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Integrity constraints have proved fundamentally important in database manage-

ment. The ID/IDREF mechanism provided by XML DTDs relies on a simple form

of constraints to describe references. Yet, this mechanism is sufficient neither for

specifying references in XML documents, nor for expressing semantic constraints

commonly found in databases. In this paper, we extend XML DTDs with several

classes of integrity constraints and investigate the complexity of reasoning about

these constraints. The constraints range over keys, foreign keys, inverse constraints

as well as ID constraints for capturing the semantics of object identities. They im-

prove semantic specifications and provide a better reference mechanism for native

XML applications. They are also useful in information exchange and data integra-

tion for preserving the semantics of data originating in relational and object-oriented

databases. We establish complexity and axiomatization results for the (finite) impli-

cation problems associated with these constraints. In addition, we study implication

of more general constraints, such as functional, inclusion and inverse constraints

defined in terms of navigation paths.
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1. INTRODUCTION

XML (eXtensible Markup Language [9]) has emerged as the standard for information
exchange between Web applications. It offers a convenient syntax for representing data
from heterogeneous sources, but provides little semantic information. To specify the
semantics of XML data, a variety of approaches have been proposed: type systems [6,
18, 21, 31, 35], description logics [14], meta-data descriptions [30], etc. As some of
these proposals [21, 31, 35] point out, integrity constraints are important for semantic
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specifications of XML data. In addition, they are useful for query optimization [23, 26],
update anomaly prevention [2], and for information preservation in data integration [1, 18].
Integrity constraints are also used to model references in relational databases, through keys
and foreign keys.

Integrity constraints are traditionally part of a schema specification. Document Type
Definitions [9] (DTDs) offer the so-called ID and IDREF attributes to identify and reference
an element within an XML document, in a way similar to relational keys and foreign keys.
However, ID and IDREF attributes are not expressive enough to capture semantic constraints
such as keys, foreign keys and inverse constraints commonly found in databases, or to model
object-style references. XML Schema [35] supports a complex form of keys and foreign
keys defined with XPath [16] expressions. However, XPath is rather complex and as a
result, reasoning about constraints defined with XPath is highly intricate, if not impossible.

In response to these problems, we propose several constraint languages for XML that
are both expressive enough for practical applications and simple enough to allow efficient
reasoning. More specifically, we make the following contributions:

� We introduce a model for XML data with schema and integrity constraints. We propose
L, Lid andLu, three basic constraint languages that provide both a reference mechanism
and better semantic specifications. LanguageLu is a minimal extension of the original
ID/IDREF mechanism. Constraints ofLid andL are to capture semantic constraints when
data originates in object-oriented and relational databases, respectively.
� We study the implication and finite implication problems for these three languages.

For each language, we provide complexity results and axiomatization when one exists.
The results forL extend relational dependency theory. Notably, the implication and finite
implication problems for arbitrary keys and foreign keys are shown to be undecidable, but
they become decidable when only primary keys and foreign keys are considered.
� We investigate implication of more general forms of constraints, including functional,

inclusion and inverse constraints defined in terms of navigation paths, by basic constraints
of Lid. Such path constraints have a variety of practical applications, ranging from query
optimization to verification of the correctness of integration/transformation programs.

As this work is motivated by the need for integrity constraints in practical XML appli-
cations, we first illustrate several important application contexts and the limitations of the
current ID/IDREF mechanism.

The ID/IDREF mechanism, constraints and references.As a concrete example, consider
an XML document about books:

<?XML version = "1.0">

<bib>

<book>

<entry isbn="1-55860-622-X">

<title>Data on the Web</title>

<publisher>Morgan Kaufmann</publisher>

</entry>

<author>Serge Abiteboul</author>

<author>Peter Buneman</author>

<author>Dan Suciu</author>

<section sid="1">

<title>Introduction</title>
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...

<section sid="11"><title>Audience</title>...</section>

...

<ref to="0-201-53771-0 1-55860-463-4"/>

</book>

<book>

<entry isbn="0-201-53771-0">

<title>Foundations of Databases</title>

<publisher>Addison Wesley</publisher>

</entry>

<author>Serge Abiteboul</author>

<author>Richard Hull</author>

<author>Victor Vianu</author>

...

</book>

</bib>

For eachbook, itsisbn,titleandpublisherare given in anentry element, followed
by a list ofauthor elements, the book content and a set of bibliographical references (in a
ref element). This document conforms to the following DTD:

<!ELEMENT book (entry, author*, section*, ref)>

<!ELEMENT entry (title, publisher)>

<!ATTLIST entry

isbn ID #required>

<!ELEMENT section (title, (#PCDATA|section)*)>

<!ATTLIST section

sid ID #required>

<!ELEMENT ref EMPTY>

<!ATTLIST ref

to IDREFS #implied>

A DTD defines element types and attributes for each element. We omit the descriptions
of the elements whose type is string (e.g.,#PCDATA in XML). An ID annotation indicates
that the corresponding attribute should uniquely identify an element in the entire document,
i.e., it is unique among all ID attributes. AnIDREF(S) annotation indicates a reference, i.e.,
it should contain a (set of) value(s) of some ID attribute(s) present in the document.

Observe that the ID/IDREF mechanism is similar to both the object-identity based notion
of references from object-oriented databases [3] and to keys/foreign keys from relational
databases. On the one hand, like object identifiers, ID attributes uniquely identify elements
within the whole document. On the other hand, as XML has a textual format, the reference
semantics is achieved with implicit constraints that must hold on attribute values, in the
spirit of relational keys and foreign keys. Yet, it captures neither the complete semantics
of relational keys and foreign keys nor that of object-style references. For instance,isbn

should be a key forentry. Its representation as an ID attribute indeed makes it unique, but
among all the ID attributes in the document. This is too strong an assumption, preventing
other elements, e.g.,books, from using the same isbn number as a key. Worse still, the
scope and type of an ID/IDREF attribute are not clear. Theto attribute, for instance, could
contain a reference to asection or anauthor element. One has no control over what
an IDREF reference points to. Obviously, we would like to constrain such references to
entry elements only.
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We can resolve these problems by changing slightly the constraints on the attributes
involved. More specifically, we can (i) treatisbn (resp.sid) attribute as a key forentry
(resp. section) elements, which uniquely identifies an element among the elements
of entry (resp. section), as opposed to all elements in the entire document; (ii) add
an inclusion constraint as part of a foreign key, asserting thatref.to is a subset of
entry.isbn, where�:l stands for the set ofl attribute values of all� elements in a
document. That is, for anyref elementx and each valuev of theto attribute ofx, there is
anentry elementy such thatv matches theisbn attribute value ofy. Observe thatisbn
is a key ofentry and thus theto attribute is a foreign key ofref that referencesentry
elements. These constraints can be expressed in our languageLu.

Capturing the semantics of legacy repositories.XML is mainly used for data exchange.
As a consequence, a large amount of XML data originates in relational or object-oriented
databases, for which keys, foreign keys and inverse relationships [2, 15] convey a fun-
damental part of the information. Consider, for instance, the following object-oriented
schema (in ODL syntax [15]):

class Person

(key name)

f attribute String name;

attribute String address;

relationship set<Dept> in dept

inverse Dept::has staff; g

class Dept

(key dname)

f attribute String dname;

attribute Person manager;

relationship set<Person> has staff

inverse Person::in dept; g

On top of the structure specified by the schema, we have the following: (1)name and
dname are keys for thePerson andDept classes respectively, and (2) there is an inverse
relationship betweenPerson.in dept and Dept.has staff. That is, (1) no distinct
Person objects can have the samename attribute value; similarly fordname of Dept; and
(2) for anyPerson objectp andDept objectd, if d is one of the departments in whichp
works, (i.e.,d is in the (set) attributein dept of p), thenp is a staff ofd (i.e.,p is in the set
has staff of d), and vice versa.

When exporting this object-oriented database to XML, the following DTD could be
generated, in an attempt to preserve the semantics of the original schema:

<!ELEMENT db (person*, dept*)>

<!ELEMENT person (name, address)

<!ATTLIST person

oid ID #required

in_dept IDREFS #implied>

<!ELEMENT dept (dname)>

<!ATTLIST dept

oid ID #required

manager IDREF #required

has_staff IDREFS #implied>



INTEGRITY CONSTRAINTS FOR XML 5

Here the original ID semantics is appropriate to capture the notion of object identifiers [3]
(the oid attributes). However, references through IDREF are rather weak: as IDREF
attributes are “untyped”, we no longer know that thein dept attribute of apersonelement
should reference a department (adept element). In addition, as in the previous example,
keys are not precisely captured (here we cannot even specifyname anddname with ID
attributes as XML only allows a single ID attribute for each element type). Furthermore,
we have no way to express the inverse relationships in a DTD. One wants to overcome
these limitations while preserving the semantics of the original notion of object identities.
To do so, we specify the following constraints: (i)name anddname as keys for persons and
departments, in addition tooid as an ID constraint to capture the original semantics of ID
attributes; (ii) foreign keys to assert thatperson.in dept (resp.dept.has staff) refers
to departments (resp. persons) only; (iii) an inverse constraint betweenperson.in dept

anddept.has staff. These can be expressed in our languageLid.
As another example, consider a DTD which is translated from a relational schema:

<!ELEMENT university (student*, course*, enroll*)>

<!ELEMENT student (SSN, name, GPA)>

<!ELEMENT course (dept, number, credit)>

<!ELEMENT enroll (sid, dept, number, grade)>

We would like to capture the following semantic constraints of the relational database:
(i) SSN is a key ofstudent, f dept, numberg is a key ofcourse, f sid, dept, numberg
is a key ofenroll; (ii) sid of enroll is a foreign key referencing (SSN of) student,
and (dept, number) is a foreign key ofenroll referencingcourse. That is, one wants
to express typical relational keys and foreign keys by means of multi-attributes, as well as
constraints on certain sub-elements. These can be specified in our languageL.

Implication problems for XML constraints and related work. A key question [2] in
connection with integrity constraints for XML is about their (finite) implication: given any
finite set� of constraints, is it the case that any (finite) document that satisfies� must also
satisfy some other constraint? The (finite) implication problem is important if we want to
reason about XML constraints as we do in databases. Among other things, it is useful in
query optimization and data integration [26, 33].

There is a large body of work on integrity constraints and their associated (finite) im-
plication problems in the relational context [2, 36] that we can try to exploit. As ID
and IDREF attributes are unary, the work on unary inclusion and functional dependencies
by Cosmadakis, Kanellakis and Vardi [20] is particularly relevant. However, because of
the semantics of ID attributes, results from [20] are not directly applicable in the XML
context. In addition, because different notions of equality are used to define relational
and XML keys, the analysis of key constraints for XML is a little different from their
relational counterpart. More specifically, relational keys are simply defined with equality
on values, whereas keys for XML are defined in terms of two notions of equality, namely,
value equalityandnode identity. Recall that an XML document is typically modeled as
a node-labeled tree. In such a tree distinct nodes may have the same “value”, i.e., node
identity and value equality are different notions. In contrast, it is impossible for distinct
tuples in a relation to have the same value. By saying, e.g., thatl is a key of� elements in an
XML document, it means that for any� elementsx andy, if they agree on theirl attribute
values (value equality), thenx andy are the same node (node identity). This complicates
the analysis of XML constraints. Another difference is due to the more complex structure
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of XML documents, for instance the presence of set-valued attributes (see theIDREFS

attribute in our first example). Our results address these issues. As languageL is designed
to capture semantic constraints from relational databases, our results for implication and
finite implication of general/primary keys and foreign keys ofL also hold in the relational
setting, which, to the best of our knowledge, have not been addressed before.

XML documents can have arbitrarily nested structures (note that thesection elements
in thebook DTD have a recursive definition). It is therefore natural to consider both (unre-
stricted) implication and finite implication problems. This also highlights the importance
of path constraints in this context. As an example, we would like to know thatisbn is not
only a key forentry, but also a key for the outerbook elements. This never occurs in the
relational setting.

There have been a number of proposals for adding constraints to XML, e.g., XML
Schema [35], XML Data [31] and a recent proposal [10]. These proposals consider
keys and foreign keys for XML, but stop short of addressing inverse constraints, which
are common in object-oriented databases [15]. In addition, the implication and finite
implication problems for the constraints of [35, 31] are, as far as the authors are aware,
unresolved. Recently implication of XML keys of [10] was studied in [11], but in the
absence of foreign keys and other constraints that may interact with keys in a nontrivial
way. Most of these constraint languages are defined in terms of regular path expressions or
XPath [16]. While these powerful path expressions yield expressive constraint languages,
they complicate the analysis of implication and finite implication of these constraints.
The high complexity of reasoning about these constraints may compromise their practical
applicability. Finally, most of these constraints are defined in a rich schema definition
language for XML. In other words, they can only be embedded within some types for XML
documents. In practice, however, XML documents are commonly specified with DTDs
instead of those complicated type systems. These considerations suggest us to adopt a
different approach: we consider XML constraints that are both powerful enough to express
important database constraints and are simple enough to be reasoned about efficiently,
and we add these constraints as a minimum extension to XML DTDs. We investigate
more expressive constraints that can be derived from by basic XML constraints, such as
constraints defined in terms of navigation paths.

There has been work on the study of path constraints. The path constraint languages
introduced in [4, 13] specify inclusions among certain sets of objects, and were studied for
semistructured data and XML. They are generalizations of (unary) inclusion dependencies.
Inverse constrains are also expressible in the languages of [13]. However, these languages
cannot express keys. Generalizations of functional dependencies have also been studied
[28, 29]. These constraints are capable of expressing neither foreign keys nor inverse
constraints. Furthermore, they were studied in the database context (structured data).

