
concluding the proof of containment.

The containment is proper because the Xr; [ ] expres-
sion #�=A[#�=B] is not root-equivalent to any X "

r ex-
pression. See the appendix for a proof.

8



2. X " � X[ ] , and furthermore, X " = X[ ] in the ab-
sence of label tests.

The proof that X "
r � Xr; [ ] given above also shows

X " � X[ ]. For the other direction, it suÆces to show
that without label tests in quali�ers, each X[ ] expres-
sion can be rewritten to an equivalent X "

r expression.
This can be done by eliminating the quali�ers using
the rewriting rules, along the same lines as the proof of
part 1 above (see the appendix).

Note that in the presence of label tests, X[ ] 6� X ".
A concrete example of this is �[label = A], i.e., testing
whether the root is labeled A. It is easy to show that
this X[ ] expression is not expressible in X ".

3. Xr; [ ] = X "
r; [ ].

From Theorems 3.2 and 3.6, Xr; [ ] and X "
r; [ ] are

equivalent to the tree pattern queries
S
TP(child; desc)

and
S
TP(child; desc)[down] respectively. Recall thatS

TP(child; desc)[down] is de�ned to be the fragment
of
S
TP(child; desc) where the context node labeled c

is restricted to be at the root of each query. Under
root equivalence, the context node c is always explicitly
restricted to be at the root. Hence,

S
TP(child; desc)

and
S
TP(child; desc)[down] have the same expressive

power under root equivalence; the same holds for X "
r; [ ]

and Xr; [ ].

4. X[ ] = X "
[ ].

In a similar way to part 3, we use Theorems 3.3
and 3.7 to show that X[ ] and X

"
[ ] are root equivalent to

each other. 2

As a consequence of Theorem 5.1 the following can
be easily veri�ed along the same lines as Proposition 2.1.

Corollary 5.2: Under root equivalence, the fragments
form the lattice of Fig. 2; that is, there is an edge from
fragment F1 to F2 i� F1 � F2, i.e., if every expression
of F1 is root-equivalent to an expression in F2. 2

Recall that X " is not closed under intersection as
far as general equivalence is concerned. The situation
is di�erent when we consider root equivalence:

Corollary 5.3: Under root equivalence, all of our frag-
ments except for X "

r are closed under intersection. How-
ever, they remain not closed under complementation.

2

This can be veri�ed using Theorems 4.1, 4.2 and 5.1
(see the appendix for a proof).

6 Axiom systems and normal forms

We next study axiomatizability and normal forms for
XPath. In particular, we present preliminary results for
two fragments, namely, Xr and X . Although the results
of this section are established under full equivalence,
they also hold under root equivalence.

6.1 Axiom systems

An XPath term over a fragment F is built up from the
constructors of F , but supplementing the base case of
labels (names) and � with a set of expression variables

(ranged over by p1, : : : , pn). For a term � over F , the
variables used in constructing � are called the free vari-
ables of � . All the XPath expressions that we have seen
before are just terms with no free variables, and will also
be referred to as ground terms, or simply expressions .

An equation for a fragment F is an equality of terms.
Given a set of equations A in F , the equivalence relation
equivalence modulo A, �A, is the smallest equivalence
relation between terms that contains the symmetric clo-
sure of A (considering A as a binary relation between
terms) and closed under the inference rules:

1. if � �A � 0 then �(�) �A �(� 0) for any substitu-
tion � that maps the free variables in � or � 0 to
expressions of F ;

2. if � �A � 0 then 
 �A 
0, where 
0 is obtained from

 by replacing some occurrence of subexpression �
in 
 with � 0.

A set of equations A is sound for a fragment F of
XPath if for every expressions �1 and �2 of F , �1 �A �2
implies �1 � �2, and is complete if for every such �1 and
�2, �1 � �2 implies �1 �A �2. A (resp. �nite) axiom
system for F is a (resp. �nite) set of equations that is
sound and complete. A fragment of XPath is said to
be axiomatizable i� it has an axiom system, and �nitely

axiomatizable i� it has a �nite axiom system.

A (�nite) axiom system for a fragment of XPath is
useful in, among other things, optimizing and normal-
izing the XPath expressions.

Unfortunately, none of the fragments considered in
this paper is �nitely axiomatizable.

Proposition 6.1: None of the fragments is �nitely ax-
iomatizable. 2

Proof sketch: We show that X is not �nitely axioma-
tizable. The same proof also applies to other fragments.

9



Assume, by contradiction, that there were a �nite
axiomatization A for X . Since A has �nitely many ax-
ioms, there are only �nitely many labels of � mentioned
in A. Let c be a name that does not appear in A. Ob-
serve that c [ # � # holds. Since A is complete, there
must be a proof S of c [ # �A # using the inference
rules and axioms in A. Since c is not in any of these
axioms, and c appears in the proof, it can only be intro-
duced by substituting some X expression E containing
c for some variable p using the �rst inference rule above.
Note that this proof will still be a proof if, in each such
E, one substitutes a path c=c for each occurrence of c.
This yields a proof S0 which is the same as S, except
that c=c appears in S0 wherever c appears in S. Thus
it is a proof for c=c [ # �A #, which does not hold.
Hence A cannot be sound. Therefore, it is not a �nite
axiomatization for X . 2

6.2 Axiom systems for Xr and X

We next present a natural set of axiom schemas for
two fragments, namely, Xr and X . We show that when
equivalence over a �nite alphabet �0 is considered, X is
�nitely axiomatizable. One application of these axiom
systems, deriving a normal form for expressions in these
fragments, will be shown later.

It is worth mentioning that since the equivalence
problem for XPath expressions in all of our fragments
is decidable (e.g. by appealing to [16] ), a trivial com-
putable axiomatization can be taken for any of our
fragments by simply enumerating all ground equalities.
Clearly such an axiomatization would not assist simpli-
�cation of XPath, and would also not help in providing
�nite axiomatizations for restricted equivalence.

