Integrity Constraints for XML

Wenfei Fan
Bell Laboratories

E-mail: wenfei@research.bell-labs.com

and

Jerdme Singon
Bell Laboratories

E-mail: simeon@research.bell-labs.com

Integrity constraints have proved fundamentally important in database manage-
ment. The ID/IDREF mechanism provided by XML DTDs relies on a simple form
of constraints to describe references. Yet, this mechanism is sufficient neither for
specifying references in XML documents, nor for expressing semantic constraints
commonly found in databases. In this paper, we extend XML DTDs with several
classes of integrity constraints and investigate the complexity of reasoning about
these constraints. The constraints range over keys, foreign keys, inverse constraints
as well as ID constraints for capturing the semantics of object identities. They im-
prove semantic specifications and provide a better reference mechanism for native
XML applications. They are also useful in information exchange and data integra-
tion for preserving the semantics of data originating in relational and object-oriented
databases. We establish complexity and axiomatization results for the (finite) impli-
cation problems associated with these constraints. In addition, we study implication
of more general constraints, such as functional, inclusion and inverse constraints
defined in terms of navigation paths.

Key Words: keys, foreign keys, inverse constraints, constraint implication, XML.

1. INTRODUCTION

XML (eXtensible Markup Language [9]) has emerged as the standard for information
exchange between Web applications. It offers a convenient syntax for representing data
from heterogeneous sources, but provides little semantic information. To specify the
semantics of XML data, a variety of approaches have been proposed: type systems [6,
18, 21, 31, 35], description logics [14], meta-data descriptions [30], etc. As some of
these proposals [21, 31, 35] point out, integrity constraints are important for semantic

1

2 FAN AND SIMEON

specifications of XML data. In addition, they are useful for query optimization [23, 26],
update anomaly prevention [2], and for information preservation in data integration [1, 18].
Integrity constraints are also used to model references in relational databases, through keys
and foreign keys.

Integrity constraints are traditionally part of a schema specification. Document Type
Definitions [9] (DTDs) offer the so-called ID and IDREF attributes to identify and reference
an element within an XML document, in a way similar to relational keys and foreign keys.
However, ID and IDREF attributes are not expressive enough to capture semantic constraints
such as keys, foreign keys and inverse constraints commonly found in databases, or to model
object-style references. XML Schema [35] supports a complex form of keys and foreign
keys defined with XPath [16] expressions. However, XPath is rather complex and as a
result, reasoning about constraints defined with XPath is highly intricate, if notimpossible.

In response to these problems, we propose several constraint languages for XML that
are both expressive enough for practical applications and simple enough to allow efficient
reasoning. More specifically, we make the following contributions:

¢ We introduce a model for XML data with schema and integrity constraints. We propose
L, L;; and L., three basic constraint languages that provide both a reference mechanism
and better semantic specifications. Languageds a minimal extension of the original
ID/IDREF mechanism. Constraints 6f; and L are to capture semantic constraints when
data originates in object-oriented and relational databases, respectively.

e We study the implication and finite implication problems for these three languages.
For each language, we provide complexity results and axiomatization when one exists.
The results fol extend relational dependency theory. Notably, the implication and finite
implication problems for arbitrary keys and foreign keys are shown to be undecidable, but
they become decidable when only primary keys and foreign keys are considered.

¢ We investigate implication of more general forms of constraints, including functional,
inclusion and inverse constraints defined in terms of navigation paths, by basic constraints
of L;43. Such path constraints have a variety of practical applications, ranging from query
optimization to verification of the correctness of integration/transformation programs.

As this work is motivated by the need for integrity constraints in practical XML appli-
cations, we first illustrate several important application contexts and the limitations of the
current ID/IDREF mechanism.

The ID/IDREF mechanism, constraints and referencesAs a concrete example, consider
an XML document about books:

<?XML version = "1.0">
<bib>
<book>
<entry isbn="1-55860-622-X">
<title>Data on the Web</title>
<publisher>Morgan Kaufmann</publisher>
</entry>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>
<section sid="1">
<title>Introduction</title>

INTEGRITY CONSTRAINTS FOR XML 3

<section sid="11"><title>Audience</title>...</section>

<ref to="0-201-53771-0 1-55860-463-4"/>
</book>
<book>
<entry isbn="0-201-53771-0">
<title>Foundations of Databases</title>
<publisher>Addison Wesley</publisher>
</entry>
<author>Serge Abiteboul</author>
<author>Richard Hull</author>
<author>Victor Vianu</author>
</book>
</bib>
For eachbook, itsisbn, title andpublisherare givenin arntry element, followed
by a list ofauthor elements, the book content and a set of bibliographical references (in a
ref element). This document conforms to the following DTD:

<!ELEMENT book (entry, author*, sectionx, ref)>
<!ELEMENT entry (title, publisher)>
<!'ATTLIST entry

isbn ID #required>

<!ELEMENT section (title, (#PCDATA|section)*)>
<VATTLIST section

sid ID #required>
<!ELEMENT ref EMPTY>
<!ATTLIST ref

to IDREFS #implied>

A DTD defines element types and attributes for each element. We omit the descriptions
of the elements whose type is string (e#PCDATA in XML). An ID annotation indicates
that the corresponding attribute should uniquely identify an element in the entire document,
i.e., itis uniqgue among all ID attributes. AIDREF(S) annotation indicates a reference, i.e.,
it should contain a (set of) value(s) of some ID attribute(s) present in the document.

Observe that the ID/IDREF mechanism is similar to both the object-identity based notion
of references from object-oriented databases [3] and to keys/foreign keys from relational
databases. On the one hand, like object identifiers, ID attributes uniquely identify elements
within the whole document. On the other hand, as XML has a textual format, the reference
semantics is achieved with implicit constraints that must hold on attribute values, in the
spirit of relational keys and foreign keys. Yet, it captures neither the complete semantics
of relational keys and foreign keys nor that of object-style references. For instange,
should be a key fosntry. Its representation as an ID attribute indeed makes it unique, but
among all the ID attributes in the document. This is too strong an assumption, preventing
other elements, e.gbooks, from using the same isbn number as a key. Worse still, the
scope and type of an ID/IDREF attribute are not clear. #dattribute, for instance, could
contain a reference to section or anauthor element. One has no control over what
an IDREF reference points to. Obviously, we would like to constrain such references to
entry elements only.

4 FAN AND SIMEON

We can resolve these problems by changing slightly the constraints on the attributes
involved. More specifically, we can (i) treagbn (resp.sid) attribute as a key fosntry
(resp. section) elements, which uniquely identifies an element among the elements
of entry (resp. section), as opposed to all elements in the entire document; (ii) add
an inclusion constraint as part of a foreign key, asserting tledt to is a subset of
entry.isbn, wherer.l stands for the set of attribute values of all- elements in a
document. Thatis, for anyef element: and each value of theto attribute ofz, there is
anentry elementy such that matches the sbn attribute value of;. Observe that sbn
is a key ofentry and thus theo attribute is a foreign key afef that referencesntry
elements. These constraints can be expressed in our langyage

Capturing the semantics of legacy repositoriesXML is mainly used for data exchange.

As a consequence, a large amount of XML data originates in relational or object-oriented
databases, for which keys, foreign keys and inverse relationships [2, 15] convey a fun-
damental part of the information. Consider, for instance, the following object-oriented
schema (in ODL syntax [15]):

class Person
(key name)

{ attribute String name;
attribute String address;
relationship set<Dept> in_dept

inverse Dept::has_staff; }
class Dept
(key dname)

{ attribute String dname;
attribute Person manager;
relationship set<Person> has_staff

inverse Person::in_dept; }

On top of the structure specified by the schema, we have the followingiafie) and
dname are keys for th®erson andDept classes respectively, and (2) there is an inverse
relationship betweeRerson.in dept andDept.has staff. That is, (1) no distinct
Person objects can have the sameme attribute value; similarly fodname of Dept; and
(2) for anyPerson objectp andDept objectd, if d is one of the departments in whigh
works, (i.e.d is in the (set) attributén_dept of p), thenp is a staff ofd (i.e.,pis in the set
has_staff of d), and vice versa.

When exporting this object-oriented database to XML, the following DTD could be
generated, in an attempt to preserve the semantics of the original schema:

<!ELEMENT db (person*, dept*)>
<!ELEMENT person (name, address)
<!ATTLIST person
oid ID #required
in_dept IDREFS #implied>
<!ELEMENT dept (dname)>
<!ATTLIST dept
oid ID #required
manager IDREF #required
has_staff IDREFS #implied>

INTEGRITY CONSTRAINTS FOR XML 5

Here the original ID semantics is appropriate to capture the notion of object identifiers [3]
(the oid attributes). However, references through IDREF are rather weak: as IDREF
attributes are “untyped”, we no longer know that thedept attribute of person element
should reference a departmentdggt element). In addition, as in the previous example,
keys are not precisely captured (here we cannot even spegiy and dname with 1D
attributes as XML only allows a single ID attribute for each element type). Furthermore,
we have no way to express the inverse relationships in a DTD. One wants to overcome
these limitations while preserving the semantics of the original notion of object identities.
To do so, we specify the following constraints: {Bme anddname as keys for persons and
departments, in addition t@id as an ID constraint to capture the original semantics of ID
attributes; (ii) foreign keys to assert thatrson. in dept (resp.dept.has_staff) refers
to departments (resp. persons) only; (iii) an inverse constraint betp¢aen . in dept
anddept .has_staff. These can be expressed in our langubge

As another example, consider a DTD which is translated from a relational schema:

<!ELEMENT university (student*, course*, enroll*)>
<!ELEMENT student (SSN, name, GPA)>

<!ELEMENT course (dept, number, credit)>
<!ELEMENT enroll (sid, dept, number, grade)>

We would like to capture the following semantic constraints of the relational database:
(i) SSN is a key ofstudent, { dept, number} is a key ofcourse, { sid, dept, number}
is a key ofenroll; (ii) sid of enroll is a foreign key referencin@gN of) student,
and dept, number) is a foreign key ofenroll referencingcourse. That is, one wants
to express typical relational keys and foreign keys by means of multi-attributes, as well as
constraints on certain sub-elements. These can be specified in our ladguage

Implication problems for XML constraints and related work. A key question [2] in
connection with integrity constraints for XML is about their (finite) implication: given any
finite setY of constraints, is it the case that any (finite) document that satisfieast also
satisfy some other constraint? The (finite) implication problem is important if we want to
reason about XML constraints as we do in databases. Among other things, it is useful in
guery optimization and data integration [26, 33].

There is a large body of work on integrity constraints and their associated (finite) im-
plication problems in the relational context [2, 36] that we can try to exploit. As ID
and IDREF attributes are unary, the work on unary inclusion and functional dependencies
by Cosmadakis, Kanellakis and Vardi [20] is particularly relevant. However, because of
the semantics of ID attributes, results from [20] are not directly applicable in the XML
context. In addition, because different notions of equality are used to define relational
and XML keys, the analysis of key constraints for XML is a little different from their
relational counterpart. More specifically, relational keys are simply defined with equality
on values, whereas keys for XML are defined in terms of two notions of equality, namely,
value equalityandnode identity Recall that an XML document is typically modeled as
a node-labeled tree. In such a tree distinct nodes may have the same “value”, i.e., node
identity and value equality are different notions. In contrast, it is impossible for distinct
tuplesin a relation to have the same value. By saying, e.gl ihatkey ofr elementsin an
XML document, it means that for anyelementse andy, if they agree on their attribute
values (value equality), themandy are the same node (node identity). This complicates
the analysis of XML constraints. Another difference is due to the more complex structure

6 FAN AND SIMEON

of XML documents, for instance the presence of set-valued attributes (S@®RBES
attribute in our first example). Our results address these issues. As langisadesigned

to capture semantic constraints from relational databases, our results for implication and
finite implication of general/primary keys and foreign keyd.odlso hold in the relational
setting, which, to the best of our knowledge, have not been addressed before.

XML documents can have arbitrarily nested structures (note thakttieion elements
in thebook DTD have a recursive definition). It is therefore natural to consider both (unre-
stricted) implication and finite implication problems. This also highlights the importance
of path constraints in this context. As an example, we would like to knowititat is not
only a key forentry, but also a key for the out@ook elements. This never occurs in the
relational setting.

There have been a number of proposals for adding constraints to XML, e.g., XML
Schema [35], XML Data [31] and a recent proposal [10]. These proposals consider
keys and foreign keys for XML, but stop short of addressing inverse constraints, which
are common in object-oriented databases [15]. In addition, the implication and finite
implication problems for the constraints of [35, 31] are, as far as the authors are aware,
unresolved. Recently implication of XML keys of [10] was studied in [11], but in the
absence of foreign keys and other constraints that may interact with keys in a nontrivial
way. Most of these constraint languages are defined in terms of regular path expressions or
XPath [16]. While these powerful path expressions yield expressive constraint languages,
they complicate the analysis of implication and finite implication of these constraints.
The high complexity of reasoning about these constraints may compromise their practical
applicability. Finally, most of these constraints are defined in a rich schema definition
language for XML. In other words, they can only be embedded within some types for XML
documents. In practice, however, XML documents are commonly specified with DTDs
instead of those complicated type systems. These considerations suggest us to adopt a
different approach: we consider XML constraints that are both powerful enough to express
important database constraints and are simple enough to be reasoned about efficiently,
and we add these constraints as a minimum extension to XML DTDs. We investigate
more expressive constraints that can be derived from by basic XML constraints, such as
constraints defined in terms of navigation paths.

There has been work on the study of path constraints. The path constraint languages
introduced in [4, 13] specify inclusions among certain sets of objects, and were studied for
semistructured data and XML. They are generalizations of (unary) inclusion dependencies.
Inverse constrains are also expressible in the languages of [13]. However, these languages
cannot express keys. Generalizations of functional dependencies have also been studied
[28, 29]. These constraints are capable of expressing neither foreign keys nor inverse
constraints. Furthermore, they were studied in the database context (structured data).