Finally, we address the connection between our XML constraints and bounded vari-
able logics, in particular, two-variable first-order logic (FO2). FO2 is the fragment
of first-order logic consisting of all relational sentences with at most two distinct vari-
ables [27]. Many constraints considered here are not expressible inFO2, including
foreign keys ofL, inverse constraints ofLid, and (unary) keys of all the three lan-
guages. These can be verified by using the 2-pebble Ehrenfeucht-Fraı̈sśe (EF) style
game [5]. As shown by Borgida [8],FO2 has equivalent expressive power as the
languageDL n ftrans; compose; at least; at mostg, i.e., description logic omitting the
transitive closure and composition constructors as well as counting quantifiers. As an
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immediate result, many XML constraints considered in this paper are not expressible in
DLnftrans; compose; at least; at mostg. [8] has also shown that description logic with
the composition constructor, i.e.,DLnftrans; at least; at mostg, is equally expressive as
FO3, the fragment of first-order logic with at most three distinct variables and with monadic
and binary relations. It is known thatFO3 possesses undecidable (finite) implication prob-
lems [7]. In contrast, we shall show that most of the implication and finite implication
problems associated with our constraint languages are decidable. Therefore, results about
description logics are not much of help for studying implication of our constraints.

Organization. The rest of the paper is organized as follows. Section 2 presents an XML
data model with schema and constraints, defines the languagesL, Lid andLu, and shows
how they capture constraints in practice. Section 3 investigates implication, finite impli-
cation and axiomatization of these constraints. Section 4 introduces path constraints, i.e.,
constraints defined in terms of navigation paths, and studies implication of path constraints
by basic constraints ofLid. Section 5 identifies directions for further work.

2. CAPTURING XML DOCUMENT SEMANTICS

In this section, we present a data model and a formalization of DTDs [9]. The data model
represents the content of XML documents, and DTDs specify the syntactic structure and the
semantics of the data. A DTD is formalized as a combination of a structural specification
and a set of integrity constraints. We shall use several classes of constraints to specify
various extensions over DTD structures.

2.1. Documents
We begin with the data model for representing XML documents. We assume the existence

of three pairwise disjoint sets:E of element names,A of attribute names, andStr of string
values. We assume that all atomic values are of the string type, denoted byS� . We also
assume an infinite setV of vertices. Given a setX , we useF (X) andP (X) to denote the
set of all lists built over elements ofX and the power-set ofX , respectively. We represent
XML documents as ordered annotated trees with labels on the nodes.

Definition 2.1. A data treeis denoted by(V; elem; att; root), where

� V is a set of vertices (nodes), i.e., a subset ofV;

� elem is a mapping from vertices to their labels and children, i.e., a function fromV to
E � F (Str [ V ); for any nodev0 of V that occurs inelem(v), v0 is called achild of v and
v is called theparent node ofv0; we say that there is aparent-child edgefrom v to v0;

� att is a partial function from vertices and attribute names to a set of atomic values,
i.e., fromV �A to P (Str);
� root is a distinguished element ofV , called the root of the tree.

A data tree has a tree structure. More specifically, for anyv 2 V , there is a unique path of
parent-child edges fromroot to v. A data tree isfinite if V is finite.

Intuitively, V is the set of (internal) nodes of the data tree that represent elements. The
functionelem defines for each node its label (element name) and its list of children (either
string values or sub-elements). The string and sub-element children of the node are ordered.
The functionatt defines the attributes of each node. In XML, the attributes of an element
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bib
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publisher "Serge
 Abiteboul"

"Addison
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 Suciu"

"Serge
 Abiteboul"

author

to

"0−201−53771−0"

ref

"1−55860−463−4"

FIG. 1. Graph representation of an XML document

are unordered and each contains a set of atomic values. A nodev in V is called atext
nodeif elem(v) = (�; [s]), where� is an element name ands is a string. To model XML
precisely, we assume thatroot and text nodes do not have attributes.

We shall use DTDs to specify the structure and semantics of data trees. Figure 1 shows a
data tree representing our book document given in Section 1. Note that the indications about
the semantics of ID/IDREF attributes assume that the corresponding DTD is available.

We shall use the following notations. For any� 2 E, we useext(�) to denote the set of
nodes labeled� in V . For anyx 2 V andl 2 A, we usex:l to indicateatt(x; l), i.e., the

value of the attributel of x. We defineext(�):l to be
[

x2ext(�)

x:l. Furthermore, let[X ] be

a list of attributes[l1; :::; ln]. We usex[X ] to denote[x:l1; :::; x:ln]. For any finite setS,
we usejSj to denote the cardinality ofS.

2.2. Document Type Definitions
We extend DTDs with constraints to capture the semantics of XML documents. We first

describe the structural specifications, and then introduce the constraint languages.

Document Structure
In the literature [6, 14, 32], DTDs are often modeled asExtended Context Free Grammars

(ECFGs), with elements as non-terminals, basic XML types as terminals and element
definitions specified in terms of regular expressions as production rules. While ECFGs
can specify the syntactic structure of elements, they fail to describe attributes, notably the
ID/IDREF mechanism. We extend ECFGs [14] to specify attributes.

Definition 2.2. A DTD structureis denoted byS = (E;P;R; kind; r), where:

� E is a finite set ofelement typesin E, ranged over by� ;

� P is a function from element types toelement type definitions: for any � 2 E,
P (�) = �, where� is a regular expression, defined as follows:

� ::= S� j � j � j � + � j � ; � j ��

whereS� is the (string) type of atomic values given above,� 2 E, � denotes the empty
word, “+” stands for union, “;” for concatenation, and “�” for the Kleene closure.

� R is a partial function fromE �A to attribute type definitions: R(�; l) = �, where�
is an element name inE, l is an attribute inA and� is eitherS� or S�� .
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We writeAtt(�) for the set of attributes of� , i.e.,fl 2 A j R(�; l) is definedg. An attribute
l is calledset-valuedif R(�; l) = S�� , andsingled-valuedotherwise.
� kind is a partial function fromE�A to f ID, IDREFg, identifying the ID and IDREF

attributes.

We assume that for any� 2 E and l 2 A, if kind(�; l) is defined then so isR(�; l).
Moreover, there exists at most one attributelo such thatkind(�; lo) = ID. In addition,lo
must be single-valued. We use�:id to denote the ID attribute�:lo, when it exists.
� r 2 E is the element type of the root.

Without loss of generality, we assume thatr does not occur inP (�) for any � 2 E. In
addition, we assume that for each� 2 E n frg, � is connected tor, i.e., either� occurs in
P (r), or it occurs inP (� 0) for some� 0 that is connected tor.

A DTD structureS specifies the syntactic structure of a document. That is, it imposes
the following syntactic restrictions on a data tree: (1) there is a unique node, i.e., the root
of the tree, labeled withr; (2) string values are labeled withS� ; (3) for any element type
� , the regular grammarP (�) restricts the children of each� elementv; that is, the labels
of the children ofv must be in the regular language defined byP (�); and (4) a� element
has an attributel if and only ifR(�; l) is defined inS. More precisely, these are described
as follows.

Definition 2.3. A data tree(V; elem; att; root) conforms toa DTD structure
(E;P;R; kind; r) iff there is a mapping� : V [ Str! E [ fS�g such that:

� �(root) = r,
� for anys in Str, �(s) = S� ,
� for anyv 2 V , if elem(v) = (�; [v1; : : : ; vn]), then� = �(v) and[�(v1); : : : ; �(vn)]

is in the regular language defined byP (�),
� for any v 2 V and l 2 A, att(v; l) is defined if and only ifR(�(v); l) is defined.

Moreover, ifl is a single-valued attribute of� , thenatt(v; l) must be a singleton set.

Document Constraints
Next, we introduce our three constraint languages.

LanguageL. The first language,L, intends to capture integrity constraints from relational
databases. It defines the classical key and foreign key constraints [2]. Over aDTD

structureS = (E;P;R; kind; r), a constraint' of L has one of the following forms:

� Key: � [X ]! � , where� 2 E andX is asetof single-valued attributes inAtt(�). A
data treeG satisfiesthe key, denoted byG j= ', iff in G,

8x y 2 ext(�) (
^

l2X

(x:l = y:l)! x = y):

� Foreign key: � [X ] � � 0[Y ] and� 0[Y ] ! � 0, where�; � 0 2 E, X;Y are nonempty
lists of single-valued attributes inAtt(�) andAtt(� 0), respectively, andX andY have the
same length. We writeG j= ' iff G j= � 0[Y ]! � 0 and in addition,

8x 2 ext(�) 9 y 2 ext(� 0) (x[X ] = y[Y ]):
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That is,� [X ] ! � indicates thatX is a key of� elements, i.e., theX-attribute value of
a � elementv uniquely identifiesv among all the elements inext(�). A foreign key is a
combination of two constraints, namely,� [X ] � � 0[Y ] called aninclusion constraint, and
a key� 0[Y ]! � 0. It indicates thatX is a foreign key of� elements referencing the keyY
of � 0 elements. Note thatY in � 0[Y ]! � 0 is treated as a set.

Observe that two notions of equality are used to define keys: string value equality
is assumed when comparing attributesx:l and y:l, and node equality when comparing
elementsx andy, i.e.,x = y if and only if x andy are the same node.

LanguageLu. The purpose of languageLu is to provide a minimal extension of DTDs
that supports keys and references. InL, a key may be composed of several attributes. In
XML, references are alwaysunary, i.e., via a single attribute. In addition, XML supports
IDREFS attributes, that is, attributes that are set-valued. To be as close to the XML standard
as possible, we considerL constraints in which the lists (sets)X , Y consist of a single
attribute. We refer to such constraints asunaryconstraints, and writex[l] asx:l. Moreover,
we study set-valued foreign keys. As observed in the last section, we need to improve the
current reference mechanism of XML with typing and scoping. Thus in contrast to the
semantics of ID attributes, we assume that a key of an element is unique among elements
of the same type, rather than within the entire document.

Based on these considerations we defineLu to contain unary constraints ofL as well
as set-valued foreign key constraints. More specifically, a constraint ofLu has one of the
following forms:

� Unary key constraint ofL: �:l ! � .

� Unary foreign key constraint ofL: �:l � � 0:l0 and� 0:l0 ! � 0.

� Set-valued foreign key constraint:�:l �S � 0:l0 and� 0:l0 ! � 0, where�; � 0 2 E, l
is a set-valued attribute of� andl0 is a single-valued (key) attribute of� 0. A data treeG
satisfies the foreign key iffG j= � 0:l0 ! � 0 and in addition,

8x 2 ext(�) (x:l � ext(� 0):l0):

A constraint of the form�:l �S �
0:l0 is called aset-valued inclusion constraint.

A set-valued inclusion constraint�:l �S �
0:l0 asserts that for any� elementx, each value

in the set-valued attributel of x matches the single-valuedl0 attribute of some� 0 element.
Constraints ofLu provide a simple reference mechanism for XML that overcomes the

limitations of the original ID/IDREF mechanism by adopting the semantics of the relational
key/foreign key mechanism.

It should be noted that thekind function of the DTD structure is not used when defining
L andLu constraints. More specifically, inL andLu, keys are not necessarily ID attributes
and likewise, foreign keys do not have to be IDREF attributes.

LanguageLid. Finally, we want a language that preserves the semantic of object identifiers
of object-oriented databases. To do so, we keep the original semantics of ID attributes,
whose value is unique within the whole document. Yet, we want to add key and inverse
constraints. To capture these, we define the languageLid that consists of constraints of the
following forms:

� Unary key constraint ofL: �:l ! � .
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� ID constraint: �:id!id � , where� 2 E, id 2 Att(�) andkind(�; id) = ID. A data
treeG satisfies the ID constraint iff inG,

8x 2 ext(�) 9 s 2 Str (x:id = s ^ 8 y (y:id = s! x = y)):

� Foreign key constraint:�:l � � 0:id and� 0:id !id �
0, where�; � 0 2 E, l is a single-

valued attribute of� andkind(�; l) = IDREF . A data treeG satisfies the foreign key iff
it satisfies the ID constraint� 0:id!id �

0 and in addition,

8x 2 ext(�) (x:l 2 ext(� 0):id):

� Set-valued foreign key constraint:�:l �S �
0:id and� 0:id!id �

0, where�; � 0 2 E, l is
a set-valued attribute of� andkind(�; l) = IDREF . A data treeG satisfies the set-valued
foreign key iff it satisfies the ID constraint� 0:id!id �

0 and in addition,

8x 2 ext(�) (x:l � ext(� 0):id):

� Inverse constraint:�:l *) � 0:l0, where�; � 0 2 E, l; l0 are set-valued attributes of
�; � 0 respectively,kind(�; l) = kind(� 0; l0) = IDREF , and moreover,� and� 0 have ID
attributes, i.e.,�:id!id � and� 0:id!id �

0. It asserts that there is an inverse relationship
betweenl and l0. A data treeG satisfies the inverse constraint iff it satisfies the two ID
constraints, two set-valued inclusion constraints:�:l �S �

0:id and� 0:l0 �S �:id, and

8x 2 ext(�)8 y 2 ext(� 0) (x:id 2 y:l0 $ y:id 2 x:l):

Observe that two notions of equality are also used to define ID constraints: string value
equality is assumed when comparingx:id andy:id, andx = y is true if and only ifx andy
are the same node. In a foreign key constraint�:l � � 0:id (�:l �S �

0:id) and� 0:id!id �
0

of Lid, thel attribute of� refers to the ID attribute of� 0. An inverse constraint�:l *) � 0:l0

is actually a combination of three constraints, namely, two set-valued foreign keys and an
inverse relationship specification, which asserts that for any� elementx and� 0 elementy,
if a value in the sety:l0 references the id ofx, then a value inx:l references the id ofy; and
vice versa. Because each element type has at most one ID attribute, we assume that the ID
attributes are known when specifying an inverse constraint ofLid.