Fragment Xr. Table 1 provides an axiom system for
Xr, denoted by Ir. The system is in�nite since for each
label l in the alphabet �, there is an l-child rule in Ir.
When considered with respect to equivalence over any
�xed �nite alphabet �0, Ir is still sound, but it is no
longer complete. Note that by the concat-associativity

axiom in Ir, we can write �1=�2=�3 for (�1=�2)=�3 and
�1=(�2=�3).

Theorem 6.2: For any Xr expressions � and �
0, � � � 0

i� � �Ir �
0. 2

Example. Using Ir, #
�=#� � #� can be veri�ed as

follows:

#�=#� �Ir #
�=(#� [ �) by the descendants axiom

�Ir #
�=#� [ #� by left-distribution

�=p � p � p=� (empty-path)

; [ p � p (empty-set-union)

p1=;=p2 � ; (empty-set-concat)

l [ # � # (l-child)

#� � � [ #=#� (descendants)

p [ #� � #� (descendants-union)

#=#� � #�=# (child-descendants)

p1=(p2=p3) � (p1=p2)=p3 (concat-associativity)

p1 [ (p2 [ p3) � (p1 [ p2) [ p3 (union-associativity)

p1 [ p2 � p2 [ p1 (union-commutativity)

p [ p � p (union-idempotent)

p=(p1 [ p2) � p=p1 [ p=p2 (left-distributivity)

(p1 [ p2)=p � p1=p [ p2=p (right-distributivity)

Table 1: Ir: axioms for Xr

�Ir #
� by descendants-union

To prove Theorem 6.2, we de�ne a containment rela-
tion. An XPath expression p1 is contained in p2 (written
p1 � p2) i� for any XML tree T and any node n in T ,
n[[p1]] � n[[p2]]. If we want containment to hold only for
trees over a �xed alphabet �0, we write p1 ��0 p2.

The following lemma shows that Ir also suÆces to
determine containment of Xr expressions.

Lemma 6.3: For any Xr expressions �1 and �2, �1 � �2
i� �2 [ �1 �Ir �2. 2

If this holds, then so does Theorem 6.2. Indeed, if
�1 � �2 then �1 � �2 and �2 � �1. Thus from Lemma 6.3
it follows that �2[�1 �Ir �2 and �1[�2 �Ir �1. Then by
the union-commutativity axiom and the inference rules,
�1 �Ir �2. Conversely, if �1 �Ir �2, then by the union-

idempotent axiom and the inference rules, �1[�2 �Ir �2
and �2 [ �1 �Ir �1. Again from Lemma 6.3 it follows
that �1 � �2 and �2 � �1; that is, �1 � �2.

It is worth mentioning that Lemma 6.3 is also in-
teresting in its own right, since it is common for XML
queries to check containment of XPath expressions.

The proof of the lemma is given in the appendix. It
should be mentioned that the proof can be made e�ec-
tive, thus providing an algorithm for testing contain-
ment, and hence for testing equivalence.

10



Fragment X . We now consider X . Let I be Ir ex-
cluding the descendants, descendants-union and child-
descendants axioms. For a �nite alphabet �0, assume
that it can be enumerated as l1, : : : , ln. A �nite ax-
iom system If (�0) consists of rules in I except for the
l-child rules and with the addition of the following rule:

l1 [ � � � [ ln � # (�nite-alphabet)

Note that for each l 2 �0, l [ # � # can be derived
from the �nite-alphabet and union-idempotent axioms
of If (�0).

One can verify that I is an axiomatization of X un-
der general equivalence (the default notion), and that
for each �nite �0, If (�0) is a �nite axiomatization of X
for equivalence over �0 (see the appendix for a proof).

Theorem 6.4: For any X expressions �1 and �2,

� �1 � �2 i� �1 �I �2, and �1 � �2 i� �2 [ �1 �I �2;

� For each �nite �0, �1 ��0 �2 i� �1 �If (�0) �2, and
�1 ��0 �2 i� �2 [ �1 �If (�0) �2.

2

6.3 Normal forms for Xr and X

We study here normal forms for Xr and X .

A fragment F of XPath has a normal form if there
is a function � from F to a subset Fnl of F such that
for any expressions �1 and �2 of F , �1 � �2 i� �(�1) =
�(�2), i.e., �(�1) and �(�2) are syntactically equal to
each other. We shall say that Fnl is a normal form

of F . Observe that � is determined by Fnl. For an
expression � in F , we refer to �(�) as the normal form
of � w.r.t. Fnl, or simply the normal form if Fnl is clear
from the context. Similarly, we can say that F has a
normal form for equivalence over a �nite alphabet �0.

A normal form is useful for simplifying the analysis
of equivalence of XPath expressions since it allows one
to reduce semantic equivalence to syntactic equality.

Fragment Xr. An Xr expression is said to be union-

free if it does not contain union `['. Below we give
a normal form for union-free Xr expressions. Normal
forms for Xr expressions with unions are still under in-
vestigation.

A union-free Xr expression � is in the normal form

if (1) it does not contain � (resp. ;) unless � = �
(resp. � = ;); (2) any contiguous sequence in �
consisting of #'s and at least one #� is of the form
#�=#=#�= � � � =#=#� (with the same number of occur-
rences of #); and (3) � does not contain consecutive

#�=#�. The next proposition shows that the set of
union-free Xr expressions of this form is indeed a normal
form for all union-free Xr expressions (see the appendix
for a proof).

Proposition 6.5: For any union-free Xr expression �
there exists a unique Xr expression �

0 such that � � �0

and �0 is in the normal form above. Furthermore, in
the case of a �nite alphabet �0, for any union-free �
there exists such a unique �0 such that � ��0 �

0. 2

Fragment X . We next de�ne a normal form for gen-
eral X expressions. An X expression � is in the union

normal form if it is of the form �1 [ � � � [ �k, where for
each �i, referred to as a disjunct of � , (1) �i does not
contain � unless �i = �, and � does not contain ; unless
� = ;; (2) �i is a union-free expression; and (3) �i is
not contained in any other �j , i.e., �i 6� �j for all j 6= i.