Finally, we address the connection between our XML constraints and bounded vari-
able logics, in particular, two-variable first-order logiE@?). FO? is the fragment
of first-order logic consisting of all relational sentences with at most two distinct vari-
ables [27]. Many constraints considered here are not expressikigOih including
foreign keys ofL, inverse constraints of;;, and (unary) keys of all the three lan-
guages. These can be verified by using the 2-pebble EhrenfeudsdseHEF) style
game [5]. As shown by Borgida [8]FO? has equivalent expressive power as the
languageD L \ {trans,compose, at_least, at_most}, i.e., description logic omitting the
transitive closure and composition constructors as well as counting quantifiers. As an

INTEGRITY CONSTRAINTS FOR XML 7

immediate result, many XML constraints considered in this paper are not expressible in
DL\ {trans,compose, at_least, at_most}. [8] has also shown that description logic with

the composition constructor, i. L\ {trans, at_least, at_most}, is equally expressive as

FO?, the fragment of first-order logic with at most three distinct variables and with monadic
and binary relations. It is known th&tO? possesses undecidable (finite) implication prob-
lems [7]. In contrast, we shall show that most of the implication and finite implication
problems associated with our constraint languages are decidable. Therefore, results about
description logics are not much of help for studying implication of our constraints.

Organization. The rest of the paper is organized as follows. Section 2 presents an XML
data model with schema and constraints, defines the langiiades andL,,, and shows

how they capture constraints in practice. Section 3 investigates implication, finite impli-
cation and axiomatization of these constraints. Section 4 introduces path constraints, i.e.,
constraints defined in terms of navigation paths, and studies implication of path constraints
by basic constraints af;;. Section 5 identifies directions for further work.

2. CAPTURING XML DOCUMENT SEMANTICS

In this section, we present a data model and a formalization of DTDs [9]. The data model
represents the content of XML documents, and DTDs specify the syntactic structure and the
semantics of the data. A DTD is formalized as a combination of a structural specification
and a set of integrity constraints. We shall use several classes of constraints to specify
various extensions over DTD structures.

2.1. Documents
We begin with the data model for representing XML documents. We assume the existence
of three pairwise disjoint set€ of element nameg\ of attribute names, ansitr of string
values. We assume that all atomic values are of the string type, denoted e also
assume an infinite s&t of vertices. Given a seX, we useF'(X) andP(X) to denote the
set of all lists built over elements &f and the power-set of, respectively. We represent
XML documents as ordered annotated trees with labels on the nodes.

DEFINITION 2.1. A data treeis denoted by(V, elem, att, root), where

e V is a set of vertices (nodes), i.e., a subse¥ pf

e elem is a mapping from vertices to their labels and children, i.e., a function ¥fam
E x F(Stru V), for any nodey’ of V that occurs irelem(v), v' is called achild of v and
v is called theparent node of’; we say that there isparent-child edgérom v to v';

e qatt is a partial function from vertices and attribute names to a set of atomic values,
i.e., fromV x A to P(Str);

e root is a distinguished element &f, called the root of the tree.

A data tree has a tree structure. More specifically, forargyV’, there is a unique path of
parent-child edges fromvot to v. A data tree idiniteif V' is finite.

Intuitively, V' is the set of (internal) nodes of the data tree that represent elements. The
functionelem defines for each node its label (element name) and its list of children (either
string values or sub-elements). The string and sub-element children of the node are ordered.
The functionatt defines the attributes of each node. In XML, the attributes of an element

8 FAN AND SIMEON

element
attribute
LF=>id
L= idref

[—————— entn T =section

|
| isbn title publisher | sid title [»section

-
"1-55860-622-X" |"Dala on “"Morgan

1 "51"_i “Introduction” | sid ...
b ———— =1 the Web:.." Kaufmann’, _—

author author aUIiWOV fm——————— »entry author author author ...
|

"Serge "Peter "Dan | isbn title publisher "Serge "Richard "Victor

Abiteboul" Buneman" Suciu" | Abiteboul" Hull" Vianu"

—L_L__
[76=201-53771-0" |"Foundations "Addison
e ——— - of Databases" Wesley"

FIG. 1. Graph representation of an XML document

are unordered and each contains a set of atomic values. Awmnod® is called atext
nodeif elem(v) = (1, [s]), wherer is an element name ands a string. To model XML
precisely, we assume thadot and text nodes do not have attributes.

We shall use DTDs to specify the structure and semantics of data trees. Figure 1 shows a
datatree representing our book document given in Section 1. Note that the indications about
the semantics of ID/IDREF attributes assume that the corresponding DTD is available.

We shall use the following notations. For an¥ E, we useezt(7) to denote the set of
nodes labeled in V. Foranyz € V andl € A, we usez.[to indicateatt(z,), i.e., the
value of the attributé of z. We defineext().l to be U x.l. Furthermore, lefX] be

zEext(T
a list of attributegl, ..., 1,,]. We usez[X] to denote[x.ll,(..)., z.l,]. For any finite sef,
we use€|S| to denote the cardinality &f.

2.2. Document Type Definitions
We extend DTDs with constraints to capture the semantics of XML documents. We first
describe the structural specifications, and then introduce the constraint languages.

Document Structure

Inthe literature [6, 14, 32], DTDs are often modeled&atended Context Free Grammars
(ECFG9, with elements as non-terminals, basic XML types as terminals and element
definitions specified in terms of regular expressions as production rules. While ECFGs
can specify the syntactic structure of elements, they fail to describe attributes, notably the
ID/IDREF mechanism. We extend ECFGs [14] to specify attributes.

DEFINITION 2.2. A DTD structureis denoted bys = (E, P, R, kind,), where:

e FE is afinite set oklement typem E, ranged over by;

e P is a function from element types wlement type definitionsfor any r € E,
P(71) = a, wherea is a regular expression, defined as follows:

a == S, | 7]e]at+al|aala
whereS, is the (string) type of atomic values given abovec FE, e denotes the empty
word, “+” stands for union, ,” for concatenation, and«” for the Kleene closure.

e Ris a partial function fronE x A to attribute type definitionsR(r, 1) = 3, wherer
is an element name iR, [is an attribute irA andg is eitherS; or S*.

INTEGRITY CONSTRAINTS FOR XML 9

We write Att(7) for the set of attributes of, i.e.,{l € A | R(r,) is defined. An attribute
lis calledset-valuedf R(r,) = SZ, andsingled-valuedtherwise.

e kindis a partial function fronE x A to { ID, IDREF }, identifying the ID and IDREF
attributes.

We assume that for any € E andl € A, if kind(r,!l) is defined then so if(r,1).
Moreover, there exists at most one attriblytsuch thatind(r, I,) = I.D. In addition,,
must be single-valued. We used to denote the ID attribute.l,, when it exists.

e r € FE isthe element type of the root.

Without loss of generality, we assume thraoes not occur irP(7) foranyr € E. In
addition, we assume that for eacte E \ {r}, 7 is connected ta, i.e., eitherr occurs in
P(r), oritoccurs inP(r") for somer’ that is connected te.

A DTD structureS specifies the syntactic structure of a document. That is, it imposes
the following syntactic restrictions on a data tree: (1) there is a unique node, i.e., the root
of the tree, labeled with; (2) string values are labeled wify ; (3) for any element type
T, the regular grammaP(7) restricts the children of eachelementy; that is, the labels
of the children ofv must be in the regular language definediy); and (4) ar element
has an attributéif and only if R(7,1) is defined inS. More precisely, these are described
as follows.

DeriNiTION 2.3. A data tree(V,elem, att, root) conforms toa DTD structure
(E, P, R, kind, r) iff there is a mapping: : VU Str — E U {S;} such that:

e u(root) =r,

o foranysin Str, u(s) = S-,

e foranyv € V, if elem(v) = (7, [v1,. .., v,]), thent = p(v) and[p(vy), . .., p(vn)]
is in the regular language defined By7),

e foranyv € V andl € A, att(v,l) is defined if and only ifR(u(v),1) is defined.
Moreover, ifl is a single-valued attribute af, thenatt(v,[) must be a singleton set.

Document Constraints
Next, we introduce our three constraint languages.

LanguageL. The first languagdl,, intends to capture integrity constraints from relational
databases. It defines the classical key and foreign key constraints [2]. QV&ta
structureS = (E, P, R, kind, r), a constraini of L has one of the following forms:

e Key: 7[X] — 7, wherer € E andX is asetof single-valued attributes iAdtt(r). A
data tree7 satisfieghe key, denoted b§ = ¢, iffin G,
Vay € ext(r) (/\ (zl=yl) - z=y).
lex

e Foreign key: 7[X] C 7'[Y] and7'[Y] — 7', wherer,7" € E, X,Y are nonempty
lists of single-valued attributes id¢t(7) and At¢(7'), respectively, an& andY” have the
same length. We writ&f |= ¢ iff G = 7'[Y] — 7’ and in addition,

V€ ext(r) Jy € ext(r") (z[X] = y[V]).

10 FAN AND SIMEON

That is, 7[X] — 7 indicates thatX is a key ofr elements, i.e., th& -attribute value of
a7 elementv uniquely identifiesy among all the elements (7). A foreign key is a
combination of two constraints, namehyj,X| C 7'[Y] called aninclusion constraintand
akeyr'[Y] — 7'. Itindicates thatX is a foreign key of- elements referencing the k&y
of 7' elements. Note that in 7'[Y] — 7' is treated as a set.

Observe that two notions of equality are used to define keys: string value equality
is assumed when comparing attributes and y.l, and node equality when comparing
elements: andy, i.e.,z = y if and only if x andy are the same node.

LanguageL,. The purpose of languagg, is to provide a minimal extension of DTDs
that supports keys and references.Lina key may be composed of several attributes. In
XML, references are alwaysnary, i.e., via a single attribute. In addition, XML supports
IDREFS attributes, that is, attributes that are set-valued. To be as close to the XML standard
as possible, we considér constraints in which the lists (setd), Y consist of a single
attribute. We refer to such constraintassryconstraints, and write[/] asz.l. Moreover,
we study set-valued foreign keys. As observed in the last section, we need to improve the
current reference mechanism of XML with typing and scoping. Thus in contrast to the
semantics of ID attributes, we assume that a key of an element is unigue among elements
of the same type, rather than within the entire document.

Based on these considerations we defipeto contain unary constraints df as well
as set-valued foreign key constraints. More specifically, a constraiiat bfis one of the
following forms:

e Unary key constraintof: 7.l — 7.

¢ Unary foreign key constraint dt: 7.l C 7'.I' and7'.l' — 7'.

e Set-valued foreign key constraint.l Cg 7'.I' and7'.l' — 7', wherer,7’ € E, |
is a set-valued attribute af and!’ is a single-valued (key) attribute of. A data tree@
satisfies the foreign key ifff |= 7'.I' — 7’ and in addition,

V€ ext(r) (z.l C ext(r).l').

A constraint of the fornr.l Cg 7'.I" is called aset-valued inclusion constraint

A set-valued inclusion constrain Cg 7'.I’ asserts that for anyelement:, each value
in the set-valued attributeof matches the single-valuédattribute of some’ element.

Constraints ofL,,, provide a simple reference mechanism for XML that overcomes the
limitations of the original ID/IDREF mechanism by adopting the semantics of the relational
key/foreign key mechanism.

It should be noted that thi@nd function of the DTD structure is not used when defining
LandL, constraints. More specifically, ib andL,,, keys are not necessarily ID attributes
and likewise, foreign keys do not have to be IDREF attributes.

LanguageL,,. Finally, we want a language that preserves the semantic of object identifiers
of object-oriented databases. To do so, we keep the original semantics of ID attributes,
whose value is unigue within the whole document. Yet, we want to add key and inverse
constraints. To capture these, we define the langliagihat consists of constraints of the
following forms:

e Unary key constraintof: 7.l — 7.

INTEGRITY CONSTRAINTS FOR XML 11

e ID constraint: 7.id —;4 7, wherer € E, id € Att(r) andkind(7,id) = ID. A data
tree(satisfies the ID constraint iff ity

Va €ext(r)Is € Str (zid =s AVy(yid=s—z=y)).

¢ Foreign key constraintr.l C 7'.id and7'.id —;4 7', wherer, 7' € E, [is a single-
valued attribute of andkind(r,l) = IDREF'. A data treg7 satisfies the foreign key iff
it satisfies the ID constraint .id —;4 ™ and in addition,

Vo € ext(r) (x.l € ext(r').id).

e Set-valued foreign key constraintl Cg 7'.id andr’.id —;4 7', wherer, 7" € E,lis
a set-valued attribute efandkind(r,l) = IDREF. A data tre€7 satisfies the set-valued
foreign key iff it satisfies the ID constraint.id —;; 7' and in addition,

Vz € ext(r) (z.l C ext(r').id).

e Inverse constraint:7.l = 7'.I', wherer,7 € E, [,I' are set-valued attributes of
7, 7' respectivelykind(r,l) = kind(r',l') = IDREF, and moreover; andr’ have ID
attributes, i.e.7.id —;q 7 and7'.id —;4 7'. It asserts that there is an inverse relationship
between/ andl’. A data treelG satisfies the inverse constraint iff it satisfies the two ID
constraints, two set-valued inclusion constraint$.C s 7'.id andr’.l’ Cg 7.id, and

Vo €ext(r)Vy € ext(r') (z.id € y.l' < y.id € x.1).