LanguageLid improves the original XML reference mechanism by imposing typing and
scoping constraints on the attributes. It also supports inverse constraints and unary keys.
In contrast toLu andL, it implicitly uses the functionkind in the DTD structure to define
its constraint.

From now on, we shall refer to the constraints from one of these three languages as the
basic XML constraints. Observe that basic XML constraints are more complex than their
relational and object-oriented counterparts.

We shall use the following notation. Let� be a set of constraints andG be a data tree.
We writeG j= � if G satisfies all the constraints in�, i.e., for each� 2 �, G j= �.

Finally, we are ready to define DTDs with constraints.

Definition 2.4. A Document Type Definition with constraints(DTDC) is defined to
beD = (S;�), where:
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� S is a DTD structure,
� � is a set of basic XML constraints; that is,� is a set ofC constraints, whereC is

eitherLid, Lu orL.

Given aDTDC , we define the notion of its valid documents as follows.

Definition 2.5. A data treeG is valid w.r.t. aDTDC (S;�) if and only ifG conforms
to the DTD structureS andG j= �.

2.3. Examples
We now reexamine the examples given in Section 1 and show how their semantics can

be captured by aDTDC , using the constraint languagesLid, Lu andL.
We start with thebook document. To specify its structure, we define aDTDC D =

((E;P;R; kind; r); �) with constraints of� in Lu, as follows.

E = f book, entry, section, ref, author, title, publisher g

P (book) = (entry, author�, section�, ref)

P (entry) = (title, publisher)

P (section) = (title, (S� + section)�)

P (ref) = �

P (author) = P (title) = P (publisher) = (S�)

R(entry; isbn) = R(section; sid) = S�

R(ref; to) = S��

r = book

� = fentry.isbn ! entry, section.sid ! section, ref.to �S entry.isbng

In �, entry:isbn! entry andsection:sid! section are key constraints ofLu,
ref:to �S entry:isbn is a set-valued inclusion constraint, and the inclusion constraint
and the keyentry:isbn! entry make up a set-valued foreign key ofLu. We can keep
the functionkind empty as we do not use the original ID/IDREF semantics. Note also the
use of a set-valued foreign key to capture the semantics of the set-valuedref attribute.

We next give aDTDC with Lid constraints to describe the structure of ourperson/dept

object-oriented database:Do = ((Eo; Po; Ro; kindo; ro);�o), where

Eo = fdb, person, dept, name, address, dnameg

Po(db) = (person�, dept�)

Po(person) = (name, address)

Po(dept) = (dname)

Po(name) = Po(dname) = Po(address) = (S�)

Ro(person; oid) = Ro(dept; oid) = Ro(dept; manager) = S�

Ro(person; in dept) = Ro(dept; has staff) = S��

kindo(person; oid) = kindo(dept; oid) = ID

kindo(person; in dept) = kindo(dept; manager) = kindo(dept; has staff) = IDREF

ro = db

�o = fperson.oid !id person, dept.oid !id dept,

person.name ! person, dept.dname ! dept,
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person.in dept �S dept.oid, dept.manager � person.oid,

dept.has staff �S person.oid, dept.has staff *) person.in dept g

The Lid constraints in the set�o can categorized as follows: (1) two ID constraints:
person:oid!id person, dept:oid!id dept; (2) two keys:person:name! person,
dept:dname ! dept; (3) two set-valued foreign keys: one is the combination of
person:in dept �S dept:oid and dept:oid !id dept, and the other is the pair
dept:has staff �S person:oid and person:oid !id person; (4) a single-valued
foreign key: dept:manager � person:oid andperson:oid !id person; and (5) an
inverse constraintdept:has staff *) person:in dept. In Section 2.4, we shall extend
Lid to specify constraints in terms of sub-elements. Thus we do not have to redefinename,
dname as attributes. Note that here we specify keys in addition to object identities.

Finally, consider theuniversity DTD given in Section 1. We use the following
constraints in languageL to specify that (dept, number) is a key ofcourse and a foreign
key ofenroll referring tocourse:

course [dept, number] ! course,

enroll [dept, number] � course[dept, number].

These are multi-attribute (sub-element) constraints. Below we shall see thatL constraints
can be defined in terms of sub-elements in addition to attributes.

2.4. Sub-elements as keys and foreign keys
In the XML standard [9], sub-elements are not allowed to participate in the reference

mechanism. To be consistent with this approach, we have so far used only attributes in our
constraints. A natural question here is whether sub-elements can also be used as keys and
foreign keys. As an example, let us consider the element type definition ofperson given
in Section 1:

<!ELEMENT person (name, address)>,

where the type ofname is S� (string). It is reasonable to assume thatname is a key for
person. This was easily captured in our corresponding DTD specification (seeDo above)
by includingperson:name ! person in the constraint set (�o). This suggests that we
extend the definition of keys inLid. In general, let� be specified by an element type
definitionP (�) = � andK be a sub-element of� . We may specify keys of the form:
�:K ! � if the following two conditions are satisfied: (1)K is unique in� , i.e., for any
w 2 L(�), K occurs exactly once inw, whereL(�) is the regular language defined by
�; (2) the type ofK is S� , i.e.,P (K) = S� and therefore, in a data tree, aK element is
represented as a text node. One can easily check these syntactic restrictions, for instance
using the type checking algorithm of [25]. For any� elementx, we refer to itsK element as
x:K and the value ofx:K asval(x:K). This key constraint asserts that for any� elements
x andy, if they agree on the values of theirK sub-elements, i.e.,val(x:K) = val(y:K),
thenx andy must be the same node, i.e.,x = y. Observe that we again use two notions of
equality here: value equality when comparing the values of theK sub-elements ofx and
y, and node equality when comparingx andy. We requireP (K) to be a simple type so
that one can easily compare the values ofK elements.

Along the same lines, we extend the definitions of key and foreign key constraints inLu
andL to incorporate sub-elements.
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Sub-elements have also been used for key specifications in XML Schema [35] and the
key constraint language of [10]. XML Schema also assumes that sub-elements used as
keys are of simple types, while the general notion of value equality used in [10] no longer
requires sub-elements to have simple types.

To simplify the discussion, the proofs given in the paper will assume basic XML con-
straints defined in terms of XML attributes, but all the results also hold for XML constraints
defined in terms of sub-elements.

3. IMPLICATION OF BASIC XML CONSTRAINTS

In this section, we investigate the question of logical implication in connection with
basic XML constraints: given that certain constraints are known to hold, does it follow that
some other constraint necessarily holds? We examine the question forLid, Lu andL. For
each of these constraint languages, we establish complexity results for its implication and
finite implication problems. We also provide axiomatization if one exists. These results
are useful for, among others, studying XML semantics and query optimization. Some of
these results are also applicable to relational databases.

We first give a formal description of implication of XML constraints. LetC be either
Lid, Lu orL, and� [ ' be a finite set ofC constraints. We use� j= ' (resp.� j=f ') to
denote that for any (resp. finite) data tree, ifG j= � then it must be the case thatG j= '.

Theimplication problem forC is to determine, given any finite set�[' ofC constraints,
whether� j= '. The finite implication problem forC is to determine whether� j=f '.

In this paper, we consider constraint implication that generally holds for all XML docu-
ments. The documents may conform to any DTD, or do not have a DTD at all. In practice, it
is common to find XML documents without DTDs. In the last section we define constraints
as part ofDTDC to illustrate semantic specifications for XML data. In fact we can specify
Lid, Lu andL constraints independent of any DTDs, while the constraints provide certain
structural specification. More specifically, given a finite set� of constraints, letT be the
set of all element types in� and for each� 2 T , letA(�) be the set of all attributesl’s such
that�:l is in �. We assume that for any� 2 T andl 2 A(�), each� element has a unique
l attribute and moreover, we assume the following as specified in Section 2.
(1) WhenLid is considered, we assume that each element type has at most one ID attribute
and its elements can only be referenced with the ID attribute. In addition, if�:l � � 0:id is
in �, thenl must be a single-valued attribute, and if�:l �S � 0:id is in �, thenl must be
a set-valued attribute. If�:l *) � 0:l0 is in �, thenl; l0 are set-valued attributes of� and� 0,
respectively, and moreover, both� and� 0 have distinguished ID attributes. The attributesl

andl0 above are of IDREF kind. In a key�:l! � , l is a single-valued attribute.
(2) WhenLu is considered, given�:l � � 0:l0 in �, we assume thatl andl0 are single-valued
attributes of� and� 0, respectively. If�:l �S �

0:l0 is in�, thenl is a set-valued attribute of
� andl0 is a single-valued attribute of� 0. In a key�:l ! � , l is a single-valued attribute.
An attribute cannot be both single-valued and set-valued.
(3) All attributes inL constraints are single-valued attributes.

3.1. Implication of Lid constraints
We first study the constraint languageLid. In Lid, an ID constraint asserts that an ID

attribute value uniquely identifies an element within the entire document. An element has
at most one ID, and is referred to by means of its ID attribute. As mentioned earlier, this
reference mechanism is similar to the one used in object-oriented databases. Given the
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semantics of ID constraints and the reference mechanism, for any element types�1; �2; �3,
we have neither�1:id � �2:l nor �1:id �S �2:l; and moreover, we cannot have both
�1:l � �2:id (or �1:l �S �2:id) and�1:l � �3:id (or �1:l �S �3:id) if �2 6= �3. As a
result,� and�S do not have transitivity inLid. For the same reason, we cannot have both
�1:l1 *) �2:l2 and�1:l1 *) �3:l3 if �2 6= �3. Also observe that we do not allow�:l � �:l (or
�:l �S �:l) because by the definition of foreign keys inLid, we can only reference elements
with their ID attributes, and an attribute cannot be both ID and IDREF. These syntactic
anomalies are easy to detect and thus without loss of generality, we assume that for any
set� [ f'g of Lid constraints considered in the (finite) implication problem, constraints
with these anomalies do not occur. Recall that a foreign key always comes as a pair: an
inclusion constraint and an ID constraint.

We give a finite axiomatization, denoted byIid, for implication and finite implication of
Lid constraints as follows:

� ID-Key: �:id!id �

�:id! �

� Inv-SFK-ID: �:l *) � 0:l0

�:l �S �
0:id � 0:id!id �

0 � 0:l0 �S �:id �:id!id �

� Inv-commu: �:l *) � 0:l0

� 0:l0 *) �:l

� Inv-trans: �:l1 *) � 0:l01 � 0:l01 *) �:l2 �:l2 *) � 0:l02

�:l1 *) � 0:l02

To see that Inv-trans is sound, consider a data treeG that satisfies the inverse constraints
in the precondition of the rule. For any� elementd and� 0 elementd0 in G, if d0:id is in
d:l1, thend:id must be ind0:l02 because (1)d:id is in d0:l01 by �:l1 *) � 0:l01; (2) d0:id is in
d:l2 by � 0:l01 *) �:l2; and thus (3)d:id must be ind0:l02 by �:l2 *) � 0:l02. Similarly, if d:id
is in d0:l02 thend0:id must be ind:l1. The other rules ofIid are intuitive.

We use� `Iid ' to denote that' can be proved from� by using rules ofIid, i.e., there
is anIid-proof of' from�.

Theorem 3.1. (1)Iid is sound and complete for both implication and finite implication
of Lid constraints. (2) The implication and finite implication problems forLid coincide
and are decidable in linear time.

Proof. Let� [ f'g be a finite set ofLid constraints.
(1) Soundness ofIid can be verified by induction on the lengths ofIid-proofs. For the
proof of completeness, it suffices to construct a finite data treeG = (V; elem; att; root)

such thatG j= � and in addition, if� 6`Iid ', thenG 6j= '. We constructG in two steps.
We first define a finite data treeG0 = (V; elem; att0; root) such thatG0 j= �. We then
modifyG0 to constructG.

To constructG0, we do the following. LetT be the set of all element types in� [ f'g.
For each element type� in T , we create a set of� elements, denoted byE(�). To ensure
thatG j= �, we need to enforce a certain relation on the cardinalities of these sets. To do
so we define a relation� onT as follows:
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� � � � ;
� �1 � �2 if � `Iid (�1:l ! �1) ^ (�1:l � �2:id);
� �1 � �3 if �1 � �2 and�2 � �3.

