
Querying Big Data: Bridging Theory and Practice

Wenfei Fana,b, Jinpeng Huaib

aSchool of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom
bInternational Research Center on Big Data, Beihang University, Beijing, No.37 XueYuan Road, 100083, Beijing, China

Abstract

Big data introduces challenges to query answering, from theory to practice. A number of questions arise. What queries are
“tractable” on big data? How can we make big data “small” so that it is feasible to find exact query answers? When exact answers
are beyond reach in practice, what approximation theory canhelp us strike a balance between the quality of approximate query
answers and the costs of computing such answers? To get sensible query answers in big data, what else do we necessarily do in
addition to coping with the size of the data? This position paper aims to provide an overview of recent advances in the study of
querying big data. We propose approaches to tackling these challenging issues, and identify open problems for future research.

Keywords: Big data, query answering, tractability, distributed algorithms, incremental computation, approximation, data quality.

1. Introduction

Big data is a term that is almost as popular as “internet”
was back 20 years ago. It refers to a collection of data sets
so large and complex that it becomes difficult to process us-
ing traditional database management tools or data processing
applications [92]. More specifically, big data is often charac-
terized with four V’s: Volumefor the scale of the data,Veloc-
ity for its streaming or dynamic nature,Variety for its different
forms (heterogeneity), andVeracity for the uncertainty (poor
quality) of the data [64]. Such data comes from social net-
works (e.g.,Facebook, Twitter, Sina Weibo), e-commerce sys-
tems (e.g.,Amazon, Taobao), finance (e.g.,stock transactions),
sensor networks, software logs, e-government and scientific re-
search (e.g.,environmental research), just to name a few, where
data is easily of PetaByte (PB,1015 bytes) or ExaByte (EB,
1018 bytes) size. The chances are that big data will generate as
big impacts on our daily lives as internet has done.

New challenges. As big data researchers, we do not confine
with the general characterization of big data. We are more in-
terested in what specific technical problems or research issues
big data introduces to query answering. Given a datasetD and
a queryQ, query answeringis to find the answersQ(D) to Q

in D. HereQ can be an SQL query on relational data, a key-
word query to search documents, or a personalized social search
query on social networks (e.g.,Graph Search of Facebook [29]).

Example 1. A fraction D0 of an employee dataset of a com-
pany is shown in Figure 1. Each tuple inD0 specifies the first-
name (FN), last name (LN), salary and maritalstatus of an em-
ployee, as well as the area code (AC) andcity of her office. A
queryQ0 is to find distinct employees whose first name is Mary.

Email addresses:wenfei@inf.ed.ac.uk (Wenfei Fan),
huaijp@buaa.edu.cn (Jinpeng Huai)

FN LN AC city salary status

t1: Mary Smith 20 Beijing 50k single
t2: Mary Webber 10 Beijing 50k married
t3: Mary Webber 10 Beijing 80k married
s1: Bob Luth 212 NYC 80k married
s2: Robert Luth 212 NYC 55k married

Figure 1: An employee datasetD0

Such a query can be expressed in, e.g., relational algebra, writ-
ten asσFN = “Mary” R0 by using selection operatorσ [1], where
R0 is the relation schema ofD0. To answer the queryQ0 in
D0, we need to find all tuples inD0 that satisfy the selection
condition:FN = “Mary”, i.e., tuples t1, t2 andt3. �

In the context of big data, query answering becomes far more
challenging than what we have seen in Example 1. The new
complications include but are not limited to the following.

Data. In contrast to a single traditional databaseD0, there are
typically multiple data sources with information relevantto our
queries. For instance, a recent study shows that many domains
have tens of thousands of Web sources [22],e.g.,restaurants,
hotels, schools. Moreover, these data sources often have a large
volume of data (e.g.,of PB size) and are frequently updated.
They have different formats and may not come with a schema,
as opposed to structured relational data. Furthermore, many
data sources areunreliable: their data is typically “dirty”.

Query. Queries posed on big data are no longer limited to our
familiar SQL queries. They are often for document search, so-
cial search or even for data analysis such as data mining. More-
over, their semantics also differs from traditional queries. On
one hand, it can be more flexible: one may want approximate
answers instead of exact answersQ(D). On the other hand,
one could ask query answering to be ontology-mediatedby cou-
pling datasets with a knowledge base [12], or personalized and

Preprint submitted to Elsevier July 31, 2014

context-aware [86] such that the same query gets different an-
swers when issued by different people in different locations.

