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1. INTRODUCTION

Although a number of dependency formalisms were developed for relational databases, func-
tional and inclusion dependencies are the ones used most often. More precisely, only two sub-
classes of functional and inclusion dependencies, namely, keys and foreign keys, are commonly
found in practice. Both are fundamental to conceptual database design, and are supported by
the SQL standard [30]. They provide a mechanism by which one can uniquely identify a tuple
in a relation and refer to a tuple from another relation. They have proved useful in update
anomaly prevention, query optimization and index design [1; 37].

XML (eXtensible Markup Language [6]) has become the prime standard for data exchange on
the Web. XML data typically originates in databases. If XML is to represent data currently
residing in databases, it should support keys and foreign keys, which are an essential part of
the semantics of the data. A number of key and foreign key speci�cations have been proposed
for XML, e.g., the XML standard (DTD) [6], XML Data [27] and XML Schema [36]. Keys
and foreign keys for XML are important in, among other things, query optimization [34], data
integration [21], and in data transformations between XML and database formats [28].

XML data usually comes with a DTD1 that speci�es how a document is organized. Thus, a
speci�cation of an XML document may consist of both a DTD and a set of integrity constraints,
such as keys and foreign keys. A legitimate question then is whether such a speci�cation is
consistent, or meaningful: that is, whether there exists a (�nite) XML document that both
satis�es the constraints and conforms to the DTD.

In the relational database setting, such a question would have a trivial answer: one can write
arbitrary (primary) key and foreign key speci�cations in SQL, without worrying about con-
sistency. However, DTDs (and other schema speci�cations for XML) are more complex than
relational schema: in fact, XML documents are typically modeled as node-labeled trees, e.g.,
in XSL [15], XQL [35], XML Schema [36], XPath [16] and DOM [3]. Consequently, DTDs may
interact with keys and foreign keys in a rather nontrivial way, as will be seen shortly. Thus, we
shall study the following family of problems, where C ranges over classes of integrity constraints:

XML SPECIFICATION CONSISTENCY (C)

INPUT: A DTD D, a set � of C-constraints.

QUESTION: Is there an XML document that conforms to D and satis�es �?

In other words, we want to validate XML speci�cations statically. The main reason is twofold:

1Throughout the paper, by a DTD we mean its type speci�cation; we ignore its ID/IDREF constraints since
their limitations have been well recognized [7; 19]. We shall only consider �nite XML documents (trees).
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�rst, complex interactions between DTDs and constraints are likely to result in inconsistent
speci�cations, and second, an alternative dynamic approach to validation (simply check a doc-
ument to see if it conforms to the DTD and satis�es the constraints) would not tell us whether
repeated failures are due to a bad speci�cation, or problems with the documents.

The concept of consistency of speci�cations was studied for other data models, such as object-
oriented [12; 13] and extended relational (e.g., with support for cardinality constraints [26]).

We shall study the following four classes of constraints de�ned in terms of XML attributes:

|CK ;FK : a class of keys and foreign keys;

|CUnaryK ;FK : unary keys and foreign keys in CK ;FK , i.e., those de�ned in terms of a single attribute;

|CUnaryK:;IC : unary keys, unary inclusion constraints and negations of unary keys;

|CUnaryK:;IC:: unary keys, unary inclusion constraints and their negations.

Keys and foreign keys of CK ;FK are a natural generalization of their relational counterpart,
and are capable of capturing those relational constraints. A foreign key is a combination of
two constraints: an inclusion constraint and a key. The CUnaryK ;FK constraints are a special case
of CK ;FK constraints, which involve a single attribute. These unary keys and foreign keys are
similar to but more general than XML ID and IDREF speci�cations. The study on simple
constraints de�ned with XML attributes is a �rst step towards understanding the interaction
between integrity constraints and schema speci�cations for XML. As will be seen shortly, the
analyses of these simple constraints are already very intricate in the presence of DTDs.

As generalizations of CUnaryK ;FK constraints, CUnaryK:;IC and CUnaryK:;IC: both allow the presence of unary

inclusion constraints independent of keys. In addition, CUnaryK:;IC includes negations of unary keys,

and CUnaryK:;IC: further permits negations of unary inclusion constraints. Negation is considered

mainly for the study of implication of CUnaryK ;FK constraints, which is the complement of a special

case of the consistency problem for CUnaryK:;IC (resp. CUnaryK:;IC:): given any DTD D and any �nite
set � of unary keys and inclusion constraints, is it the case that all XML trees satisfying � and
conforming to D also satisfy some other unary key (resp. unary key or inclusion constraint)?
This question is important in, among other things, data integration. For example, one may
want to know whether a constraint ' holds in a mediator interface, which may use XML as a
uniform data format [4; 33]. This cannot be veri�ed directly since the mediator interface does
not contain data. One way to verify ' is to show that it is implied by constraints that are
known to hold [21].

These problems, however, turn out to be far more intriguing than their counterparts in rela-
tional databases. In the XML setting, DTDs do interact with keys and foreign keys, and this
interaction may lead to problems with XML speci�cations.
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Examples. To illustrate the interaction between XML DTDs and key/foreign key constraints,
consider a DTD D1, which speci�es a (nonempty) collection of teachers:

<!ELEMENT teachers (teacher+)>

<!ELEMENT teacher (teach, research)>

<!ELEMENT teach (subject, subject)>

It says that a teacher teaches two subjects. Here we omit the descriptions of elements whose
type is string (e.g., PCDATA in XML).

Assume that each teacher has an attribute name and each subject has an attribute taught by.
Attributes are single-valued. That is, if an attribute l is de�ned for an element type � in a
DTD, then in a document conforming to the DTD, each element of type � must have a unique
l attribute with a string value. Consider a set of unary key and foreign key constraints, �1:

teacher:name ! teacher;

subject:taught by ! subject;

subject:taught by � teacher:name:

That is, name is a key of teacher elements, taught by is a key of subject elements and it
is also a foreign key referencing name of teacher elements. More speci�cally, referring to an
XML tree T , the �rst constraint asserts that two distinct teacher nodes in T cannot have the
same name attribute value: the (string) value of name attribute uniquely identi�es a teacher

node. It should be mentioned that two notions of equality are used in the de�nition of keys: we
assume string value equality when comparing name attribute values, and node identity when
it comes to comparing teacher elements. The second key states that taught by attribute
uniquely identi�es a subject node in T . The third constraint asserts that for any subject

node x, there is a teacher node y in T such that the taught by attribute value of x equals
the name attribute value of y. Since name is a key of teacher, the taught by attribute of any
subject node refers to a unique teacher node.

Obviously, there exists an XML tree conforming to D1, as shown in Figure 1. However, there
is no XML tree that both conforms to D1 and satis�es �1. To see this, let us �rst de�ne some
notations. Given an XML tree T and an element type � , we use ext(�) to denote the set of all
the nodes labeled � in T . Similarly, given an attribute l of � , we use ext(�:l) to denote the set
of l attribute values of all � elements. Then immediately from �1 follows a set of dependencies:

jext(teacher:name)j = jext(teacher)j;

jext(subject:taught by)j = jext(subject)j;

jext(subject:taught by)j � jext(teacher:name)j;
Journal of the ACM
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teachers

teacher teacher

@name
"Joe"

teach

subject

research

"Web DB"subject

@taught_by
"Joe"

"XML" @taught_by
"Joe"

"DB"

Fig. 1. An XML tree conforming to D1

where j � j is the cardinality of a set. Therefore, we have

jext(subject)j � jext(teacher)j: (1)

On the other hand, the DTD D1 requires that each teacher must teach two subjects. Since no
sharing of nodes is allowed in XML trees and the collection of teacher elements is nonempty,
from D1 follows:

1 < 2 jext(teacher)j = jext(subject)j: (2)

Thus jext(teacher)j < jext(subject)j. Obviously, (1) and (2) contradict with each other and
therefore, there exists no XML tree that both satis�es �1 and conforms to D1. In particular,
the XML tree in Figure 1 violates the key subject:taught by ! subject.

This example demonstrates that a DTD may impose dependencies on the cardinalities of certain
sets of objects in XML trees. These cardinality constraints interact with keys and foreign keys.
More speci�cally, keys and foreign keys also enforce cardinality constraints that interact with
those imposed by DTD. This makes the consistency analysis of keys and foreign keys for XML
far more intriguing than that for relational databases. Because of the interaction, simple key
and foreign key constraints (e.g., �1) may not be satis�able by XML trees conforming to certain
DTDs (e.g., D1).

As another example, consider the DTD D2 given below:

<!ELEMENT db (foo)>

<!ELEMENT foo (foo)>

Observe that there exists no �nite XML tree conforming to D2. This demonstrates that there is
need for studying consistency of XML speci�cations even in the absence of integrity constraints.
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Contributions. The main contributions of the paper are the following:

(1) For the class CK ;FK of keys and foreign keys, we show that both the consistency and the
implication problems are undecidable.

(2) These negative results suggest that we look at the restriction CUnaryK ;FK of unary keys and
foreign keys (which are most typical in XML documents). We provide a coding of DTDs
and these unary constraints by linear constraints on the integers. This enables us to show
that the consistency problem for CUnaryK ;FK (even under the restriction to primary keys, i.e., at
most one key for each element type) is NP-complete. We further show that the problem is
still in NP for an extension CUnaryK:;IC , which also allows negations of key constraints.

(3) Using a di�erent coding of constraints, we show that the consistency problem remains in
NP for CUnaryK:;IC:, the class of unary keys, unary inclusion constraints and their negations.
Among other things, this shows that the implication problem for unary keys and foreign
keys is coNP-complete.

(4) We also identify several tractable cases of the consistency problem, i.e., practical situations
where the consistency problem is decidable in PTIME.

The undecidability of the consistency problem contrasts sharply with its trivial counterpart in
relational databases. The coding of DTDs and unary constraints with linear integer constraints
reveals some insight into the interaction between DTDs and unary constraints. Moreover, it al-
lows us to use the techniques from linear integer programming in the study of XML constraints.

It should be mentioned that as XML Schema and XML Data both subsume DTDs and they
support keys and foreign keys which are more general than those considered here, the unde-
cidability and NP-hardness results carry over to these schema speci�cations and constraint
languages for XML.

Related work. Keys, foreign keys and the more general inclusion and functional dependencies
have been well studied for relational databases (cf. [1]). In particular, the implication problem
for unary inclusion and functional dependencies is in linear time [17]. In contrast, we shall
show that the XML counterpart of this problem is coNP-complete.

The interaction between cardinality constraints and database schemas has been studied for
object-oriented [12; 13] and extended relational data models [26]. These interactions are quite
di�erent from what we explore in this paper because XML DTDs are de�ned in terms of
extended context free grammars and they yield cardinality constraints more complex than
those studied for databases.

Key and foreign key speci�cations for XML have been proposed in the XML standard [6],
XML Data [27], XML Schema [36] and in a recent proposal for XML keys [7]. The need for
Journal of the ACM
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studying XML constraints has also been advocated in [38]. DTDs in the XML standard allow
one to specify limited (primary) unary keys and foreign keys with ID and IDREF attributes.
However, they are not scoped: one has no control over what IDREF attributes point to. XML
Data and XML Schema support more expressive speci�cations for keys and foreign keys with,
e.g., XPath expressions. However, the consistency problems associated with constraints de�ned
in these languages have not been studied. We consider simple XML keys and foreign keys in this
paper to focus on the nature of the interaction between DTDs and constraints. The implication
problem for a class of keys and foreign keys was investigated in [19], but in the absence of DTDs
(in a graph model for XML), which trivializes the consistency analysis. For keys of [7], the
implication problem was studied [8] in the tree model for XML, but DTDs were not considered
there. To the best of our knowledge, no previous work has considered the interaction between
DTDs and keys and foreign keys for XML (in the tree model). This paper is a full version of
[18], providing the details and the proofs omitted there.

A variety of constraints have been studied for semistructured data [2; 10; 20]. In particular,
[20] also studies the consistency problem; the special form of constraints used there makes it
possible to encode consistency as an instance of conjunctive query containment. The interaction
between path constraints and database schemas was investigated in [9]. These constraints
typically specify inclusions among certain sets of objects in edge-labeled graphs, and are not
capable of expressing keys. Various generalizations of functional dependencies have also been
studied [23; 25]. But these generalizations were investigated in database settings, which are
quite di�erent from the tree model for XML data. Moreover, they cannot express foreign keys.
Application of constraints in data transformations was studied in [28]; usefulness of keys and
foreign keys in query optimization has also been recognized [34].

Organization. The rest of the paper is organized as follows. Section 2 de�nes four classes
of XML constraints, namely, CK ;FK , C

Unary
K ;FK , C

Unary
K:;IC and CUnaryK:;IC:. Section 3 establishes the

undecidability of the consistency problem for CK ;FK , the class of keys and foreign keys. Section 4
provides an encoding for DTDs and unary constraints with linear integer constraints, and shows
that the consistency problems are NP-complete for CUnaryK ;FK and CUnaryK:;IC . Section 5 further shows

that the problem remains in NP for CUnaryK:;IC:, the class of unary keys, inclusion constraints and
their negations. Section 6 summarizes the main results of the paper and identi�es directions
for further work.

2. DTDS, KEYS AND FOREIGN KEYS

In this section, we �rst present a formalism of XML DTDs [6] and the XML tree model. We
then de�ne four classes of XML constraints.