When considering a �xed �nite alphabet �0 =
fl1; : : : ; lng, we add the condition (4) � does not contain
#, which is represented instead by l1 [ � � � [ ln.

The following then holds (see the appendix for a
proof):

Proposition 6.6: For any X expression � there is an
X expression � 0 such that � � � 0 and � 0 is in the union
normal form satisfying conditions (1){(3) given above.
For every �nite alphabet �0 there is � 0 ��0 � with � 0

satisfying (1){(4). Moreover, in both cases � 0 is unique
up to ordering of the disjuncts. 2

7 Conclusion

We have investigated important structural properties
of a variety of XPath fragments, parameterized with
modalities that include quali�ers, upward traversal (the
parent and ancestor axes), and recursion (descendant
and ancestor). First, we have provided characteriza-
tions of the fragments with quali�ers in terms of both
logics and tree patterns (Fig. 3). Second, we have given
a complete picture of the closure properties of all these
fragments (Fig. 4), under both general equivalence and
root equivalence. Finally, we have established prelim-
inary results on axiom systems and normal forms for
some of these fragments. These results not only ad-
vance our understanding of di�erent XPath modalities,
but are also useful for simpli�cation of XPath expres-
sions and optimization of XML queries.

One open problem is the �nite axiomatizability of
Xr for ��0 , and similarly for the other fragments. It is
well known that regular expressions do not have a �nite

11



characterization X[ ] X "
[ ] Xr; [ ] X "

r; [ ]

logic 9+(child)[loc; down](c; s) 9+(child)[loc](c; s) 9+(child; desc)[down](c; s) 9+(child; desc)(c; s)

tree patterns
S
TP(child)[down]

S
TP(child)

S
TP(child; desc)[down]

S
TP(child; desc)

Figure 3: Characterizations of the expressiveness of the fragments

closure properties X X[ ] X " Xr X "
[ ] Xr; [ ] X "

r X "
r; [ ]

intersection under � Yes Yes No Yes Yes Yes No Yes
under �r Yes Yes Yes Yes Yes Yes No Yes

complementation under � No No No No No No No No
under �r No No No No No No No No

Figure 4: The closure properties of the fragments

axiom system when the inference rules are restricted to
the ones given in Section 6, even when the alphabet
consists of a single symbol [21]. Although Xr is a large
class of regular expressions, we speculate that ��0 is
�nitely axiomatizable for Xr. We are currently investi-
gating this issue for Xr terms, which may contain free
variables. Another topic for future work is to study
the expressiveness and closure properties of other frag-
ments, especially those allowing negations in quali�ers.
The third topic is to strengthen our logical characteri-
zations in two directions. The logical characterizations
given here can be extended to handle the case where
trees have data values. In addition, the characteriza-
tions can be made more precise by mapping into pos-
itive existential logic with two variables. The fourth
topic is to reinvestigate these issues in the presence of
DTDs/XML Schema and integrity constraints, which
commonly coexist with XPath expressions in practice.
Finally, we are also exploring the use of our results in
developing rewrite systems and algorithms for simplify-
ing XPath expressions.

References

[1] S. Amer-Yahia, S. Cho, V. Lakshmaman, and D. Srivistava.

Minimization of tree pattern queries. In SIGMOD, 2001.

[2] A. Berglund et al. XML Path Language (XPath) 2.0. W3C

Working Draft, Dec. 2001. http://www.w3.org/TR/xpath20.

[3] G. Bex, S. Maneth, and F. Neven. A formal model for an ex-

pressive fragment of XSLT. Information Systems, 27(1):21{

39, 2002.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi.

Reasoning in expressive description logics. In Handbook of

Automated Reasoning, pages 1581{1634. Elsevier, 2001.

[5] D. Chamberlin et al. XQuery 1.0: An XML query language.

W3C Working Draft, June 2001.

http://www.w3.org/TR/xquery.

[6] C. Chan, P. Felber, M. Garofalakis, and R. Rastogu. EÆ-

cient �ltering of XML documents with XPath expressions.

In ICDE, 2002.

[7] J. Clark. XSL Transformations (XSLT). W3C Recommen-

dation, Nov. 1999. http://www.w3.org/TR/xslt.

[8] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Recommendation, Nov. 1999. http://www.w3.org/TR/xpath.

[9] A. Deutsch and V. Tannen. Containment for classes of XPath

expressions under integrity constraints. In KRDB, 2001.

[10] G. Gottlob, C. Koch, and R. Pichler. EÆcient algorithms

for processing XPath queries. In VLDB, 2002.

[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The

MIT Press, 2000.

[12] C. Ho�mann and M. O'Donnell. Pattern matching in trees.

JACM, 29(1):68{95, 1982.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison Wesley, 1979.

[14] P. Kilpelainen and H. Manilla. Ordered and unordered tree

inclusion. SIAM J. Comput., 24(2):340{356, 1995.

[15] G. Miklau and D. Suciu. Containment and equivalence of

XPath expressions. In PODS, 2002.

[16] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML

transformers. In PODS, 2001.

[17] M. Murata. Extended path expressions for XML. In PODS,

2001.

[18] F. Neven and T. Schwentick. Expressive and eÆcient lan-

guages for tree-structured data. In PODS, 2000.

[19] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Look-

ing forward. InWorkshop on XML-Based Data Management

(XMLDM), 2002.

[20] P. Ramanan. EÆcient algorithms for minimizing tree pattern

queries. In SIGMOD, 2002.

[21] V. Redko. On de�ning relations for the algebra of regu-

lar events. Ukrainskii Matematicheskii Zhurnal, 16:120{126,

1964. (Russian).

12



[22] J. Robie, J. Lapp, and D. Schach. XML Query Language

(XQL). Workshop on XML Query Languages, Dec. 1998.