Using� we define an equivalence relation onT :

�1 � �2 iff �1 � �2 and�2 � �1:

Let [� ] be the equivalence class of� w.r.t. �. Intuitively, if we usejE(�)j to denote
the cardinality ofE(�), then we need to ensurejE(�1)j = jE(�2)j if �1 � �2, and
jE(�1)j � jE(�2)j if �1 � �2. To make this happen, let us define a topological order< on
[� ]’s having the following property:[�1] < [�2] if there are� 01 2 [�1] and� 02 2 [�2] such
that� 01 � � 02. It is easy to see that this is well-defined. Assume that the topological order
is [�1]; :::; [�k]. For eachi 2 [1; k] and each� in [�i], we createi + 1 elements of� . In
addition, we create a distinct noderoot. Let V be the set consisting of all the elements
created above. We define theelemfunction such thatelem(root) = (r; [F (�1); :::; F (�n)]),
where�1; :::; �n are all the element types inT , andF (�i) is a list of all elements inE(�i).
For each�i and eachd 2 E(�i), let elem(d) = (�i; �). These define a finite data tree
in which the root has all the other elements as its children. Finally, we define the partial
functionatt0 as follows: for each� 2 T ,
(a) if � `Iid �:id!id � , then letext(�):id be a set of distinct string values;
(b) for eachl 2 A(�), if � `Iid �:l � � 0:id, then letext(�):l be a subset ofext(� 0):id.
In particular, if� `Iid �:l ! � , then letd:l 6= d0:l for all d; d0 2 E(�). This is possible
because (i) by the definition of the� relation,jext(�)j � jext(� 0)j if � `Iid �:l � � 0:id

and� `Iid �:l! � ; and (ii) it is illegal to have both�:l � �1:id and�:l � �2:id if �1 6= �2.
It is to ensure these that we need to consider the cardinality dependencies in our definition
of G0. If � `Iid �:l �S � 0:id, then for eachd 2 E(�), let d:l = ext(� 0):id. Observe that
there is at most one� 0 such that� `Iid �:l �S � 0:id by the semantics of ID attributes.
Otherwise, let�:l be a set consisting of arbitrary (distinct) string values.

It is easy to verify thatG0 j= � given the definition ofatt0.
Next, we constructG fromG0. Suppose� 6`Iid '.

(a)' is �:id !id � . By � 6`Iid ', we have' 62 �. Let d be a node inE(�). We create
another elementd0 of some fresh element type� 0 such thatd0:id = d:id. LetG beG0 with
the addition ofd0 as a child ofroot. It is easy to see thatG j= � andG j= :'.
(b) ' is �:l ! � . By the definition ofG0, there are two distinct nodesd1; d2 2 E(�). Let
d1:l = d2:l andG beG0 with this modification. Since� 6`Iid ', ' is not in�. Moreover,
neither is�:l !id � in � whenl is id, by the ID-Key rule inIid. Thus� does not contain
constraints of the form� 0:l0 � �:l (or � 0:l0 �S �:l). Given these, it is easy to verify that
G j= � andG j= :'.
(c) ' is a foreign key�:l � � 0:id and� 0:id !id � 0. If � 6`Iid � 0:id !id � 0, then the
proof of (a) suffices. Otherwise we must have� 6`Iid �:l � � 0:id. In addition, we
have� 6`Iid � 0:id � �:l, since otherwise we would also have� `Iid �:l !id � by the
definition of foreign keys, and these and� `Iid �

0:id !id �
0 contradict the fact that ID

attributes are unique in the entire document. Hence we have both� 6`Iid �:l � � 0:id and
� 6`Iid �

0:id � �:l. Thus in the definition ofG0 we can ensure that there isd 2 E(�) such
thatd:l 6= d0:id for all d0 2 E(� 0). LetG be thisG0. ThenG j= � andG j= :'.
(d)' is a set-valued foreign key�:l �S �

0:id and� 0:id!id �
0. The proof is similar to that

of (c).
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(e)' is �:l *) � 0:l0. By � 6`Iid ' and the Inv-commu rule inIid, neither' nor� 0:l0 *) �:l

is in �. If � 6`Iid (�:l �S � 0:id) _ (� 0:l0 �S �:id) _ (�:id!id �) _ (� 0:id!id �
0), then

the proof of (d) suffices by the Inv-SFK-ID rule inIid. Otherwise, by the definition ofG0,
there existd 2 E(�) andd0 2 E(� 0). By the construction ofG0, we haved0:id 2 d:l by
� `Iid �:l �S � 0:id. We modifyG0 by removingd:id from d0:l0. Similarly, d:id 2 d0:l0.
This may violate certain inverse constraints of�, but not other forms of constraints. To
ensure that inverse constraints of� are satisfied, if�:l1 *) � 0:l0 is in�, then we also remove
d0:id from d:l1, and so on. Observe that this will not lead to the removal ofd0:id from
d:l since otherwise we would have had� `Iid ' by the Inv-trans rule. LetG be the data
tree obtained after the modifications. It is easy to verify thatG satisfies all the constraints
of �. However, it violates the inverse relationship between�:l and� 0:l0 because there are
x 2 ext(�) andy 2 ext(� 0) such thaty:id 2 x:l, but x:id 62 y:l0. ThusG 6j= ' and
G j= �.

Note thatG is finite. ThusIid is sound and complete for both implication and finite
implication ofLid constraints. As an immediate result, these two problems coincide.

(2) We next show thatLid constraint implication can be checked in linear time. Given a
set� [ f'g of Lid constraints, we first construct a graphGD , and then inspectGD to
determine whether� j= '. The nodes ofGD are element types� of T and their attributes
in A(�). The edges ofGD are defined as follows. (i) For any� 2 T and�:l 2 A(�), there
is an edge from� to �:l. (ii) For any� 2 �, we add edges toGD as follows: (a) if� is
�:l !id � (resp.�:l ! � ), then add an edge labeled “!id” (resp. “!”) from �:l to � ; (b)
if � is �:l � � 0:id (resp.�:l �S �

0:id), then add an edge labeled “�” (resp. “�S”) from �:l

to � 0:id; (c) if � is �:l *) � 0:l0, then add an edge labeled “*)” between�:l and� 0:l0, an edge
labeled “!id” from �:id to � and from� 0:id to � 0, and an edge labeled “�S” from � 0:l0 to
�:id and from�:l to � 0:id. By the syntactic restrictions ofLid constraints mentioned above,
�:id and� 0:id are identified given an inverse constraints. By induction on the lengths of
Iid-proofs it is easy to verify the following:

Claim: � `Iid ' iff in GD,

� if ' is �:l *) � 0:l0, then there is a path of edges labeled “*)” between�:l and� 0:l0,
which is length2k + 1 for some natural numberk;
� if ' is �:l !id � , then there is a “!id” edge from�:l to � ;
� if ' is �:l ! � , then there is an edge labeled with either “!” or “!id” from �:l to � ;
� if ' is �:l � � 0:id (resp. �:l �S � 0:id) and� 0:id !id �

0, then there is a “!id” edge
from � 0:id to � 0 and a “�” (resp. “�S”) edge from�:l to � 0:id.

As the graph can be constructed in linear time and the conditions can also be checked

in linear time, by (1), one can determine whether� j= ' (� j=f ') in linear time.

From this one can see that it is rather straightforward to reason aboutLid constraints.

3.2. Implication of Lu constraints
We next consider the constraint languageLu. In Lu, a key constraint states that a key is

unique among the elements of the same type, rather than within the whole document. An
element may have more than one key, and is referenced by means of any one of its keys.
This constraint language provides an alternative reference mechanism for XML.

We present a finite axiomatizationIu for implication ofLu constraints as follows.



18 FAN AND SIMÉON

� UK-FK: �:l! �

�:l � �:l

� UFK-trans: �1:l1 � �2:l2 �2:l2 ! �2 �2:l2 � �3:l3 �3:l3 ! �3

�1:l1 � �3:l3

� USFK-trans: �1:l1 �S �2:l2 �2:l2 ! �2 �2:l2 � �3:l3 �3:l3 ! �3

�1:l1 �S �3:l3

In contrast toLid, we have transitivity rules (UFK-trans, USFK-trans) for� and�S in Lu.
However, observe that we do not have the rule: if�1:l1 � �2:l2 and�2:l2 �S �3:l3 then
�1:l1 �S �3:l3. This is because key attributes cannot be set-valued.

Cosmadakis, Kanellakis and Vardi have shown [20] that in relational databases, impli-
cation and finite implication of unary inclusion and functional dependencies are different
problems. In other words, (the complement of) implication of these dependencies does not
have the finite model property. In addition, for any fixed integerk, there is nok-ary axiom-
atization for finite implication. Instead, there is acycle rulefor each odd positive integer.
This is also the case forLu. This is because keys and foreign keys impose dependencies on
the cardinalities of finite sets of attribute values. More specifically, for any finite data treeG

that satisfies anLu constraint', if ' is a key�:l ! � , thenjext(�)j = jext(�):lj, and if'
is a foreign key�1:l1 � �2:l2 and�2:l2 ! �2, thenjext(�1):l1j � jext(�2):l2j = jext(�2)j.
As a result, for finite implication ofLu, we also have cycle rules: for each positive integer
k, there is a cycle rule Ck:

�1:l1 ! �1 �1:l1 � �2:l
0
2 �2:l

0
2 ! �2 ::: �k:lk ! �k �k:lk � �1:l

0
1 �1:l

0
1 ! �1

�1:l1 ! �1 �2:l
0
2 � �1:l1 ::: �k:lk ! �k �1:l

0
1 � �k :lk

It is worth mentioning that the Ck rules are a little different from those in [20] since each
element type�i involves two attributesli andl0i in a Ck rule. As a result they do not require
k to be odd.

Let Ifu consist ofIu rules and Ck for each positive integerk. We use� `
I
f
u
' to denote

that there is anIfu -proof of' from �, and� `Iu ' to denote that there is anIu-proof of
' from�.

Theorem 3.2. (1) Ifu is sound and complete for finite implication ofLu constraints.
(2) Iu is sound and complete for implication ofLu constraints.

Proof. Soundness ofIfu (Iu) can be verified by induction on the lengths ofIfu -proofs
(Iu-proofs). For the proof of completeness, given any finite set�[ f'g of Lu constraints.
we construct a finite data treeG = (V; elem; att; root) such thatG j= � and in addition, if
� 6`

I
f
u
' (� 6`Iu '), thenG 6j= '. As in the proof of Theorem 3.1, we constructG in two

steps: we first define a finite data treeG0 = (V; elem; att0; root) such thatG0 j= �, and
then modifyG0 to constructG. Let T be the set of element types that appear in� [ f'g,
andS be the setf�:l j � 2 T; l 2 A(�)g.
(1) We first consider finite implication. For each� 2 T , we create a finite set of�
elements, denoted byE(�). As mentioned earlier,Lu constraints impose dependencies on
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the cardinalities of these finite sets. To capture these, we first define an equivalence relation
� on the single-valued attributes ofS:

�1:l1 � �2:l2 iff � `
I
f
u
(�1:l1 � �2:l2) ^ (�2:l2 � �1:l1):

Let [�:l] denote the equivalence class of�:l w.r.t. �. Intuitively, if �1:l1 � �2:l2, then we
need to ensureext(�1):l1 = ext(�2):l2, i.e., fx:l1 j x 2 E(�1)g = fy:l2 j y 2 E(�2)g.
Observe that byIfu and the definition of foreign keys, if� `

I
f
u
�1:l1 � �2:l2, then there must

be� `
I
f
u
�2:l2 ! �2. ThusjE(�1)j = jext(�1):l1j = jext(�2):l2j = jE(�2)j if �1:l1 � �2:l2

for somel1 andl2. This is, however, not enough to ensure that the cardinality dependencies
are satisfied. Thus on[�:l]’s we define another equivalence relation�: [�1:l1] � [�2:l2] iff
there are�:l 2 [�1:l1], �:l0 2 [�2:l2] such that� `

I
f
u
�:l ! � and� `

I
f
u
�:l0 ! � . That is,

bothl andl0 are a key of� elements, but�:l and� 0:l0 are in[�1:l1] and[�2:l2] respectively. As
a result,jext(�):lj = jE(�)j = jext(�):l0j. Let f[�:l]g be the equivalence class of[�:l] w.r.t.
�. Intuitively, if [�1:l1] � [�2:l2], then we need to ensurejext(�1):l1j = jext(�2):l2j since
ext(�1):l1 = ext(�):l andext(�2):l2 = ext(�):l0. Finally, for each set-valued attributel1
of �1, letf[�1:l1]g be a singleton set consisting of�1:l1. Given these, we define a topological
order< on f[�:l]g’s such that (a) if� `

I
f
u
�1:l1 � �2:l2 or � `

I
f
u
�1:l1 �S �2:l2,

thenf[�1:l1]g < f[�2:l2]g unlessf[�1:l1]g = f[�2:l2]g; and (b) if� 6`
I
f
u
�:l ! � and

� `
I
f
u
�:l0 ! � , thenf[�:l]g < f[�:l0]g. It can be verified that the relations�, � and<

are well-defined by using, among others, the Ck and UFK-trans rules inIfu and the syntax
of Lu constraints. Assume that the topological order isf[�1:l1]g; :::; f[�k:lk]g. For each
i 2 [1; k] and[�:l] 2 f[�i:li]g, we create a setstr[�:l] of distinct string values such that
for any� 0:l 2 [�:l], ext(� 0):l0 = str[�:l], and in addition, for any[�:l]; [� 0:l0] 2 f[�i:li]g,
jstr[�:l]j = jstr[� 0:l0]j. To do so, we processf[�i:li]g for i from1 to k as follows. Initially,
let str[�:l] be empty for all�:l. For each[�:l] 2 f[�i:li]g, we incrementstr[�:l] such
that it is a set of (at least two) distinct string values with at least one new string value
not considered so far. This ensures thatstr[�:l] 6= str[�:l0] if �:l 6� �:l0. In addition, let
jstr[�:l]j = jstr[� 0:l0]j for any other[� 0:l0] 2 f[�i:li]g. We then propagatestr[�:l] such
that for any[� 0:l0], if � `

I
f
u
�:l � � 0:l0 or � `

I
f
u
�:l �S � 0:l0, thenstr[�:l] is a subset

of str[� 0:l0]. More specifically, by the definition of<, � 0:l0 must be in somef[�j :lj ]g for
somej > i, and thus we can incrementstr[� 0:l0] by includingstr[�:l] when processing�:l
in the loop. Given these, we defineE(�) for each� 2 T . Letn� be the cardinality of the
largest setstr[�:l] for all l 2 A(�). We createn� distinct elements of� and letE(�) be
the set consisting of these� elements. By the cardinality argument, it can be verified that
jstr[�:l]j = n� as long as� `

I
f
u
�:l ! � , i.e.,jext(�):lj = jE(�)j. In addition, we create a

distinct noderoot. We defineG0 as follows. LetV be the set consisting of all the elements
created above. We define theelemfunction such thatelem(root) = (r; [F (�1); :::; F (�n)]),
where�1; :::; �n are all the element types inT , andF (�i) is a list of all elements inE(�i).
For each�i and eachd 2 E(�i), let elem(d) = (�i; �). These define a finite data tree
in which the root has all the other elements as its children. Finally, we define the partial
functionatt0 as follows: for each� 2 T and l 2 A(�), if l is a single-valued attribute,
then letext(�):l be str[�:l] and for eachd 2 E(�), let d:l be a single string value. In
particular, if� `

I
f
u
�:l ! � , then for anyd; d0 2 E(�), let d:l 6= d0:l. This is possible

because the construction ofG0 satisfies the cardinality dependencyjext(�):lj = jE(�)j. If
l is set-valued, then letd:l = str[�:l], which is a set. Given the definition ofG0, it is easy
to verify thatG0 j= �.
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We next constructG fromG0. Suppose� 6`
I
f
u
'.