Journal of the ACM
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2.1 DTDs and XML trees

We extend the usual formalism of DTDs (as extended context free grammars [5; 11; 31]) by
incorporating attributes.

Definition 2.1. A DTD (Document Type De�nition) is de�ned to be D = (E; A; P; R; r),
where:

|E is a �nite set of element types;

|A is a �nite set of attributes, disjoint from E;

|P is a mapping from E to element type de�nitions: for each � 2 E, P (�) is a regular
expression � de�ned as follows:

� ::= S j � 0 j � j �j� j �; � j ��

where S denotes string type, � 0 2 E, � is the empty word, and \j", \;" and \�" denote union,
concatenation, and the Kleene closure, respectively;

|R is a mapping from E to P(A), the power-set of A; if l 2 R(�) then we say l is de�ned for
� ;

|r 2 E and is called the element type of the root.

We normally denote element types by � and attributes by l. Without loss of generality, assume
that r does not occur in P (�) for any � 2 E. We also assume that each � in Enfrg is connected
to r, i.e., either � occurs in P (r), or it appears in P (� 0) for some � 0 that is connected to r.

As an example, let us consider the teacher DTD D1 given in Section 1. In our formalism, D1

can be represented as (E1; A1; P1; R1; r1), where

E1 = fteachers; teacher; teach; research; subjectg

A1 = fname; taught byg

P1(teachers) = teacher; teacher�

P1(teacher) = teach; research

P1(teach) = subject; subject

P1(subject) = P1(research) = S

R1(teacher) = fnameg
R1(subject) = ftaught byg
R1(teachers) = R1(teach) = R1(research) = ;

r1 = teachers

Similarly, we represent the DTD D2 given in Section 1 as (E2; A2; P2; R2; r2), where
Journal of the ACM
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E2 = fdb; foog
A2 = ;
P2(db) = P2(foo) = foo

R2(db) = R2(foo) = ;
r2 = db

An XML document is typically modeled as a node-labeled ordered tree. Given a DTD, we
de�ne the notion of its valid documents as follows.

Definition 2.2. Let D = (E; A; P; R; r) be a DTD. An XML tree T valid w.r.t. D (con-
forming to D) is de�ned to be T = (V; lab; ele; att; val; root), where

|V is a �nite set of nodes (vertices);

|lab is a function that maps each node in V to a label in E [A [ fSg; a node v 2 V is called
an element of � if lab(v) = � and � 2 E, an attribute if lab(v) 2 A, and a text node if
lab(v) = S;

|ele is a partial function de�ned on elements in V ; for any � 2 E, it maps each element
v of type � to a (possibly empty) list [v1; :::; vn] of elements and text nodes in V such that
lab(v1) : : : lab(vn) is in the regular language de�ned by P (�);

|att is a partial function from V � A to V such that for any v 2 V and l 2 A, att(v; l) is
de�ned i� lab(v) = � , � 2 E and l 2 R(�);

|val is a partial function from V to string values such that for any node v 2 V , val(v) is
de�ned i� lab(v) = S or lab(v) 2 A;

|root is the unique node in V such that lab(root) = r, called the root of T .

For any element v 2 V , the nodes v0 in ele(v) are called the subelements of v. For any l 2 A, if
att(v; l) = v0 then v0 is called an attribute of v. In either case we say that there is a parent-child
edge from v to v0. The subelements and attributes of v are called its children. An XML tree
has a tree structure, i.e., for each v 2 V , there is a unique path of parent-child edges from root

to v. We write T j= D when T is valid w.r.t. D.

Intuitively, V is the set of nodes of the tree T . The mapping lab labels every node of V with
a symbol from E [A [ fSg. Text nodes and attributes are leaves. For an element x of type � ,
the functions ele and att de�ne the children of x, which are partitioned into subelements and
attributes according to P (�) and R(�) in the DTD D. The subelements of x are ordered and
their labels satisfy the regular expression P (�). In contrast, its attributes are unordered and
are identi�ed by their labels (names). The function val assigns string values to attributes and
text nodes. We consider single-valued attributes. That is, if l 2 R(�) then every element of
type � has a unique l attribute with a string value. Since T has a tree structure, sharing of
nodes is not allowed in T .

Journal of the ACM
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For example, Figure 1 depicts an XML tree valid w.r.t. the DTD D1 given in Section 1.

Our model is simpler than the models of XQuery [14] and XML Schema [36] as DTDs support
only one basic type (PCDATA or string) and do not have complex type constructs. Furthermore,
we do not have nodes representing namespaces, processing instructions and references. These
simpli�cations allow us to concentrate on the essence of the DTD/constraint interaction. It
should further be noticed that they do not a�ect the lower bounds results in the paper.

We need the following notations throughout the paper: for any � 2 E [ fSg, ext(�) denotes
the set of all the nodes in T labeled � . For any node x in T labeled by � and for any attribute
l 2 R(�), we write x:l for val(att(x; l)), i.e., the value of the attribute l of node x. We de�ne
ext(�:l) to be fx:l j x 2 ext(�)g, which is a set of strings. For each � element x in T and a list
X = [l1; : : : ; ln] of attributes in R(�), we use x[X] to denote the list of X-attribute values of x,
i.e., x[X] = [x:l1; : : : ; x:ln]. For a set S, jSj denotes its cardinality.

2.2 XML constraints

We next de�ne our constraint languages for XML.

We consider three types of constraints. Let D = (E; A; P; R; r) be a DTD, and T be an XML
tree valid w.r.t. D. A constraint ' over D has one of the following forms:

|Key: � [X]! � , where � 2 E and X is a set of attributes in R(�). The XML tree T satis�es
', denoted by T j= ', i� in T ,

8 x y 2 ext(�) (
^
l2X

(x:l = y:l)! x = y):

|Inclusion constraint: �1[X] � �2[Y ], where �1; �2 2 E, and X; Y are nonempty lists of
attributes in R(�1); R(�2) of the same length. We write T j= ' i� in T ,

8 x 2 ext(�1) 9 y 2 ext(�2) (x[X] = y[Y ]):

|Foreign key: a combination of two constraints, namely, an inclusion constraint �1[X] � �2[Y ]
and a key �2[Y ] ! �2. We write T j= ' i� T satis�es both the key and the inclusion
constraint.

That is, a key � [X] ! � indicates that the set X of attributes is a key of elements of � , i.e.,
two distinct � nodes in T cannot have the same X-attribute values; an inclusion constraint
�1[X] � �2[Y ] says that the list of X-attribute values of every �1 node in T must match the
list of Y -attribute values of some �2 node in T ; and an foreign key �1[X] � �2[Y ], �2[Y ] ! �2
indicates that X is a foreign key of �1 elements referencing key Y of �2 elements.
Journal of the ACM
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Over a DTD D, the class CK ;FK of constraints consists of all the keys and foreign keys over
D. They are called multi-attribute keys and foreign keys as they may be de�ned in terms of
multiple attributes.

To illustrate keys and foreign keys of CK ;FK , let us consider a DTD D3 = (E3; A3; P3; R3; r3),
where

E3 = fschool; student; course; enroll; name; subjectg

A3 = fstudent id; course no; deptg

P3(school) = course�; student�; enroll�

P3(course) = subject

P3(student) = name

P3(enroll) = P3(name) = P3(subject) = S

R3(course) = fdept; course nog
R3(student) = fstudent idg
R3(enroll) = fstudent id; dept; course nog
R3(school) = R3(name) = R3(subject) = ;

r3 = school

Typical CK ;FK constraints over D3 include:

(1) student[student id] ! student,
(2) course[dept; course no] ! course,
(3) enroll[student id; dept; course no] ! enroll,
(4) enroll[student id] � student[student id],
(5) enroll[dept; course no] � course[dept; course no].

The �rst three constraints are keys in CK ;FK , and the pairs (4, 1) and (5, 2) are foreign keys in
CK ;FK . The last two constraints are inclusion constraints.

It is worth mentioning that two notions of equality are used to de�ne keys: string value equality
is assumed in x:l = y:l (when comparing attribute values), and x = y is true if and only if x
and y are the same node (when comparing elements). This is di�erent from the semantics of
keys in relational databases. Note that a foreign key requires the presence of a key in addition
to an inclusion constraint.

The class of unary keys and foreign keys for XML, denoted by CUnaryK ;FK , is a sublanguage of CK ;FK .

A CUnaryK ;FK constraint is a CK ;FK constraint de�ned with a single attribute. More speci�cally, a

constraint ' of CUnaryK ;FK over the DTD D is either

Journal of the ACM
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|key: �:l! � , where � 2 E and l 2 R(�); or

|foreign key: �1:l1 � �2:l2 and �2:l2 ! �2, where �1; �2 2 E, l1 2 R(�1), and l2 2 R(�2).

For example, the constraints of �1 given in Section 1 are CUnaryK ;FK constraints over the DTD D1.

We shall also consider the following types of unary constraints over D:

|inclusion constraint : �1:l1 � �2:l2; unlike a foreign key, it does not require the presence of a
key;

|the negation of an inclusion constraint: � = �1:l1 6� �2:l2; for an XML tree T , T j= � i� there
is a �1 element x in T such that for all �2 element y in T , x:l1 6= y:l2;

|the negation of a key: ' = �:l 6! � ; T j= ' i� there are � elements x1; x2 in T such that
x1:l = x2:l, i.e., the value of the l attribute of a � element cannot uniquely identify it in
ext(�).

With these we de�ne two extensions of CUnaryK ;FK as follows. One is CUnaryK:;IC , the class consisting

of unary keys, unary inclusion constraints and negations of unary keys. The other, CUnaryK:;IC:,
consists of unary keys, unary inclusion constraints and their negations. As mentioned earlier,
we consider these classes mostly for the study of the implication problem for CUnaryK ;FK constraints.

Finally, we describe the consistency and implication problems associated with XML constraints.
Let C be one of CK ;FK , C

Unary
K ;FK , C

Unary
K:;IC or CUnaryK:;IC:, D a DTD, � a set of C constraints over D

and T an XML tree valid w.r.t. D. We write T j= � when T j= � for all � 2 �. Let ' be
another C constraint. We say that � implies ' over D, denoted by (D;�) ` ', if for any XML
tree T such that T j= D and T j= �, it must be the case that T j= '. It should be noted when
' is a foreign key, ' consists of an inclusion constraint �1 and a key �2. In this case (D;�) ` '
in fact means that (D;�) ` �1 ^ �2.

The central technical problem investigated in this paper is the consistency problem. The con-
sistency problem for C is to determine, given any DTD D and any set � of C constraints over
D, whether there is an XML tree T such that T j= � and T j= D.

The implication problem for C is to determine, given any DTD D, any set � and ' of C
constraints over D, whether (D;�) ` '.

3. GENERAL KEYS AND FOREIGN KEYS

In this section we study CK ;FK , the class of multi-attribute keys and foreign keys. We show that
the consistency and implication problems for CK ;FK are undecidable, but we identify several
special cases of the problems and show that these cases are decidable in PTIME.
Journal of the ACM
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3.1 Undecidability of consistency analysis

Our main result is negative:

Theorem 3.1. The consistency problem for CK ;FK constraints is undecidable.

Proof: We �rst show that an implication problem associated with keys and foreign keys in
relational databases is undecidable, and then present a reduction from (the complement of) the
implication problem to the consistency problem for CK ;FK constraints.

Let us �rst review keys, foreign keys and their associated implication problems in relational
databases (cf. [1]). Let R = (R1; : : : ; Rn) be a relational schema. For each relation (schema)
Ri in R, we write Att(Ri) for the set of all attributes of Ri, and Inst(Ri) for the set of �nite
instances of Ri. By database instances we mean �nite instances. An instance I of R has the
form (I1; : : : ; In), where Ii 2 Inst(Ri) for all i 2 [1; n]. For an instance Ii 2 Inst(Ri), a tuple
t 2 Ii and an attribute l 2 Att(Ri), we use t:l to denote the l attribute value of t. Keys and
foreign keys over R are de�ned as follows:

|key: R[l1; :::; lk] ! R, where R 2 R, and for any i 2 [1; k], li 2 Att(R). An instance I of R
satis�es the key constraint ', denoted by I j= ', if

8 t1 t2 2 I (
^

1�i�k

(t1:li = t2:li)!
^

l2Att(R)

(t1:l = t2:l));

where I is the instance of R in I;

|foreign key: R[l1; :::; lk] � R0[l01; :::; l
0
k] and R0[l01; :::; l

0
k] ! R0, where R, R0 are in R,

[l1; :::; lk] and [l01; :::; l
0
k] are lists of attributes in Att(R) and in Att(R0), respectively. In ad-

dition, the set consisting of l01; :::; l
0
k is a key of R0. We write I j= ' if I j= R0[l01; :::; l

0
k]! R0

and moreover,

8 t1 2 I 9 t2 2 I 0 (
^

1�j�k

t1:lj = t2:l
0
j);

where I and I 0 are the instances of R and R0 in I, respectively.

Let � [ f'g be a set of keys and foreign keys over R. We use � ` ' to denote that � implies
', i.e., for any instance I of R, if I j= �, then I j= '.