[23] H. Thompson et al. XML Schema. W3C Working Draft,

May 2001. http://www.w3.org/XML/Schema.

[24] P. Wadler. Two semantics for XPath. Technical report, Bell

Labs, 2000.

[25] P. Wood. On the equivalence of XML patterns. In Compu-

tational Logic, 2000.

[26] P. Wood. Minimising simple XPath expressions. In WebDB,

2001.

13



Appendix

Proof of Proposition 2.1

Obviously, if there is an edge from F1 to F2 in Fig. 1 then from the syntactic de�nition of these fragments it follows

that F1 � F2. For the other direction, it suÆces to show the following.

Claim 1: None of X[ ], X " and Xr is contained in any of the other two fragments.

Consider (1) �[label = A] in X[ ], (2) " in X ", and (3) #� in Xr. It is easy to see the following: expression (1)

witnesses that X[ ] 6� X " and X[ ] 6� Xr, expression (2) witnesses X " 6� X[ ] and X " 6� Xr, and expression (3)

witnesses Xr 6� X[ ] and Xr 6� X ".

As a result, this also shows that none of X[ ], X " and Xr is contained in X .

Claim 2: None of Xr; [ ], X
"
[ ] and X

"
r is contained in the any of the other two fragments.

Consider (1) Xr; [ ] expression #
�=A[#�=B], (2) X "

[ ] expression "[label = A], and (3) X "
r expression #�=B="�. It

is not diÆcult to verify the following: expression (1) witnesses that Xr; [ ] 6� X "
[ ] and Xr; [ ] 6� X "

r , expression (2)

witnesses X "
[ ] 6� Xr; [ ] and X "

[ ] 6� X "
r , and expression (3) witnesses X "

r 6� Xr; [ ] and X "
r 6� X "

[ ]. For example, the

proof of Theorem 5.1 gives a formal argument for that #�=A[#�=B] is not equivalent to any expression in X "
r .

As a result, this also shows that none of Xr; [ ], X
"
[ ], and X

"
r is contained in any of X[ ], X ", and Xr.

Claim 3: X "
r; [ ] is not contained in any of Xr; [ ], X

"
[ ], and X

"
r .

It is not diÆcult to show that �["�=A]=#� is not equivalent to any expression in any of Xr; [ ], X
"
[ ] and X

"
r .

Proof of Proposition 3.1

Obviously, every X "
r; [ ] expression is in X

"
r; [^;_]. Thus it suÆces to prove that every X

"
r; [^;_] expression p[q] is equivalent

to an X "
r; [ ] expression. This can done by rewriting p[q] to an equivalent expression that contains neither `^' nor `_',

based on the rules p [q1 ^ q2]) p [q1] =� [q2] and p [q1 _ q2]) p [q1] [ p [q2]. Each such step rewrites an expression to

an equivalent form, and one can then convert p [q] to an equivalent X "
r; [ ] expression in a �nite number of steps. 2

Proof of Theorem 3.2

The containments
S
TP(child; desc) � X "

r; [ ] � 9+(child; desc)(c; s) were given in the body of the paper. We now

give the proof of 9+(child; desc)(c; s) �
S
TP(child; desc).

As mentioned in the body of the paper, we prove the more general fact that an arbitrary formula �(c; s1; : : : ; sn)

in 9+(child; desc)(c; s) is equivalent to a tree pattern query. Let � be a formula, and write � as 9x1 : : : xn
 where


 is quanti�er-free. Turn 
 into disjunctive normal form, and move the disjunction outside of the existential

quanti�cation. Since the set of tree pattern queries is clearly closed under unions, it suÆces to show that the

result holds for � of the form 9x1 : : : xn
(~x; c; ~s), where 
 is a conjunction of statements of the form desc(v1; v2),

child(v1; v2) and P (v) (with `=' eliminated via variable substitution). Let V be the set of variables in 
 and consider

the structure L(
) = (V;E; l; c; s1; : : : ; sn), with constants for the variables c, ~s of 
, where E(v1; v2) i� child(v1; v2)

or desc(v1; v2) is a conjunct of 
, and l labels an edge with child if the �rst case holds and with desc if the second

case holds and the �rst does not. By adding extra quanti�ers, we can assume that any two variables v1 and v2 have

a least upper bound in the relation E, and we can also assume that there are no edge relations E(v1; v2) derivable

from other edge relations by transitivity (by removing any such redundant clauses), and that l labels every node

with exactly one proposition (or with `�', if no appropriate formula P (v) is present).

14



It should be remarked that for an arbitrary structure L = (V;E; l; c; s1; : : : ; sn) we can apply the semantics for

tree patterns and talk about an equivalent formula F (L) in 9+(child; desc)(c; s). Clearly, if (V;E) forms a tree, then

F (L) is equivalent to a tree pattern; in what follows we will modify the structure L = L(
) to get an equivalent

structure in which (V;E) is a tree.

We �rst show that we can take (V;E) to be acyclic. First, if there is any cycle in (V;E) that contains an edge

labeled child, then 
 is equivalent to the tree pattern query false , and similarly if there are two nodes in the same

strongly-connected component of (V;E) with di�erent node labellings. Otherwise, we take the quotient of L(
) by

the equivalence relation \being in the same strongly connected component", and obtain an acyclic graph. We can

check that the new structure L0 has F (L0) equivalent to F (L(
)).

If (V;E) has the property that between the root of V and any other node there is exactly one directed E-path,

then L(
) is a tree pattern and we are done. For an acyclic labeled partial order L let p(L) be the number of paths

from the root to a leaf. We will give a function DC from labeled acyclic partial orders such that F (L) is equivalent

to the union of F (Li) for Li 2 DC (L) and such that whenever L is not a tree p(Li) < p(L) for every Li 2 DC (L).

Iterating the function DC until each newly obtained partial order is a tree gives us a collection of edge-and-node

labeled trees Li such the F (L(
)) is equivalent to the disjunction F (L).