(a)' is �:l ! � . By the definition ofG0, there are two distinct nodesd1; d2 2 E(�). We
defineG by changingd1:l in G0 such thatd1:l = d2:l. Since� 6`

I
f
u
', ' is not in�.

Moreover, for any� 0:l0, � 6`
I
f
u
� 0:l0 � �:l and� 6`

I
f
u
� 0:l0 �S �:l by the definition of

foreign keys andIfu rules. Given this, it is easy to verify thatG j= � andG j= :'.
(b) ' is a foreign key�:l � � 0:l0 and� 0:l0 ! � 0. If � 6`

I
f
u
� 0:l0 ! � 0, then the proof

of (a) suffices. Otherwise we must have� 6`
I
f
u
�:l � � 0:l0 and� `

I
f
u
� 0:l0 ! � 0. We

assume that�:l and� 0:l0 are single-valued since otherwise by the syntax ofLu constraints
one cannot write�:l � � 0:l0. We show that inG0, ext(�):l 6� ext(� 0):l0. By the definition
of G0, this happens if and only if� 6`

I
f
u
�:l � � 0:l0. Indeed, in the population process

above, iff[�:l]g 6= f[� 0:l0]g, thenstr[�:l] � str[� 0:l0] if and only if � `
I
f
u
�:l � � 0:l0.

If f[�:l]g = f[� 0:l0]g, thenstr[�:l] � str[� 0:l0] if and only if either� `
I
f
u
�:l � � 0:l0

or � `
I
f
u
� 0:l0 � �:l. But in both cases we would have�:l � � 0:l0 by the Ck rules and

UFK-trans, which implies� `
I
f
u
�:l � � 0:l0. Therefore,ext(�):l 6� ext(� 0):l0 in G0. Let

G beG0. ThusG j= � andG j= :'.
(c)' is a set-valued foreign key�:l �S �

0:l0 and� 0:l0 ! � 0. If � 6`
I
f
u
� 0:l0 ! � 0, then the

proof of (a) suffices. Otherwise we must have� 6`
I
f
u
�:l �S � 0:l0. By the definition ofG0

above,str[�:l] has a distinct string value that is included instr[�1:l1] for any�1:l1 only if
� `

I
f
u
�:l �S �1:l1. Hence it is not inext(� 0:l0). LetG beG0. ThusG j= � butG 6j= '.

(2) We next consider implication ofLu constraints. If we allow infinite data trees, then
keys and foreign keys no longer impose dependencies on cardinalities of sets of attribute
values. In other words, the cycle rules Ck no longer apply. As in the proof of (1), we
define an equivalence relation� on S by means of̀ Iu . We define a topological order
on [�:l]’s such that if� `Iu �1:l1 � �2:l2 or � `Iu �1:l1 �S �2:l2, then[�1:l1] < [�2:l2]

unless[�1:l1] = [�2:l2]. As in the proof of (1), we definestr[�:l] for each�:l 2 S, and
let str[�:l] be a subset ofstr[� 0:l0] if � `Iu �:l � � 0:l0 or � `Iu �:l �S � 0:l0. However,
here we letstr[�:l] be a countably infinite set of distinct values, and we create a countably
infinite setE(�) of � elements for each� 2 T . We define a data treeG0 such that

for each� 2 T , ext(�) = E(�). The rest of the proof is similar to the proof of (1).

UsingIu andIfu , we can develop a linear-time algorithm for testing implication ofLu
constraints, and a linear-time algorithm for testing finite implication ofLu constraints.

Theorem 3.3. The implication and finite implication problems forLu are both decid-
able in linear time, but these problems do not coincide.

Proof. The cycle rules Ck inIfu show that (the complement of)Luconstraint implication
does not have the finite model property, and thus is different from finite implication ofLu
constraints. To prove this, consider� = f�:l1 ! �; �:l1 � �:l2; �:l2 ! �g and let'
be �:l2 � �:l1 and�:l1 ! � . By the Ck and UK-FK rules inIfu and Theorem 3.2, we
have� j=f '. However,� 6j= '. Indeed, letG be a data tree such that inG, ext(�)
has countably infinitely many� elements:d1; d2; : : :, and for eachi, di:l1 = i + 1 and
di:l2 = i. ThusG j= � butG 6j= '.

We next show that for any finite subset� [ f'g of Lu constraints,� j=f ' can be
determined in linear time. Implication ofLu constraints is similar and simpler.
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By Theorem 3.2, it suffices to show that� `
I
f
u
' can be determined in linear time. As

in the proof of Theorem 3.1 (2), we first construct a graph, called thedependency graph
of � [ f'g and denoted byGD . Let T be the set of all element types in� [ f'g. The
vertices ofGD are element types ofT and attributes ofA(�) for all � 2 T . The edges of
GD are defined as follows. (i) For each� 2 T and�:l 2 A(�), there is an edge from� to
�:l labeled with�:l. (ii) For each� 2 �, we add the following edges toGD : (a) if � is
�:l ! � , then add an edge labeled “!” from �:l to � , and an edge labeled “�” from �:l

to itself; (b) if � is �:l � � 0:l0, then add an edge labeled “�” from � 0:l0 to �:l; (c) if � is
�:l �S �

0:l0, then add an edge labeled “�S” from � 0:l0 to �:l. We can verify the following
claim by an induction on the lengths ofIfu -proofs:

Claim: � `
I
f
u
' iff in GD,

� if ' is �:l ! � , then there is a “!” edge from�:l to � ;

� if ' is �:l � � 0:l0 and� 0:l0 ! � 0, then� `
I
f
u
� 0:l0 ! � 0 and moreover, one of the

following conditions is satisfied: (a) either there is a path of “�” edges from� 0:l0 to �:l, or
(b) there is a path of “�” edges from�:l to � 0:l0 and moreover, there is a path from� 0:l0 to
�:l in which all edges are labeled with “�”, “!” or �1:l1, where� `

I
f
u
�1:l1 ! �1;

� if ' is �:l �S �
0:l0 and� 0:l0 ! � 0, then� `

I
f
u
� 0:l0 ! � 0 and moreover, there is�1:l1

such that� `
I
f
u
�1:l1 � � 0:l0 and there is a “�S” edge from�1:l1 to �:l.

It takesO(j�j+ j'j) time to construct the graphGD. By the claim, we can test whether
� `

I
f
u
' by inspectingGD . This also takesO(j�j + j'j) time. Thus by Theorem 3.2,

whether� j=f ' can be determined in linear time.

To be even closer to the original XML semantics for ID attributes, we consider aprimary
key restriction. This restriction requires that for any element type� , there is at most one
attributel such thatl is a key of� , i.e., �:l ! � . Elements of� can only be referred to
by using theirl attributes. As a result, the cycle rules do not apply here. In addition, we
cannot have both�1:l1 � �:l and�2:l2 � �:l0 if l 6= l0. In relational databases, it is also
common to consider primary keys.

The primary key restriction simplifies the analysis ofLu constraint implication. Indeed,
the implication and finite implication problems forLu coincide in this setting.

Corollary 3.1. Under the primary key restriction,Iu is sound and complete for both
implication and finite implication ofLu constraints.

Proof. Under the primary key restriction, the cycle rules Ck inIfu no longer apply. Thus
Ifu andIu become the same. The proof is similar to that of Theorem 3.2 (1),except that there

is no need to define the equivalence relation� here.

It is easy to verify that a similar result also holds for relational databases.

Corollary 3.2. In relational databases, the implication and finite implication prob-
lems for primary unary keys and foreign keys coincide and are decidable in linear time.

These results show that in the absence of DTDs, implication analysis ofLu constraints
is similar to their relational counterpart and can be done efficiently.
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3.3. Implication of L constraints
Next, we investigate the constraint languageL. In L, one can express multi-attribute

keys and foreign keys that are common in relational databases. As observed by [35], these
constraints are also of practical interest for native XML data.

The analysis ofL constraint implication is, however, nontrivial.

Theorem 3.4. The implication and finite implication problems forL are undecidable.

This result also holds for relational databases.

Theorem 3.5. In relational databases, the implication and finite implication problems
for key and foreign key constraints are undecidable.

This can be proved by reduction from the implication and finite implication problems
for inclusion and functional dependencies, which are well-known undecidable problems
(see, e.g., [2] for a proof). Below we give a proof sketch of Theorem 3.5. Theorem 3.4 can
be verified by reduction from the (finite) implication problem for keys and foreign keys in
relational databases.

Proof. Let R be a relational schema, which is a collection of relation schemas. For
a relation schemaR, we useAtt(R) to denote the set of all attributes ofR. Functional
dependencies (FDs) and inclusion dependencies (IDs) overR are expressed asR : X ! Y

andR1[X ] � R2[Y ], respectively, whereR;R1; R2 are relation schemas inR,X;Y in the
FD are sets of attributes inAtt(R), andR1[X ]; R2[Y ] denote lists of attributes ofR1; R2,
respectively. We useR[X ] ! R to denote thatX is a key forR, whereX is a subset of
Att(R). That is,R : X ! Att(R). A foreign key is a pair consisting of an ID and a key:
R1[X ] � R2[Y ] andR2[Y ] ! R2. It is known that it is undecidable to determine, given
any relational schemaR, any set� of FDs and IDs overR and a FD� overR, whether
� j= � (� j=f �. See, e.g., [2]). Let us refer to this problem as the (finite) implication
problem for FDs and IDs. We prove Theorem 3.5 by reduction from this problem. To do
so, we encode FDs and IDs in terms of keys and foreign keys as follows.
(1) FD � = R : X ! Y . LetZ be a key forR, i.e.,R[Z] ! R (note that every relation
has a key, e.g., the set of all the attributes of a relation is a key of the relation). We define a
new relation schemaRnew such thatAtt(Rnew) = XY Z, i.e., the union ofX , Y andZ.
Observe thatXY Z is a key forR as it contains the keyZ. We encode� with:

�1 = Rnew[X ]! Rnew, �2 = R[XY ] � Rnew [XY ],
�3 = Rnew[XY Z] � R[XY Z], �4 = Rnew[XY ]! Rnew.

(2) ID � = R1[X ] � R2[Y ]. LetZ be a key forR2, i.e.,R2[Z] ! R2. We define a new
relation schemaRnew such thatAtt(Rnew) = Y Z. Observe thatY Z is a key forR2 as it
subsumesZ. We encode� with:

�1 = Rnew [Y ]! Rnew; �2 = R1[X ] � Rnew [Y ]; �3 = Rnew[Y Z] � R2[Y Z]:

We next show that the encoding is a reduction from the (finite) implication problem
for FDs and IDs to the (finite) implication problem for keys and foreign keys. Given a
relational schemaR, a set� of FDs and IDs overR, and a FD� = R� : X ! Y overR,
as described above we encode� with a set�1 of keys and foreign keys, and encode� with
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�1 = R�
new[X ]! R�

new, �2 = R�[XY ] � R�
new[XY ],

�3 = R�
new[XY Z] � R�[XY Z], �4 = R�

new[XY ]! R�
new .

whereR�
new is the new relation introduced when coding�. Let�0 = �1 [ f�2; �3; �4g.