In relational databases, the implication problem for keys and foreign keys is the problem of
determining, given a relational schema R, any set � and ' of keys and foreign keys over R,
whether � ` '. A special case of the problem is the implication problem for keys by keys and
foreign keys, which is to determine whether � ` ' where ' is a key and � is a set of keys and
foreign keys over R.
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It was shown in [19] that the implication problem for keys and foreign keys in relational
databases is undecidable. The lemma below shows a stronger result.

Lemma 3.2. In relational databases, the implication problem for keys by keys and foreign
keys is undecidable.

Proof: We prove this by reduction from the implication problem for functional dependencies by
functional and inclusion dependencies, which is undecidable. Before we give the reduction, we
�rst review functional and inclusion dependencies in relational databases. Let R be a relational
schema. Functional dependencies (FDs) and inclusion dependencies (IDs) over R are de�ned
as follows.

|FD. R : X ! Y , where R 2 R, and X and Y are subsets of attributes in Att(R). An instance

I of R satis�es the FD �, denoted by I j= �, if 8 t1 t2 2 I (
^
l2X

(t1:l = t2:l)!
^
l02Y

(t1:l
0 = t2:l

0)),

where I is the instance of R in I. Observe that keys are a special case of FDs in which
Y = Att(R).

|ID. R[l1; :::; lk] � R0[l01; :::; l
0
k], where R;R

0 2 R, [l1; :::; lk] is a list of attributes in Att(R),
and [l01; :::; l

0
k] is a list of attributes in Att(R

0). In contrast to foreign keys, the set consisting
of l01; :::; l

0
k is not necessarily a key of R0. An instance I of R satis�es the ID �, denoted by

I j= �, if 8 t1 2 I 9 t2 2 I 0 (
^

1�j�k

t1:lj = t2:l
0
j), where I; I

0 are the instances of R;R0 in I,

respectively.

Let � [ f�g be a set of FDs and IDs over R. We use � ` � to denote that � implies � as for
keys and foreign keys. The implication problem for FDs by FDs and IDs is the problem to
determine, given any relational schema R, any set � of FDs and IDs over R and a FD � over
R, whether � ` �. This is a well-known undecidable problem (see, e.g., [1] for a proof).

We encode FDs and IDs in terms of keys and foreign keys as follows.

(1) FD  = R : X ! Y .

Note that every relation R has a key. In particular, Att(R), the set of all attributes of R,
is a key of R. Let Z be a key for R, i.e., R[Z] ! R. We de�ne a new (fresh) relation
schema Rnew such that Att(Rnew) = XY Z, i.e., the union of X, Y and Z. Intuitively, given an
instance I of R, an instance Inew of Rnew is to be constructed as a subset of �XY Z(I) such that
�XY (I) = �XY (Inew) and Inew satis�es the key Rnew[XY ] ! Rnew, where �W (I) denotes the
projection of I on attributes W . That is, we eliminate tuples in �XY Z(I) that violate the key.
Observe that XY Z is a key for both Rnew and R since it is the set of all attributes of Rnew,
Journal of the ACM
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and it contains the key Z of R (i.e., it is a superkey of R). Thus we encode  with:

�1 = Rnew[X]! Rnew; �2 = R[XY ] � Rnew[XY ];

�3 = Rnew[XY Z] � R[XY Z]; �4 = Rnew[XY ]! Rnew:

(2) ID  = R1[X] � R2[Y ].

Let Z be a key for R2, i.e., R2[Z]! R2. We de�ne a new schema Rnew such that Att(Rnew) =
Y Z. Intuitively, given an instance I2 of R2, an instance Inew of Rnew is to be constructed as
a subset of �Y Z(I2) by eliminating tuples that violate the key Rnew[Y ] ! Rnew, such that
�Y (I2) = �Y (Inew) and Inew satis�es the key. Observe that Y Z is a key for R2 since it contains
the key Z of R2, i.e., it is a superkey of R2. Thus we encode  with:

�1 = Rnew[Y ]! Rnew; �2 = R1[X] � Rnew[Y ]; �3 = Rnew[Y Z] � R2[Y Z]:

We next show that the encoding is indeed a reduction from the implication problem for FDs by
FDs and IDs to the implication problem for keys by keys and foreign keys. Given a relational
schema R, a set � of FDs and IDs over R, and a FD � = R� : X ! Y over R, as described
above we encode � with a set �1 of keys and foreign keys, and encode � with

�1 = R�
new[X]! R�

new; �2 = R�[XY ] � R�
new[XY ];

�3 = R�
new[XY Z] � R�[XY Z]; �4 = R�

new[XY ]! R�
new:

Let �0 = �1 [ f�2; �3; �4g. It suÆces to show that � ` � i� �0 ` �1.

Let R' be the relational schema that includes all relation schemas in R as well as new relations
created in the encoding. We show the claim as follows.

(1) Suppose that there is an instance I of R such that I j=
V
� ^ :�. We show that there is

an instance I' of R' such that I' j=
V
�0 ^ :�1. We construct I' such that for any R in R, the

instance of R in I' is the same as the instance of R in I. We populate instances of new relations
Rnew created in the encoding as mentioned above. (a) If Rnew is introduced in the encoding of
a FD R : X ! Y then we let the instance Inew of Rnew in I' be a subset of �XY Z(I) such that
�XY (I) = �XY (Inew) and Inew j= Rnew[XY ] ! Rnew, where I is the instance of R in I. (b) If
Rnew is introduced in the encoding of an ID R1[X] � R2[Y ] then let the instance Inew of Rnew

in I' be a subset of �Y Z(I2) such that �Y (I2) = �Y (Inew) and Inew j= Rnew[Y ] ! Rnew, where
I2 is the instance of R2 in I. It is easy to verify that I' j=

V
�0 ^ :�1.

(2) Suppose that there is an instance I' of R' such that I' j=
V
�0 ^ :�1. We construct an

instance I of R by removing from I' all instances of new relations introduced in the encoding.
It is easy to verify that I j=

V
� ^ :�.
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Therefore, the encoding is indeed a reduction from the implication problem for FDs by FDs and
IDs. This shows that the implication problem for keys by keys and foreign keys is undecidable.

2

From Lemma 3.2 follows that the complement of the implication problem for keys by keys and
foreign keys is also undecidable. That is to determine, given a relational schema R, a set � of
keys and foreign keys over R and a key ' over R, whether there is an instance of R satisfyingV
� ^ :'.

We now continue with the proof of Theorem 3.1, i.e., the consistency problem for CK ;FK con-
straints is undecidable. Given Lemma 3.2, it suÆces to give a reduction from the complement
of the implication problem for keys by keys and foreign keys. Let R = (R1; : : : ; Rn) be a
relational schema, � be a set of keys and foreign keys over R, and ' = R[X] ! R be a key
over R. Let Y = Att(R) n X. We encode R, � and ' in terms of a DTD D and a set � of
CK ;FK constraints over D as follows. Let D = (E; A; P; RA; r), where

E = fRi j i 2 [1; n]g [ fti j i 2 [1; n]g [ fr; DY ; EXg

A =
[

i2[1;n]

Att(Ri)

P (r) = R1; : : : ; Rn; DY ; DY ; EX

P (Ri) = t�i for i 2 [1; n]
P (ti) = � for i 2 [1; n]
P (DY ) = P (EX) = �

RA(ti) = Att(Ri) for i 2 [1; n]
RA(DY ) = X [ Y
RA(EX) = X

RA(r) = RA(Ri) = ; for i 2 [1; n]

We denote P (R) = t�' for the relation R in '. Note that R = Rs and t' = ts for some s 2 [1; n].

We encode � and ' with � = �� [ �', where �� is de�ned as follows:

|�� includes ti[Z]! ti if � includes a key Ri[Z]! Ri;

|�� includes ti[Z] � tj[Z
0], tj[Z

0]! tj if � has a foreign key Ri[Z] � Rj[Z
0], Rj[Z

0]! Rj.

The set �' consists of the following:

DY [Y ]! DY ; EX [X]! EX ; DY [X] � EX [X]; DY [X; Y ] � t'[X; Y ]; t'[XY ]! t';

where [X; Y ] stands for the concatenation of list X and list Y , and t' is the grammar symbol
in P (R) = t�'. Observe that Att(R) = X [ Y and thus XY is a key of t'.
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R1 RnRi ExDyDy

Fig. 2. A tree used in the proof of Theorem 3.1

As depicted in Figure 2, in any XML tree valid w.r.t. D, there are two distinct DY nodes d1
and d2 that have all the attributes in X [ Y , and a single EX node having all attributes in X.
If T j= �', then (1) d1[X] = d2[X] by DY [X] � EX [X] and the fact jext(EX)j = 1; and (2)
d1[Y ] 6= d2[Y ] by DY [Y ]! DY . These nodes will serve as a witness for :'.

Given these, we show that
V
� ^ :' can be satis�ed by an instance of R if and only if � can

be satis�ed by an XML tree valid w.r.t. D. Assume that there is an instance I of R satisfyingV
� ^ :'. We construct an XML tree T from I as follows. Let T have a root node r and a Ri

node for each Ri in R. For any Ri 2 R and each tuple p in the instance of Ri in I, we create
a distinct ti node x such that p:l = x:l for all l 2 Att(Ri). Since I j= :', there are two tuples
p and p0 in the instance of R in I such that p[X] = p0[X] and p[Y ] 6= p0[Y ]. We create two
distinct DY nodes d1 and d2 such that d1:l = p:l and d2:l = p0:l for all l 2 Att(R). In addition,
we create a single EX node e such that e:l = p:l for all l 2 X. We de�ne the edge relation of
T such that T has the form shown in Figure 2. It is easy to verify that T j= D. By I j= �
it is easy to verify that T j= ��. By the de�nition of T , it is also easy to see that T j= �'.
In particular, since Att(R) = X [ Y and the set of all attributes of a relation is a key of the
relation, we have T j= t'[XY ] ! t', where t' is the symbol in P (R) = t�'. Therefore, T j= �.
Conversely, suppose that D has a valid XML tree T that satis�es �. We de�ne an instance
I of schema R as follows. For each ti node x, let (l1 = x:l1; : : : ; lm = x:lm) be a tuple in
the instance of Ri in I, where l1; : : : ; lm are an enumeration of Att(Ri). Obviously I is an
instance of R. By T j= ��, it is easy to verify that I j= �. Moreover, by T j= �' and the
de�nition of I, we have I j= :' since there must be two tuples d1 and d2 in the instance of R
in I such that d1[X] = d2[X] but d1[Y ] 6= d2[Y ]. Thus the encoding is indeed a reduction from
the complement of the implication problem for keys by keys and foreign keys.

This completes the proof of Theorem 3.1. 2
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Fig. 3. A tree used in the proof of Lemma 3.3

3.2 Undecidability of implication

We next consider the implication problem.

Lemma 3.3. The following problems are undecidable: given any DTD D, any set � of CK ;FK

constraints over D, any unary key '1 and unary inclusion constraint '2 over D, whether (1)
(D;�) ` '1; (2) (D;�) ` '2.

Proof: It suÆces to establish a reduction from the consistency problem for CK ;FK to the com-
plement of the implication problem for CK ;FK . Let the DTD D be (E; A; P; R; r). We de�ne
another DTD D0 = (E 0; A0; P 0; R0; r), where

E 0 = E [ fDY ; EXg where DY , EX are fresh element types

A0 = A [ fKg where K is a fresh attribute

P 0(r) = P (r); DY ; DY ; EX i.e., P (r) followed by two DY elements and an EX element
P 0(�) = P (�) for all � 2 E n frg
P 0(DY ) = P 0(EX) = �

R0(DY ) = fKg
R0(EX) = fKg
R0(�) = R(�) for all � 2 E

We de�ne a unary key '1, a unary inclusion constraint '2 and another key � over D0 as follows:

'1 = DY :K ! DY ; '2 = DY :K � EX :K; � = EX :K ! EX :

Clearly, � is also a set of CK ;FK constraints over D0. We next show that (1) � is satis�able over
D i�

V
�^�^'2 ^:'1 is satis�able over D

0; (2) � is satis�able over D i�
V
�^ �^'1 ^:'2

is satis�able over D0. For if these hold, then the encoding is a reduction from the consistency
problem for CK ;FK to the complements of the implication problems described in Lemma 3.3.

We prove (1) as follows. If there exists a tree T j= D0 and T j=
V
� ^ � ^ '2 ^ :'1, then

we construct another tree T 0 by removing DY , EX elements from T . Obviously, T 0 j= D and
Journal of the ACM
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T 0 j= �. Conversely, suppose that there is a tree T j= D and T j= �. We construct another
tree T 0 from T as shown in Figure 3. Let us refer to the two DY elements in T 0 as d1; d2, and
the EX element as e. Let d1:K = d2:K = e:K. Then it is easy to see that T 0 j= D0, T 0 j= �
and T 0 j= � ^ '2 ^ :'1.

We now prove (2). As above, we can show that if there is a tree T j= D0 and T j=
V
� ^

� ^ '1 ^ :'2, then there exists another tree T 0 such that T 0 j= D and T 0 j= �. Conversely,
suppose that there is a tree T j= D and T j= �. We construct a tree T 0 from T as shown in
Figure 3. Again we refer to the two DY elements in T 0 as d1; d2, and the EX element as e. Now
let d1:K 6= d2:K. Then it is easy to see that T 0 j= D0, T 0 j= � and T 0 j= � ^ '1 ^ :'2. 2

From Lemma 3.3 we immediately obtain:

Corollary 3.4. For CK ;FK constraints, the implication problem is undecidable.