Observe that two notions of equality are also used to define ID constraints: string value
equality is assumed when comparingd andy.id, andz = y is true if and only ifx andy
are the same node. In a foreign key constraihtC 7'.id (1.l Cs 7'.id) and7’.id —;q '
of L;4, thel attribute ofr refers to the ID attribute of’. An inverse constraint. = 7'.I'
is actually a combination of three constraints, namely, two set-valued foreign keys and an
inverse relationship specification, which asserts that forraglgmentr andr’ elementy,
if a value in the sep.l’ references the id of, then a value il references the id af; and
vice versa. Because each element type has at most one ID attribute, we assume that the ID
attributes are known when specifying an inverse constraint of

Languagd.;, improves the original XML reference mechanism by imposing typing and
scoping constraints on the attributes. It also supports inverse constraints and unary keys.
In contrast tal,, andL, it implicitly uses the functiorkind in the DTD structure to define
its constraint.

From now on, we shall refer to the constraints from one of these three languages as the
basic XML constraintsObserve that basic XML constraints are more complex than their
relational and object-oriented counterparts.

We shall use the following notation. L&l be a set of constraints ariel be a data tree.

We writeG |= ¥ if G satisfies all the constraints K, i.e., for eachyp € £, G |= ¢.

Finally, we are ready to define DTDs with constraints.

DEFINITION 2.4. A Document Type Definition with constrairf@TD®) is defined to
beD = (S, %), where:

12 FAN AND SIMEON

e Sisa DTD structure,
e Y is a set of basic XML constraints; that §,is a set ofC' constraints, wher€' is
eitherL;4, L, or L.

Given aDTDY, we define the notion of its valid documents as follows.

DEFINITION 2.5. Adatatreed isvalid w.r.t. aDTD® (S, ¥) if and only if G conforms
to the DTD structures andG = X.

2.3. Examples
We now reexamine the examples given in Section 1 and show how their semantics can
be captured by BTD®, using the constraint languaggg;, L, andL.
We start with thebook document. To specify its structure, we defin®&D¢ D =
((E, P, R, kind,r), ¥) with constraints o& in L, as follows.

= { book, entry, section, ref, author, title, publisher }

P(book) = (entry, author™, section®, ref)
P(entry) = (title, publisher)

P(section) = (title, (Sr + section)™)

P(ref) = €

P(author) = P(title) = P(publisher) = (S.)
R(entry,isbn) = R(section,sid) = S-

R(ref, to) = S;

r = book

Y = {entry.isbn — entry, section.sid — section, ref.to Cg entry.isbn}

In ¥, entry.isbn — entry andsection.sid — section are key constraints df,,,
ref.to Cg entry.isbn is a set-valued inclusion constraint, and the inclusion constraint
and the keyentry.isbn — entry make up a set-valued foreign key bf,. We can keep
the functionkind empty as we do not use the original ID/IDREF semantics. Note also the
use of a set-valued foreign key to capture the semantics of the set-vaiti@tkribute.

We next give DTD® with L;; constraints to describe the structure of pefson/dept
object-oriented databas®, = ((E,, P,, R,, kind,,r,),%,), where

E, = {db, person, dept, name, address, dname}

P,(db) = (person”, dept”)

P,(person) = (name, address)

P,(dept) = (dname)

P,(name) = P,(dname) = P,(address) = (S,)

R, (person, oid) = R,(dept,oid) = R,(dept,manager) = S
R,(person,in_dept) = R,(dept,has_staff) = S}

kind,(person, oid) = kind,(dept,oid) = ID

kind,(person, in_dept) = kind,(dept, manager) = kind,(dept,has_staff) = IDREF
ro = db

Yo = {person.oid —id person, dept.oid —;4 dept,

person.name — person, dept.dname — dept,

INTEGRITY CONSTRAINTS FOR XML 13

person.in_dept Cg dept.oid, dept.manager C person.oid,
dept.has_staff Cgs person.oid, dept.has_staff = person.in_dept }

The L;; constraints in the set, can categorized as follows: (1) two ID constraints:
person.oid —;4 person, dept.oid —;4 dept; (2) two keys:person.name — person,
dept.dname — dept; (3) two set-valued foreign keys: one is the combination of
person.in dept Cg dept.oid and dept.oid —;; dept, and the other is the pair
dept.has_staff Cg person.oid andperson.oid —;4 person; (4) a single-valued
foreign key: dept.manager C person.oid andperson.oid —;4 person; and (5) an
inverse constrairept.has_staff = person.in_dept. In Section 2.4, we shall extend
L;, to specify constraints in terms of sub-elements. Thus we do not have to regkiise
dname as attributes. Note that here we specify keys in addition to object identities.

Finally, consider theiniversity DTD given in Section 1. We use the following
constraints in languagk to specify thatdept, number) is a key ofcourse and a foreign
key ofenroll referring tocourse:

course [dept, number] — course,
enroll [dept, number] C course[dept, number].

These are multi-attribute (sub-element) constraints. Below we shall sdedbastraints
can be defined in terms of sub-elements in addition to attributes.

2.4. Sub-elements as keys and foreign keys
In the XML standard [9], sub-elements are not allowed to participate in the reference
mechanism. To be consistent with this approach, we have so far used only attributes in our
constraints. A natural question here is whether sub-elements can also be used as keys and
foreign keys. As an example, let us consider the element type definitipsrabn given
in Section 1:

<!ELEMENT person (name, address)>,

where the type ohame is S, (string). It is reasonable to assume thate is a key for
person. This was easily captured in our corresponding DTD specification/fsesbove)
by includingperson.name — person in the constraint set{,). This suggests that we
extend the definition of keys if;4. In general, letr be specified by an element type
definition P(r) = « and K be a sub-element af. We may specify keys of the form:
7.K — 7 if the following two conditions are satisfied: (X is unique inr, i.e., for any
w € L(a), K occurs exactly once im, whereL(«) is the regular language defined by
«a; (2) the type ofK is S;, i.e., P(K) = S, and therefore, in a data tree laelement is
represented as a text node. One can easily check these syntactic restrictions, for instance
using the type checking algorithm of [25]. For anglement:, we refer to its element as
z.K and the value of. K aswval(z.K). This key constraint asserts that for anglements
x andy, if they agree on the values of thdif sub-elements, i.eval(z.K) = val(y.K),
thenz andy must be the same node, i.e.= y. Observe that we again use two notions of
equality here: value equality when comparing the values offlsib-elements of and
y, and node equality when comparimgandy. We requireP(K) to be a simple type so
that one can easily compare the valuegoélements.

Along the same lines, we extend the definitions of key and foreign key constraiis in
andL to incorporate sub-elements.

14 FAN AND SIMEON

Sub-elements have also been used for key specifications in XML Schema [35] and the
key constraint language of [10]. XML Schema also assumes that sub-elements used as
keys are of simple types, while the general notion of value equality used in [10] no longer
requires sub-elements to have simple types.

To simplify the discussion, the proofs given in the paper will assume basic XML con-
straints defined in terms of XML attributes, but all the results also hold for XML constraints
defined in terms of sub-elements.

3. IMPLICATION OF BASIC XML CONSTRAINTS

In this section, we investigate the question of logical implication in connection with
basic XML constraints: given that certain constraints are known to hold, does it follow that
some other constraint necessarily holds? We examine the questiby;fdr, andL. For
each of these constraint languages, we establish complexity results for its implication and
finite implication problems. We also provide axiomatization if one exists. These results
are useful for, among others, studying XML semantics and query optimization. Some of
these results are also applicable to relational databases.

We first give a formal description of implication of XML constraints. I(&the either
L4, Ly, or L, andX U ¢ be a finite set o€ constraints. We UsE = ¢ (resp.X =, ¢) to
denote that for any (resp. finite) data treg7if= ¥ then it must be the case thatj= .

Theimplication problem foC' is to determine, given any finite sBtJy of C constraints,
whetherX |= ¢. The finite implication problem fo€' is to determine whetheét = ¢.

In this paper, we consider constraint implication that generally holds for all XML docu-
ments. The documents may conformto any DTD, ordo nothave aDTD atall. In practice, it
is common to find XML documents without DTDs. In the last section we define constraints
as part of DT D to illustrate semantic specifications for XML data. In fact we can specify
L;4, L, and L constraints independent of any DTDs, while the constraints provide certain
structural specification. More specifically, given a finite Satf constraints, lef” be the
set of all element types iB and for eachr € T', let A(7) be the set of all attributd%s such
thatr.l is in £. We assume that for anye T andl € A(r), eachr element has a unique
[attribute and moreover, we assume the following as specified in Section 2.

(1) WhenL;, is considered, we assume that each element type has at most one ID attribute
and its elements can only be referenced with the ID attribute. In additied,df 7'.id is

in ¥, thenl must be a single-valued attribute, and-if Cs 7'.id is in ¥, thenl must be
a set-valued attribute. #.l = 7'.I"is in ¥, thenl, [’ are set-valued attributes efandr’,
respectively, and moreover, bottandr' have distinguished ID attributes. The attributes
and!’ above are of IDREF kind. In a keyl — 7, [is a single-valued attribute.

(2) WhenL,, is considered, given.l C 7'.I' in ¥, we assume thdtand!’ are single-valued
attributes ofr andr’, respectively. Ifr.l Cs 7'.I" isin X, thenl is a set-valued attribute of
7 and!’ is a single-valued attribute of. In a keyr.l — 7, [is a single-valued attribute.
An attribute cannot be both single-valued and set-valued.

(3) All attributes inL constraints are single-valued attributes.

3.1. Implication of L;4 constraints
We first study the constraint languade;. In L;4, an ID constraint asserts that an ID
attribute value uniquely identifies an element within the entire document. An element has
at most one ID, and is referred to by means of its ID attribute. As mentioned earlier, this
reference mechanism is similar to the one used in object-oriented databases. Given the

INTEGRITY CONSTRAINTS FOR XML 15

semantics of ID constraints and the reference mechanism, for any elementtypess,
we have neither.id C .0 nor r1.id Cs 7».[; and moreover, we cannot have both
1.0 C m.id (Or 7.l Cg TQ.id) and .l C 13.1d (Or 7.l Cg T3.id) if 75 73. As a
result,C andCg do not have transitivity if.;4. For the same reason, we cannot have both
T1.l1 = .l andr.ly = 13.13 if 75 # 13. Also observe that we do not allowm! C 7.1 (or
7.l Cg 7.l) because by the definition of foreign keydig;, we can only reference elements
with their ID attributes, and an attribute cannot be both ID and IDREF. These syntactic
anomalies are easy to detect and thus without loss of generality, we assume that for any
setY U {¢} of L;4 constraints considered in the (finite) implication problem, constraints
with these anomalies do not occur. Recall that a foreign key always comes as a pair: an
inclusion constraint and an ID constraint.

We give a finite axiomatization, denoted By;, for implication and finite implication of
L;4 constraints as follows:

e |D-Key: Tad —iq T
Tad — T
e Inv-SFK-ID: =70

Tl Cs7'id 7'id—iq7m T Cs71id Tid—igT

e Inv-commu: rl=7.10
U s=71l
e Inv-trans: T.l1 = T’.lll T’.lll = T.lz T.lz = T’.lé

Ty = 71

To see that Inv-trans is sound, consider a datadféeat satisfies the inverse constraints
in the precondition of the rule. For anyelementd andr’ elementd’ in G, if d'.id is in
d.l1, thend.id must be ind'.l}, because (1).id isind'.l; by 7.l; = 7'.I}; (2) d'.id is in
d.ly by .17 = 1.1; and thus (3)l.id must be ind'.l; by 7.1, = 7'.1}. Similarly, if d.id
isind'.li thend'.id must be ind.l;. The other rules of;; are intuitive.

We useX +-7,, ¢ to denote thap can be proved fronx by using rules of;4, i.e., there
is anZ;4-proof of p from X.

TureOREM 3.1. (1)Z;4is sound and complete for both implication and finite implication
of L;4 constraints. (2) The implication and finite implication problems fgg coincide
and are decidable in linear time.

Proof. LetX U {¢} be a finite set of;; constraints.
(1) Soundness df;; can be verified by induction on the lengths®f-proofs. For the
proof of completeness, it suffices to construct a finite datadtee (V, elem, att, root)
such that7 |= ¥ and in addition, ifE t/z,, ¢, thenG [~ . We constructd in two steps.
We first define a finite data tre@’ = (V, elem, att’, root) such thatG’ = ¥. We then
modify G’ to construct.

To constructG’, we do the following. Lefl” be the set of all element typesihuU {¢}.
For each element typein T', we create a set af elements, denoted (7). To ensure
thatG = X, we need to enforce a certain relation on the cardinalities of these sets. To do
so we define a relatiog onT as follows:

16 FAN AND SIMEON

o7,
o7 < Ty if 3 l_l'id (Tl.l — T1) N (T1.l - TQZd),
e <mif <mandr < 73.

Using < we define an equivalence relationdn
T~ Iff 7T < T andry <.

Let [r] be the equivalence class ofw.r.t. ~. Intuitively, if we use|E(r)| to denote
the cardinality of E(7), then we need to ensut&(r)| = |E(m2)| if m ~ 7, and
|E(m)| < |E(r2)| if 1 < 2. To make this happen, let us define a topological orden
[7]'s having the following property[r] < [r»] if there arer{ € [r] andr; € [r»] such
thatr] < 75. Itis easy to see that this is well-defined. Assume that the topological order
is [11], ..., [Tx]. For eachi € [1,k] and eachr in [r;], we create + 1 elements ofr. In
addition, we create a distinct nodeot. Let V' be the set consisting of all the elements
created above. We define tBlemfunction such thatlem(root) = (r, [F(71), ..., F'(m)]),
wherer, ..., 7;, are all the element types i, andF'(r;) is a list of all elements i (7;).
For eachr; and eachi € E(7;), letelem(d) = (i, €). These define a finite data tree
in which the root has all the other elements as its children. Finally, we define the partial
functionatt’ as follows: for each € T,
(@) if X k1, T.id —;4 T, then letext(7).id be a set of distinct string values;
(b) for eachl € A(7), if £ F,, 7.l C 7'.id, then letext(7).l be a subset ofxt(r').id.
In particular, if¥ Fz,, 7.l — 7, thenletd.l # d'.l forall d,d’ € E(r). This is possible
because (i) by the definition of the relation, |ext(7)| < |ext(r")| if ¥ k7, 7.0 C 7'.id
andX +z,, 7.1 — 7; and (i) itis illegal to have both.l C 7 .idandr. C m.idif 71 # 7.
Itis to ensure these that we need to consider the cardinality dependencies in our definition
of G'. If £ b1, 7.l Cg 7'.id, then for eachl € E(7), letd.l = ext(r').id. Observe that
there is at most one’ such that® +7,, 7.l Cg 7'.id by the semantics of ID attributes.
Otherwise, letr.l be a set consisting of arbitrary (distinct) string values.