These tell us that query answering in big data is a depar-
ture from our familiar terrain of traditional database queries. It
raises a number of questions. Does big data give rise to any new
fundamental problems? In other words, do we need new theory
for querying big data? Do we need to develop new methodol-
ogy for query processing in the context of big data? What prac-
tical techniques could we use to cope with the sheer volume of
big data? In addition to the scalability of query answering algo-
rithms, what else do we have to pursue in order to find sensible
or even correct query answers in big data?

Querying big data. This paper presents an overview of recent
advances in the study of these problems. It is a progress report
of the International Research Center on Big Data at Beihang
University [10], which was established in September 2012, and
has been working on querying big data since then. We report
how we tackle the problems mentioned above.

BD-tractability. The first question we need to answer is what
queries aretractableon big data. Given a queryQ and a big
datasetD, we want to know whether we can computeQ(D)
within our available resources such as time and space. As found
in most textbooks (e.g.,[1, 81]), a class of queries is tradition-
ally consideredtractableif there exists an algorithm for answer-
ing its queries in time bounded by a polynomial in the size of
the input (PTIME), i.e., a database and a query. In other words,
a class of queries isfeasiblefrom a theoretical perspective if its
worst-case time complexity isPTIME, while a class is consid-
ered difficult to solve when it isNP-hard. This notion of time
complexity dates back to 1965 [60] and is almost 50-years old.

When it comes to big data, however,PTIME queries may
no longer be feasible. For instance, consider the queryQ0 and
datasetD0 given in Example 1. To computeQ0(D0) in the
absence of any indices, one may need to scanD0. Assuming
the fastest Solid State Drives (SSD) with disk scanning speed
of 6GB/s [85], a linear scan ofD0 takes 166,666 seconds when
D0 consists of 1PB of data; that is, 2,777 minutes, 46 hours,
or 1.9 days! WhenD0 has 1EB of data, we have to wait 5.28
years for a linear scan ofD0. That is, evenlinear-time(O(n))
queries becomeinfeasiblein the context of big data.

This suggests that we revise the classical computational com-
plexity theory for querying big data. To this end, we proposea
notion ofBD-tractable queries[38], to help us determine what
queries are tractable or feasible on big data.

Making queries BD-tractable. It is not surprising that many
query classes are not BD-tractable. The next question naturally
asks whether we can make these query classes BD-tractable?
We approach this by studying both its fundamental problems
and practical techniques, by making big data “small”.

To understand what it takes to compute answersQ(D) of
a queryQ in a datasetD, we want to identifya core ofD
for answeringQ, i.e., a minimum subsetDQ of D such that
Q(D)=Q(DQ). Indeed, it often suffices to fetch a small or
even a bounded subsetDQ of D for computingQ(D), no mat-

ter how large the underlying datasetD is. For instance, when
Q is a Boolean conjunctive query (a.k.a. SPC query [1]), we
need at most||Q|| tuples fromD to answerQ, independent of
the size ofD, where||Q|| is the number of tuples in the tableau
representation ofQ. This is also the case for many personal-
ized social search queries. Intuitively, if a coreDQ of D for
answeringQ has a bounded size, thenQ is scale independent
in D [36], i.e.,we can efficiently computeQ(D) no matter how
big D is. This suggests that we study how to determine whether
a query is scale independent in a dataset.

In addition, we develop several practical techniques for mak-
ing big data “small”. These include (a) distributed query
processing by partial evaluation [47], with provable perfor-
mance guarantees on both response time and network traffic;
(b) query-preserving data compression [45]; (c) view-based
query answering [50]; and (d) bounded incremental computa-
tion [49, 82]. All these techniques allow us to computeQ(D)
with a cost that isnot a function of the size ofD, and have
proven effective in querying social networks. The list is not ex-
clusive: there are many other techniques for making big data
“small” and hence, making queries feasible on big data.