Observe that�1 is a key ofR�
new andXY Z is a key ofR�. Recall that a foreign key

consists of a key and an ID. Thus it suffices to show that

� j= � iff �0 j= �1:

Let R’ be the relational schema that includes all relation schemas inR as well as new
relations created in the encoding. We show the claim as follows.
(1) Assume that there is a (finite) instanceI of R such thatI j=

V
�^:�. We show that there

is a (finite) instanceI’ of R’ such thatI’ j=
V
�0 ^ :�1. We constructI’ such that for any

R in R, the instance ofR in I’ is the same as the instance ofR in I . We populate instances
of new relationsRnew created in the encoding as follows. (a) IfRnew is introduced in the
encoding of a FDR : X ! Y as above, then we let the instanceInew of Rnew in I’ be a
subset of�XY Z(I) such that�XY (I) = �XY (Inew) andInew j= Rnew [XY ] ! Rnew,
whereI is the instance ofR in I and�W (I) denotes the projection ofI on attributesW .
(b) If Rnew is introduced in the encoding of an IDR1[X ] � R2[Y ] as above, then let the
instanceInew of Rnew in I’ be a subset of�Y Z(I2) such that�Y (I2) = �Y (Inew) and
Inew j= Rnew[Y ]! Rnew, whereI2 is the instance ofR2 in I . One can easily verify that
we indeed haveI’ j=

V
�0 ^ :�1.

(2) Suppose that there is a (finite) instanceI’ of R’ such thatI’ j=
V
�0^:�1. We construct

a (finite) instanceI of R by removing fromI’ all instances of new relations introduced in
the encoding. It is easy to verify thatI j=

V
� ^ :�.

Therefore, the encoding is indeed a reduction from the (finite) implication problem for

FDs and IDs. This completes the proof of Theorem 3.5.

The undecidability result suggests that we consider the primary key restriction forL

constraints. That is, in a set considered inL constraint implication, for any element type
� , one can specify at most one key, either as a key or as part of a foreign key. Under
this restriction, one cannot specify two foreign keys�1[X1] � � [Y ], � [Y ] ! � and
�2[X2] � � [Y 0], � [Y 0] ! � at the same time if the two setsY andY 0 are not equal.
Similarly, one cannot specify a foreign key� 0[X ] � � [Y ], � [Y ]! � and a key� [Y 0]! �

if the two setsY andY 0 are not equal. When the primary key restriction is imposed, we
refer toL constraints as primary keys and foreign keys. In the (finite) implication problem
for primary keys and foreign keys, we consider finite set�[f'g of L constraints in which
there is at most one key for each element type.

The primary key restriction simplifies reasoning aboutL constraints. Indeed, under this
restriction, implication and finite implication ofL constraints become axiomatizable. More
specifically, we present an axiomatizationIp as follows:

� PK-FK:
� [X ]! �

� [X ] � � [X ]
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� PFK-perm: for each listi1; i2; :::; in of distinct integers in[1; :::; n],

� [l1; l2; :::; ln] � � 0[l01; l
0
2; :::; l

0
n] � 0[l01; l

0
2; :::; l

0
n]! � 0

� [li1 ; li2 ; :::; lin ] � � 0[l0i1 ; l
0
i2
; :::; l0in ]

� PFK-trans: �1[X ] � �2[Y ] �2[Y ]! �2 �2[Y ] � �3[Z] �3[Z]! �3

�1[X ] � �3[Z]

We use� `Ip ' to denote that' can be proved from� by using rules ofIp.

Theorem 3.6. Under the primary key restriction,Ip is sound and complete for both
implication and finite implication ofL constraints.

By Theorem 3.6, the implication and finite implication problems forL coincide and are
decidable under the primary key restriction.

Proof. Soundness ofIp can be verified by induction on the lengths ofIp-proofs. To
prove the completeness ofIp, consider a finite set� [ f'g of primary keys and foreign
keys inL. It suffices to construct a finite data treeG such thatG j= � and moreover, if
� 6`Ip ', thenG 6j= '. As in the proof of Theorem 3.1, we defineT to be the set of all
element types in� [ f'g. We constructG based on' and� as follows. Assume that
� 6`Ip '.

(1) ' is a key� [X ] ! � . We create two distinct� elementsa andb such thata[X ] and
b[X ] are a list of 0’s, and thusa[X ] = b[X ]. In addition, for eachl 2 A(�) nX , leta:l = 0

andb:l = 1. We useV to denote the set of vertices inG. Initially, let V = fa; bg. We add
elements toV using the procedure given below.

repeat until no further change toV
if � `Ip �1[Y ] � �2[Z]

then for each�1 elementd1 of in V

(1) create a�2 elementd2 such that
d2[Z] = d1[Y ] andd2:l = 1 for all l 2 A(�) n Z;

(2) V := V [ fd2g if there is no�2 elementd in V
such thatd:l = d2:l for all l 2 A(�);

The procedure terminates sinceT is finite and moreover, only 0 and 1 are used as string
values of the attributes involved. Finally, we add a distinct noderoot to V and define a
finite data treeG such that the set of vertices inG is V and the root node ofG is root. In
addition,root has all the other elements inV as its children and any node exceptroot does
not have any children. ObviouslyG 6j= ' becausea; b are inV , a 6= b anda[X ] = b[X ].
We next show thatG j= �. Assume, by contradiction,G 6j= � for some� 2 �.
(i) If � is a key�1[Y ] ! �1, then there are two distinct�1 elementsd1; d2 2 V such that
d1[Y ] = d2[Y ]. By the primary key restriction, if there exist�2 inT and a listZ of attributes
inA(�2) such that� `Ip �2[Z] � �1[W ], then the two setsW andY must be equal. Indeed,
by Ip and the definition of foreign keys, it is easy to see that if� `Ip �2[Z] � �1[W ] then
there must be� `Ip �1[W ]! �1, and moreover,� `Ip �1[W ]! �1 iff �1[W ]! �1 is in
�. Thus by the primary key restriction, We haveW = Y . If �1 6= � , then the procedure for
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populatingV vertices (by the condition in (2)) ensures that for any�1 elementsd1; d2 2 V ,
d1[Y ] 6= d2[Y ]. This contradicts the assumption. If�1 = � , consider the following cases.
If Y = X , then this contradicts the assumption that� 6`Ip '. If Y 6= X , then this violates
the primary key restriction, which again contradicts the assumption.
(ii) If � is a foreign key�1[Y ] � �2[Z] and�2[Z] ! �2, consider the following cases. If
G 6j= �2[Z] ! �2, then the proof of (i) suffices. Now assumeG 6j= �1[Y ] � �2[Z]. Then
there exists a�1 elementd1 such that for any�2 elementd2, d1[Y ] 6= d2[Z]. However, by
� `Ip �1[Y ] � �2[Z] and the procedure for populatingV vertices, this cannot happen.

This shows that when' is a key,Ip is complete for� j= ' and� j=f '.

(2)' is a foreign key�1[X ] � �2[Y ] and�2[Y ]! �2. If � 6`Ip �2[Y ]! �2, then the proof
of (1) suffices. Assume� `Ip �2[Y ] ! �2 but � 6`Ip �1[X ] � �2[Y ]. We create a�1
elementa such thata[X ] is a list of 0’s, and for anyl 2 A(�1) nX , a:l = 1. LetV = fag

and we add elements toV using the procedure given in (1). GivenV , we construct a
finite data treeG as in (1). The proof of (1) can show thatG j= �. We next show that
G 6j= �1[X ] � �2[Y ]. If �1 6= �2, then by� 6`Ip �1[X ] � �2[Y ] and the PFK-perm
and PFK-trans rules inIp, no �2 elementd is created by the procedure of (1) such that
a[X ] = d[Y ]. If �1 = �2, consider the following cases. IfY = X , then this contradicts the
assumption that� 6`Ip ' by the PFK-FK rule. IfY � X orX � Y , then�1[X ] � �2[Y ]

are not syntactically correct becauseX andY have different lengths. ThusY 6� X and
X 6� Y . In this case, we havea[X ] 6= d[Y ] for any�1 elementd created by the procedure
for populatingV because� 6`Ip �1[X ] � �1[Y ]. Thus we must haveG 6j= �1[X ] � �2[Y ].
This showsIp is also complete for� j= ' and� j=f ' when' is a foreign key.

This completes the proof of Theorem 3.6.

This result also holds for relational databases.

Corollary 3.3. In relational databases, the implication and finite implication prob-
lems for primary keys and foreign keys coincide and are decidable.

Proof. The rules ofIp are still sound for (finite) implication of primary keys and foreign
keys in relational databases, with slight syntax modification. The only concern here is that
in relational databases, only value equality is used for defining keys. More specifically,
consider a relation schemaR, a keyR[X ] ! R, and an instanceI of R. Let Att(R)
be the set of all attributes ofR. ThenI satisfies the key iff for all tuplest1; t2 in I , if
t1[X ] = t2[X ] thent1:l = t2:l for all l 2 Att(R) n X . In contrast, keys for XML are
defined using two notions of equality, namely, value equality when comparing attributes
values and node equality when comparing vertices, as described in Section 2. To cope with
the semantics of keys in relational databases, we need to refine the definition of the primary
restriction as follows: a set� of keys and foreign keys is said to beprimary iff for any
relationR, (1) there is at most one setX � Att(R) such thatR[X ] ! R is in � (either
as a key or as part of a foreign key); (2) ifR[X ] ! R is in �, then� does not include
R0[Y ] � R[Z] for any relation schemaR0 andZ = Att(R). We also need another rule:
R[Ztt(R)] ! R for any relationR. Let us refer to the set consisting ofIp rules and this
rule asIrp . ThenIrp is sound and complete for implication and finite implication of primary

keys and foreign keys in relational databases. The proof is similar to that of Theorem 3.6.
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These results show that it is not feasible to reason about multi-attribute keys and foreign
keys, even in the absence of DTDs. Although implication analysis ofL constraints is
decidable under the primary key restriction, its precise lower bound remains open.

To our knowledge, no previous work has studied the interaction between (primary) keys
and foreign keys in relational databases, and the results established here extend relational
dependency theory.

4. IMPLICATION OF PATH CONSTRAINTS

Navigation paths are commonly used in XML query languages (e.g., [17, 22, 34, 19]).
Constraints defined in terms of paths are useful for, among other things, query optimization.
Let us refer to such constraints aspath constraints. In this section, we study implication
of certain path constraints by basic XML constraints. More specifically, we examine three
forms of path constraints, referred to aspath functional, inclusionandinverse constraints.
To do this, we first describe the notion of paths. We then define path constraints and
investigate their implication by basic XML constraints. In this section we assume that
basic XML constraints are expressed inLid.

4.1. Paths
A path is a string in(E [ A)�. In a data treeG, a path represents labels of nodes in

a parent-child path. For example, paths in Figure 1 includebook.entry, book.author,
andbook.ref.to.author. Observe that we treat attributeto as a reference from aref
element toentry elements.

To be precise, we give a formal definition of paths. Let� be a finite set ofLid constraints.
Referring to data trees that satisfy�, we specifythe set of paths associated with an element
type� , denoted bypaths(�). Moreover, for any� 2 paths(�), we specifythe type of�,
denoted bytype(�:�). These are defined as follows.

� The empty path� is in paths(�) andtype(�:�) = � . We write�:� simply as� .

� Assume� 2 paths(�) andtype(�:�) = �1.

– For any element type�2 2 E, �:�2 is in paths(�) andtype(�:�:�2) = �2.

– For any attributel 2 A, �:l is in paths(�). If there exists an element type�2 such
that either� j= �1:l � �2:id or � j= �1:l �S �2:id, thentype(�:�:l) = �2. Otherwise
type(�:�:l) = S� .

Intuitively, if an attributel is a foreign key of�1 elements referencing�2 elements, then
we treat thel attribute of a�1 element as an “edge” (or “edges”) from the�1 element to�2
elements. As a result, a path may traverse across different subtrees of a data tree.

By the definition ofLid, one can easily verify that for any� 2 paths(�), there is a
unique� 0 such thattype(�:�) = � 0. That is,type(�:�) is well-defined. To show this,
observe that for any element type�1 and attributel, there is at most one element type�2
such that� j= �1:l � �2:id or� j= �1:l �S �2:id. This is because, by the definition of ID
constraints inLid, an ID value uniquely identifies an element within the entire document.

For example, referring to ourbook document depicted in Figure 1, assume that the
following set�0 of Lid constraints is given:

entry:isbn!id entry; ref:to �S entry:isbn;
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then we haveentry:ref:to 2 paths(book) andtype(book:entry:ref:to) = entry.
The lengthof � in paths(�), denoted byj�j, is defined as follows:j�j = 0 if � = �;

j�j = j�1j+ 1 if � = �1:�, where� is either an element type or an attribute.
We call � in paths(�) a null path if � is of the form�1:�:�2, where�2 6= � and

type(�:�1:l) = S� . Null paths are not meaningful when traversal following the paths is
considered. Thus in the sequel we assume all paths considered are not null.

For any data treeG that satisfies�, any nodex 2 ext(�) in G and path� 2 paths(�),
we definethe set of vertices reachable fromx via�, denoted bynodes(x:�), as follows.

� If � = �, thennodes(x:�) = fxg.

� If � = �:�1 and�1 is an element type, then for anyy 2 nodes(x:�), the children ofy
labeled with�1 are innodes(x:�).

� If � = �:l andl is an attribute, we consider the following cases.

– If type(�:�:l) = S� , then for anyy 2 nodes(x:�) and any string valuez 2 y:l, z
is in nodes(x:�).

– If type(�:�) is an element type�1 and� j= �1:l � �2:id (resp.� j= �1:l �S �2:id)
for some element type�2, then for anyy 2 nodes(x:�) and any vertexz labeled�2 such
thatz:id = y:l (resp.z:id 2 y:l), z is in nodes(x:�).