It is easy to verify thaG?’ |= X given the definition ofitt’.

Next, we construct? from G'. Suppose t/z,, ¢.
@) pisT.id =g 7. By ¥ t/1,, v, we havep ¢ X. Letd be a node inE(r). We create
another element’ of some fresh element typé such thatl’.id = d.id. LetG beG' with
the addition ofd’ as a child ofroot. Itis easy to see that |= ¥ andG = —.
(b) ¢ is 7.l — 7. By the definition ofG’, there are two distinct nodek, d> € E(7). Let
dy.l = d».l andG be G’ with this modification. Sinc& t/z,, ¢, ¢ is notinX. Moreover,
neither isr.l —;4 7 in X whenl is id, by the ID-Key rule inZ;;. ThusX does not contain
constraints of the formt’.l’ C 7.1 (or 7'.I' Cg 7.1). Given these, it is easy to verify that
G E ¥ andG E .
(c) p is a foreign keyr.l C 7'.id and7'.id —iq 7. If T /1, 7'.id —;4 7', then the
proof of (a) suffices. Otherwise we must ha¥el/z,, 7. C 7’.id. In addition, we
haveX t/7,, 7'.id C 7.1, since otherwise we would also ha¥erz,, 7.l —;4 7 by the
definition of foreign keys, and these aldtz,, 7'.id —;4 7' contradict the fact that ID
attributes are unique in the entire document. Hence we havedbgth, 7.l C 7'.id and
¥ /1,, '.id C 7.I. Thus in the definition o’ we can ensure that theredsc E(7) such
thatd.l # d'.id forall d' € E(r'). LetG be thisG’'. ThenG |= £ andG = —.
(d) ¢ is a set-valued foreign keyl Cgs 7'.id and7'.id —;4 7'. The proofis similar to that
of (c).

INTEGRITY CONSTRAINTS FOR XML 17

(e)pist.l= 1"l ByX /1, ¢ and the Inv-commu rule ifi;4, neitherp norr'.l' = 7.1
isinX. If £ t/z,, (1.l Cs 7'id) vV (7'l Cg 1.id) V (1.id =44 T) V (7".id =44 T'), then
the proof of (d) suffices by the Inv-SFK-ID rule #,. Otherwise, by the definition @',
there existd € E(r) andd' € E(r'). By the construction of’, we haved'.id € d.l by
¥ b1, 7.1 Cs 7'.id. We modifyG’ by removingd.id from d'.l'. Similarly, d.id € d'.l".
This may violate certain inverse constraints¥yfbut not other forms of constraints. To
ensure that inverse constraintSoére satisfied, if.l; = 7’.I' isin X, then we also remove
d'.id from d.l;, and so on. Observe that this will not lead to the removal’afi from
d.l since otherwise we would have had-z,, ¢ by the Inv-trans rule. Let/ be the data
tree obtained after the modifications. It is easy to verify tHaatisfies all the constraints
of ¥. However, it violates the inverse relationship betwedrandr’.l’ because there are
z € ext(r) andy € ext(r') such thaty.id € z.l, butz.id € y.I'. ThusG [~ ¢ and
GE X

Note thatG is finite. ThusZ;; is sound and complete for both implication and finite
implication of L;4; constraints. As an immediate result, these two problems coincide.

(2) We next show thal.;; constraint implication can be checked in linear time. Given a
setX U {o} of L;; constraints, we first construct a graphy, and then inspedfp to
determine whetheX = ¢. The nodes ofip are element types of T and their attributes

in A(7). The edges of/p are defined as follows. (i) For anye T andr.l € A(7), there

is an edge fromr to .I. (ii) For any¢ € X, we add edges t&/p as follows: (a) ifg is

7.l =4 T (resp.7.l — 1), then add an edge labeleds;;" (resp. “—") from 7.l to 7; (b)

if pis7.l C 7'.id (resp.7.l Cg 7'.id), then add an edge labeled™ (resp. “Cs”) from 7.1
tor'.id; (c)if pis7.l = 7'.I', then add an edge labeled™” betweenr.l and7’.l’, an edge
labeled “~ ;4" from 7.id to 7 and from7’.id to 7', and an edge labeled”s” from 7.’ to

t.id and fromr.l to 7' .id. By the syntactic restrictions df;; constraints mentioned above,
7.id and'.id are identified given an inverse constraints. By induction on the lengths of

T;q-proofs it is easy to verify the following:
Claim: X Fz,, ¢iffin Gp,

o if pis7T.l = 7'.I', then there is a path of edges labeled™betweenr.l and7'.l’,
which is length2k + 1 for some natural numbd,

o if pisT.l —;4 7, then thereis a-;;" edge fromr.l to 7;

o if pis7.l — 7, then there is an edge labeled with either™or “ — ;" from 7.l to 7;

o if pis7.l C 7'.id (resp.7.l Cg 7'.id) and7r'.id —;4 7', then there is a-;;” edge
from7'.id to " and a ‘C” (resp. “Cs") edge fromr.l to 7'.id.

As the graph can be constructed in linear time and the conditions can also be checked
in linear time, by (1), one can determine whetRel= ¢ (X = ¢) in linear time. W

From this one can see that it is rather straightforward to reason édgpabnstraints.

3.2. Implication of L., constraints
We next consider the constraint langudgg In L,,, a key constraint states that a key is
unique among the elements of the same type, rather than within the whole document. An
element may have more than one key, and is referenced by means of any one of its keys.
This constraint language provides an alternative reference mechanism for XML.
We present a finite axiomatizatidr for implication of L,, constraints as follows.

18 FAN AND SIMEON

o UK-FK: Tl
I CT.l
o UFK-trans: ML Crl ml =1 mlCmly nly—=m

T1.l1 g T3.13

e USFK-trans: 71.01 Cs Ty Ty = T To.lo c 7303 T3.03 = T3

Tl.ll gs T3.l3

In contrast tal;4, we have transitivity rules (UFK-trans, USFK-trans) foandCg in L,,.
However, observe that we do not have the rulet;if; C m.l> andn.l> Cg 73./3 then
71.l1 Cg 73.13. Thisis because key attributes cannot be set-valued.

Cosmadakis, Kanellakis and Vardi have shown [20] that in relational databases, impli-
cation and finite implication of unary inclusion and functional dependencies are different
problems. In other words, (the complement of) implication of these dependencies does not
have the finite model property. In addition, for any fixed intelgehere is nds-ary axiom-
atization for finite implication. Instead, there ixgcle rulefor each odd positive integer.
This is also the case fdr,. Thisis because keys and foreign keys impose dependencies on
the cardinalities of finite sets of attribute values. More specifically, for any finite dat&'tree
that satisfies at,, constrainty, if ¢ is a keyr.l — 1, then|ext(7)| = |ext(r).l|, and ifp
is aforeign keyr1.11 C 1.l andry.ls — T, then|€.ﬂl’t(7’1).ll| < |€.’L’t(’l’2).l2| = |€.’L’t(’l’2)|.

As a result, for finite implication of,,, we also have cycle rules: for each positive integer
k, there is a cycle rule Ck:

ndi o1 i Crlly nly—on o Tl o TRA, CTl Tl o7

ndi—=mn Rl Cndi o TRl =1 T Cogldg

It is worth mentioning that the Ck rules are a little different from those in [20] since each
element type; involves two attributeg; andl} in a Ck rule. As a result they do not require
k to be odd.

LetZ] consist ofZ, rules and Ck for each positive integerWe use> l—L{ p todenote
that there is artf -proof of from X, and¥ 7, ¢ to denote that there is ah,-proof of
e from X.

Turorem 3.2. (1) Z{ is sound and complete for finite implication bf constraints.
(2) Z,, is sound and complete for implication bf, constraints.

Proof. Soundness df; (Z,) can be verified by induction on the lengthsZdff-proofs
(Z,-proofs). For the proof of completeness, given any finitéset{ ¢} of L,, constraints.
we construct a finite data trée = (V, elem, att, root) such thatG |= ¥ and in addition, if
b |7[I£ v (Z 2, ¢), thenG £ . As in the proof of Theorem 3.1, we constrdein two
steps: we first define a finite data tr@é = (V, elem, att’, root) such thatG’ = %, and
then modifyG’ to constructG. LetT be the set of element types that appeaXio {¢},
andS bethese{r.l | T €T, € A(1)}.

(1) We first consider finite implication. For eaghe T, we create a finite set of
elements, denoted (7). As mentioned earliet,,, constraints impose dependencies on

INTEGRITY CONSTRAINTS FOR XML 19

the cardinalities of these finite sets. To capture these, we first define an equivalence relation
~ on the single-valued attributes 6f

Tl.ll NTQ.lz iff E"L{ (Tl.ll g’l’g.lz)/\(’rg.lz g’l’l.ll).

Let [.l] denote the equivalence classrafw.r.t. ~. Intuitively, if 71.l; ~ 7».l2, then we
need to ensurext(ry).l; = ext(m).ls, i.e.,{z.ly |z € E(n)} = {y.la |y € E(r)}.
Observe that byf and the definition of foreign keys, X I—If 71.l1 C 1.05, thenthere must
beX |_Z-f Ta.ly — 9. ThUS|E(T1)| = |€.’L’t(’l’1) l1| = |€1‘t(7’2) lz| |E(T2)| if 7.0y ~ 7.l
forsomell andl,. Thisis, however, not enough to ensure that the cardinality dependencies
are satisfied. Thus dnm.l]'s we define another equivalence relatien|r; .[;] = [12.l2] iff
there arer.l € [1y.l1], 7.l' € [m2.l3] suchthal + 1! 7.l —- randX 1! r.l' = 7. Thatis,
bothl and!’ are a key of- elements, but.l andr’ l’areln[n 1]and[rz lz] respectively. As
aresultjext(r).l| = |E(7)| = lext(r).l'|. Let{[r.l]} be the equivalence class|ofl] w.r.t.

~. Intuitively, if [11.0;] = [m2.l2], then we need to ensufert(r).l;| = |ext(r).l2] Since
ext(r).l; = ext(r).l andext(r2).lo = ext(r).l'. Finally, for each set-valued attribute

of r1, let{[r.l1]} be asingleton set consistingqfl, . Given these, we define a topological
order < on {[r.l]}’s such that (a) ifX I—If T1.ly C my orX® I—If Ti.li Cg .05,
then{[r;.l;]} < {[r2.l2]} unless{[r1.l;]} = {[r2.l2]}; and (b) if¥ ¥/;s 7.l — 7 and

E by .l = 7, then{[r.]} < {[r.l']}. It can be verified that the relations, ~ and<
are well-defined by using, among others, the Ck and UFK-trans rulgs amd the syntax
of L, constraints. Assume that the topological ordef[is ./;]}, ..., {[7.lx]}. For each

i € [1,k] and[r.l] € {[r;.l;]}, we create a settr[r.]] of distinct string values such that
foranyr'.l € [r.l], ext(r").l' = str[r.l], and in addition, for anyr.l], [7".l'] € {[r;.l;]},
|str|r.l]| = |str[r'.l']]. Todo so, we proces$r;.l;]} fori from1to k as follows. Initially,

let str[r.l] be empty for allr.l. For each[r.l] € {[r;.l;]}, we incrementstr[r.l] such
that it is a set of (at least two) distinct string values with at least one new string value
not considered so far. This ensures thia{r.l] # str[r.l'] if 7. £ 7.I'. In addition, let
|str[r.0]| = |str[r’.l']| for any other[r’ Il € {[r:.l;]}. We then propagatetr|r.l] such
that for any[r".l'], if ¥+, 7.0 C 7'.l" or ¥ k- 7.1 Cs 7.1, thenstr[r.]] is a subset
of str[r'.l']. More specifically, by the definition of, /.’ must be in somé|r;.l,]} for
somej > ¢, and thus we can incremestt[7'.l'] by includingstr[r.l] when processing.!

in the loop. Given these, we defid&(r) for eachr € T'. Letn, be the cardinality of the
largest settr[r.l] for all I € A(r). We createn, distinct elements of and letE(r) be
the set consisting of theseelements. By the cardinality argument, it can be verified that
|str[r.l]] = nraslongags F,; 7.l = 7,i.e.,|ext(r).l| = |E(7)|. Inaddition, we create a
distinct noderoot. We define’ as follows. Lefi” be the set consisting of all the elements
created above. We define thliemfunction such thatlem(root) = (r, [F(11), ..., F(m2)]),
wherery, ..., 7,, are all the element types ifi, and F'(r;) is a list of all elements it (7;).
For eachr; and eachi € E(r;), letelem(d) = (;, €). These define a finite data tree
in which the root has all the other elements as its children. Finally, we define the partial
functionatt’ as follows: for eachr € T andl € A(r), if [is a single-valued attribute,
then letext(r).l be str[r.l] and for eachi € E(r), letd.l be a single string value. In
particular, if¥ I—L{ 7.l — 7, then for anyd,d' € E(r), letd.l # d'.l. This is possible
because the constructionGf satisfies the cardinality dependeneyt(r).l| = |E(7)|. If

[is set-valued, then let.! = str[r.l], which is a set. Given the definition 6F, it is easy

to verify thatG' = .