Query-driven and data-driven approximation. Some queries
neither are BD-tractable nor can be made BD-tractable. An
example is graph pattern matching by subgraph isomorphism.
Here queryQ is a graph pattern, datasetD is a graph, and the
answerQ(D) is the set of all subgraphs ofD that are isomor-
phic toQ. Such queries are expensive: it isNP-complete even
to decide whether there exists a subgraph ofD that is isomor-
phic toQ! It is beyond reach in the context of bigD to compute
exact answersQ(D). In light of this, algorithms for processing
such queries on big data arenecessarily inexact. We may have
to settle withheuristics, “quick and dirty” algorithms which re-
turn approximate answers that are not necessarily optimal [81].

This highlights the need for studying the next question: how
can we developapproximation algorithms, i.e.,heuristics which
find answers that are guaranteed to be not far from the exact
query answers? We propose two types of approximation.

(1) Query-driven approximation. For certain queries we can
relax their semantics and reduce the complexity of query pro-
cessing. One example is the class of graph pattern queries men-
tioned above, for social network analysis. Instead of adopt-
ing subgraph isomorphism for graph pattern matching, we can
use (revisions of) graph simulation [41, 42, 74]. This reduces
the complexity of graph pattern matching from intractability
by subgraph isomorphism to quadratic-time or cubic-time by
(revised) graph simulation! Better still, the revised notions of
graph simulation allow us to catch more sensible matches in
social data analysis than subgraph isomorphism can find.

(2) Data-driven approximation. In some applications we may
not be able to relax query semantics. To this end, we pro-
pose a notion ofresource-bounded approximationin this pa-
per. In contrast to traditional approximation algorithms that di-
rectly operate on a given big datasetD, we first reduceD to
“small data”DQ with a “lower resolution”α∈(0,1], such that
|DQ|≤α|D|. We then computeQ(DQ) as approximate query

2

answers toQ, such thatQ(DQ) is within a performance ra-
tio η to the exact answerQ(D). We explore theconnection
between the resolutionα and the quality boundη, to strike a
balancebetween the computation cost and the quality of the
approximate answers. Our preliminary study [52] has shown
that for personalized social search queries, the performance ra-
tio remains 100% even when the resolutionα is as small as
0.0015% (15∗10−6). That is, we can reduceD of 1PB toDQ

of 15GB, while still retaining exact answers for such queries!

Big data = quantity + quality. To compute high-quality query
answers from big data, it is often insufficient just to develop
scalable algorithms to cope with large volume of the data. To
illustrate this, let us consider the following example.

Example 2. Recall queryQ0 and datasetD0 from Example 1.
Suppose that we have efficient techniques in place to compute
Q0(D0) for big D0. As remarked earlier,Q0(D0) consists of
three tuplest1, t2 andt3. The question is: can we trustQ0(D0)
to be the correct answer to what the user wants to find?

Unfortunately, there are at least three reasons that discredit
our trust inQ0(D0). (1) In tuplet1, attributet1[AC] is 20 and
t1[city] is Beijing, while the area code of Beijing is 10. In light
of this, tuplet1 is “inconsistent” and hence, its quality is in
question. (2) The chances are that all three tuplest1, t2 andt3
refer to the same person; in other words, they do not represent
distinct employees. (3) Furthermore, the datasetD0 may be
incomplete: for some employees whose first name is also Mary,
their records are not included inD0. In light of these, we do
not know whether the answerQ0(D0) is correct or not! �

From the example we can see that when the datasets are dirty,
we cannot trust the answers to our queries in those datasets.In
other words, no matter how big datasets we can handle and
how fast our query processing algorithms are, the query an-
swers computed may not be correct and hence may be useless!
Unfortunately, real-life data is often dirty [33], and the scale of
data quality problems is far worse in the context of big data,
since real-life data sources are often unreliable. Therefore, the
study of the quality of big data is as important as techniquesfor
coping with its quantity; that is,big data = quantity + quality!

This motivates us to study the quality of big data. We con-
sider five central issues of data quality: data consistency [34],
data accuracy [16], information completeness [32], data cur-
rency [40] and entity resolution [31], from theory to practice.
We study how to repair dirty data [20, 43, 46] and how to de-
duce true values of an entity [39], among other things, empha-
sizing new challenges introduced by big data.

Organization. The remainder of the paper is organized as fol-
lows. We start with BD-tractability in Section 2. We study scale
independence and present several practical techniques formak-
ing queries BD-tractable in Section 3. When BD-tractable algo-
rithms for computing exact query answers are beyond reach in
practice, we study approximate query answering in Section 4,
by proposing query-driven approximation and data-driven ap-
proximation. We study the other side of big data, namely, data
quality, in Section 5. Finally, Section 6 concludes the paper.