We useext(�:�) to denote the set of nodes reachable from� elements by following�, i.e,

ext(�:�) =
[

x2ext(�)

nodes(x:�).

4.2. Path constraints
Next, we define path constraints and investigate their implication byLid constraints.

As in Section 3, we consider implication and finite implication that hold for any XML
documents independent of DTDs. That is, given any finite set� of Lid constraints and
a path constraint', whether for any (finite) data treeG, if G j= � thenG j= '. Let us
use� j= ' and� j=f ' to denote implication and finite implication, respectively. We
study the (finite) implication problem for path functional, inclusion and inverse constraints,
defined as follows.

Let� be a finite set ofLid constraints and we consider data trees that satisfy�.
Path functional constraints. A path functional constraint' is an expression of the form
�:� ! �:�, where� is an element type, and�; � 2 paths(�). A data treeG satisfies',
denoted byG j= ', iff in G,

8x; y 2 ext(�) ((nodes(x:�) 6= ; ^ nodes(x:�) = nodes(y:�)) !

nodes(x:�) = nodes(y:�)):

That is, for all� elementsx andy, if they agree on the nodes reachable by following path
�, then they must also agree on the nodes reached by following�. Note that only node
equality is used when defining path functional constraints.

For example, referring to thebook document given in Section 1, a path functional
constraint'0 is book:entry:isbn! book:author, which states that the isbn of an entry
of a book determines the authors of the book.

Suppose that thebook document satisfies the set�0 of Lid constraints given in Sec-
tion 4.1. A natural question is whether the document must also satisfy'0. In general,
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given a finite set� of Lid constraints, we want to know whether some path functional
constraint' is (finitely) implied by�. That is, whether� j= ' (� j=f '). We refer to
this question as (finite) implication of path functional constraints byLid constraints. In
ourbook example,�0 j= '0 (�0 j=f '0) indeed holds, which is an instance of the (finite)
implication problem for path functional constraints byLid constraints.

About these implication and finite implication problems we have the following result.

Theorem 4.1. For any finite set�ofLid constraints and any path functional constraint
', whether� j= ' (� j=f ') is decidable inO(j�j j'j) time, wherej�j and j'j are the
lengths of� and', respectively.

Proof. We first define a notion of key paths. Let� be a finite set ofLid constraints,�
be an element type and� be inpaths(�). We call� a key pathof � w.r.t. � if one of the
following conditions is satisfied. (1)� = �; (2) � = �1:�1, �1 is a key path of� and�1
is an element type; (3)� = �1:l, �1 is a key path of� , type(�:�1) = �1 and moreover,
� j= �1:l ! �1, i.e., l is a key attribute of�1. Observe that by the ID-Key rule inIid
and Theorem 3.1, ifl is the ID of �1, then it is also a key attribute of�1. For example,
entry.isbn is a key path ofbook whereasentry.refer.to is not. Intuitively, for any
x; y 2 ext(�) in a data treeG satisfying�, if x andy agree on some nodes reachable by
following a key path, thenx andy must be the same node, because inG, there is at most
one parent-child path from a node to another. This can be easily verified by induction on
the length of a key path.

To prove Theorem 4.1, it suffices to show the following claim.

Claim: Let ' = �:� ! �:�. Then� j= ' (� j=f ') iff either (1) � = �:�0, or (2)
� = �:�0, � = �:�0, � is either a list of single-valued attributes or a key path of� , and�0

is a key path oftype(�:�) w.r.t. �.

For if it holds, then one can determine whether� j= ' and� j=f ' by checking these
conditions, which can be done inO(j'j j�j) time, by Theorem 3.1.

We next show the claim.
If � = �:�0, then by the definitions of path functional constraints and the notation

nodes(x:�), G j= ' for any data treeG. Now suppose that there is� such that� = �:�0,
� = �:�0, and�0 is a key path oftype(�:�). Consider a data treeG that satisfies�. If
� is a key path of� , then� is also a key path of� . In this case, for anyx; y 2 ext(�),
if nodes(x:�) = nodes(y:�) in G, thenx = y by the discussion above. If� is a list of
single-valued attributes, then for anyx; y 2 ext(�), there exist uniquex1; y1 in G such
thatnodes(x:�) = fx1g andnodes(y:�) = fy1g. If nodes(x:�) = nodes(y:�), then we
havex1 = y1 since�0 is a key path oftype(�:�). Thusnodes(x:�) = nodes(x1:�

0) =
nodes(y1:�

0) = nodes(y:�). Hence� j= ' and� j=f '.
For the other direction of the claim, suppose that the conditions of the claim are not

satisfied. We show that there is a finite data treeG = (V; elem; att; root) such thatG j= �

but G 6j= '. That is,� 6j= ' and� 6j=f '. To do so, we constructG as in the proof
of Theorem 3.1, except the following. Letk be j�j + j�j. For each element type� 0 in
� [ ', let V have at least2k + 1 elements of� 0. This is possible by the construction
given in the proof of Theorem 3.1. Letx andy be two distinct� elements, and assume
� = �1: : : : �n. If �1 is an element type�1, then we choose two distinct�1 elementsx1
andy1 in V and defineelem(x) = (�; [x1]) andelem(y) = (�; [y1]). If �1 is an attribute
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l andtype(�:�1) = �1, then we choose two distinct�1 elementsx1 andy1 in V and let
att(x; l) = fx1:idg andatt(y; l) = fy1:idg. By assumption,� is not a null path, thus�1
has only the two cases discussed above. In the same way we process�i and findxi, yi. Let
xn andyn be the two nodes (or string values) finally reached. We letxn = yn. This may
result in the collapse ofxn�1 andyn�1 into the same node if�n is an element type, and
so on. But it will lead to the collapse ofx andy into the same node as� is not a key path
� . In other words, there isi � n such thatxi�1 6= yi�1 where�i is an attribute. We then
process path� in the same way starting fromx andy. Here we reuse nodesxi; yi created
earlier only if necessary, i.e., only when� starts with�1: : : : �j where�i is a single-valued
attribute. It is possible to find elements not used earlier since we have2k + 1 many�
elements for each element type� . Let x0m andy0m be the two nodes (or string values)
reached after processing�. Here we letx0m 6= y0m. This is possible only if none of the two
conditions in the claim is satisfied, as we assumed. Finally, we create a distinct noderoot

and letroot has childrenx, y and all nodes that have not yet been assigned a parent. With
slight modification to the construction given in the proof of Theorem 3.1, we can defineG

such thatG j= �. By our construction,nodes(x:�) 6= ; andnodes(x:�) = nodes(y:�).
However, Observe thatnodes(x:�) = fx0mg, nodes(y:�) = fy0mg andx0m 6= y0m. Thus

G 6j= '. Therefore,� 6j= ' and� 6j=f '. This completes the proof of Theorem 4.1.

Path inclusion constraints. Along the same lines, we define apath inclusion constraint
' to be an expression of the form�1:�1 � �2:�2, where�1; �2 are element types, and
�1 2 paths(�1), �2 2 paths(�2). A data treeG satisfies', denoted byG j= ', iff in G,

ext(�1:�1) � ext(�2:�2):

That is, any nodes reachable by following path�1 from �1 elements can also be reached by
following �2 from �2 elements. Again only node equality is needed here.

In particular, observe that when path�2 is the empty path, path inclusion constraints
have the form�1:�1 � �2. Constraints of this form describe typing information.

For example, for ourbook document, path inclusion constraints include:

'1 = book:entry:ref:to� entry; '2 = book:entry:ref:to:title� entry:title:

Recall the set�0 ofLid constraints given above. We have�0 j= '1^'2 (�0 j=f '1^'2),
which are instances of the (finite) implication problem for path inclusion constraints byLid
constraints.

Implication and finite implication of path inclusion constraints byLid constraints can
also be determined efficiently.

Theorem 4.2. For any finite set� of Lid constraints� and any path inclusion
constraint', whether� j= ' (� j=f ') is decidable inO(j'j j�j) time.

Proof. Let' = �1:�1 � �2:�2. First observe that iftype(�1:�1) 6= type(�2:�2), then
as in the proof of Theorem 4.1, one can construct a finite data treeG such thatG j= � and
G 6j= ', following the construction given in the proof of Theorem 3.1. That is,� 6j= ' and
� 6j=f '. This can be determined inO(j'j j�j) time by Theorem 3.1. Below we assume
type(�1:�1) = type(�2:�2) = � . Consider the following inference rules:
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� IC1: if � `Iid �:l � � 0:id or� `Iid �:l �S �
0:id, then�:l � � 0.

� IC2: �:� � � for any path� and element type� .
� IC3: if �:� � � 0:�0 and� 0:�0 � � 00:�00, then�:� � � 00:�00.
� IC4: if �:� � � 0:�0 then�:�:� � � 0:�0:� for any path�.
� IC5: if � `Iid �:l ! � ^ � 0:l0 ! � 0 ^ �:l � � 0:id ^ � 0:l0 � �:id, then� � � 0:l0 and

� 0 � �:l in the finite case.

The condition of IC5 asserts that in the finite case,jext(�)j = jext(�):lj = jext(� 0):l0j =

jext(� 0)j and thus by� 0:l0 � �:id and�:l � � 0:id, we have� � � 0:l0 and� 0 � �:l. LetIic
denote the set consisting of IC1, IC2, IC3 and IC4, andIfic be the set of all the rules above.
To prove Theorem 4.2, it suffices to show the following claims.

Claim 1: � j= ' iff � `Iic ', and� j=f ' iff � `
I
f

ic

', where� `Iic ' (� `
I
f

ic

')

denotes that there is anIic-proof (Ific-proof) of' from�.

Claim 2: � `Iic ' iff �1 = �:�2 andtype(�1:�) = �2. Moreover,� `
I
f

ic

' iff there

exist an element type� 0 and paths�01, �02 and� such that�1 = �01:�, �2 = �02:�,
type(�1:�

0
1) = � 0 and� `

I
f

ic

� 0 � �2:�
0
2. In the latter case, we say that� is a common

suffixof �1 and�2.

For if these hold, then whether� j= ' can be determined by checking whether for some
�, �1 = �:�2 andtype(�1:�) = �2. By Theorem 3.1, this can be done inO(j'j j�j) time.
To determine whether� j=f ', we only need to check the conditions for finite implication
given in Claim 2. To do so, a dependency graph similar to the one given in the proof of
Theorem 3.1 (2) can be constructed, and these conditions can be checked by inspecting the
graph. Again this can be done inO(j'j j�j) time. Below we prove the claims for finite
implication. The proof for implication is similar.
(1) We first show Claim 1. The soundness ofIfic can be verified by induction on the
lengths ofIfic-proofs. For completeness, we show by induction onj�1j that if � j=f '

then� `
I
f

ic

'. More specifically, we show that if� 6`
I
f

ic

', then there is a finite data tree

G such thatG j= � butG 6j= '.
Induction basis.We first considerj�1j = 0 and show the claim by induction onj�2j. If
j�2j = 0, then for any data treeG, G j= ' only if �1 = �2. But if �1 = �2 then� `

I
f

ic

'

by IC2, which contradicts our assumption. Assume the claim forj�2j = k. We show that
the claim also holds for�2 = �02:�, where� is an element type or an attribute. Assume
type(�2:�

0
2) = � 0. We can construct a finite data treeG in which there is a�1 element that

is not inext(�2:�2) except when (a)� j= � 0 � �2:�
0
2, and (b) there exists anl attribute of

�1 such that� `Iid �1:l! � 0^� 0:� ! � 0^�1:l � � 0:id^� 0:� � �1:id. More specifically,
G can be constructed by first creating an�2 path emitting from a�2 elementy, and then a
�1 elementx in the same way as in the proof of Theorem 4.1. One can ensure thatG j= �

andx 62 (y:�2) if either (a) or (b) is not satisfied. Given (a), by the induction hypothesis,
� `

I
f

ic

� 0 � �2:�
0
2. Given (b), by IC5, we have� `

I
f

ic

�1 � � 0:�. Thus by IC4 and IC3,
we have� `

I
f

ic

', which again contradicts our assumption. Hence Claim 1 holds when

j�1j = 0.
Inductive step. Assume the statement forj�1j = k. We show that the statement also
holds for�1 = �01:�1, wherej�01j = k and�1 is either an attribute or an element type.
Assumetype(�1:�01) = � 01. As in the proof of Theorem 4.1, with slight modification to the
construction given in the proof of Theorem 3.1, one can construct a finite data treeG1 such
thatG1 j= � and moreover, there exist a�1 elementx, a � 01 elementy and a� elementz
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such thaty 2 nodes(x:�01) andz 2 nodes(y:�1). If j�2j = 0, thenz 2 ext(�2:�2) only
if either (a)�1 = �2, or (b)� `Iid �

0
1:�1 � �2:id or � `Iid �

0
1:�1 �S �2:id. However,

if so then� `
I
f

ic

' by IC2 in case (a) and by IC2, IC4, IC1 and IC3 in case (b). This

contradicts our assumption. Next we assume�2 = �02:�2, where�2 is either an attribute
or an element type. We consider the following cases. (i) Assume� `

I
f

ic

�1:�
0
1 � �2:�

0
2.