20 FAN AND SIMEON

We next construaty from G’. Supposet /s .
(@) p is 7.l — 7. By the definition of&’, there are two distinct nodes,d> € E(1). We
defineG by changingd;.l in G’ such thatd;.l = d».l. SinceX |7‘If p, g isnotinX.
Moreover, for anyr'.l', ¥ s 0" C rlandX I/, s 7'l Cg 1.l by the definition of
foreign keys and’/ rules. Given this, it is easy to verlfy that = ¥ andG = —o.
(b) ¢ is a foreign keyr.l C 7'.I'" and7'.l' = 7/. If © |7/If 7'.l' — 7', then the proof
of (a) suffices. Otherwise we must ha¥el/;, 7.l C 7'.I'andX Frs 7' = 7. We
assume that.l andr’.l" are single-valued since otherwise by the syntazpbonstralnts
one cannot write.] C 7'.I'. We show that in’, e:::t().l € ext(r').l'. By the definition
of G, this happens if and only if |7/If 7.1 C 7'.I'. Indeed, in the population process
above, if{[r.[]} # {[7".l']}, thenstr|r. l] C str[r'.l'] if and only if ¥ -, 7.0 C 7'.0".
If {[r.0]} = {[r'.lI']}, thenstr[r.l] C str[r".l'] if and only if either® I—If Tl crl
ory I—If 7'.I' C 7.l. Butin both cases we would havd ~ 7'.I' by the Ck rules and
UFK-trans, which impliesS b, 7.0 C 7".I". Thereforeext(r).l £ ext(r').l'in G'. Let
G beG'. ThusG [¥ andG |: —p.
(c) p is a set-valued foreign keyl! Cs 7'.1" and7'.l' = 7'. If ¥ i/, 7'.I' = 7', then the
proof of (a) suffices. Otherwise we must have/,, 7.1 Cg 7.1 Blil the definition ofG’
above,str[r.l] has a distinct string value that is iﬁcludeds'm[n 1] foranym .l only if
Y ks 7.l Cs 1y Henceitis notirezt(r'.l'). LetG beG'. ThusG |= X butG |~ .

(2) We next consider implication af,, constraints. If we allow infinite data trees, then
keys and foreign keys no longer impose dependencies on cardinalities of sets of attribute
values. In other words, the cycle rules Ck no longer apply. As in the proof of (1), we
define an equivalence relatien on S by means of-7,. We define a topological order
on[r.I]'s such thatifX Fz, 7.0y C .o or X bz, 7.0y Cg To.ls, then[r.l1] < [12.05]
unless[r.l1] = [12.l2]. As in the proof of (1), we definetr[r.l] for eachr.l € S, and

let str[r.l] be a subset oftr[r'.l'|if Lz, 7.l C7'.l'or ¥ ¢, 7.l Cg 7'.I'. However,

here we letstr[7.l] be a countably infinite set of distinct values, and we create a countably
infinite set E(7) of 7 elements for eachr € T. We define a data tre@’ such that

for eachr € T, ext(r) = E(7). The rest of the proof is similar to the proof of (1)m

UsingZ, andZ;, we can develop a linear-time algorithm for testing implicatiorLof
constraints, and a linear-time algorithm for testing finite implicatiol ptonstraints.

TuEOREM 3.3. The implication and finite implication problems fby, are both decid-
able in linear time, but these problems do not coincide.

Proof. The cycle rules Ckiff] showthat (the complement af), constraintimplication
does not have the finite model property, and thus is different from finite implicatidr of
constraints. To prove this, consider= {r.ly — 7, 7.y C 7.ls, 7.lo — 7} and lety
ber.l, C 7.ly andr.ly; — 7. By the Ck and UK-FK rules id{: and Theorem 3.2, we
haveX =y ¢. However,X [~ ¢. Indeed, letG be a data tree such that {%, ext(7)
has countably infinitely many elements:d,,d,, ..., and for each, d;.l; = i + 1 and
d;.ly = i. ThusG = X butG £ ¢.

We next show that for any finite subsBtU {¢} of L, constraintsX |=; ¢ can be
determined in linear time. Implication @f,, constraints is similar and simpler.

INTEGRITY CONSTRAINTS FOR XML 21

By Theorem 3.2, it suffices to show thatt-,, ¢ can be determined in linear time. As
in the proof of Theorem 3.1 (2), we first construct a graph, calledi#p=ndency graph
of ¥ U {y} and denoted b¥7p. LetT be the set of all element types ;iU {¢}. The
vertices ofG p are element types &f and attributes ofi(7) for all = € T'. The edges of
Gp are defined as follows. (i) For eache T andr.l € A(7), there is an edge fromto
7.1l labeled withr.l. (ii) For each¢ € X, we add the following edges G p: (a) if ¢ is
7.l = 7, then add an edge labelees” from r.[to 7, and an edge labeled®” from r.[
to itself; (b) if ¢ is 7.1 C 7'.I', then add an edge labele®™ from 7'.l' to 7.I; (c) if ¢ is
7.l Cg 7'.l', then add an edge labeled §” from 7.’ to 7.[. We can verify the following
claim by an induction on the lengths &f -proofs:

Claim: X '_I:f piffin Gp,

o if pis7.l — 7, then there is a~” edge fromr./ to 7;

eif pistl C 7'.I'"and7'.l'’ —» 7', thenX I—If 7'.l' — 7' and moreover, one of the
followmg conditions is satisfied: (a) either there is a path®f &dges fromr'.l' to 7.1, or
(b) there is a path of2” edges fromr.l to 7'.1'’ and moreover, there is a path frarhi’ to
7.0 in which all edges are labeled wit”, “* =" or 7./, whereX I—L{ T1.l1 — 11

e if pisT.l Cg 7'.l"and7r’.l' — 7/, thenX I—L{ 71" = 7 and moreover, there is .[;
such that2 I—L{ 7.1y C 7'.I' and there is adgs" edge fromr;.l; to 7.1.

It takesO(|X| + |¢|) time to construct the grapfp. By the claim, we can test whether
¥ ks ¢ by inspectingG'p. This also take$)(|X| + |¢|) time. Thus by Theorem 3.2,

whetherX |=; ¢ can be determined in linear timem

To be even closer to the original XML semantics for ID attributes, we consipliémery
key restriction This restriction requires that for any element typehere is at most one
attributel such that is a key ofr, i.e., 7.l — 7. Elements ofr can only be referred to
by using theirl attributes. As a result, the cycle rules do not apply here. In addition, we
cannot have botl .l; C 7.l andry.ly C 7.I"if [# I'. In relational databases, it is also
common to consider primary keys.

The primary key restriction simplifies the analysis/qf constraint implication. Indeed,
the implication and finite implication problems féx, coincide in this setting.

CororLLARY 3.1. Underthe primary key restrictiorT,, is sound and complete for both
implication and finite implication of.,, constraints.

Proof. Under the primary key restriction, the cycle rules C&jmno longer apply. Thus
7} andZ, become the same. The proofis similar to that of Theorem 3.2 (1), except that there

is no need to define the equivalence relatiohere. ®
It is easy to verify that a similar result also holds for relational databases.
CoroLLARY 3.2. In relational databases, the implication and finite implication prob-

lems for primary unary keys and foreign keys coincide and are decidable in linear time.

These results show that in the absence of DTDs, implication analydis obnstraints
is similar to their relational counterpart and can be done efficiently.

22 FAN AND SIMEON

3.3. Implication of L constraints
Next, we investigate the constraint languadge In L, one can express multi-attribute
keys and foreign keys that are common in relational databases. As observed by [35], these
constraints are also of practical interest for native XML data.
The analysis of. constraint implication is, however, nontrivial.

TueoreM 3.4. The implication and finite implication problems fbrare undecidable.

This result also holds for relational databases.

TueorEM 3.5. Inrelational databases, the implication and finite implication problems
for key and foreign key constraints are undecidable.

This can be proved by reduction from the implication and finite implication problems
for inclusion and functional dependencies, which are well-known undecidable problems
(see, e.g., [2] for a proof). Below we give a proof sketch of Theorem 3.5. Theorem 3.4 can
be verified by reduction from the (finite) implication problem for keys and foreign keys in
relational databases.

Proof. LetR be a relational schema, which is a collection of relation schemas. For
a relation schem#, we useAtt(R) to denote the set of all attributes & Functional
dependencies (FDs) and inclusion dependencies (IDsfoaes expressed ds: X — YV
andR,[X] C R»[Y], respectively, wher®, R;, R, are relation schemas R, X,Y in the
FD are sets of attributes iAtt(R), and R, [X], R»[Y] denote lists of attributes dt;, R»,
respectively. We us&[X] — R to denote thaX is a key forR, whereX is a subset of
Att(R). Thatis,R : X — Att(R). A foreign key is a pair consisting of an ID and a key:
R1[X] C Ry:[Y]andR»[Y] — R». Itis known that it is undecidable to determine, given
any relational schemR, any set: of FDs and IDs oveR and a FDf overR, whether
L =6 (X f 6. See, eq., [2]). Letus refer to this problem as the (finite) implication
problem for FDs and IDs. We prove Theorem 3.5 by reduction from this problem. To do
so, we encode FDs and IDs in terms of keys and foreign keys as follows.

(1)FDé =R : X — Y. LetZ be akey forR, i.e., R[Z] — R (note that every relation

has a key, e.g., the set of all the attributes of a relation is a key of the relation). We define a
new relation schema&,,.,, such thatdtt(R,e,) = XY Z, i.e., the union ofY, Y and Z.
Observe thaK'Y Z is a key forR as it contains the keg. We encodé with:

¢1 = Rnew[X] i Rnewr ¢2 = R[XY] g Rnew[XY]y
¢3 = Rpew[XY Z] C RIXY Z], ¢1 = Rpew[XY] = Rpew.

(2)ID 6 = R1[X] C R2[Y]. Let Z be a key forRy, i.e., R2[Z] — R,. We define a new
relation schem,,.,, such thatd¢t(R,..,) = Y Z. Observe thal” Z is a key forR; as it
subsumes’. We encodé with:

¢1 = Rnew[Y] — Rnew: ¢2 = Rl [X] g Rnew[Y]a ¢3 = Rnew[YZ] g R2[YZ]

We next show that the encoding is a reduction from the (finite) implication problem
for FDs and IDs to the (finite) implication problem for keys and foreign keys. Given a
relational schem®, a setX® of FDs and IDs oveR, and a FDd = Ry : X — Y overR,
as described above we encadevith a set®; of keys and foreign keys, and encatieith

INTEGRITY CONSTRAINTS FOR XML 23

¢ =R?, ,[X]— R’ $2 = Rg|XY] C RY,,[XY],

new new? new

¢3s=R? [XYZ)C Ry[XYZ], ¢s=R’, [XY]— R’

new new new*

whereR? . is the new relation introduced when codifigLet X' = %, U {¢2, ¢3, B4}

Observe thaty; is a key of R? ,, and XY Z is a key of Ry. Recall that a foreign key

new

consists of a key and an ID. Thus it suffices to show that
LSE6 iff X Eér.

Let R’ be the relational schema that includes all relation schem&sas well as new
relations created in the encoding. We show the claim as follows.

(1) Assume thatthereis a (finite) instaia# R such thal = A ¥ A—-6. We show that there
is a (finite) instanc# of R’ such thal’ = A ¥’ A —¢,. We construct’ such that for any
Rin R, the instance oR in I is the same as the instanceRin |. We populate instances
of new relationsR,,.,, created in the encoding as follows. (a)f,.., is introduced in the
encoding ofa FDR : X — Y as above, then we let the instang,, of R, inI’ be a
subset ofllxy z(I) such thalllxy (I) = lxy (Inew) @N0Lew = Rpew[XY] = Ruews
where! is the instance oR in | andIly (I) denotes the projection dfon attributed¥’.
(b) If R,.c., is introduced in the encoding of an IR, [X] C R»[Y] as above, then let the
instancel .., of R, in 1" be a subset ofly 4 (I>) such thaflly (1) = Iy (I,.) and
Lew = Ruew[Y] = Ruew, Wherel, is the instance oR, in |. One can easily verify that
we indeed havé = A\ X' A —¢;.

(2) Suppose that there is a (finite) instaficef R’ such that’ |= A £’ A—¢,. We construct
a (finite) instance of R by removing froml’ all instances of new relations introduced in
the encoding. It is easy to verify thRt= A X A —6.

Therefore, the encoding is indeed a reduction from the (finite) implication problem for

FDs and IDs. This completes the proof of Theorem 3 1.

The undecidability result suggests that we consider the primary key restrictidn for
constraints. That is, in a set considered.iwonstraint implication, for any element type
7, one can specify at most one key, either as a key or as part of a foreign key. Under
this restriction, one cannot specify two foreign key$X;] C 7[Y], 7[Y] — = and
72[Xs] C 7[Y'], 7[Y'] — 7 at the same time if the two sel§ andY"’ are not equal.
Similarly, one cannot specify a foreign ke X| C 7[Y], 7[Y] — rand akeyr[Y'] — 7
if the two setsY” andY”’ are not equal. When the primary key restriction is imposed, we
refer toL constraints as primary keys and foreign keys. In the (finite) implication problem
for primary keys and foreign keys, we consider finiteSet { ¢} of L constraints in which
there is at most one key for each element type.