We de�ne DC on L = (V;E; l) as follows: take any v1, v2 such that there are two disjoint (except for end-points)

paths from v1 to v2, and choose any two such paths p1 and p2, where the pi's do not include v1 and v2 (and hence

are completely disjoint). Each path pi can be coded by a string code(pi) consisting of nodes alternating with either

child or desc. We call any string w consisting of alternating nodes of V and elements of fchild; descg a code, and for

any code let Nodes(w) be the nodes appearing in w.

Choose an interleaving of p1 and p2; that is, a code w, an order-preserving f1 mapping Nodes(code(p1)) bijectively

into Nodes(w), and order-preserving f2 mapping Nodes(code(p2)) bijectively into w such that:

� Nodes(w) are exactly the union of the ranges of f1 and f2,

� whenever a sequence (v; child; v0) appears as a (contiguous) subword of pi, then (f(v); child; f(v0)) appears as a

subword of w.

Given any interleaving, there is a corresponding structure formed by replacing range(p1) [ range(p2) with w and

connecting nodes that were connected to a node n in some pi with the image fi(n) in w, and connecting nodes

within w according to the edges coded in w.

One can check that for every such L0 formed from this process, F (L0) implies F (L). Furthermore, one can

construct a surjection of the root-to-leaf paths in L into the root-to-leaf paths of L0 that is not 1{1, hence showing

p(L0) < p(L).

This completes the proof of the inclusion and hence the theorem. 2

Proof of Theorem 3.3

The proof that X "
[ ] is contained in 9+(child)[loc](c; s) is straightforward, and the proof that the set

S
TP(child) of

unary child tree patterns is contained in X "
[ ] follows from the same construction as in Theorem 3.6. It remains to

show that 9+(child)[loc](c; s) is contained in
S
TP(child). We go through the same argument as in Theorem 3.6.

The only di�erence is in the step justifying that for every two variables, there is some upper bound in the lattice

L(
): in Theorem 3.6 this was made true by adding extra quanti�cations, but in this case it is guaranteed by the

fact that all variables are required to be reachable from c in a �xed number of steps. 2

15



Proof of Theorem 3.6

We can show Xr; [ ] � 9+(child; desc)[down](c; s) by induction, using the inductive semantics for Xr; [ ] in terms

of logic; for example, the inductive translation of p=#� is 9s0 �p(c; s
0) ^ desc(s0; s) where �p is the coding of the

path p, and by applying the induction hypothesis to �p and the transitivity of desc, we see that the result is in

9+(child; desc)[down](c; s).

To see 9+(child; desc)[down](c; s) �
S
TP(child; desc)[down], inspect the proof of 9+(child; desc)(c; s) �S

TP(child; desc) of Theorem 3.2 and note that in this case the variable c will be an upper bound on all variables,

and hence the translation there will put c at the root of the tree.

Finally, to see
S
TP(child; desc)[down] � Xr; [ ], inspect the translation given for

S
TP(child; desc) � X "

r; [ ] of

Theorem 3.2 and note that if c is at the root, it produces no occurrences of " or "�. 2

Proof of Theorem 3.7

Again the direction X[ ] � 9+(child)[loc; down](c; s) can be seen by inspecting the translation. The direction

9+(child)[loc; down](c; s) �
S
TP(child)[down] follows because the original translation from 9+(child; desc)(c; s)

to
S
TP(child; desc) has already been shown to produce both a

S
TP(child) query in the case of a formula in

9+(child)[loc](c; s), and a
S
TP(child; desc)[down] query in the case of a formula in 9+(child; desc)[down](c; s); as a

result it must produce a query in the intersection of tree pattern queries
S
TP(child) \

S
TP(child; desc)[down] for

a formula in 9+(child)[loc; down](c; s). For the last direction, the translation from
S
TP(child)[down] to X[ ] again

uses the translation in the proof of
S
TP(child; desc) � X "

r; [ ], and for
S
TP(child)[down] queries this will produce

neither upward modalities nor descendant axes. 2

Proof of Theorem 5.1

We show the following claims. The proofs of the other parts were given in the body of the paper.

1. Xr; [ ] 6� X "
r .

To see that the containment is proper, consider the expression #�=A[#�=B]. We claim that this Xr; [ ] expression

is not root-equivalent to any X "
r expression. To see this, assume that p is such an X "

r -expression. Let N be the size

of p, and consider the following structure T : T has root rt , with child n1, which in turn has two children n2 and n3,

both labeled `A'. The nodes n2 and n3 have beneath them a chain of length N of nodes, all labeled `C', with the

exception of the node n4 at the end of the chain below n2, which is labeled `B'.

Clearly, n2 2 rt [[#�=A[#�=B]]], and hence n2 2 rt [[p]]. As in the proof in Theorem 4.1, we can assume that p is a

simple path. Consider the sequence of nodes in an accepting path rt , v1, : : : , vk, n2. If n4 is not among these nodes,

it is easy to see that n3 2 rt [[p]], a contradiction. Let vi be the last occurrence of n4 on this path. We distinguish

two cases:

1. n1 is among vi+1, : : : , vk. But then, by following the other path in the tree, and using the fact that the path

does not reach a leaf again, we can see once more that n3 2 rt [[p]], a contradiction.

2. n1 is not among vi+1, : : : , vk. Since the length of the chain of nodes above n4 is greater than the number

of symbols in p, it follows that one of the symbols in p is "� and this must correspond with at least one pair

(vj ; vj+1), (j � i), where vj+1 is an ancestor, but not a direct parent, of vj . In this case, we replace vj , vj+1,

: : : , vk by their respective children, which shows that n0 2 r[[p]], where n0 is the child of n2. Since n
0 is labeled

`C', this is a contradiction.