If �1 = �2, then by IC4, we have� `
I
f

ic

', which contradicts the assumption. Assume

�1 6= �2. In G1, we can makez 62 ext(�2:�2) except when� j= � � �2:�2. By the
induction hypothesis, if� j= � � �2:�2 then� `

I
f

ic

� � �2:�2. Thus by IC2 and IC3,
we have� `

I
f

ic

'. Again this contradicts the assumption. Thus the statement holds in this

case. (ii) Assume� 6`
I
f

ic

�1:�
0
1 � �2:�

0
2. Then by the induction hypothesis, there exists

a finite data treeG2 such thatG2 j= � andG2 6j= �1:�
0
1 � �2:�

0
2. Hence there exist a

�1 elementx and a� 01 elementy such thaty 2 nodes(x:�01) but y 62 ext(�2:�
0
2). Again

as in the proof of Theorem 4.1, with slight modification to the construction given in the
proof of Theorem 3.1, one can construct a finite data treeG from G2 such thatG j= �,
G j= �1:�

0
1 6� �2:�

0
2 and moreover, there is a� elementz such thatz 2 nodes(y:�1). We

can makez 62 ext(�2:�2) except when� j= � � �2:�2, which leads to contradiction as
shown in the proof of (i). Thus the statement also holds forj�1j = k + 1. This completes
the proof of Claim 1.

(2) We next show Claim 2. First assume�1 = �01:�, �2 = �02:�, type(�1:�01) = � 0, and
� `

I
f

ic

� 0 � �2:�
0
2. We show� `

I
f

ic

'. It suffices to show that iftype(�1:�01) = � 0 then

� `
I
f

ic

�1:�
0
1 � � 0; for if it holds, then� `

I
f

ic

' by IC3 and IC4. This can be verified by

induction onj�01j. Indeed, ifj�01j = 0 then� `
I
f

ic

�1:�
0
1 � � 0 by IC2. Assume that it holds

for j�01j = k. We show the statement for�01 = �0:�, wherej�0j = k and� is an element type
or an attribute. If� is an element type, then it must be� 0 by the definition oftype(�1:�01).
Thus� `

I
f

ic

�1:�
0
1 � � 0 by IC2. If � is an attribute, assumetype(�1:�0) = � 01. By the

induction hypothesis, we have� `
I
f

ic

�1:�
0 � � 01. Again by the definition oftype(�1:�01),

we must have� `Iid �
0
1:� � � 0:id or � `Iid �

0
1:� �S � 0:id. By IC1,� `

I
f

ic

� 01:� � � 0.

Thus� `
I
f

ic

�1:�
0
1 � � 0 by IC4 and IC3. Conversely, we show if� `

I
f

ic

' then

there are paths�01, �02 and� such that�1 = �01:�, �2 = �02:�, type(�1:�01) = � 0, and
� `

I
f

ic

� 0 � �2:�
0
2, by induction on the length of theIfic-proof. For induction basis, either

IC1, IC2 or IC5 is applied in the proof and the statement obviously holds in these cases.
Assume that the statement holds forIfic-proofs of lengths less thank. We next show that
the statement also holds forIfic-proof of lengthk. Now suppose that� `

I
f

ic

' is proved
by using IC3, i.e., by first showing� `

I
f

ic

�1:�1 � �3:�3, � `
I
f

ic

�3:�3 � �2:�2 and then

by applying IC3. By the induction hypothesis, there are paths�01, �02, �03, �003 , � and�0

such that�1 = �01:�, �3 = �03:�, type(�1:�01) = � 01, � `
I
f

ic

� 01 � �3:�
0
3, �3 = �003 :�

0,

�2 = �02:�
0, type(�3:�003 ) = � 02 and� `

I
f

ic

� 02 � �2:�
0
2. We need to consider the following

cases. (a)� = �:�0. Observe thattype(�1:�01:�) = type(� 01:�) = type(�3:�
00
3 ) = � 02.

Thus by� `
I
f

ic

� 02 � �2:�
0
2, �0 is a common suffix of�1 and�2, and thus the statement

holds in this case. (b)�0 = �:�. By type(�3:�
00
3 ) = � 02, we have� `

I
f

ic

�3:�
00
3 � � 02.

Moreover, by�03 = �003 :�, � `
I
f

ic

� 01 � �3:�
0
3, IC4 and IC3, we have� `

I
f

ic

� 01 � � 02:�.

Hence by� `
I
f

ic

� 02 � �2:�
0
2, IC4 and IC3, we have� `

I
f

ic

� 01 � �2:�
0
2:�. Moreover,

type(�1:�
0
1) = � 01, �1 = �01:� and�2 = �02:�:�, i.e.,� is a common suffix of�1 and

�2. Thus the statement also holds in this case. Next, suppose that� `
I
f

ic

' is proved
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by using IC4, i.e., by showing� `
I
f

ic

�1:�
0
1 � �2:�

0
2, �1 = �01:�, �2 = �02:� and

then by applying IC4. By the induction hypothesis, there are paths�, �001 and�002 such
that �01 = �001 :�, �02 = �002 :�, type(�1:�001 ) = � 0 and� `

I
f

ic

� 0 � �2:�
00
2 . Obviously,

�1 = �001 :�:� and�2 = �002 :�:�, i.e., �:� is a common suffix of�1 and�2. Thus the

statement also holds forIfic-proofs of lengthk. This completes the proof of Claim 2.

Path inverse constraints.A more general form of inverse constraints is defined as follows.
A path inverse constraint' is an expression of the form�1:�1 *) �2:�2, where�1; �2 are
element types,�1 2 paths(�1) and�2 2 paths(�2). It states an inverse relationship
between paths�1:�1 and�2:�2. We say that a data treeG satisfies', denoted byG j= ',
iff in G,

8x 2 ext(�1)8 y 2 ext(�2) (y 2 nodes(x:�1)$ x 2 nodes(y:�2)):

As an example, let us consider element typescourse, student, andteacher. Suppose
thatstudent has an attributetaking,teacher has an attributeteachingand in addition,
course has attributestaken by andtaught by. Then' given below is a path inverse
constraint:student:taking:taught by *) teacher:teaching:taken by. Assume the
following basic inverse constraints inLid:

student:taking*) course:taken by; teacher:teaching*) course:taught by:

Then these (finitely) imply the path inverse constraint'.
The complexity of implication and finite implication of path inverse constraints byLid

constraints is given as follows.

Theorem 4.3. For any finite set� ofLid constraints and any path inverse constraint
', whether� j= ' (� j=f ') is decidable inO(j�j j'j) time.

Proof. Assume that' is �1:�1 *) �2:�2, type(�1:�1) = � 01 and type(�2:�2) = � 02
w.r.t. �. First observe that if� 01; �

0
2 are some element types but� 01 6= �2 and� 02 6= �1, then

ext(�1:�1) andext(�2) are disjoint, andext(�2:�2) andext(�1) are disjoint. In this case,
by the definition of path inverse constraints, for any data treeG that satisfies�, we must
haveG j= '. Otherwise, if either� 01 6= �2 or � 02 6= �1, one can always construct a finite data
treeG such thatG j= � butG 6j= '. These cases can be easily determined by examining
types of the paths involved, and can be done inO(j�j j'j) time by Theorem 3.1. Below we
assume� 01 = �2 and� 02 = �1. In this case, letIinv be the set consisting of the following
inference rules:

� Inv1: � *) � .
� Inv2: if �1:�01 *) �2:�

0
2 and� `Iid �2:l2 *) �3:l3, then�1:�01:l2 *) �3:l3:�

0
2.

To prove Theorem 4.3, it suffices to show the following claim:

Claim: � j= ' (� j=f ') iff � `Iinv ', i.e., there is anIinv-proof of' from�.

For if it holds, then one can determine whether� j= ' (� j=f ') by examining whether
each correspondingpair of labels in�1 and�2 has an inverse relationship. By Theorem 3.1,
this can be done inO(j�j j'j) time.
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We next show the claim. If� `Iinv ', then by induction on the length of theIinv-
proof one can verify that� j= ' and� j=f '. Conversely, assume� 6`Iinv ', we
construct a finite treeG such thatG j= � but G 6j= '. In other words,� 6j= ' and
� 6j=f '. We give the construction ofG as follows. As in the proof of Theorem 4.1, we
can generalize the construction given in the proof of Theorem 3.1 to define a finite data tree
G1 such thatG1 j= � and in addition, there are�1 elementx and�2 elementy such that
nodes(x:�1) = fyg if j�1j 6= 0. We show thatG can be constructed by modifyingG1, by
induction onj�1j.
Induction basis.First considerj�1j = 0. If �1 = �2 and j�2j = 0, then� `Iinv ' by
the Inv1 rule inIinv , which contradicts our assumption. Ifj�2j = 0 but �2 6= �1, then
type(�2:�2) = �2 6= �1, which contradicts our assumption. Ifj�2j 6= 0, then we can
modify the children or attribute definition of the nodes in the path�2 from y such that
x 2 nodes(y:�2) butx 6= y (i.e.,y 62 nodes(x:�1)), without affecting the satisfaction of
�. This can be verified by a straightforward induction onj�2j. Let G beG1 with this
modification. ThenG j= � butG 6j= '. Thus the claim holds forj�1j = 0.
Inductive step.Assume the claim forj�j = k. We show that the claim also holds for
�1 = �01:�1, wherej�01j = k and�1 is either an element type or an attribute. Assume
type(�1:�

0
1) = � . If �2 = �, then the argument forj�1j = 0 can show that there is a

finite treeG such thatG j= � butG 6j= '. Now assume�2 = �2:�
0
2, where�2 is either

an element type or an attribute. Assumetype(�2:�2) = � 0. We consider the following
cases. (1) If� 6= � 0, then we can modify the children or attribute definition ofy in G1

such thatnodes(y:�2) = fzg but x 62 nodes(z:�02) without affecting the satisfaction of
�, wherez is a � 0 element. Again, this can be verified by induction onj�02j with slight
modification to the construction given in the proof of Theorem 3.1. LetG beG1 with this
modification. ThenG j= � butG 6j= '. (2) Assume� = � 0. By assumption,� 6`Iinv '.
Thus either� 6`Iinv �1:�

0
1
*) �:�02 or � 6`Iid �:�1 *) �2:�2, since otherwise the Inv2

rule in Iinv shows� `Iinv '. First assume� 6`Iinv �1:�
0
1
*) �:�02. By the induction

hypothesis, there is a finite data treeG2 such thatG2 j= � but G2 6j= �1:�
0
1
*) �:�02.

Thus there exist�1 elementx and � elementz such that eitherx 2 nodes(z:�02) but
z 62 nodes(x:�01), or z 2 nodes(x:�01) but x 62 nodes(z:�02). We modifyG2 such that
nodes(z:�1) = fyg andnodes(y:�2) = fzg for some�2 elementy without affecting
the satisfaction of�. This is possible because there are more than one� (resp. �2)
elements by the construction given in the proof of Theorem 3.1, and thus we can switch
the assignment of children or attribute ofz (resp. y) with other elements. LetG beG2

with this modification. ThenG j= � butG 6j= '. Next assume� `Iinv �1:�
0
1
*) �:�02

but� 6`Iid �:�1 *) �2:�2. Consider a nodez 2 nodes(x:�01) in G1, which must exist by
our construction ofG1. We can find another� elementz0 such thatnodes(z:�1) = fyg

and nodes(y:�2) = fz0g, wherey is the �2 element innodes(x:�1) as given in the
construction ofG1 above. By the same argument given above, this is possible without
affecting the satisfaction of�. Let G beG1 with this modification. ThenG j= � but

G 6j= '. Thus the claim holds forj�1j = k+1. This completes the proof of Theorem 4.3.

5. CONCLUSION

We have proposed an extension of XML DTDs that specifies both syntactic structure
and integrity constraints for XML data. The semantics of XML documents is captured
with simple key, foreign key and inverse constraints. We have introduced several classes
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of constraints useful either for specifying native XML documents or for preserving the se-
mantics of data originating in structured databases. In addition, these constraints improve
the XML reference mechanism with typing and scoping. We have investigated the impli-
cation and finite implication problems for these basic XML constraints, and established a
number of complexity and axiomatizability results. These results not only are useful for
XML applications, but also extend relational dependency theory, notably, on the interaction
between (primary) keys and foreign keys. We have also studied path functional, inclusion
and inverse constraints and their implication by basic XML constraints.

It should be mentioned that we only investigated constraint implication that generally
holds independently of DTDs. This allows us to study XML documents that do not come
with a DTD, and simplifies our proofs. As indicated in [12], integrity constraints may
interact with schema (DTDs) and the interaction may not be simple. As a result, constraint
implication may have widely different complexities in the presence and absence of a
schema, and our proof techniques no longer apply in the typed context. Recently, (finite)
implication of XML constraints has been studied [24] in the presence of DTDs.

On the theoretical side, a number of questions are still open. First, it can be shown that
(finite) implication of multi-attribute primary keys and foreign keys is in PSPACE. Can this
be tested more efficiently? Second, we only investigated implication of path constraints by
basic constraints. Implication of path constraints by path constraints has not been settled.
Third, more expressive key and foreign key constraints have been proposed for XML in,
e.g., XML Schema [35]. The implication and finite implication problems associated with
these constraints are still open, especially when they are considered in the presence of DTDs
or types for XML data. On the practical side, we believe that the approach proposed here is
promising. The basic constraints are simple and important enough to assume that they could
be adopted by the XML designer and maintained by the system. One topic for future work
is to study constraints in data integration [18], which is an important application of XML. In
this context, natural questions are how constraints propagate through integration programs,
and how they can help in verifying the correctness of the programs. Furthermore, we only
proposed three independent languages, while data integration would require a framework
that encompass all of these constraints.
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