The primary key restriction simplifies reasoning abbutonstraints. Indeed, under this
restriction, implication and finite implication df constraints become axiomatizable. More
specifically, we present an axiomatizationas follows:

o PK-FK:
TX] =71

7[X] C 7[X]

24 FAN AND SIMEON

e PFK-perm: for each list, i, ..., i,, Of distinct integers i1, ..., n],

Ty, loy oo L] C T, 0, o L) T 0, U] = T

Tlliyy ligy vy L,] ST 15 ooy 1]

217 12

e PFK-trans: nX]CnlY] nY]-n nlY]Cn[Z] w[Z]—

n[X] C 13[Z]

We useX. -7, ¢ to denote thap can be proved fronx by using rules of,,.

THEOREM 3.6. Under the primary key restrictior,, is sound and complete for both
implication and finite implication of constraints.

By Theorem 3.6, the implication and finite implication problemsKaroincide and are
decidable under the primary key restriction.

Proof. Soundness af, can be verified by induction on the lengthsQfproofs. To
prove the completeness 6§, consider a finite sef U {¢} of primary keys and foreign
keys inL. It suffices to construct a finite data tréesuch that7 |= ¥ and moreover, if
¥ ¥z, ¢, thenG £ . As in the proof of Theorem 3.1, we defifieto be the set of all
element types irE U {p}. We constructG based onp and¥ as follows. Assume that
YWz, ¢
(1) p is a keyr[X] — 7. We create two distinct elements: andb such that[X] and
b[X] are alist of 0's, and thug X'] = b[X]. In addition, for eaclh € A(r)\ X, leta.l =0
andb.l = 1. We useV to denote the set of vertices@ Initially, let V' = {a,b}. We add
elements td” using the procedure given below.

repeat until no further change to
if ¥ l_Ip Tl[Y] g TQ[Z]
then for each elementd; of in V'
(1) create a» elementd, such that
dx[Z] = di[Y] andds.l = 1foralll € A(r) \ Z;
(2) V :=V U {d.} if there is nor» elementd in V
such thatll = dy.lforalll € A(7);

The procedure terminates sin€eis finite and moreover, only 0 and 1 are used as string
values of the attributes involved. Finally, we add a distinct nage to V' and define a
finite data tree7 such that the set of vertices®is V' and the root node af is root. In
addition,root has all the other elementsinas its children and any node excepbt does
not have any children. Obviously [~ ¢ because,b are inV, a # b anda[X] = b[X].
We next show thaf? |= . Assume, by contradictiody [~ ¢ for someg € X.

() If ¢ is akeyr [Y] — 71, then there are two distine{ elementsi;, d» € V such that
d,[Y] = d»[Y]. By the primary key restriction, if there existin T'and a listZ of attributes
in A(rz) suchthakl k7, 7[Z] C 71 [W], then the two setd” andY” must be equal. Indeed,
by 7,, and the definition of foreign keys, it is easy to see that iz, m[Z] C 7, [W] then
there must b& -z, 7, [W] — 7, and moreovers -z, mi[W] — 7 iff 7 [W] = 7 isin
Y. Thus by the primary key restriction, We haié= Y. If iy # 7, then the procedure for

INTEGRITY CONSTRAINTS FOR XML 25

populatingV” vertices (by the conditionin (2)) ensures that for apglementsly, ds € V,
d1[Y] # d2[Y]. This contradicts the assumption.7if = 7, consider the following cases.
If Y = X, then this contradicts the assumption thafz, ¢. If Y # X, then this violates
the primary key restriction, which again contradicts the assumption.
(i) If ¢ is a foreign keyr [Y] C ®[Z] andm:[Z] — 72, consider the following cases. If
G £ 12[Z] — 7, then the proof of (i) suffices. Now assurel~: m[Y] C 7»[Z]. Then
there exists a; elementd; such that for any» elementd,, d[Y] # d»[Z]. However, by
¥ k7, m[Y] C m»[Z] and the procedure for populatifigvertices, this cannot happen.
This shows that whea is a key,Z,, is complete fo = ¢ andX = .

(2) pis aforeignkeyr; [X] C n[Y]andn[Y] = m. If ¥ iz, [Y] — 72, then the proof
of (1) suffices. Assum& k7, n[Y] = 7 butX V7, 7i[X] C w[Y]. We create a
element such thau[X] is a list of 0's, and forany € A(m) \ X, a.l = 1. LetV = {a}
and we add elements 6 using the procedure given in (1). Givén, we construct a
finite data tree7 as in (1). The proof of (1) can show thét = . We next show that
G £ n[X] C Y] If 1 # 7, then byX /7, 7i[X] C 7[Y] and the PFK-perm
and PFK-trans rules iff,, no m» elementd is created by the procedure of (1) such that
a[X] = d[Y]. If m = m, consider the following cases. ¥f = X, then this contradicts the
assumption thal I#z, ¢ by the PFK-FK rule. IfY” C X or X C Y, thenr, [X] C 1[Y]
are not syntactically correct becauseandY” have different lengths. Thus ¢ X and
X € Y. Inthis case, we hawg X] # d[Y] for anyr; elementd created by the procedure
for populatingl” becausé t/z, 1[X] C 71[Y]. Thus we must havé' = 71 [X] C n»[Y].
This showsZ,, is also complete foE |= ¢ andX |=; ¢ wheny is a foreign key.

This completes the proof of Theorem 3.6m

This result also holds for relational databases.

CoroLLARY 3.3. In relational databases, the implication and finite implication prob-
lems for primary keys and foreign keys coincide and are decidable.

Proof. The rules ofZ,, are still sound for (finite) implication of primary keys and foreign
keys in relational databases, with slight syntax modification. The only concern here is that
in relational databases, only value equality is used for defining keys. More specifically,
consider a relation schenfd, a key R[X] — R, and an instancé of R. Let Att(R)
be the set of all attributes dR. ThenI satisfies the key iff for all tuples,, ¢, in I, if
t1[X] = t2[X] thent,.l = to.0 forall I € Att(R) \ X. In contrast, keys for XML are
defined using two notions of equality, namely, value equality when comparing attributes
values and node equality when comparing vertices, as described in Section 2. To cope with
the semantics of keys in relational databases, we need to refine the definition of the primary
restriction as follows: a set of keys and foreign keys is said to peimary iff for any
relationR, (1) there is at most one s&t C Att(R) such thatR[X] — R is in X (either
as a key or as part of a foreign key); (2)R{X] — R is in X, thenX does not include
R'[Y] C R[Z] for any relation schem®' andZ = Att(R). We also need another rule:
R[Ztt(R)] — R for any relationR. Let us refer to the set consisting Bf rules and this
rule asZ;;. ThenZ; is sound and complete for implication and finite implication of primary

keys and foreign keys in relational databases. The proofis similar to that of Theorem 3.6.

26 FAN AND SIMEON

These results show that it is not feasible to reason about multi-attribute keys and foreign
keys, even in the absence of DTDs. Although implication analysis ebnstraints is
decidable under the primary key restriction, its precise lower bound remains open.

To our knowledge, no previous work has studied the interaction between (primary) keys
and foreign keys in relational databases, and the results established here extend relational
dependency theory.

4. |IMPLICATION OF PATH CONSTRAINTS

Navigation paths are commonly used in XML query languages (e.g., [17, 22, 34, 19]).
Constraints defined in terms of paths are useful for, among other things, query optimization.
Let us refer to such constraints jpath constraints In this section, we study implication
of certain path constraints by basic XML constraints. More specifically, we examine three
forms of path constraints, referred to@ath functionalinclusionandinverse constraints
To do this, we first describe the notion of paths. We then define path constraints and
investigate their implication by basic XML constraints. In this section we assume that
basic XML constraints are expressediyy,.

4.1. Paths

A pathis a string in(E U A)*. In a data tre€7, a path represents labels of nodes in
a parent-child path. For example, paths in Figure 1 inclusiék . entry, book.author,
andbook.ref.to.author. Observe that we treat attribute as a reference fromeef
element toentry elements.

To be precise, we give a formal definition of paths. Edte a finite set of.;; constraints.
Referring to data trees that satidy we specifithe set of paths associated with an element
typer, denoted byaths(r). Moreover, for anyx € paths(r), we specifythe type of,
denoted byype(r.a). These are defined as follows.

e The empty path is in paths(r) andtype(r.€) = 7. We writer.e simply asr.
e Assumex € paths(t) andtype(r.a) = 7.

— For any element type, € E, a.7» is in paths(7) andtype(r.a.12) = 7.

— For any attributé € A, .l is in paths(7). If there exists an element type such
that eitherX = 71.0 C mid or ¥ |E 1.l Cg m.id, thentype(r.a.l) = 1. Otherwise
type(r.a.l) = S;.

Intuitively, if an attributel is a foreign key ofr; elements referencing elements, then
we treat the attribute of ar; element as an “edge” (or “edges”) from theelement tor,
elements. As aresult, a path may traverse across different subtrees of a data tree.

By the definition ofL;;, one can easily verify that for any € paths(7), there is a
uniquer’ such thattype(r.c) = 7'. That is,type(r.c) is well-defined. To show this,
observe that for any element type and attributd, there is at most one element type
such that® = 1.l C .idor X = 1.l Cg 12.4d. This is because, by the definition of ID
constraints inL;4, an ID value uniquely identifies an element within the entire document.

For example, referring to ouwsook document depicted in Figure 1, assume that the
following setX, of L;; constraints is given:

entry.isbn —;4 entry, ref.to Cg entry.isbn,

INTEGRITY CONSTRAINTS FOR XML 27

then we haventry.ref.to € paths(book) andtype(book.entry.ref.to) = entry.

Thelengthof a in paths(7), denoted by«|, is defined as followsja| = 0 if a = ¢;
|a| = |aa| + 1if a = ay.np, wherer is either an element type or an attribute.

We call « in paths(r) a null pathif « is of the forma;.n.as, whereas # € and
type(t.aq.l) = S;. Null paths are not meaningful when traversal following the paths is
considered. Thus in the sequel we assume all paths considered are not null.

For any data tre€ that satisfies, any noder € ext(r) in G and pathx € paths(r),
we definethe set of vertices reachable framvia «, denoted byiodes(z.«), as follows.

e If a = ¢, thennodes(z.a) = {z}.

e If « = .71 andn is an element type, then for apye nodes(z.53), the children ofy
labeled withry are innodes(z.a).

e If o = (.1 andl is an attribute, we consider the following cases.

— If type(r.8.1) = S, then for anyy € nodes(z.3) and any string value € y.l, z
iS innodes(z.q).

— If type(r.03) is an element type; andX |= 71.0 C m.id (resp.X = 1.0 Cg T2.id)
for some element type;, then for anyy € nodes(z.3) and any vertex labeledr, such
thatz.id = y.l (resp.z.id € y.1), z is innodes(z.c).

We useext(7.cr) to denote the set of nodes reachable froslements by followingy, i.e,
ext(r.a) = U nodes(x.a).

z€ext(T)

4.2. Path constraints

Next, we define path constraints and investigate their implicatioi. hyconstraints.
As in Section 3, we consider implication and finite implication that hold for any XML
documents independent of DTDs. That is, given any finiteSsef L;; constraints and
a path constrainp, whether for any (finite) data tre&, if G = ¥ thenG | ¢. Letus
useX |= ¢ andX |=; ¢ to denote implication and finite implication, respectively. We
study the (finite) implication problem for path functional, inclusion and inverse constraints,
defined as follows.

Let X be a finite set of;; constraints and we consider data trees that safisfy
Path functional constraints. A path functional constrainp is an expression of the form
7. — 7.3, wherer is an element type, and, § € paths(r). A data tree satisfiesp,
denoted by = o, iffin G,

Vaz,y € ext(r) (nodes(z.a) #Z 0 A nodes(z.a) = nodes(y.a)) —
nodes(z.3) = nodes(y.5)).

That is, for allT elements: andy, if they agree on the nodes reachable by following path
«, then they must also agree on the nodes reached by follogingote that only node
equality is used when defining path functional constraints.

For example, referring to theook document given in Section 1, a path functional
constraintp is book.entry.isbn — book.author, which states that the isbn of an entry
of a book determines the authors of the book.

Suppose that theook document satisfies the sBt) of L;; constraints given in Sec-
tion 4.1. A natural question is whether the document must also satisfyin general,

28 FAN AND SIMEON

given a finite se® of L;; constraints, we want to know whether some path functional
constrainty is (finitely) implied byX. That is, whetheE = ¢ (X =7). We refer to
this question as (finite) implication of path functional constraintdly constraints. In
ourbook example X, = ¢o (X0 =5 o) indeed holds, which is an instance of the (finite)
implication problem for path functional constraints by; constraints.

About these implication and finite implication problems we have the following result.

TueoreM 4.1. Forany finite sek of L;4 constraints and any path functional constraint
¢, whether® = ¢ (X =7) is decidable inO(|X| |¢|) time, wherdX| and || are the
lengths ofE andp, respectively.

Proof. We first define a notion of key paths. Lgtbe a finite set of.;; constraintsy
be an element type andbe inpaths(r). We calla akey pathof 7 w.r.t. X if one of the
following conditions is satisfied. (I} = ¢; (2) a = «a;.11, a1 is a key path ofr andr;
is an element type; (3} = a;.l, oy is a key path ofr, type(r.a1) = 7 and moreover,
Y E n.l — 7, ie.,lis akey attribute of,. Observe that by the ID-Key rule i,
and Theorem 3.1, if is the ID of 1, then it is also a key attribute of . For example,
entry.isbnis a key path obook whereasntry.refer.tois not. Intuitively, for any
x,y € ext(r) in a data tree satisfyingY, if z andy agree on some nodes reachable by
following a key path, then: andy must be the same node, becausé&irthere is at most
one parent-child path from a node to another. This can be easily verified by induction on
the length of a key path.

To prove Theorem 4.1, it suffices to show the following claim.

Claim: Let p = 7.a — 7.6. ThenX |= ¢ (X |=¢ o) iff either (1) 8 = a.a/, or (2)
a = p.a', 8 =p.p, pis either a list of single-valued attributes or a key path cinda’
is a key path ofype(7.p) w.r.t. .