16



2. X " = X[ ] in the absence of label tests.

We show that without label tests in quali�ers, each X[ ] expression can be rewritten to a root-equivalent X "
r

expression. Note that �[�] �r �; thus we can assume that every X[ ] expression is of the form p1 [ � � � [ pk with each

pi having the form �1[q1]= � � � =�m[qm], where �j is one of ;, �, l, or #. Starting from the innermost quali�ers, we

eliminate the quali�ers using the rewriting rules:

�[�] ) � ;

�[;] ) ; ;

�[l=q] ) �=l[q]=" ;

�[#=q] ) �=#[q]=" ;

�[p1 [ p2] ) �[p1] [ �[p2] :

Here � is any symbol and the rules can be applied at any nested depth of quali�ers. A straightforward induction

on the number and the size of quali�ers shows that with these rules one can convert an X[ ] expression into a

root-equivalent X "
r expression in a �nite number of steps. Thus X " = X[ ] in the absence of label tests in quali�ers.

Proof of Corollary 5.3

First observe that if a fragment is closed under intersection under general equivalence, it remains closed under root

equivalence. Thus from Theorem 4.1 it follows that under root equivalence, all of the fragments except X " and X "
r

are closed under intersection.

We now show that under root equivalence, X " is closed under intersection. Consider arbitrary X " expressions p1
and p2. Theorem 5.1 tells us that under root equivalence, there exist two X[ ] expressions p

0
1 and p02 equivalent to

p1 and p2 respectively, such that p0i has the form pi;1 [ � � � [ pi;ki and pi;j has the form �i;j1 [qi;j1 ]= � � � =�i;jm [qi;jm ], where

�i;js is not � unless pi;j is itself �, and qi;js does not contain label tests. The intersection of p01 and p02 is a union of

X[ ] expressions of the form �1[q1]= � � � =�m[qm], one for each pair

p1;s = �1;s1 [q1;s1 ]= � � � =�1;sm [q1;sm ]

p2;s0 = �2;s
0

1 [q2;s
0

1 ]= � � � =�2;s
0

m [q2;s
0

m ]

such that for j 2 [1;m], �1;sj (resp. �2;s
0

j ) is not � unless for all j0 > j, �1;sj = � (resp. �2;s
0

j = �; this is a reasonable

assumption when conjunction ^ is allowed in quali�ers), qj = q1;sj ^ q2;s
0

j , and �j = min(�1;s; �2;s
0

). Here min(�; �0)

is de�ned as follows: (1) it is ; if either one of � or �0 is ;, or if � and �0 are both di�erent labels, or if one of them

is � whereas the other is not; (2) it is � if both � and �0 are �; (3) it is l if one of � or �0 is the label l and the other is

#; and (4) it is � if � = �0. It is easy to verify that the union of all such expressions is indeed the intersection of p1
and p2. Observe that the union is an X[ ] expression containing no label tests. Theorem 5.1 then implies that this

expression can be expressed in X " under root equivalence. In other words, the conjunction of p1 and p2 is expressible

in X ".

However, X "
r is not closed under intersection. To see this, consider the X "

r expressions #�=A and #�=B="�. The

�rst expression selects those nodes in the tree labeled `A', while the second selects those that have a descendant

labeled `B'. The intersection is therefore precisely #�=A[#�=B], which has already been shown (Theorem 5.1, part 1)

to be inexpressible in X "
r .

For complementation, the arguments used in Theorem 4.2 still apply under root equivalence. 2

17



Proof of Lemma 6.3

The soundness of Ir can be veri�ed by induction on the length of Ir-proofs. We next show the completeness of Ir:

for any Xr expressions � and � 0, if � � � 0 then � [ � 0 �Ir �
0.

We begin with the proof by introducing some notations. Observe that using the union-distributivity axioms of

Ir, one can convert an Xr expression � to a union form: �1 [ � � � [�k, such that each �i does not contain the union

operator `[', referred to as a union-free expression. Furthermore, using Ir axioms one can rewrite each union-free

expression � such that (1) it does not contain � (resp. ;) unless � = � (resp. � = ;), (2) any contiguous sequence

in � consisting of #'s and at least one #� is of the form #�=#=#�= � � � =#=#� (with the same number of # occurrences);

and (3) � does not contain consecutive #�=#�. Indeed, the empty-set and empty-path axioms assert condition (1),

the child-descendants and descendants axioms assert condition (2), and the example given in Section 6 shows how

to convert #�=#� to #�, so as to meet condition (3). Thus w.l.o.g. we assume that any union-free expression satis�es

these conditions. For a union-free expression �, we de�ne its length, j�j, to be 0 if � is ; or �, and j�j+ 1 if it is of

the form �=�, where � is one of label l, #, or #�.

To prove the lemma, it suÆces to show

Claim: For any union-free � and Xr expression � , if � � � then � [ � �Ir � .

For if this holds, then the union-idempotent axiom and the inference rules yield � [ � 0 �Ir �
0.

We next verify this claim. Assume that � is in the union form as �1 [ � � � [�m. We prove the claim by induction

on the length of �.

Induction basis: If � is ; then the claim obviously holds by the empty-set-union axiom. If � is � then by conditions

(1) and (3) given above, it is easy to show by contradiction that there must be �0 in the union-form of � that is

either � or #�; thus the union-idempotent and union-descendants axioms will prove this case. Hence the claim holds

when j�j = 0.

Inductive step: Assume the claim for � = �. We need only show the claim for � = �=�, where � is one of l, #, or #�

because of condition (1) above. We consider the following cases of �.

Case 1. � is a label l.

Let S be the set of all union-free expressions in the union form of � . Consider the following sets obtained from

S:

S�;1 = f�0 j #�=�0 2 Sg;

S�;2 = f#�=�0 j #�=�0 2 Sg;

Sd = f�0 j #=�0 2 (S [ S�;1)g;

Sl = f�0 j l=�0 2 (S [ S�;1)g;

and de�ne the Xr expression:

b� =[Sl [
[

Sd [
[

S�;2:

To show the claim for this case, it suÆces to prove:

Subclaim 1: � � b� .
Subclaim 2: l=b� [ � �Ir � .