3.3 PTIME decidable cases

While the general consistency and implication problems are undecidable, it is possible to identify
some decidable cases of low complexity. The �rst one is checking whether a DTD has a valid
XML tree. This is a special case of the consistency problem, namely, when the given set of
CK ;FK constraints is empty. A more interesting special case involves keys only. Let CK denote
the set of all keys in CK ;FK . The consistency problem for CK is to determine, given any DTD
D and any set � of keys in CK over D, whether there exists an XML tree valid w.r.t. D and
satisfying �. Similarly, we consider the implication problem for CK ;FK : given any DTD D, any
set � and ' of keys in CK over D, whether (D;�) ` '. The next theorem tells that all these
cases are decidable.

Theorem 3.5. The following problems are decidable in linear time:

(1) Given any DTD D, whether there exists an XML tree valid w.r.t. D.

(2) The consistency problem for CK .

(3) The implication problem for CK .

Proof: (1) The �rst problem of the theorem can be reduced to the emptiness problem for a
context free grammar (CFG). Observe that a DTD D = (E;A; P;R; r) can be viewed as an
extended CFG GD with r as its start symbol, S as a nonterminal with a production rule, say,
S ! 0, and with attributes (A and R) ignored. It is easy to verify that D has a valid XML
tree if and only if GD is nonempty, i.e., it generates a terminal string (equivalently, a parse
tree). Indeed, given an XML tree T valid w.r.t. D, one can construct a parse tree of GD by
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modifying T , i.e., by removing attributes from T and modifying its text nodes. Conversely,
given a parse tree T 0 of GD one can construct a valid XML tree of D by modifying T 0, i.e.,
by adding attributes to T 0 and removing children of S nodes from T 0. It is straightforward to
convert the extended CFG GD to a CFG G in linear time, by introducing new nonterminals
and their (recursive) production rules to represent Kleene closures. Moreover, GD is nonempty
if and only if G is nonempty. It is well known that the emptiness problem for a CFG can
be determined in linear time (cf. [24]). Putting everything together, a linear algorithm for
checking the validity of D works as follows: it �rst generates in linear time the CFG G from
D, and then checks in linear time whether G is empty; it concludes that D has a valid XML
tree if and only if G is nonempty. Thus the validity of DTDs can be decided in linear time.

(2) We next prove the second statement of Theorem 3.5. That is, the consistency problem for
CK is decidable in linear time. Given any DTD D and any set � of keys in CK over D, it suÆces
to show that � can be satis�ed by an XML tree valid w.r.t. D if and only if D has a valid XML
tree. For if it holds, then the second statement follows immediately from the �rst statement of
Theorem 3.5.

We now show the claim. Suppose that there exists an XML tree T1 = (V; lab; ele; att; val; root)
valid w.r.t. D. We construct another XML tree T2 by modifying the val function in T1 such that
for any key � [X] ! � in �, jext(�)j = jext(�:l)j in T2 for every l 2 X. That is, T2 j= �:l ! �

for all l 2 X. More speci�cally, let T2 = (V; lab; ele; att; val0; root). Observe that the only
di�erence between T1 and T2 is the de�nition of the function val0. For any v1; v2 in V with
lab(v1) = � and lab(v2) = � , we can make val0(att(v1; l)) 6= val0(att(v2; l)) for any l 2 X. Let
val0(v) = val(v) for all other vertices in V . It is easy to verify that T2 is valid w.r.t. D since
T1 is valid w.r.t. D. In addition, T2 j= � [X]! � since for any x; y 2 ext(�), x[X] 6= y[X]. The
other direction is immediate.

(3) Finally, we prove the last statement of Theorem 3.5. That is, the implication problem for
CK is decidable in linear time. To show this, we need the following lemma.

Lemma 3.6. For any DTD D and element type � in D, it is decidable in linear time whether
there is an XML tree T such that T j= D and moreover, jext(�)j > 1 in T .

Proof: As in the proof of the �rst statement of the theorem, it is easy to show that given a
DTD D, one can �nd in linear time a CFG G such that D has a valid XML tree in which
jext(�)j > 1 if and only if the start symbol r of G derives a terminal string w whose parse tree
has at least two � nodes. This can be transformed in linear time to the problem of checking if a
given CFG derives a string with at least two occurrences of a given terminal symbol, which in
turn can be solved in linear time by a minor modi�cation of the emptiness test for CFG from
[24]. 2
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Let � be a set of keys in CK over D, and ' = � [X]! � be another key in CK over D. We say
that � subsumes ' if there is � = � [Y ] ! � in � such that Y � X, i.e., ' is a superkey of �.
Using this and Lemma 3.6 we can prove the following:

Lemma 3.7. Let D be a DTD, � a set of keys in CK over D, and ' = � [X]! � another key
in CK over D. There is an XML tree T such that T j= D, T j= � but T j= :' if and only if �
does not subsume ' and moreover, there is an XML tree T 0 such that T 0 j= D and jext(�)j > 1
in T 0. In addition, this is decidable in linear time in the sizes of D and � [ f'g.

Proof: We �rst show that there is an XML tree T such that T j= D, T j= � but T j= :' i� �
does not subsume ' and moreover, there is an XML tree T 0 such that T 0 j= D and jext(�)j > 1
in T 0. Suppose that there is an XML tree T such that T j= D, T j= � and T j= :'. Then
obviously, T is valid w.r.t. D, and moreover, there must be at least two � elements d1; d2 in
T such that d1[X] = d2[X] but d1 6= d2 since T j= :'. Thus there must be jext(�)j > 1 in
T . In addition, � cannot contain � [Y ] ! � with Y � X, since otherwise it would contradict
T j= :' and T j= �. Conversely, let T 0 be a tree such that T 0 j= D and jext(�)j > 1 in T 0.
Thus there are at least two � elements d1; d2 in T

0. We construct a new tree T by modifying
the string values associated with the attributes of T 0, while leaving the other functions of T 0

unchanged. More speci�cally, we let d1[X] = d2[X] in T but all other attributes have di�erent
string values. It is easy to verify that T j= D and T j= :' by the de�nition of T . To show
T j= �, suppose by contradiction that there were � 2 � such that T j= :�. Then � must be
of the form � [Y ] ! � where Y � X, i.e., ' is a superkey of �, since except d1[X] = d2[X],
distinct nodes in T have the di�erent attribute values by the de�nition of T . This contradicts
the assumption that � does not subsume '. Thus the �rst statement of the lemma holds.

To show that this can be done in linear time, observe that by Lemma 3.6, it can be decided in
linear time in the size of D whether there is a tree T such that T j= D and jext(�)j > 1 in T .
In addition, it is decidable in linear time in the size of �[f'g whether ' is a superkey of some
key in � (see e.g., [1] for discussions about a linear time algorithm for checking implication of
functional dependencies). Thus it is decidable in linear time in the sizes of D and � [ f'g
whether these conditions hold. 2

This suÆces to prove the third statement of Theorem 3.5 because (D;�) ` ' i� there is no
XML tree T such that T j= D, T j= � but T j= :'. By Lemma 3.7, the latter can be decided
in linear time.

This completes the proof of Theorem 3.5. 2

Given Theorem 3.5, one would be tempted to think that when only foreign keys are considered,
the analyses of consistency and implication could also be simpler. However, it is not the case.
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Recall that a foreign key of CK ;FK consists of an inclusion constraint and a key. Thus we
cannot exclude keys in the presence of foreign keys. It is not hard to show that consistency
and implication of foreign keys in CK ;FK remain undecidable.

4. UNARY KEYS AND FOREIGN KEYS

The undecidability of the consistency problem for general keys and foreign keys motivates us
to look for restricted classes of constraints. One important class is CUnaryK ;FK , the class of unary
keys and foreign keys. A cursory examination of existing XML speci�cations reveals that most
keys and foreign keys are single-attribute constraints, i.e., unary. In particular, in XML DTDs,
one can only specify unary constraints with ID and IDREF attributes.

In this section, we �rst investigate the consistency problem for CUnaryK ;FK . To simplify the discussion
and to establish a (slightly) stronger result, we consider a larger class of constraints, namely,
CUnaryK ;IC , the class of unary keys and unary inclusion constraints. In contrast to CUnaryK ;FK , C

Unary
K ;IC

allows the presence of unary inclusion constraints independent of keys. We develop an encoding
of DTDs and CUnaryK ;IC constraints with linear integer constraints. This enables us to reduce the

consistency problem for CUnaryK ;IC (and thus for CUnaryK ;FK ) to the linear integer programming problem,
one of the most studied NP-complete problems. We then use the same technique to show that
the consistency problem remains in NP when negations of keys are allowed, i.e., the problem for
CUnaryK:;IC constraints is also in NP. Finally, we identify several tractable cases of the consistency
problems.

4.1 Coding DTDs, unary constraints

We show that CUnaryK ;IC constraints and DTDs can be encoded with linear equalities and in-
equalities on the integers, called cardinality constraints. The encoding allows us to reduce the
consistency problem for CUnaryK ;IC constraints in PTIME to the linear integer programming (LIP)
problem:

LINEAR INTEGER PROGRAMMING (LIP)

INPUT: An m� n matrix A of integers and a column vector ~b of m integers.

QUESTION: Does there exist a column vector ~x of n integers such that A~x � ~b?

That is, for i 2 [1; m], X
j2[1;n]

aij xj � bi;
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where aij is the jth element of the ith row of A, xj is the jth entry of ~x and bi is the ith

entry of ~b. It is known that LIP is NP-complete in the strong sense [22]. In particular, when
nonnegative integer solutions are considered, [32] has shown that if the problem has a solution,
then it has another solution in which for all j 2 [1; n], xj is no larger than n (ma)2m+1, where

a is the largest absolute value of elements in A and ~b.

More speci�cally, we show the following:

Theorem 4.1. There is a polynomial (O(s2 � log s)) time algorithm that, given a DTD D

and a set � of CUnaryK ;IC constraints, constructs an integer matrix A and an integer vector ~b such

that there exists an XML tree valid w.r.t. D and satisfying � if and only if A~x � ~b has an
integer solution.

As an immediate result, we have:

Corollary 4.2. The consistency problem for CUnaryK ;FK constraints is in NP.

The proof of Theorem 4.1 is a bit involved. A road map of the proof is as follows. Given a
DTD D and a set � of CUnaryK ;IC constraints over D, we de�ne in O(s2 � log s) time (in the sizes of
D and �, denoted by jDj and j�j, respectively) the following:

|another DTD DN , referred to as the simpli�ed DTD of D, in which regular expressions are
restricted to have at most one operator: either \j" (union) or \," (concatenation)2; we reduce
the consistency of D and � to that of DN and �, i.e., there exists an XML tree valid w.r.t.
D and satisfying � if and only if there exists an XML tree valid w.r.t. DN and satisfying �;

|a set C� of linear integer constraints such that there is an XML tree valid w.r.t. DN and
satisfying � if and only if there is an XML tree valid w.r.t. DN and satisfying C�;

|a system 	DN
of linear integer constraints such that there exists an XML tree valid w.r.t.

DN if and only if 	DN
admits an integer solution; the cardinality constraints in 	DN

are
more complex than those studied in the context of object-oriented and relational databases
[12; 13; 26];

|�nally, a system of integer constraints 	(D;�) from C� and 	DN
such that there exists an

XML tree valid w.r.t. D and satisfying � if and only if 	(D;�) admits an integer solution.

Putting everything together, we reduce the consistency problem for CUnaryK ;IC to the existence of
a solution of an instance of LIP, and thus obtain the NP bound.

2We are grateful to one of the referees for suggesting this simpli�cation of DTDs.
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Proof of Theorem 4.1: We start by describing the process of simplifying DTDs. We shall then
present an encoding of unary constraints and DTDs. Finally, we develop a characterization of
XML speci�cations with both DTDs and unary constraints in terms of linear integer constraints.

Simplifying DTDs. We �rst explain how to reduce the consistency problem for CUnaryK ;IC to
that over simple DTDs. Intuitively, we replace long regular expressions in P (�) by shorter
ones. Formally, consider a DTD D = (E; A; P; R; r). For each � 2 E, P (�) is a regular
expression �. A DTD is basically an extended regular grammar (cf. [11; 31]); thus � ! � can
be viewed as the production rule for � . We rewrite the regular expression � by introducing
a set N of new element types (nonterminals) such that the production rules of the new DTD
have one of the following forms:

� ! �1; �2 � ! �1 j �2 � ! �1 � ! S � ! �

where �; �1; �2 are element types in E [N , S is the string type and � denotes the empty word.
More speci�cally, we conduct the following \simplifying" process on the production rule � ! �:

(1) If � = (�1; �2), then we introduce two new element types �1; �2 and replace � ! � with a
new rule � ! �1; �2. We proceed to process �1 ! �1 and �2 ! �2 in the same way.

(2) If � = (�1j�2), then we introduce two new element types �1; �2 and replace � ! � with a
new rule � ! �1 j �2. We proceed to process �1 ! �1 and �2 ! �2 in the same way.

(3) If � = ��1, then we introduce a new element type �1 and replace � ! � with � ! �1. We
proceed to process �1 ! � j �1; �1 in the same way.