For if it holds, then one can determine whethel= ¢ andX |=; ¢ by checking these
conditions, which can be done (|| |X|) time, by Theorem 3.1.

We next show the claim.

If 8 = a.d/, then by the definitions of path functional constraints and the notation

nodes(z.8), G = ¢ for any data tre€. Now suppose that there issuch thatx = p.o/,
B8 = p.f', andd’ is a key path ofype(r.p). Consider a data tre@ that satisfie. If
p is a key path ofr, thenqa is also a key path of. In this case, for any,y € ext(r),
if nodes(z.at) = nodes(y.a) in G, thenz = y by the discussion above. ffis a list of
single-valued attributes, then for amyy € ext(r), there exist unique,y; in G such
thatnodes(z.p) = {z1} andnodes(y.p) = {y1}. If nodes(z.a) = nodes(y.a), then we
havez; = y; sinced’ is a key path ofype(r.p). Thusnodes(z.8) = nodes(z;.5") =
nodes(y,.0') = nodes(y.(3). HenceX |= ¢ andX |=; o.

For the other direction of the claim, suppose that the conditions of the claim are not
satisfied. We show that there is a finite data tiee (V, elem, att, root) such thaG = X
butG [~ ¢. Thatis,X }~ ¢ andX ¢ . To do so, we construa¥ as in the proof
of Theorem 3.1, except the following. Létbe|a| + |3|. For each element typg in
¥ Uy, let V have at leask + 1 elements ofr’. This is possible by the construction
given in the proof of Theorem 3.1. Letandy be two distinctr elements, and assume
a =mn....n,. If g is an element type;, then we choose two distinet elementsz;
andy; in V and defineelem(z) = (7, [z1]) andelem(y) = (7, [y1]). If m1 is an attribute

INTEGRITY CONSTRAINTS FOR XML 29

[andtype(r.m1) = 71, then we choose two distinet elementss; andy, in V' and let
att(x,l) = {z;.id} andatt(y,l) = {y1.id}. By assumptiong is not a null path, thug;
has only the two cases discussed above. In the same way we pypaesdindz;, y;. Let

x, andy, be the two nodes (or string values) finally reached. We let y,,. This may
result in the collapse aof,,_; andy,_; into the same node if,, is an element type, and
so on. But it will lead to the collapse afandy into the same node asis not a key path

7. In other words, there i< n such thatz; _; # y;_1 wheren; is an attribute. We then
process patl# in the same way starting fromandy. Here we reuse nodes, y; created
earlier only if necessary, i.e., only wh@rstarts withn; ; wheren; is a single-valued
attribute. It is possible to find elements not used earlier since we X¥avel manyr
elements for each element type Letz!, andy,, be the two nodes (or string values)
reached after processitig Here we letz], # y,.. Thisis possible only if none of the two
conditions in the claim is satisfied, as we assumed. Finally, we create a distinctqaode
and letroot has childrernz, y and all nodes that have not yet been assigned a parent. With
slight modification to the construction given in the proof of Theorem 3.1, we can d&fine
such thatlG = X. By our constructionpodes(z.cc) #) andnodes(z.ct) = nodes(y.c).
However, Observe thatodes(z.3) = {z!,}, nodes(y.8) = {y.,} andz!, # y!,. Thus

G £ ¢. ThereforeX £ ¢ andX [, . This completes the proof of Theorem 4.1

Path inclusion constraints. Along the same lines, we defingpath inclusion constraint
p to be an expression of the form.a; C 7.2, Wherer, 7, are element types, and
oy € paths(m), az € paths(rz). A data tree7 satisfiesp, denoted by |= o, iffin G,

ext(ry.aq) C ext(ma.az).

Thatis, any nodes reachable by following pathfrom =, elements can also be reached by
following a from = elements. Again only node equality is needed here.

In particular, observe that when path is the empty path, path inclusion constraints
have the formr,.a; C 7. Constraints of this form describe typing information.

For example, for ousook document, path inclusion constraints include:

(1 = book.entry.ref.to C entry, ¢ = book.entry.ref.to.title C entry.title.

Recall the seE, of L;, constraints given above. We halig = ¢1 A2 (X0 =7 @1 Ap2),
which are instances of the (finite) implication problem for path inclusion constrairitgby
constraints.

Implication and finite implication of path inclusion constraints by, constraints can
also be determined efficiently.

TueoREM 4.2. For any finite set¥ of L;; constraintsX and any path inclusion
constraintp, whetherE |= ¢ (X =5) is decidable inD (|| |Z|) time.

Proof. Lety = 1.1 C 72.c0. First observe that ifype(r.a1) # type(rs.az), then
as in the proof of Theorem 4.1, one can construct a finite dat&ti®ech thaG |= ¥ and
G £ ¢, following the construction given in the proof of Theorem 3.1. ThaEig ¢ and
T [~f . This can be determined ii(|o| |X|) time by Theorem 3.1. Below we assume
type(m1.c1) = type(r2.a2) = 7. Consider the following inference rules:

30 FAN AND SIMEON

e ICL:ifXFyg,, 7l C7'idorE bg,, 7.l Cg 7'.id, thent.l C 7',

e IC2: a.7 C 7 for any patha and element type.

e IC3: if a C 7.0’ andr'.a' C 7., thent.a C 7.0/,

e IC4: if r.a C .o thent.a.8 C 7'.&/.3 for any pathgs.

e IC5: if X kg, Tl > TATV 57T ATICrddA Tl C1.id, thent C 7.1 and
7' C 7.l in the finite case.

The condition of IC5 asserts that in the finite caset(7)| = |ext(r).l| = |ext(r').l'| =
lext(7")| and thus byr'.l' C 7.id andr.l C 7'.id, we haver C 7'.I' andr’ C 7.l. LetZ;.
denote the set consisting of IC1, IC2, IC3 and IC4, ﬁfgdje the set of all the rules above.
To prove Theorem 4.2, it suffices to show the following claims.

Clam 1: ¥ | ¢ iff ¥ Fz,. ¢, andX |=f @ iff £ ., o, whereX k7, ¢ (E ;1)
denotes that there is &p.-proof (Il.fc-proof) of p from X.

Claim 2: ¥ Fz,, ¢ iff a1 = a.ap andtype(ri.a) = 1. Moreover,X ., ¢ iff there
exist an element type’ and pathsaj, of and « such thata; = of.q, s = ab.a,
type(ri.a)) = 7" andX F,; 7' C m.ah. In the latter case, we say thais acommon
suffixof a; andas. -

For if these hold, then wheth&r |= ¢ can be determined by checking whether for some
a, a; = a.ap andtype(r.a) = 7o. By Theorem 3.1, this can be done@|y| |X|) time.
To determine whethet =, ¢, we only need to check the conditions for finite implication
given in Claim 2. To do so, a dependency graph similar to the one given in the proof of
Theorem 3.1 (2) can be constructed, and these conditions can be checked by inspecting the
graph. Again this can be done @(|¢||X]|) time. Below we prove the claims for finite
implication. The proof for implication is similar.
(1) We first show Claim 1. The soundnessfﬁ can be verified by induction on the
lengths onZfC—proofs. For completeness, we show by inductione that if £ =, ¢
thenX F; . More specifically, we show that K 7, ¢, then there is a finite data tree
G such thaG = ¥ butG I o. h
Induction basis.We first considefa;| = 0 and show the claim by induction dn|. If
|aa| = 0, then for any data tre€, G = p only if 7, = 7. Butif i, = 7y then¥ - ¢
by IC2, which contradicts our assumption. Assume the clainjder= k. We show that
the claim also holds for, = «.n, wheren is an element type or an attribute. Assume
type(T2.0)) = 7'. We can construct a finite data tréen which there is a; element that
is notinext(m.az) exceptwhen (8 = 7' C m.ad, and (b) there exists drattribute of
nsuchthat b7, .l = 7' AT'.p = 7' ATl C 7'id AT .y C 11.id. More specifically,
G can be constructed by first creatinganpath emitting from ar, elementy, and then a
71 elementz in the same way as in the proof of Theorem 4.1. One can ensur€'that
andz ¢ (y.az) if either (a) or (b) is not satisfied. Given (a), by the induction hypothesis,
Y ks 7 C .. Given (b), by IC5, we hav& ., 71 C 7'.np. Thus by IC4 and IC3,
we havex ks, which again contradicts our assumption. Hence Claim 1 holds when
|OL1| =0.
Inductive step. Assume the statement fda;| = k. We show that the statement also
holds fora; = a}.m, where|a)| = k andn, is either an attribute or an element type.
Assumetype(r;.af) = 7{. Asin the proof of Theorem 4.1, with slight modification to the
construction given in the proof of Theorem 3.1, one can construct a finite da@,tseech
thatG; | ¥ and moreover, there existra elementz, ar{ elementy and ar elementz

INTEGRITY CONSTRAINTS FOR XML 31

such thaty € nodes(z.af) andz € nodes(y.n1). If |az| = 0, thenz € ext(r.a2) only

if either (@)1 = 72, or (B)X 7, 71.m C m.id or X bz, 71.m1 Cs m».id. However,

if so thenX F; ¢ by IC2 in case (a) and by IC2, IC4, IC1 and IC3 in case (b). This
contradicts ourwassumption. Next we assume= ob.n2, wWheren, is either an attribute

or an element type. We consider the following cases. (i) Asstimig; 71.a) C To.avh.

If ;= 12, then by IC4, we hav& I, ¢, which contradicts the assumption. Assume
m # n2. In Gy, we can make ¢ ea:ltc(rz.a2) except wher = 7 C mp.a0. By the
induction hypothesis, iE |= 7 C 73.az thenX -y 7 C m.as. Thus by IC2 and IC3,

we haveX |- . Again this contradicts the assumption. Thus the statement holds in this
case. (i) Assume& ;s m.of C 1.a5. Then by the induction hypothesis, there exists
a finite data treé7, such thatG, = ¥ andG, £ n.af C m.af. Hence there exist a

71 elementz and ar{ elementy such thaty € nodes(z.a}) buty ¢ ext(m.ab). Again

as in the proof of Theorem 4.1, with slight modification to the construction given in the
proof of Theorem 3.1, one can construct a finite data @éfeom G, such thatG E X,

G E n.af € 7.a4 and moreover, there ismelement: such that: € nodes(y.n). We

can makez ¢ ext(ms.az) except wherk |= 7 C 75.a4, which leads to contradiction as
shown in the proof of (i). Thus the statement also holdgdqi = k + 1. This completes

the proof of Claim 1.

(2) We next show Claim 2. First assumag = o).a, ay = o)., type(r.a)) = 7', and
) I—If 7' C 7p.cfy. We showX I—If v. It suffices to show that ifype(r.a)) = 7’ then
P I—If .oy C 7' for if it holds, thens I—If o by IC3 and IC4. This can be verified by
induction onjaj|. Indeed, ifla| = 0thenZ I—If m1.a) C 7' by IC2. Assume that it holds
for || = k. We show the statementfof = a’l.cn, wherela/| = k andp is an elementtype
or an attribute. If; is an element type, then it must beby the definition Oftype(ﬁ.a'l).
ThusX 77 Ti- oy C 7' by IC2. If nis an attribute, assumgpe(r,.a') = 7{. By the
induction hypothe5|s we have I—If 71.a/ C 7{. Again by the definition ofype(7.a}),
we must have Fz,, 1.9 C 7' ddors Fz,, 1.n Cs 7'.id. By IC1, % I—If . CT.
ThusY ks m.of C 7' by IC4 and IC3. Conversely, we show I—If o then
there are pzeclthal, ab anda such thatey; = of.a, as = ab.q, type(r.af) = 7, and
Y ks ' C 1.ab, by induction on the length of théf -proof. For induction basis, either
IC1, IC2 or IC5 is applied in the proof and the statement obviously holds in these cases.
Assume that the statement holds fgf-proofs of lengths less than We next show that
the statement also holds fﬁ{c-proof of lengthk. Now suppose that +; ¢ is proved
by using IC3, i.e., by first showing +_; 7i.a1 C 13.03, S by 73.05 C 5.2 and then
by applying IC3. By the induction hylf)othesis, there are p&hw&, af, af, a anda’
such thatv; = o} ., az = af.a, type(r.a)) = 71, & |_Z-f 7 C 13.05, ag = of.a

ay = ab.a, type(rs.af) = 15 andy I—If 75 C To.0h. We need to consider the foIIowmg
cases. (ax = B.od/. Observe thatype(ﬁ o .B) = type(r{.B) = type(rs.af) = T4.
Thus byX s 15 C m2.a5, o is @a common suffix ofy; anda,, and thus the statement
holds in this case. (b}’ = B.a. By type(rs.aff) = 75, we haveX I—If T3.0f C 7.
Moreover, bya = of .3, ¥ I—If 71 C 13.04, IC4 and IC3, we hav& I—If 1 C 715.0.
Hence by s 7 C m.a5, IC4 and IC3, we hav& Frrom C m.ah. ﬂ Moreover,
type(m.af) = l’li{, a; = of.aandas = ob.f.q, e, «a is'a common suffix ofy; and
as. Thus the statement also holds in this case. Next, suppos@thgi p is proved

32 FAN AND SIMEON

by using IC4, i.e., by showin@ F,; 71.0] C m.ay, a1 = o}.3, az = a5.3 and
then by applying IC4. By the induction hypothesis, there are paths! anda’ such
thata) = of.a, oy = aj.a, type(ri.af) = 7" and¥ F,; 7' C 7.a4. Obviously,
a; = of.a.f andas = of.a.8, i.e., a.f is a common suffix ofy; andas. Thus the
statement also holds f(ﬁ;.fc-proofs of lengthk. This completes the proof of Claim 21

Path inverse constraints.A more general form of inverse constraints is defined as follows.
A path inverse constrainp is an expression of the form.a; & m.a», Wherery, 7» are
element typesq; € paths(m) andas € paths(rz). It states an inverse relationship
between paths,.«c; andr.as. We say that a data tre@ satisfiesp, denoted byG = ¢,

iffin G,

Vo € ext(n)Vy € ext(m) (y € nodes(z.ay) ¢ = € nodes(y.az)).