For if these hold, then by the induction hypotheses and Subclaim 1, � [ b� �Ir b� . Thus by the left-distributivity

axiom we have l=� [ l=b� �Ir l=b� ; that is, � [ l=b� �Ir l=b� . From this and Subclaim 2 one obtains � [ � �Ir �

using the union-idempotent axiom and the inference rules.

18



Subclaim 1 can be veri�ed as follows. Suppose by contradiction � 6� b� . Then there exists a simple path �, i.e., a

sequence of labels, such that � � � but � 6� b� . We show that this leads to a contradiction. Since � � � , we have

l=� � � . Then there must be a union-free expression �0 of � such that l=� � �0. Obviously if �0 is ; or � then

l=� 6� �0. Now assume that �0 = �0=�0 where �0 is one of the following: a label, # or #�. If �0 is a di�erent label l0

then l=� 6� �0. If �0 is the same label l, then �0 is in Sl; if it is #, then �0 is in Sd. If it is #
�, since #� � � [ #=#�,

we must have either � � �0 or � � #�=�0. For the former case, by the condition (3) �0 cannot start with #�; hence

it must be in S�;1 and thus in Sd and Sl; for the latter case, #
�=�0 is in S�;2. These contradict the assumption that

� 6� b� . Thus Subclaim 1 holds.

We next show Subclaim 2. Observe the following: First, #=�0 [ l=�0 = #=�0 by the l-child and left-distributivity

axioms, and #�=�0[ l=�0 �Ir #
�=�0 by the descendants, left-distributivity, descendants-union and empty-path axioms;

thus l=(
S
Sl) [ � �Ir � and l=(

S
Sd) [ � �Ir � by the inference rules. Second, #�=�0 �Ir #

�=#�=�0 as shown by the

example given in Section 6; thus l=(
S
S�;2) [ � �Ir � . Putting these together, we have that Subclaim 2 holds.

Case 2. � is #.

As in the proof for Case 1, we de�ne the sets S, S�;1, S�;2, Sd and the following Xr expression:

b� =[Sd [
[

S�;2:

We show that Subclaim 1 given above and Subclaim 3 below still hold in this case. From these follows Claim.

Subclaim 3: #=b� [ � �Ir � .

The proof of Subclaim 3 is similar to the proof of Subclaim 2 in Case 1. We next show Subclaim 1. Suppose by

contradiction � 6� b� . Then there exists a simple path � such that � � � but � 6� b� . Since � � � , we have #=� � � .

But for any label l in the alphabet �, l=� 6� #=b� since otherwise by the de�nition of b� , we would have had � � b� .
Let S0 consist of all the union-free expressions of the form l0=�0 in S plus � if � � � , where l0 is a label. Then from

the argument above and the de�nition of Sd and S�;2 it follows that #=� �
S
S0, since #=� � � . Choose a label a

such that no expression in S0 is of the form a=�0. Hence a=� 6�
S
S0. This contradicts the assumption. Thus � � b� ,

i.e., Subclaim 1 holds in this case.

Case 3. � is #�.

Again as in the proof for Case 1, we de�ne the sets S, S�;1, S�;2 and let

b� =[S�;1 [
[

S�;2:

We show Subclaim 1 and Subclaim 4 below for this case.

Subclaim 4: #�=b� [ � �Ir � .

Again with mild change the proof of Subclaim 2 in Case 1 proves Subclaim 4. We next show Subclaim 1 for this

case. Suppose by contradiction � 6� b� . Then there exists a simple path � such that � � � but � 6� b� . Since � � � , we

have #�=� � � . But for any simple path ��, ��=� 6� #=b� since otherwise we would have had � � b� by the de�nition

of b� . Let S0 consist of union-free expressions of either the form l=�0 or the form #=�0 in S plus � if � � � , where l is

a label. Then from the argument above and the de�nition of S�;2 it follows that #
�=� �

S
S0 since #�=� � � . Note

that each �0 in S0 can be written as �1= � � � =�s, where for each i 2 [2; s], �i is either a label l, or # or #
�. Let us refer

to i as the position of �i, and �i as the symbol at position i in �0. We de�ne a function f such that f(�0) is either

the position j of the �rst occurrence #� in �0 if there is one, i.e., �j = #� but �i 6= #� for any i < j, or the length of

�0 if it does not contain #�. Observe that condition (2) given above excludes the possibility of #=�0 in S0 such that

�0 starts with a contiguous sequence of #'s followed by #�, since otherwise �0 would have been put in S�;1. Thus for

any �0 in S0, either there is i 2 [1; f(�0)] such that the symbol at position i is a label, or �0 consists of #'s only and

its length equals f(�0); in the latter case we say that the symbol at position f(�0)+1 is �. Let n be the largest f(�0)

19



for all expressions �0 in S0. From the discussion above it follows that we can �nd a simple path �� = a1= � � � =an+1
with the property: for any �0 in S0, there is j 2 [1; n+ 1] such that aj is not contained in �j , which is at position j

in �0. Thus ��=� 6�
S
S0. This contradicts the assumption. Thus � � b� . Hence Subclaim 1 also holds in this case.

Therefore, the claim holds for all the cases. This completes the proof of Lemma 6.3. 2

Proof of Theorem 6.4

The �rst part of the theorem can be veri�ed along the same lines as the proof of Lemma 6.3. The second part is done

similarly except that the claim introduced in that proof needs to be shown here in a slightly di�erent way. The claim

can be stated for X as follows: for any union-free X expression � and X expression � , if � ��0 � then �[� �If (�0) � .

The claim can be proved by an induction on the length of �, which is the same as the one given in the proof of

Lemma 6.3 except for the case when � is of the form #=� (Case 2). Here it suÆces to show l=� [ � �If (�0) � for

each l in the alphabet �0. Then the �nite-alphabet axiom of If gives us l=� [ � �If (�0) � . 2

Proof of Proposition 6.5

We show the �rst part of the proposition; the proof for the second part (for �nite alphabet �0) is analogous.