(4) If � is one of � 0 2 E, S or �, then the rule for � remains unchanged.

To avoid introducing unnecessary new element types, in the �rst two cases above, if �1 (resp.
�2) is a symbol of E [ fSg, we do not introduce a new element type for �1 (resp. �2).

We refer to the set of new element types introduced when processing � ! P (�) as N� and the
set of production rules generated/revised as P� . Note that N� \ E = ; for any � 2 E.

We de�ne a new DTD DN = (EN ; A; PN ; RN ; r), referred to as the simpli�ed DTD of D (or
just a simple DTD if D is clear from the context), where

|EN = E [
[
�2E

N� , i.e., E plus those new element types introduced in the simplifying process;

|PN =
[
�2E

P� , i.e., production rules generated/revised in the simplifying process;

|RN(�) = R(�) for each � 2 E, and RN(�) = ; for each � 2 EN n E.
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Note that the root element type r and the set A of attributes remain unchanged. Moreover,
elements of any type in EN nE do not have any attribute. Note that DN does not contain the
Kleene star \�".

For example, the simpli�ed DTD of D1 given in Section 1 is DN
1 = (EN

1 ; A1; P
N
1 ; R

N
1 ; r),

where

EN
1 = fteachers; teacher; teach; research; subject; � 1t ; �

2
t ; ��g

A1 = fname; taught byg

PN
1 (teachers) = teacher; � 1t

PN
1 (� 1t ) = �� j � 2t
PN
1 (��) = �

PN
1 (� 2t ) = teacher; � 1t

PN
1 (teacher) = teach; research

PN
1 (teach) = subject; subject

PN
1 (subject) = PN

1 (research) = S

RN
1 (teacher) = fnameg

RN
1 (subject) = ftaught byg

RN
1 (teachers) = RN

1 (teach) = RN
1 (research) = RN

1 (�
1
t ) = RN

1 (�
2
t ) = RN

1 (��) = ;

r1 = teachers

Here � 1t ; �
2
t ; �� are the new element types introduced.

The simpli�ed DTD DN
2 of D2 in Section 1 is the same as D2 itself.

Obviously, any set � of CUnaryK ;IC constraints over D is also a set of CUnaryK ;IC constraints over the
simpli�ed DTD DN of D. The next lemma establishes the connection between D and DN ,
which allows us to consider only simple DTDs from now on.

Lemma 4.3. Let D be a DTD, DN be the simpli�ed DTD of D and � be a set of CUnaryK ;IC

constraints over D. Then there exists an XML tree T1 such that T1 j= D and T1 j= � i� there
exists an XML tree T2 such that T2 j= DN and T2 j= �.

Proof: It suÆces to show the following claim. For any XML tree T1 j= D one can construct
an XML tree T2 j= DN , and for any T2 j= DN one can construct T1 j= D, such that for any
element type � in D and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1, and ext(�:l) in T2 equals
ext(�:l) in T1.

We �rst prove the lemma assuming that the claim is true. Assume that there exists an XML
tree T1 such that T1 j= D and T1 j= �. Find the tree T2 j= DN as in the claim. Suppose that
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there is ' 2 � such that T2 6j= '. If ' is a key �:l ! �:� , then there are two distinct nodes
x; y 2 ext(�) in T1 such that x:l = y:l. Thus jext(�:l)j < jext(�)j in T2 since every � element
has a single l attribute. Since T1 j= ', it must be the case that jext(�:l)j = jext(�)j in T1
since the value x:l of each x 2 ext(�) uniquely identi�es x among all the nodes in ext(�). This
contradicts the claim that jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)
in T1. If ' is an inclusion constraint �1:l1 � �2:l2, then there is x 2 ext(�1) such that for all
y 2 ext(�2) in T2, x:l1 6= y:l2. That is, x:l1 62 ext(�2:l2). By the claim, x:l1 2 ext(�1:l1) in T1.
Since T1 j= ', we have x:l1 2 ext(�2:l2) in T1. Again by the claim, we have x:l1 2 ext(�2:l2) in
T2, which contradicts the assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1; lab1; ele1; att; val; root) such that
T1 j= D, we construct an XML tree T2 by modifying T1 such that T2 j= DN . Consider a �
element v in T1. Let ele1(v) = [v1; :::; vn] and w = lab1(v1) : : : lab1(vn). Recall N� and P� , the
set of nonterminals and the set of production rules generated when simplifying � ! P (�). Let
Q� be the set of E symbols that appear in P� plus S. We can view G = (Q� ; N� [ f�g; P� ; �)
as a context free grammar, where Q� is the set of terminals, N� [ f�g the set of nonterminals,
P� the set of production rules and � the start symbol. Since T1 j= D, we have w 2 P (�). By a
straightforward induction on the structure of PN(�) it can be veri�ed that w is in the language
de�ned by G. Thus there is a parse tree T (w) of the grammar G for w, and w is the frontier
(the list of leaves from left to right) of T (w). Without loss of generality, assume that the root of
T (w) is v, and the leaves are v1; : : : ; vn. Intuitively, we construct T2 by replacing each element
v in T1 by such a parse tree. More speci�cally, let T2 = (V2; lab2; ele2; att; val; root). Here V2
consists of nodes in V1 and the internal nodes introduced in the parse trees. For each x in V2,
let lab2(x) = lab1(x) if x 2 V1, and otherwise let lab2(x) be the node label of x in the parse tree
where x belongs. Note that nodes in V2 n V1 are elements of some type in EN nE. If lab2(x) is
an element type, let ele2(x) be the list of its children in the parse tree. Note that att and val
remain unchanged. By the construction of T2 it can be veri�ed that T2 j= DN . Moreover, for
any � 2 E and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)
in T1 because none of the new nodes, i.e., nodes in V2 n V1, is labeled with an E type, and the
function att remains unchanged.

Conversely, assume that there is T2 = (V2; lab2; ele2; att; val; root) such that T2 j= DN . We
construct T1 by modifying T2 such that T1 j= D. For any node v 2 V2 with lab(v) = �

and � 2 EN n E, we substitute the subelements of v for v in ele(v0), where v0 is the parent
of v. In addition, we remove v from V2, lab2(v) from lab2, and ele2(v) from ele2. Observe
that by the de�nition of DN , no attributes are de�ned for elements of any type in EN n E.
We repeat the process until there is no node labeled with element type in EN n E. Now let
T1 = (V1; lab1; ele1; att; val; root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the end of
the process, respectively. Observe that att, val and root remain unchanged. By the de�nition
of T1 it can be veri�ed that T1 j= D; and in addition, for any � 2 E and l 2 R(�), jext(�)j
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in T1 equals jext(�)j in T2, and ext(�:l) in T1 equals ext(�:l) in T2, because none of the nodes
removed is labeled with a type of E and the functions att and val are unchanged. 2

It is easy to see that DN is computable in linear time in the size of D.

Encoding unary constraints. We now give a coding of CUnaryK ;IC constraints. Let � be a set

of CUnaryK ;IC constraints over DTD D and DN be simpli�ed DTD of D. Referring to an arbitrary
XML tree T valid w.r.t. D, we derive from � a class of linear integer constraints on T , denoted
by C� and referred to the cardinality constraints determined by �, as follows. For any ' 2 �,

|if ' is a key constraint �:l! � , then jext(�:l)j = jext(�)j is in C�;

|if ' is an inclusion constraint �1:l1 � �2:l2, then jext(�1:l1)j � jext(�2:l2)j is in C�.

|jext(�:l)j � jext(�)j and 0 � jext(�:l)j are in C� for any � 2 E and l 2 R(�).

We use T j= C� to denote that T satis�es all constraints of C�.

For example, recall the set �1 of C
Unary
K ;FK constraints over the DTD D1 given in Section 1. The

set of cardinality constraints determined by �1, denoted by C�1
, consists of:

jext(teacher:name)j = jext(teacher)j

jext(subject:taught by)j = jext(subject)j

jext(subject:taught by)j � jext(teacher:name)j

0 � jext(teacher:name)j

0 � jext(subject:taught by)j

It is worth mentioning that jext(�:l)j = jext(�)j characterizes a key �:l ! � . Indeed, for any
XML tree T valid w.r.t. DN , T j= jext(�:l)j = jext(�)j i� T j= �:l ! � . However, things
can go wrong when it comes to inclusion constraints. Although T j= �1:l1 � �2:l2 implies
T j= jext(�1:l1)j � jext(�2:l2)j, the other direction does not necessarily hold. This does not lose
generality as we do not intend to capture negations of inclusion constraints with this coding.
Indeed, the lemma below shows that we are able to consider C� instead of � when studying
the consistency of �.

Lemma 4.4. Let DN be a simpli�ed DTD of D, � be a set of CUnaryK ;IC constraints over D, and
C� be the set of cardinality constraints determined by �. Then there exists an XML tree T1
such that T1 j= DN and T1 j= � if and only if there exists an XML tree T2 such that T2 j= DN

and T2 j= C�. In addition, any XML tree valid w.r.t. DN and satisfying � also satis�es C�.

Proof: It is easy to see that for any XML tree T1 that satis�es �, it must be the case that
T1 j= C�. Conversely, we show that if there exists an XML tree T2 = (V; lab; ele; att; val; root)
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such that T2 j= DN and T2 j= C�, then we can construct an XML tree T1 such that T1 j= DN

and T1 j= �.

We construct T1 from T2 by modifying the function val while leaving V; lab; ele; att and root
unchanged. As cardinality constraints of C� do not involve text nodes, we change val for
attributes only. More speci�cally, we modify val(v) if lab(v) 2 A, i.e., if v is an attribute,
and leave val(v) unchanged otherwise. Let S = f�:l j � 2 E; l 2 R(�)g. To de�ne the
new function, denoted by val0, we �rst associate a set V�:l of string values with each �:l in
S. Let N be the maximum cardinality of ext(�:l) in T2, i.e., N � jext(�:l)j in T2 for all
�:l 2 S. Let VS = fai j i 2 [1; N ]g be a set of distinct string values. For each �:l 2 S, let
V�:l = fai j i 2 [1; jext(�:l)j]g, and for each x 2 ext(�), let val0(att(x; l)) be a string value in
V�:l such that in T1, ext(�:l) = V�:l. In addition, for each key �:l! � in �, let x:l be a distinct
string value in V�:l. This is possible because by the de�nition of T1, (1) ext(�) in T1 equals
ext(�) in T2; (2) jext(�:l)j in T1 equals jext(�:l)j in T2; and (3) T2 j= C� and jext(�)j = jext(�:l)j
is in C�. We next show that T1 is indeed what we want. It is easy to verify that T1 j= DN

given the construction of T1 from T2 and the assumption that T2 j= DN . To show that T1 j= �,
we consider ' 2 � in the following cases. (1) If ' is a key �:l ! � , it is immediate from the
de�nition of T1 that T1 j= ' since for any x 2 ext(�), x:l is a distinct string value in V�:l.
(2) If ' is �1:l1 � �2:l2, then T2 j= jext(�1:l1)j � jext(�2:l2)j by T2 j= C�. Recall that by the
de�nition of val0, for i 2 [1; 2], V�i:li = fai j i 2 [1; jext(�i:li)j]g and in T1, ext(�i:li) = V�i:li.
Thus ext(�1:l1) � ext(�2:l2) in T1. That is, T1 j= '. Therefore, T1 j= DN and T1 j= �. 2

Observe that in the construction of T1 above, it is possible that ext(�1:l1) � ext(�2:l2) even if
� does not imply �1:l1 � �2:l2. This does not have an impact on the consistency analysis, as
negations of inclusion constraints are not involved in the analysis.

It is straightforward to verify that given any set � of CUnaryK ;IC constraints over a DTD D, the set
C� of cardinality constraints determined by � can be computed in linear time in j�j and jDj.

Encoding DTDs. We next move to a coding of DTDs. By Lemma 4.3 we can consider simple
DTDs only. Given any simple DTD D = (E; A; P; R; r), we encode it in linear time with a
system 	D of linear integer constraints such that D has a valid XML tree if and only if 	D has
an integer solution.

We �rst describe the variables used in the system 	D. For each symbol � 2 E [ fSg, jext(�)j
is a distinct variable. Intuitively, in an XML tree T conforming to D, jext(�)j keeps track
of the number of all � elements. In addition, for each occurrence of � in the de�nition P (� 0)
of some element type � 0, we also create a distinct variable. More speci�cally, we create such
variables as follows: if P (� 0) = �1 for �1 2 E [ fSg, then we create a distinct variable x1�1;� 0;
if P (� 0) = (�1; �2) or P (�

0) = (�1j�2), then we create two distinct variables x1�1 ;� 0 and x2�1;� 0.
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Intuitively, for i 2 [1; 2], xi�1;� 0 keeps track of the number of �i subelements at position i under
all � 0 elements in T . For example, given an element type de�nition P(teach) = subject,

subject, we create two distinct variables x1(subject; teach) and x
2
(subject; teach). Let X� be the set

of all variables of the form xi�;� 0.