As an example, let us consider element typesrse, student, andteacher. Suppose
thatstudent has an attributeaking, teacher has an attributeeachingand in addition,
course has attributesaken by andtaught_by. Theng given below is a path inverse
constraint:student.taking.taught by = teacher.teaching.taken by. Assume the
following basic inverse constraints in;;:

student.taking = course.taken by, teacher.teaching = course.taught_by.

Then these (finitely) imply the path inverse constraint
The complexity of implication and finite implication of path inverse constraint& fy
constraints is given as follows.

TueoreM 4.3. For any finite set of L;; constraints and any path inverse constraint
@, whetherE |= ¢ (X =5 @) is decidable inD(|X]| ¢]) time.

Proof. Assume thatp is 11.a1 & .o, type(ri.c1) = 71 andtype(ry.az) = T3
w.r.t. ¥. First observe that if{, 7, are some element types htjt# = andr} # 7, then
ext(r1.aq) andext(rs) are disjoint, an@xt(m.«2) andext(r;) are disjoint. In this case,
by the definition of path inverse constraints, for any data fe¢bat satisfies:, we must
haveG |= . Otherwise, if eithet] # 7, or7} # 7, one can always construct a finite data
treeG such thatlG |= ¥ butG [~ . These cases can be easily determined by examining
types of the paths involved, and can be don@{X| |¢|) time by Theorem 3.1. Below we
assumer; = 1» andr}, = 71. In this case, lef;,, be the set consisting of the following
inference rules:

e Invl: 7= .

e Inv2: if T1.0éll = TQ.Oélz andX l_Iid TQ.lQ = T3.13, thenﬁ.a’l.lQ = T3.l3.a12.
To prove Theorem 4.3, it suffices to show the following claim:
Claim: £ = ¢ (X =y o) iff £+, ¢, i.e., thereis ad;,,-proof of o from X.

For if it holds, then one can determine whetBef= ¢ (X = ¢) by examining whether
each corresponding pair of labelsin andasy has an inverse relationship. By Theorem 3.1,
this can be done iO(|X] |¢|) time.

INTEGRITY CONSTRAINTS FOR XML 33

We next show the claim. [E Fz, , ¢, then by induction on the length of t1%,,,-
proof one can verify thak |= ¢ andX =, . Conversely, assumg t/z, . ¢, we
construct a finite tre€? such thatG = ¥ but G [~ ¢. In other words,X [~ ¢ and
X s . We give the construction aF as follows. As in the proof of Theorem 4.1, we
can generalize the construction given in the proof of Theorem 3.1 to define a finite data tree
G such thatG; | ¥ and in addition, there arg elementz andr, elementy such that
nodes(z.a1) = {y} if |a1| # 0. We show thati can be constructed by modifyirdg, , by
induction on|a; |.

Induction basis.First considefa;| = 0. If . = 75 and|az| = 0, thenX 7, . ¢ by
the Inv1 rule inZ;,,, which contradicts our assumption. |[Hs| = 0 but, # 7, then
type(r2.cy) = T2 # 11, Which contradicts our assumption. |H»| # 0, then we can
modify the children or attribute definition of the nodes in the pathfrom y such that
x € nodes(y.az) butz # y (i.e.,y & nodes(z.ay)), without affecting the satisfaction of
Y. This can be verified by a straightforward induction|en|. Let G be G; with this
modification. TherG = ¥ butG [~ . Thus the claim holds fgky; | = 0.

Inductive step.Assume the claim fofa| = k. We show that the claim also holds for
a; = o}, where|aj| = k andn, is either an element type or an attribute. Assume
type(mi.af) = 7. If ay = ¢, then the argument fdex;| = 0 can show that there is a
finite treeG such thaiG = X butG [~ ¢. Now assumex, = 1.0, whererns is either
an element type or an attribute. Assumge(m.n2) = 7'. We consider the following
cases. (1) Ifr # 7/, then we can modify the children or attribute definitionyoin G,
such thatnodes(y.n:) = {z} butz & nodes(z.«,) without affecting the satisfaction of
¥, wherez is at’ element. Again, this can be verified by induction|ef)| with slight
modification to the construction given in the proof of Theorem 3.1.(Eé&k G, with this
modification. TherG | ¥ butG [~ . (2) Assumer = 7'. By assumptionY. t/z,, ., .
Thus either t/z, , 1.a] = 7T.0b or L /7, 7.1 = T2.12, Since otherwise the Inv2
rule in Z;,, showsyX k7, . . Firstassum& t/z, m1.a) = 7.o). By the induction
hypothesis, there is a finite data tr€g such thatG, E ¥ but G, £ m.af = 1.0).
Thus there exist; elementz andr elementz such that either: € nodes(z.a}) but

z & nodes(xz.a}), Or z € nodes(z.a)) butz & nodes(z.aly). We modifyGs such that
nodes(z.m1) = {y} andnodes(y.n2) = {z} for somer, elementy without affecting
the satisfaction ofS. This is possible because there are more than7oesp.)
elements by the construction given in the proof of Theorem 3.1, and thus we can switch
the assignment of children or attribute ofresp. y) with other elements. Le&f be G,
with this modification. Ther@ = X butG £ ¢. Next assumé& bz, . 7. = T.04
but¥ t/z,, 7.m1 = m.12. Consider a node € nodes(z.a) in G, which must exist by
our construction of7;. We can find another element:’ such thatwodes(z.m1) = {y}
andnodes(y.n2) = {z'}, wherey is the r» element innodes(z.c;) as given in the
construction ofG; above. By the same argument given above, this is possible without
affecting the satisfaction df. Let G be G; with this modification. TherG | X but

G ¥~ . Thusthe claim holds fdey; | = k+1. This completesthe proof of Theorem 4 &

inv

5. CONCLUSION
We have proposed an extension of XML DTDs that specifies both syntactic structure
and integrity constraints for XML data. The semantics of XML documents is captured
with simple key, foreign key and inverse constraints. We have introduced several classes

34 FAN AND SIMEON

of constraints useful either for specifying native XML documents or for preserving the se-
mantics of data originating in structured databases. In addition, these constraints improve
the XML reference mechanism with typing and scoping. We have investigated the impli-
cation and finite implication problems for these basic XML constraints, and established a
number of complexity and axiomatizability results. These results not only are useful for
XML applications, but also extend relational dependency theory, notably, on the interaction
between (primary) keys and foreign keys. We have also studied path functional, inclusion
and inverse constraints and their implication by basic XML constraints.

It should be mentioned that we only investigated constraint implication that generally
holds independently of DTDs. This allows us to study XML documents that do not come
with a DTD, and simplifies our proofs. As indicated in [12], integrity constraints may
interact with schema (DTDs) and the interaction may not be simple. As a result, constraint
implication may have widely different complexities in the presence and absence of a
schema, and our proof techniques no longer apply in the typed context. Recently, (finite)
implication of XML constraints has been studied [24] in the presence of DTDs.

On the theoretical side, a number of questions are still open. First, it can be shown that
(finite) implication of multi-attribute primary keys and foreign keys is in PSPACE. Can this
be tested more efficiently? Second, we only investigated implication of path constraints by
basic constraints. Implication of path constraints by path constraints has not been settled.
Third, more expressive key and foreign key constraints have been proposed for XML in,
e.g., XML Schema [35]. The implication and finite implication problems associated with
these constraints are still open, especially when they are considered in the presence of DTDs
or types for XML data. On the practical side, we believe that the approach proposed here is
promising. The basic constraints are simple and importantenough to assume that they could
be adopted by the XML designer and maintained by the system. One topic for future work
is to study constraints in data integration [18], which is an important application of XML. In
this context, natural questions are how constraints propagate through integration programs,
and how they can help in verifying the correctness of the programs. Furthermore, we only
proposed three independent languages, while data integration would require a framework
that encompass all of these constraints.

ACKNOWLEDGMENT

We thank Peter Buneman, Richard Hull, Leonid Libkin and Frank Neven for helpful discussions. We would
also like to thank the referees for valuable comments. Wenfei Fan is currently on leave from Temple University
and is supported in part by NSF grant IS 00-93168.

REFERENCES
1. S. Abiteboul, S. Cluet, T. Milo, P. Mogilevsky, J. Sdon, and S. Zohar. Tools for data translation and
integration.|[EEE Data Engineering Bulletin22(1):3-8, 1999.
2. S. Abiteboul, R. Hull, and V. Vianuroundations of Database#\ddison-Wesley, 1995.

3. S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitiverotreedings of ACM
SIGMOD Conference on Management of Daiages 159-173, Portland, Oregon, June 1989.

4. S. Abiteboul and V. Vianu. Regular path queries with constraitgarnal of Computer and System Sciences
(JCSS)58(4):429-452, 1999.

5. J. Barwise. On moschovakis closure ordindtsurnal of Symbolic Logjc42:292-296, 1977.

6. C. Beeri and T. Milo. Schemas for integration and translation of structured and semi-structured data. In

Proceedings of International Conference on Database Theory (ICRaDes 296-313, Jerusalem, Israel, Jan.
1999.

~

10.

11.

12.

13.

14.

15.
16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36

INTEGRITY CONSTRAINTS FOR XML 35

. E. Borger, E. Géadel, and Y. GurevichThe Classical Decision Problenspringer, 1997.

. A. Borgida. On the relative expressiveness of description logics and predicate kdifisial Intelligence
82(1-2):353-367, 1996.

. T.Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. W3C Recommen-
dation, Feb. 1998http://www.w3.org/TR/REC-xml/.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XMIPrdneedings of International
World Wide Web Conference (WW\Wages 201-210, 2001.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys for XRtbcéedings of
International Workshop on Database Programming Languages (DBRIOL.

P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type constr&irdseéaings of ACM
Symposium on Principles of Database Systems (PQi28¢s 5667, Philadelphia, Pennsylvania, May 1999.
P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured datdbases.of Computer
and System Sciences (JCSH)2):146—-193, 2000.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning on XML documents: a
description logic approachlournal of Logic and Computatio®(3):295-318, June 1999.

R. G. Cattell.The Object Database Standard: ODMG 2Morgan Kaufmann, 1997.

J. Clark and S. DeRose. XML Path Language (XPath). W3C Working Draft, Nov. 1999.
http://www.w3.org/TR/xpath.

J. Clarke. XSL transformations (XSLT). W3C Recommendation, Nov. 1H339.: / /www.w3.0org/TR/xs1t.

S. Cluet, C. Delobel, J. Sgon, and K. Smaga. Your mediators need data conversionPrdoeedings of

ACM SIGMOD Conference on Management of Datages 177-188, Seattle, Washington, June 1998.

S. Cluet and J. Sigon. YATL: a functional and declarative language for XML. Draft manuscript, Mar. 2000.
S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi. Polynomial-time implication problems for unary inclusion
dependencieslournal of ACM 37(1):15-46, Jan. 1990.

A. Davidson, M. Fuchs, M. Hedin, M. Jain, J. Koistinen, C. Lloyd, M. Maloney, and K.Schwarzhof. Schema
for Object-Oriented XML 2.0. W3C Note, July 199Bttp://www.w3.org/TR/NOTE-SOX.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. XML-QL: A query language for XML.
W3C Note, Aug. 1998http://wuw.w3.org/TR/NOTE-xml-ql.

A. Deutsch, L. Popa, and V. Tannen. Physical data independence, constraints, and optimization with uni-
versal plans. IrProceedings of International Conference on Very Large Databases (V,i2B¥s 459-470,
Edinburgh, Scotland, Sept. 1999.

W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.Ptoceedings of ACM
Symposium on Principles of Database Systems (POpg)es 114-125, Santa Barbara, California, May
2001.

M. F. Fernandez, J. Seon, and P. Wadler. A semi-monad for semi-structured dataPrdceedings of
International Conference on Database Theory (ICO3gges 263-300, London, UK, Jan. 2001.

D. Florescu, L. Raschid, and P. Valduriez. A methodology for query reformulation in CIS using semantic
knowledge.International Journal of Cooperative Information Systems (IJC5%)):431-468, 1996.

E. Gadel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order |Bgiltetin

of Symbolic Logic3(1):53-69, Mar. 1997.

C.Haraand S. Davidson. Reasoning about nested functional dependereieseftdings of ACM Symposium

on Principles of Database Systems (POO#iges 91-100, Philadephia, Pennsylvania, May 1999.

M. Ito and G. E. Weddell. Implication problems for functional constraints on databases supporting complex
objects.Journal of Computer and System Sciences (JCE%)):165-187, 1995.

O. Lassila and R. R. Swick. Resource Description Framework (RDF) model and syntax specification. W3C
Recommendation, Feb. 1999ttp://www.w3.org/TR/REC-rdf-syntax/.

A. Layman, E. Jung, E. Maler, H. S. Thompson, J. Paoli, J. Tigue, N. H. Mikula, and S. De Rose. XML-Data.
W3C Note, Jan. 199&ttp://wuw.w3.org/TR/1998/NOTE-XML-data.

F. Neven. Extensions of attribute grammars for structured document querzecéedings of International
Workshop on Database Programming Languages (DBpages 99-116, 1999.

L. Popa. Object/Relational Query Optimization with Chase and BackchaB&aD thesis, University of
Pennsylvania, 2000.

J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). Workshop on XML Query Languages, 1998.
H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema. W3C Working Draft, May
2001.http://www.w3.org/XML/Schema.

. J. D. Ullman.Database and Knowledge Base Syste@mmputer Science Press, 1988.