The existence of a normal form �0 equivalent to a given union-free � can be shown by a straightforward structural

induction on �. To show the uniqueness of �0, the following claim suÆces:

Claim: For any two union-free Xr terms � and �0 in the normal form, if � � �0 then � = �0, i.e., they are

syntactically equal to each other.

We prove the claim by induction on the length of �.

Induction basis: When � is � or ;, by condition (1) of the de�nition of the normal form, it is easy to see that the

claim holds.

Inductive step: Assume the claim for � = �. We show the claim for � = �=�, where � is one of l, # or #�. Since

� � �0, �0 cannot be � or ;. Thus by condition (2) of the de�nition of the normal form, �0 can be written as �0=�0,

where �0 is also one of the symbols given above. We consider the following cases of �.

Case 1. If � is a label l, then by contradiction it is easy to show that �0 must be the same label l. Then by the

induction hypothesis, � = �0. Thus � = �0.

Case 2. If � is #, there are two cases to consider. If it is not followed by #�, then by condition (2) of the de�nition of

the normal form, it cannot be followed by a contiguous sequence of #'s and then a #�. In this case, it is easy to argue

that it contradicts � � �0 if �0 is not #. If � is followed by #�, then again by condition (2) � must be of the form

#�=#=#�= � � � =#=#�=
 where 
 does not start with # or #�; this case will be handled by the proof for Case 3 below.

Case 3. If � is #�, there are two cases to consider. If � is followed by #, then again by condition (2) � must be of the

form #�=#=#�= � � � =#=#�=
, where 
 does not start with # or #�. Let n be the number of # occurrences in the leading

sequence of � before 
. Then a simple induction on n can show that �0 must be of the form #�=#=#�= � � � =#=#�=
0

with exactly n occurrences of # in the leading sequence before 
0, where 
0 does not start with # or #�. Then by the

induction hypothesis, 
 = 
0. Thus � = �0. If � is not followed by #, by condition (3) of the de�nition of the normal

form, it must be followed by a label l. In this case �0 must be #�, since otherwise it is easy to show that � 6� �0.

Again the induction hypothesis, � = �0. Thus � = �0. 2

20



Proof of Proposition 6.6

One can rewrite � into a union normal form �1 [ � � � [ �k by using I axioms (resp. If (�0)). Formally this can be

veri�ed by structural induction on � . To prove the uniqueness of the union normal form, it suÆces to show the

following claims:

Claim 1: Let �, �0 be union-free X expressions such that � � �0 and they satisfy condition (1) of the de�nition of

the union normal form. Then � = �0. Similarly, for a �xed �nite �0 containing all labels in �, �0, we have that if

� ��0 �
0 and they satisfy (1), then � = �0.

Claim 2: Let � be a union-free X expression, and �01 [ � � � [ �0m be the union normal form of an X expression �

such that � � � . Then there is j 2 [1;m] such that � � �0j . The above also holds for the union normal form for the

�nite alphabet case, satisfying conditions (1){(4) above the statement of the theorem, where � is replaced in both

cases by ��0 .

For if these hold, then Proposition 6.6 can be veri�ed as follows (we outline only the �rst part of the proposition;

the modi�cation for the second part is immediate). Assume that an X expression � has two union normal forms

�1 [ � � � [ �k and �01 [ � � � [ �0m. Then from Claim 2 it follows that for any i 2 [1; k] there is j 2 [1;m] such that

�i � �0j . Again by Claim 2 there must be some s 2 [1; k] such that �0j � �s. Then �s must be �i since otherwise

it would be the case that �i � �s, which contradicts the de�nition of the union normal form. That is, �i � �0j . By

Claim 1, �i and �0j are syntactically equal to each other. Putting these together, for any i 2 [1; k] there is j 2 [1;m]

such that �i and �0j are syntactically equal, and vice versa. Thus � and � 0 are syntactically equal up to di�erent

ordering of their disjuncts. That is, the union normal form of � is unique.

The proof of Proposition 6.5 also proves Claim 1. We show Claim 2 by induction on the length of �:

Induction basis: If � is ; or �, then by condition (1) of the de�nition of the union normal form and � � � there

must be a disjunct �0 of � such that � � �0, and similarly for ��0 . Thus Claim 2 holds when j�j = 0.

Inductive step: Assume Claim 2 for � = �. We show that it also holds for � = �=�, where � is a label or # (the

latter is only considered in the case of unrestricted equivalence). We give separate arguments for the case of �nite

�0 and ��0 and the case of equivalence over arbitrary labeled trees.

For the case of �xed alphabet �0, by condition (4) of the de�nition of the union normal form, each symbol of �

and � is a label. Let S be the set of all disjuncts in the union normal form of � , and S0 be f�0 j l=�0 2 Sg, i.e.,

it consists of all the expressions in S of the form l=�0. It is easy to verify that � ��0

S
S0. Thus by the induction

hypotheses there is �0 2 S0 such that � ��0 �
0. That is, � ��0 l=�

0. Note that l=�0 is a union-free expression of � .

Thus Claim 2 holds for the case of �nite alphabet �0.

In the case of arbitrary trees over an in�nite label set �, each symbol of � and � is either a label or #. If

� = #, let Sd be f�0 j #=�0 2 Sg, i.e., it consists of all the expressions in S of the form #=�0. It is easy to prove

by contradiction that � �
S
Sd. Thus by the induction hypotheses there is �0 2 Sd such that � � �0. That is,

� � #=�0. If � = l, let Sl be f�0 j #=�0 2 S or l=�0 2 Sg, i.e., it consists of all the expressions in S of the form #=�0

or l=�0. Again it is easy to prove by contradiction that � �
S
Sl. By the induction hypotheses there is �0 2 Sl such

that � � �0. If #=�0 is in S then obviously � � #=�0; otherwise l=�0 must be in S and � � l=�0. Thus Claim 2 also

holds for in�nite alphabet.

This completes the proof of Proposition 6.6. 2

21