Using these variables, for each � 2 E, we de�ne a set  � of linear integer constraints that
characterizes P (�) quantitatively, as follows:

|If P (�) = �1 for �1 2 E [ fSg, then  � includes jext(�)j = x1�1;� . Referring to the XML tree
T , this assures that each � element has a unique �1 subelement.

|If P (� 0) = (�1; �2), then  � includes jext(�)j = x1�1;� and jext(�)j = x2�2;� . These assure that
each � element in T must have a unique �1 subelement and a unique �2 subelement.

|If P (� 0) = (�1j�2), then  � includes jext(�)j = x1�1;� + x2�2 ;� . These assure that each � element
in T must have either a �1 subelement or a �2 subelement, and thus the sum of the number
of these �1 subelements and the number of �2 subelements equals the number of � elements
in T .

The set of cardinality constraints determined by DTD D, denoted by 	D, consists of the fol-
lowing:

|jext(r)j = 1; i.e., there is a unique root in any XML tree valid w.r.t. D;

|constraints of  � for each � 2 E; these assure that P (�) is satis�ed;

|jext(�)j =
X

xi
�;� 0

2X�

xi�;� 0 for each � 2 (Enfrg)[fSg; this indicates that the set ext(�) includes

all � elements no matter where they occur in an XML tree;

|x � 0 for any variable x used above; i.e., the number of elements (subelements) is nonnegative.

We say that 	D is consistent if and only if 	D admits an integer solution. That is, there is an
integer assignment to the variables of 	D such that all the linear integer constraints in 	D are
satis�ed.

As an example, let us consider the simple DTDs DN
1 and DN

2 given above. The cardinality
constraints determined by these DTDs are given below:

	DN
1

:

 teachers: jext(teachers)j = x1(teacher; teachers) jext(teachers)j = x2
(�1t ; teachers)

 �1t : jext(� 1t )j = x1
(��; �1t )

+ x2
(�2t ; �

1

t )

 �2t : jext(� 2t )j = x1
(teacher; �2t )

jext(� 2t )j = x2
(�1t ; �

2

t )

 teacher: jext(teacher)j = x1(teach; teacher) jext(teacher)j = x2(research; teacher)
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 teach: jext(teach)j = x1(subject; teach) jext(teach)j = x2(subject; teach)
 subject: jext(subject)j = x1(S; subject)
 research: jext(research)j = x1(S; research)

moreover,
jext(teachers)j = 1 jext(teacher)j = x1(teacher; teachers) + x1

(teacher; �2t )

jext(� 1t )j = x2
(�1t ; teachers)

+ x2
(�1t ; �

2

t )
jext(� 2t )j = x2

(�2t ; �
1

t )

jext(��)j = x1
(��; �1t )

jext(teach)j = x1(teach; teacher)
jext(subject)j = x1(subject; teach) + x2(subject; teach)
jext(research)j = x2(research; teacher) jext(S)j = x1(S; subject) + x1(S; research)
all variables � 0.

For example, x1(teacher; teachers) indicates the number of teacher children of all teachers nodes,

and x1
(teacher; �2t )

stands for the number of teacher children of nodes labeled � 2t . The cardinality

of ext(teacher) equals the sum of x1(teacher; teachers) and x
1
(teacher; �2t )

. Obviously, there is a unique

node labeled teachers, i.e., the root. Hence we have x1(teacher; teachers) = 1 since the root has a

unique teacher child. Thus jext(teacher)j = 1 + x1
(teacher; �2t )

.

	D2
:
 db: jext(db)j = x1(foo; db)

 foo: jext(foo)j = x1(foo; foo)

moreover, jext(db)j = 1 jext(foo)j = x1(foo; db) + x1(foo; foo) all variables � 0.

It is easy to check that 	DN
1

is consistent, whereas 	DN
2

is not.

We next show that 	D indeed characterizes the DTD D.

Lemma 4.5. Let D be a simple DTD and 	D be the set of cardinality constraints determined
by D. Then 	D is consistent if and only if there is an XML tree T such that T j= D. In
addition, for each � 2 E, jext(�)j in T equals the value of the variable jext(�)j given by the
solution of 	D.

Proof: First, assume that there is an XML tree T valid w.r.t. D. We de�ne an integer solution
of 	D as follows. For each � 2 E [ fSg, let the value of the variable jext(�)j be the number
of � nodes in T . We proceed to assign integer values (number of certain subelements) to other
variables by considering the structure of P (�) for each � 2 E. (1) If P (�) = �1 for some
�1 2 E [ fSg, then let the value of the variable x1�1;� be the number of �1 subelements of all �
elements in T . (2) If P (� 0) = (�1; �2), then let the value of the variable x1�1;� (resp. x2�2;� ) be
the number of the �1 (resp. �2) subelements of all � elements. In particular, if �1 = �2, then
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x1�1;� (resp. x2�2;�) has the number of the �rst (resp. second) subelements of all � elements.
(3) If P (� 0) = (�1j�2), then let the value of the variable x1�1;� (resp. x

2
�2 ;�

) be the number of �1
(resp. �2) subelements. If �1 = �2, then x

1
�1;�

and x2�2;� may have any value as long as jext(�)j =
x1�1;� +x

2
�2;�

. We next show that this assignment is an integer solution of 	D. First, the value of
any variable is nonnegative, as it is the number of certain elements (subelements) in T . Second,
jext(r)j = 1 as T has a unique root. Third, for each � 2 E, by induction on the structure of
P (�), it can be veri�ed that the assignment satis�es  � since T j= D and  � describes P (�)
quantitatively. Finally, the value of the variable jext(�)j is equal to the sum of all variables of
the form xi�; � 0 (i 2 [1; 2]) since it counts all the � elements in T no matter where they are. This
can be easily veri�ed by contradiction. Thus the assignment is indeed a solution of 	D. Note
that by the de�nition of the solution, the value of the variable jext(�)j given by the solution
equals jext(�)j in T .

Conversely, assume that 	D admits an integer solution. Observe that all these variables have
nonnegative integer values because of the inequalities in 	D. We show that there is an XML
tree T = (V; lab; ele; att; val; root) valid w.r.t. D. To do so, for each � 2 E [ fSg, we create
jext(�)j many distinct nodes and label them with � . We refer to this set of nodes as ext(�).
In addition, for each v 2 ext(�) and l 2 R(�), we create a distinct node, referred to as vl, and
label it with l. Let

V =
[

�2E[fSg

ext(�) [
[
�2E

fvl j v 2 ext(�); l 2 R(�)g

lab(v) =

�
� if v 2 ext(�) and � 2 E [ fSg
l if v = vl for some vl

att(v; l) =

�
vl if vl 2 V

unde�ned otherwise

val(v) =

�
empty string if lab(v) is S or l, where l 2 A

unde�ned otherwise

It is easy to verify that these functions are well de�ned. Let root be the node labeled r, which is
unique by jext(r)j = 1 in 	D. Finally, to de�ne the function ele, we �rst mark nodes in ext(�)
with variables in X� so that they can be grouped as subelements of certain elements. For each
variable xi�; � 0 in X� , we choose x

i
�; � 0 many distinct nodes labeled � and mark them with xi�; � 0 .

Note that for each � 2 E [ fSg, every � node in V n frootg can be marked once and only

once by jext(�)j =
X

xi
�;� 0

2X�

xi�;� 0 in 	D. Given these marked elements, starting at root, for each

� 2 E and each � node v, we de�ne ele(v) as follows. If P (�) is �1 2 E [ fSg, then we choose
a distinct �1 node y marked with x1�1;� and let ele(v) = [y]. If P (�) = (�1; �2), then we choose
a �1 node y1 marked with x1�1;� and a �2 node y2 marked with x2�2;� , and let ele(v) = [y1; y2]. If
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P (�) = (�1j�2), then we choose a node y marked with either x1�1;� or x
2
�2 ;�

and let ele(y) = [y].
By 	D constraints, each element or text node in V n frootg can be chosen once and only once
as a subelement of some other element. By induction on the structure of P (�), one can verify
that T de�ned in this way is indeed an XML tree and T j= D. Finally, by the de�nition of T ,
jext(�)j in T equals the value of the variable jext(�)j given by the solution of 	D. 2

It is straightforward to show that given any simple DTDD, the set 	D of cardinality constraints
determined by D can be computed in linear time. As a result, the size of 	D is linear in jDj.

Characterizing DTDs and unary constraints. To complete our characterization, given a
DTD D = (E; A; P; R; r) and a �nite set � of CUnaryK ;IC constraints over D, we de�ne a system
	(D; �) of integer constraints. The system 	(D; �), referred to as the set of cardinality
constraints determined by D and �, is de�ned to be:

	DN
[ C� [ f(jext(�)j > 0)! (jext(�:l)j > 0) j � 2 E; l 2 R(�)g;

where DN is the simpli�ed DTD of D, 	DN
and C� are the sets of cardinality constraints

determined by DN and �, respectively. In 	(D; �) we treat jext(�:l)j as a variable.

We say that 	(D; �) is consistent if and only if 	(D; �) admits an integer solution.

For example, recall the DTDs D1 and D2, and the constraint sets �1 and �2 (the empty set)
given in Section 1. It is easy to verify that neither 	(D1; �1) nor 	(D2; �2) is consistent. This
is consistent with the observations made in Section 1.

Observe that 	(D; �) can be partitioned into two sets: 	(D; �) = 	l(D; �)[	c(D; �), where
	l(D; �) consists of linear integer constraints, and 	c(D; �) consists of constraints of the form
(jext(�)j > 0 ! jext(�:l)j > 0), which are to ensure that every � element has an l attribute.
Note that jext(�:l)j � jext(�)j is already in C�.

It is easy to verify that 	(D; �) can be computed in linear time in jDj and j�j, and thus its
size is also linear in jDj and j�j.

We next show that 	(D; �) indeed characterizes D and �.

Lemma 4.6. Let D be a DTD, � be a �nite set of CUnaryK ;IC constraints over D, and 	(D; �)
be the set of cardinality constraints determined by D and �. Then 	(D; �) is consistent if and
only if there exists an XML tree T such that T j= D and T j= �.

Proof: Let DN be the simpli�ed DTD of D. By Lemma 4.3, it suÆces to show that 	(D; �)
is consistent if and only if there is an XML tree T such that T j= DN and T j= �.

Suppose that there exists an XML tree T such that T j= DN and T j= �. We show that
Journal of the ACM



On XML Integrity Constraints in the Presence of DTDs � 33

	(D; �) admits an integer solution. By Lemma 4.4, we have T j= C�, where C� is the set of
cardinality constraints determined by �. By Lemma 4.5, one can de�ne an integer solution of
	DN

. The assignment assures that for each � 2 E, the value of the variable jext(�)j equals
the number of all the � nodes in T . We extend the assignment as follows: for each � 2 E and
l 2 R(�), let the value of the variable jext(�:l)j be the number of distinct l attribute values of
all the � nodes in T . Thus by T j= C�, this extended assignment satis�es C�. In addition, if
jext(�)j > 0 then jext(�:l)j > 0 as every � element in T has an l attribute. Hence the assignment
is indeed a solution to 	(D; �). Thus 	(D; �) is consistent.

Conversely, suppose that 	(D; �) admits an integer solution. We show that there is an XML
tree T such that T j= DN and T j= �. Observe that an integer solution to 	(D; �) is also
a solution to 	DN

. Thus by Lemma 4.5, there is T 0 = (V; lab; ele; att; val; root) such that
T 0 j= DN . Moreover, for each � 2 E, jext(�)j in T 0 is equal to the value of the variable jext(�)j
given by the assignment. We construct another XML tree T 00 by modifying the de�nition of
the function val of T 0 such that for each � 2 E and l 2 R(�), jext(�:l)j in T 00 equals the value
assigned to the variable jext(�:l)j by the assignment. This is possible since jext(�:l)j � jext(�)j is
in C�, and the assignment is also a solution to C�. Moreover, by (jext(�)j > 0! jext(�:l)j > 0)
in 	(D; �), every � element in T 00 can have an l attribute. It is straightforward to verify that
T 00 j= C� and T 00 j= DN . Hence by Lemma 4.4, there exists an XML tree T such that T j= DN

and T j= �. 2

Given these lemmas, we proceed to prove Theorem 4.1.

Proof of Theorem 4.1 (continued): We encode an instance (D;�) of the consistency problem for
CUnaryK ;FK as an instance of LIP. By Lemma 4.6, it suÆces to encode 	(D; �) as an instance of LIP.

Recall that 	(D; �) can be partitioned into two sets: 	l(D; �) of linear integer constraints,
and 	c(D; �) of constraints of the form (x > 0 ! y > 0). We �rst encode 	(D; �) with
a set of linear integer constraints. Let S be the set of all the pairs (x; y) for each constraint
(x > 0! y > 0) in 	c(D; �). For each subset X of S, we de�ne 	X to be

	l(D; �) [ fx = 0; y = 0 j (x; y) 2 Xg [ fx � 1; y � 1 j (x; y) 2 S nXg:

It is easy to see that 	(D; �) admits an integer solution if and only if there is some 	X that
has an integer solution. Observe that 	X can be represented as an instance of LIP since an
equality F1 = F2 is equivalent to inequalities F1 � F2 and F2 � F1. In addition, for all variables
x in 	(D; �), we have x � 0 in 	(D; �). Thus any solution of 	X is nonnegative. Hence we
can apply the result of [32] here, which says that if 	X has an integer solution, then it has
one in which the values of all variables are no larger than n (ma)2m+1, where a is the largest
absolute value of the constants in 	X . In other words, 	X has an integer solution in which the
value of each variable has a length in binary of at most 1 + dlogn+ (2m+ 1) � log(ma)e many
bits, and the bounds on solutions for all 	X 's are the same. Let c be a number that in binary
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notation has 1 + dlogn + (2m + 1) � log(ma)e many 1's. Observe that c can be computed in
O(s logs) time. Thus we de�ne a new system � of linear integer constraints that is the same
as 	l(D; �) except it also includes c y � x for all (x > 0)! (y > 0) in 	c(D; �). It is easy to
verify that 	(D; �) has an integer solution i� � has an integer solution. Indeed, if 	(D; �)
has an integer solution then it has one bounded by c. Thus the solution satis�es c y � x, i.e.,
it is an integer solution to �. Conversely, if � has an integer solution, then it is also an integer
solution of 	l(D; �) and moreover, if x > 0 then y > 0 by c y � x in �; that is, it is an
integer solution to 	(D; �). As � can be represented as an instance of LIP, we can de�ne an

matrix A	 and a vector ~b	 of integers such that 	(D; �) has an integer solution if and only if

A	 ~x � ~b	 has an integer solution. Recall that 	(D; �) can be computed in linear time and
its size, denoted by s, is linear in jDj and j�j. Thus the instance of LIP can be computed in
O(s2 � log s) time in jDj and j�j.

This completes the proof of Theorem 4.1. 2

The encoding is not only interesting in its own right, but also useful in the consistency analyses
of CUnaryK ;FK and CUnaryK:;IC constraints, as well as in resolving a special case of CUnaryK ;FK constraint
implication.

4.2 CUnaryK ;FK and CUnaryK:;IC constraints

We next establish the precise complexity bound on the consistency problem for unary keys and
foreign keys:

Theorem 4.7. The consistency problem for CUnaryK ;FK constraints is NP-complete.

Proof: Corollary 4.2 has shown that the problem is in NP. We show that it is NP-hard by
reduction from a variant of LIP, namely,

A~x = ~b;

where for all i 2 [1; m], j 2 [1; n], aij coeÆcients are in f0; 1g, all bi elements are 1, and all xj
components are binary, i.e., in f0; 1g. It is known that the variant is also NP-complete [22].

Given such an instance A~x = ~b, we de�ne a DTD D and a set � of CUnaryK ;FK constraints over

D such that there is an XML tree valid w.r.t. D and satisfying � if and only if A~x = ~b

admits a binary solution. For i 2 [1; m], we use Fi to denote
X
j2[1;n]

aij xj. We de�ne D to be

(E; A; P; R; r), where

E = frg [ fFi j i 2 [1; m]g [ fbi j i 2 [1; m]g [ fV Fi j i 2 [1; m]g
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[ fXij j i 2 [1; m]; j 2 [1; n]g [ fZij j i 2 [1; m]; j 2 [1; n]g

A = fvg [ fAij j i 2 [1; m]; j 2 [1; n]g

P (r) = F1; :::; Fm; b1; :::; bm
P (Fi) = Xij1; :::; Xijl for i 2 [1; m], where Xij1; :::; Xijl is a sub-list of Xi1; :::; Xim

such that Xij is in P (Fi) i� ai j in A is 1
P (Xij) = Zij j � for i 2 [1; m] and j 2 [1; n]
P (Zij) = V Fi for i 2 [1; m] and j 2 [1; n]
P (V Fi) = P (bi) = � for i 2 [1; m]

R(Zij) = fAijg for i 2 [1; m] and j 2 [1; n]
R(V Fi) = R(bi) = fvg for i 2 [1; m]
R(r) = R(Fi) = R(Xij) = ;

An XML tree valid w.r.t. D has the form shown in Figure 4. Intuitively, Xij encodes xj in
Fi, and Zij encodes the value of Xij: Xij has value 1 if and only if Xij has a Zij child. The

element type V Fi is to code the value of Fi. Observe that A~x = ~b has a solution if and only if
for each row i 2 [1; m] there is exactly one column j 2 [1; n] such that aij = 1 and xj = 1. In
the XML tree T representing the instance, this means that for every i there is exactly one Xij

element with a Zij child. This is achieved by restricting Fi to have a unique V Fi descendant,
and thus to have value 1, by means of the attribute v of V Fi and constraints. More speci�cally,
we include the following in the set �:

V Fi:v ! V Fi; bi:v ! bi; V Fi:v � bi:v; bi:v � V Fi:v:

These ensure that Fi = bi = 1 as T has a unique bi node. In addition, to ensure that all
occurrences of xj have the same value, the following are in �: for j 2 [1; n] and i; l 2 [1; m],

Zij:Aij ! Zij; Zij:Aij � Zlj:Alj:

These assert that Xij has value 1 if and only if Xlj equals 1. It is easy to see that the encoding

can be done in PTIME in m and n. Moreover, A~x = ~b admits a binary solution if and only if
D has a valid XML tree satisfying �. Thus this is indeed a PTIME reduction from the variant
of LIP. 2

Recall that in relational databases, it is common to consider primary keys. That is, for each
relation one can specify at most one key, namely, the primary key of the relation. In the XML
setting, the primary key restriction requires that for each element type one can specify at most
one key. This is the case for \keys" speci�ed with ID attributes, since in a DTD, at most one
ID attribute can be speci�ed for each element type. Under the primary key restriction, the
consistency problem for a class C of XML constraints is to determine, given any DTD D and
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Fig. 4. A tree used in the proof of Theorem 4.7

�nite set � of C constraints in which there is at most one key for each element type (given
either as keys or as part of foreign keys), whether there is an XML tree valid w.r.t. D and
satisfying �; similarly for implication.

One might think that the primary key restriction would simplify the consistency analysis of
CUnaryK ;FK constraints. However, it is not the case.

Corollary 4.8. Under the primary key restriction, the consistency problem for CUnaryK ;FK re-
mains NP-complete.

Proof: The reduction from LIP given in the proof of Theorem 4.7 de�nes at most one key for
each element type. 2

A mild generalization of the encoding above can establish the complexity of the consistency
problem for CUnaryK:;IC , the class of unary keys, inclusion constraints and negations of keys. As we

shall see shortly, the result for CUnaryK:;IC helps us study implication of CUnaryK ;FK constraints.

Corollary 4.9. The consistency problem for CUnaryK:;IC constraints is NP-complete.

Proof: Since CUnaryK ;FK is a sub-language of CUnaryK:;IC , from Theorem 4.7 follows immediately that

the consistency problem for CUnaryK:;IC is NP-hard. We next show that the problem remains in NP.

Let D be a DTD and � be a set of CUnaryK:;IC constraints over D. We write � as �1 [ �2, where
�1 is a set of unary keys and unary inclusion constraints over D, and �2 is a set of negations of
unary keys over D. Let 	(D;�1) be the system of linear inequalities determined by D and �1,
as de�ned in the proof of Theorem 4.1. It admits an integer solution i� there exists an XML
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tree T such that T j= �1 and T j= D. We de�ne another system of linear inequalities, denoted
by 	(D;�) and referred to as the system determined by D and �, to be

	(D;�) = 	(D;�1) [ fjext(�:l)j < jext(�)j j :(�:l! �) 2 �2g:

As 	(D;�) can be computed in PTIME, it suÆces to show the following claim.

Claim: There is an XML tree T such that T j= � and T j= D i� 	(D;�) has an integer
solution.

For if it holds, then the problem is in NP by reduction to LIP as in the proof of Theorem 4.1.

We show the claim as follows. Assume that there exists a tree T such that T j= � and T j= D.
Since T j= �1, by Lemmas 4.5 and 4.6 and Theorem 4.1, it can be veri�ed that there is an
integer solution to 	(D;�1), the system of linear inequalities determined by D and �1, such
that the values of the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution are the
cardinalities jext(�)j and jext(�:l)j in T . Note that for all element type � and attribute l of
� in D, jext(�)j and jext(�:l)j are variables in 	(D;�1). Thus for each �:l 6! � , the solution
also assigns values to jext(�)j and jext(�:l)j. We claim that it is also a solution to 	(D;�).
To see this, observe that it is always true that jext(�)j � jext(�:l)j in T since every � element
in T contributes at most one distinct �:l value. Thus by T j= �2, there must be two distinct
� elements d1 and d2 in T such that d1:l = d2:l. Thus jext(�)j > jext(�:l)j. Therefore, all
inequalities in 	(D;�) are satis�ed by the solution.

Conversely, assume that 	(D;�) has an integer solution. Since it is also a solution to 	(D;�1),
again by Lemma 4.5 and 4.6 and Theorem 4.1, it can be veri�ed that there is a tree T such
that T j= D, T j= �1 and moreover, the cardinalities jext(�)j and jext(�:l)j in T are the values
of the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution. We claim that T j= �.
Indeed, for any �:l 6! � in �2, we have jext(�)j > jext(�:l)j in T . Thus there must be two
distinct � elements d1 and d2 in T such that d1:l = d2:l. That is, T j= �:l 6! � . Hence T j= D

and T j= �. 2

It should be mentioned that the problem remains NP-hard under the primary key restriction.
This can be veri�ed along the same lines as the proof of Corollary 4.8.

Corollary 4.9 also tells us the complexity of a special case of the implication problem for CUnaryK ;FK ,

referred to as implication problem for unary keys by CUnaryK ;FK constraints:

Theorem 4.10. The following is coNP-complete, even under the primary key restriction:
given any DTD D, any set � of CUnaryK ;FK constraints and any unary key ' over D, whether
(D;�) ` '.
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Proof: Observe that (D;�) ` ' i� �[f:'g and D are not consistent, i.e., there exists no XML
tree T such that T j= D, T j= � and T j= :'. Since � [ f:'g is a set of CUnaryK:;IC constraints,

the implication problem for unary keys by CUnaryK ;FK constraints is in coNP by Corollary 4.9. To
see that the problem is coNP-hard, recall the encoding given in the proof of Lemma 3.3. If
the set � of constraints given is a set of CUnaryK ;FK constraints, then that encoding also serves as

a reduction from the consistency problem for CUnaryK ;FK to the complement of (D;�) ` '. Thus

from Theorem 4.1 follows that the implication problem for unary keys by CUnaryK ;FK constraints is
coNP-hard. Observe that the reduction in the proof of Lemma 3.3 de�nes at most one key for
each element type. Thus given a set � of constraints, if � satis�es the primary key restriction,
then so does the set of all constraints used in the reduction. Hence it remains coNP-hard even
under the primary key restriction. 2

Finally, we identify some PTIME decidable cases of the consistency and implication problems.
First, these problems for unary keys only are decidable in linear time, by Theorem 3.5. We next
show that given a �xed DTD D, the consistency and implication analyses become simpler. The
motivation for considering a �xed DTD is because in practice, one often de�nes the DTD of a
speci�cation at one time, but writes constraints in stages: constraints are added incrementally
when new requirements are discovered.

Corollary 4.11. For a �xed DTD, the following problems are decidable in PTIME:

|The consistency problems for CUnaryK ;FK and CUnaryK:;IC .

|Implication of unary keys by CUnaryK ;FK constraints.

Proof: By Theorems 4.1, 4.10 and Corollary 4.9, an instance (D;�) of these problems can be
encoded as a system � of linear integer constraints. That is, these problems can be reduced
to checking whether � admits an integer solution. The system � consists of constraints of C�

(derived from �) and 	DN
(derived from the simpli�ed DTD DN of D), and can be computed

in PTIME in jDj. Given a �xed DTD D, the number of variables in C� is bounded by the size
of D (O(jDj2)), and the number of variables in 	DN

is also �xed. Thus the number of variables
in � is bounded. It is known that when the number of variables in a system of linear integer
constraints is bounded, checking whether the system admits an integer solution can be done in
PTIME [29]. Putting these together, we have Corollary 4.11. 2

5. UNARY KEYS, INCLUSION CONSTRAINTS AND NEGATIONS

In Section 4, we have shown that the consistency problem for unary keys and foreign keys is
NP-complete. In this section, we extend the result by showing that the problem remains in NP
when negations of these unary constraints are allowed. That is, the problem is NP-complete
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for CUnaryK:;IC:, the class of unary keys, inclusion constraints and their negations. This helps us

settle the implication problems for CUnaryK ;FK and the more general CUnaryK ;IC , the class of unary keys
and foreign keys, and the class of unary keys and inclusion constraints, respectively. This is
one of the reasons that we are interested in the consistency problem for CUnaryK:;IC:.

Theorem 5.1. The consistency problem for CUnaryK:;IC: is NP-complete.

While this theorem subsumes Theorem 4.7, the reduction is quite di�erent from the nice en-
coding with instances of LIP that we used for CUnaryK ;FK . In fact, while typically NP-complete
problems are easily shown to be in NP, and only the reduction from a known NP-complete
problem is diÆcult, for the consistency problem for CUnaryK:;IC:, the opposite is the case, and the
proof of membership in NP is a little involved (even assuming the encoding of keys and inclusion
constraints by instances of LIP given in the previous section). We cannot reduce the problem
directly to LIP as before, because there is no direct connection between �i:li 6� �j:lj and the
cardinalities jext(�i)j, jext(�j)j, jext(�i:li)j and jext(�j :lj)j in an XML tree.

Proof: We develop an NP algorithm for determining the consistency of CUnaryK:;IC: constraints.

The algorithm takes advantage of another encoding of CUnaryK:;IC: constraints with linear integer
constraints, which characterizes a set interpretation of unary inclusion constraints and their
negations. Let D be a DTD and � be a set of CUnaryK:;IC: constraints over D. We partition �

into �1 and �2, where �1 is a set of C
Unary
K:;IC constraints, and �2 consists of negations of unary

inclusion constraints over D. Let 	(D;�1) be the system of linear inequalities determined by
D and �1, as described in the proof of Corollary 4.9. Let l1; : : : ; ln be an enumeration of all
attributes in D. Without loss of generality, assume that li is an attribute of element type �i
(note that �i's need not be distinct). Let U = (uij)

n
i;j=1 and V = (vij)

n
i;j=1 be two matrices

whose elements are nonnegative integers. We say that they admit a set representation if there
is a family of �nite sets A1; : : : ; An such that

uij = jAi \ Aj j; vij = jAi n Aj j :

We extend 	(D;�1) with new variables uij; vij, and equalities:

|jext(�i:li)j = uii = uij + vij for all i; j 2 [1; n];

|vij = 0 for all �i:li � �j:lj in �1, and moreover, vii = 0;

|vij > 0 for all �i:li 6� �j:lj in �2.

Let us denote the new system by 	(D;�) and refer to it as the system determined by D and �.
Observe that 	(D;�) can be simply converted to a system of linear inequalities (by treating
an equality as two inequalities).
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The intended interpretation for the variable uij is j ext(�i:li) \ ext(�j:lj) j, and j ext(�i:li) n
ext(�j :lj) j for vij. Thus vij > 0 in 	(D;�) says that ext(�i:lj) 6� ext(�j :lj) for all �i:li 6� �j:lj in
�2.

The lemma below reveals the connection between the encoding and the consistency problem
we are investigating.

Lemma 5.2. The linear system 	(D;�) determined by DTD D and constraints � has an
integer solution with U;V having a set representation if and only if there is an XML tree T
such that T j= D and T j= �.

Proof: Let D be a DTD, �1 be a set of CUnaryK:;IC constraints over D, �2 be a set of negations
of unary inclusion constraints over D, � = �1 [ �2, and 	(D;�) be the system of linear
inequalities determined by D and � as described above. We show that 	(D;�) has an integer
solution with U;V having a set representation i� there is an XML tree T such that T j= � and
T j= D.

Assume that there exists an XML tree T such that T j= � and T j= D. Since T j= �1,
as in the proof of Corollary 4.9 we can de�ne an integer solution to 	(D;�1), the system of
linear inequalities determined by D and �1. We extend the solution as follows: let uij be
jext(�i:li) \ ext(�j :lj) j, and vij be jext(�i:li) n ext(�j:lj) j. It is easy to verify that this is indeed
a solution to 	(D;�) with U;V having a set representation.

Conversely, assume that 	(D;�) has an integer solution with U;V having a set representation.
Then there are �nite sets A1; : : : ; An such that

uij = jAi \ Aj j; vij = jAi n Aj j :

Again as in the proof of Corollary 4.9, we create a tree T such that T j= �1 and T j= D. In
addition, we de�ne the val function in T such that ext(�i:li) = Ai for i 2 [1; n]. This is possible
since jext(�i:li)j = uii = uij + vij is in 	(D;�) for all i; j 2 [1; n]. Because vij > 0 is in 	(D;�)
for all �i:li 6� �j:lj in �2, we have j ext(�i:li) n ext(�j:lj) j> 0. That is, T j= �i:li 6� �j:lj. Thus
T j= �2. This completes the proof of the lemma. 2

It remains to show that one can check in NP whether the system 	(D;�) has an integer solution
with U;V having a set representation. We start with a lemma.

Lemma 5.3. Given 	(D;�), one can compute, in polynomial time, a number M such that
	(D;�) has an integer solution with U;V having a set representation if and only if it admits
such a solution with all variables being bounded by M .

Proof: To prove the lemma, we need to extend 	(D;�). Let � be the set of functions � :
f1; : : : ; ng ! f0; 1g which are not identically 0, where n is the number of attributes in D. For
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every �, we introduce a new variable z� (note that the number of variables is now exponential
in the size of the problem). The intended interpretation of z� is the cardinality of

\
i:�(i)=1

ext(�i:li) n
[

j:�(j)=0

ext(�j :lj):

We now extend 	(D;�) to 	0(D;�) by adding the following equalities:

uij =
X

�:�(i)=�(j)=1

z�; vij =
X

�:�(i)=1;�(j)=0

z�:

Clearly, 	(D;�) has an integer solution with U;V having a set representation i� 	0(D;�) has
an integer solution, as the variables z� describe all possible intersections of ext(�i:li) and their
complements, and the equalities above show how to reconstruct uij and vij from them. We
thus must show that if 	0(D;�) has an integer solution then it must have one with a bound
on uij; vij, which is polynomial (in terms of the size of 	(D;�)). For that, recall [32] that if
a system of k linear inequalities with l variables and all coeÆcients at most c has an integer
solution, then it has an integer solution in which none of the variables exceeds l(ck)2k+1. Thus,
M can be taken to be a number that in binary notation has 1 + dlog l + (2k + 1) � log(ck)e
many 1's. Note that the number of variables, l, of 	0(D;�) is at most exponential in the size
of 	(D;�), and the number of equalities, k, is at most polynomial. This shows that M can be
found in polynomial time, and thus proves the lemma. 2

Given Lemmas 5.2 and 5.3, let us go back to the proof of that consistency analysis of � over
D is in NP. We present an NP algorithm for determining the consistency of � over D. Our
nondeterministic machine computes M given by Lemma 5.3, and then guesses a solution with
all the components bounded by M . It then tests if the U;V part has a set representation.
To do so, we transform U;V, in polynomial time, into another matrix W, and then run a
nondeterministic polynomial time machine on W. If it returns `yes', then U;V have a set
representation, and thus by Lemma 5.2 the answer to whether � is consistent over D is `yes'.

Let K =M � n, where n is the number of all attributes in D. We now de�ne the matrix W. It
is a 2n� 2n matrix, with

wij =

8>><
>>:

uij if i; j � n

vi;j�n if i � n; j > n

vi�n;j if i > n; j � n

K � ui�n;j�n � vi�n;j�n � vj�n;i�n if i; j > n

Recall the INTERSECTION PATTERN problem: Given an m � m matrix A, are there sets
Y1; : : : ; Ym such that aij =jYi\Yj j? This problem is known to be NP-complete (see, e.g., [22]).
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We now show the following: The INTERSECTION PATTERN problem returns `yes' on input
W i� U;V have a set representation.

First, assume U;V have a set representation. That is, there are �nite sets A1; : : : ; An such that

uij = jAi \ Aj j; vij = jAi n Aj j :

By the assumption, all entries in U;V are bounded by M , and hence we may assume that all
sets in the representation are subsets of a set U of cardinality K. Let m = 2n and de�ne Yi to
be Ai for i � n, and U n Ai�n for i > n. Then W is the intersection pattern for this family of
sets, and thus the INTERSECTION PATTERN problem returns `yes' on W.

Next, assume that the INTERSECTION PATTERN returns `yes' on W, so we have a family
of sets Y1; : : : ; Y2n for which W is the intersection pattern. Let U be the union of all Yj's. We
show Yn+i = U n Yi for all i � n. We have wi;n+i = vii = 0, and thus Yn+i � U n Yi. Moreover,
we have jYi [ Yn+i j= wii + wn+i;n+i = K. We next show that for every i; j � n it is the case
that Yi [ Yn+i = Yj [ Yn+j (and thus equals U). Note that both Yi [ Yn+i and Yj [ Yn+j are
K-element sets. Furthermore,

(Yi [ Yn+i) \ (Yj [ Yn+j) = (Yi \ Yj) [ (Yi \ Yn+j) [ (Yn+i \ Yj) [ (Yn+i \ Yn+j):

Observe that these four sets are pairwise disjoint, and their cardinalities are wij = uij; wi;j+n =
vij; wi+n;j = vji and wi+n;j+n = K �uij � vij � vji, respectively. Thus, the cardinality of the set
(Yi [ Yn+i) \ (Yj [ Yn+j) is K, and since the cardinality of each Yi [ Yn+i and Yj [ Yn+j is K,
we conclude Yi [ Yn+i = Yj [ Yn+j. This �nally shows that U has cardinality K, and thus each
Yn+i is U n Yi for all i � n. This immediately gives us a set representation for U;V.

To conclude, once we guessed a bounded solution to 	(D;�) (all components are at most M),
we proceed to compute in polynomial time the matrix W from U and V, and then run a non-
deterministic polynomial time algorithm on it to check ifW is an intersection pattern. Putting
everything together, we see that this nondeterministic polynomial time algorithm returns `yes'
i� there is a bounded solution (and thus, there is a solution) to 	(D;�) for which U;V have
a set representation. By Lemma 5.2, this happens if and only if there exists an XML tree T
such that T j= D and T j= �.

This completes the proof of Theorem 5.1. 2

We next investigate implication problems.

Theorem 5.4. For each of CUnaryK ;IC and CUnaryK ;FK , the implication problem is coNP-complete,
even under the primary key restriction.
Journal of the ACM
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Proof: The implication problem for CUnaryK ;IC is to determine, for a DTD D, a set � of CUnaryK ;IC

constraints, and a constraint ' (unary key or unary inclusion constraint), whether (D;�) ` '.
Note that (D;�) ` ' i� there is no XML tree T with T j= D ^

V
� ^ :', and � [ f:'g is

a set of CUnaryK:;IC: constraints. Thus by Theorem 5.1, the implication problem for CUnaryK ;IC is in
coNP. One can show that it is coNP-hard under the primary key restriction using an argument
similar to the proof of Theorem 4.10. Similarly for the implication problem for CUnaryK ;FK . 2

Finally, along the same lines as Corollary 4.11, we show the following:

Corollary 5.5. For a �xed DTD, the following problems can be determined in PTIME:

|The implication problem for CUnaryK ;FK .

|The consistency problem for CUnaryK:;IC:.

Proof: Let D be a DTD and � be a set of CUnaryK:;IC: constraints over D. Let 	0(D;�) be the
system of linear inequalities determined by D and �, as de�ned in the proof of Theorem 5.1.
As in the proof of Corollary 4.11, one can show that the number of variables in 	0(D;�) is
bounded by a function on the size of D. Therefore, when D is �xed, the number of variables in
	0(D;�) is bounded by a constant. It is known that when the number of variables in a system
of linear inequalities is bounded, it can be determined in PTIME whether the system admits
an integer solution [29]. By the proofs of Lemma 5.2 and Theorem 5.1, 	0(D;�) admits an
integer solution if and only if there is an XML tree T such that T j= D and T j= �. Thus
Corollary 5.5 follows from Theorems 5.1 and 5.4. 2

6. CONCLUSION

We have studied the consistency problems associated with four classes of integrity constraints
for XML. We have shown that in contrast to its trivial counterpart in relational databases, the
consistency problem is undecidable for CK ;FK , the class of multi-attribute keys and foreign keys.
This demonstrates that the interaction between DTDs and key/foreign key constraints is rather
intricate. This negative result motivated us to study CUnaryK ;FK , the class of unary keys and foreign
keys, which are commonly used in practice. We have developed a characterization of DTDs and
unary constraints in terms of linear integer constraints. This establishes a connection between
DTDs, unary constraints and linear integer programming, and allows us to use techniques
from combinatorial optimization in the study of XML constraints. We have shown that the
consistency problem for CUnaryK ;FK is NP-complete. Furthermore, the problem remains in NP for

CUnaryK:;IC:, the class of unary keys, unary inclusion constraints and their negations.

We have also investigated the implication problems for XML keys and foreign keys. In par-
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multi-attribute unary primary, unary DTD �xed, unary multi-attribute

keys, foreign keys keys, foreign keys keys, foreign keys keys, foreign keys keys only

consistency undecidable NP-complete NP-complete PTIME linear time

implication undecidable coNP-complete coNP-complete PTIME linear time

Fig. 5. The main results of the paper

ticular, we have shown that the problem is undecidable for CK ;FK and it is coNP-complete for

CUnaryK ;FK constraints. Several PTIME decidable cases of the implication and consistency problems
have also been identi�ed. The main results of the paper are summarized in Figure 5.

It is worth remarking that the undecidability and NP-hardness results also hold for other schema
speci�cations beyond DTDs, such as XML Data [27], XML Schema [36] and the generalization
of DTDs proposed in [33]. It remains open, however, whether the upper bounds (i.e., the
decidability and NP membership results) are still intact in these settings.

This work is a �rst step towards understanding the interaction between DTDs and integrity
constraints. A number of questions remain open. First, we have only considered keys and
foreign keys de�ned with XML attributes. We expect to extend techniques developed here
for more general schema and constraint speci�cations. Second, other constraints commonly
found in databases, e.g., inverse constraints, deserve further investigation. Third, a lot of work
remains to be done on identifying tractable yet practical classes of constraints and on developing
heuristics for consistency analysis. Finally, a related project is to use integrity constraints to
distinguish good XML design (speci�cation) from bad design, along the lines as normalization
of relational schemas. Coding with linear integer constraints gives us decidability for some
implication problems for XML constraints, which is a �rst step towards a design theory for
XML speci�cations.
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