The study of querying big data is still in its infancy, and it
has raised as many questions as it has answered. In light of
this, we also identify open research issues in this paper, and
propose approaches to tackling them. We hope that the paper
will incite interest in the study of querying big data, and we
invite interested colleagues to join forces with us in the study.

2. Tractability Revised for Querying Big Data

This section studies the following problem: given a classQ
of queries that we need to use, we want to determine whetherQ
is tractable in big data,i.e., it is feasible to answer the queries of
Q in big data within our available resources. As we have seen
in Section 1, polynomial time can no longer provide a charac-
terization forQ to be tractable in big data. This suggests that
we revise the traditional notion of tractability, and defineBD-
tractability, i.e., tractability for queries on big data.

Below we present a notion of BD-tractable queries. We en-
courage the interested reader to consult [38] for details.

Preliminaries. We start with a review of two well-studied com-
plexity classes (see,e.g.,[58, 67] for details).

• The complexity classP consists of all decision problems
that can be solved by a deterministic Turing machine in
polynomial time (PTIME), i.e., in nO(1) time, wheren is
the size of the input (datasetD and queryQ in our case).

• The parallel complexity classNC, known as Nick’s Class,
consists of all decision problems that can be solved by tak-
ingO(logO(1) n) time on a PRAM (parallel random access
machine) withnO(1) processors.

In this paper we focus on query classes rather than decision
problems. We useP to denote the set of allPTIME query
classes. We say that a query classQ is in NC if all of its queries
can be answered in parallelpolylog-time, i.e.,polynomial time
in the logarithmof the input using a PRAM with polynomially
many processors. Such a query class ishighly parallel feasi-
ble, i.e., its queries can be efficiently answered on aparallel
computer [58]. It is also known that a large class ofNC algo-
rithms can be implemented in the MapReduce framework [69],
such that if anNC algorithm takest time, than its correspond-
ing MapReduce counterpart takesO(t) rounds. We useNC to
denote the set of all such parallelpolylog-time query classes. It
should be remarked that there have been revisions of the PRAM
model by requiringlog n processors instead ofnO(1) [25].

BD-tractability . To make query answering feasible in big data,
we adopt two ideas: (1) using parallel machines, and (2) sep-
arating offline and online processes. The second idea suggests
that we preprocess a datasetD by,e.g.,building indices or com-
pressing the data, which yields datasetD′, such that all queries
in Q on D can subsequently be processed onD′ online effi-
ciently. When the data is static or whenD′ can be incrementally
maintained efficiently, the preprocessing step can be considered
as anoffline process with aone-time cost. Preprocessing has
been a common practice of database people for decades.

3

Example 3. Recall queryQ0 and datasetD0 from Example 1.
ExtendingQ0, let us consider a classQ0 of Boolean selection
queries. A queryQ in Q0 is to find whether there exists a tuple
t∈D0 such thatt[A]=c, whereA is an attribute ofD0 andc

is a constant. A naive evaluation ofQ would require a linear
scan ofD0. To efficiently answer queries ofQ0 in D0, we can
first build B+ trees on the values of the attributes ofD0, as
a one-time preprocessing step offline. Then we can evaluateall
queries inQ0 onD0 in O(log |D0|) time using the indices. That
is, we no longer need to scanD0 when processingeachquery
in Q0. WhenD0 consists of 1PB of data, we can get the results
in 5 seconds with the indices rather than 1.9 days. �

Based on these two ideas, below we propose a revision of the
traditional notion of tractable query classes.

To be consistent with the complexity classes that are tradi-
tionally studied for decision problems [58, 67], we consider
Boolean query classesQ, and representQ as alanguageS of
pairs〈D,Q〉, whereQ is a query inQ, D is a database on which
Q is defined, andQ(D) is true. In other words,S can be con-
sidered as a binary relation such that〈D,Q〉∈S if and only if
Q(D) is true. We refer toS asthe language forQ.

We say that a languageS of pairs isin complexity classCQ

if it is in CQ to decide whether a pair〈D,Q〉∈S, i.e.,Q(D) is
true. HereCQ may be the sequential complexity classP or the
parallel complexity classNC, among other things.

Complexity classBDT0. We say that a classQ of queries is
BD-tractableif there exist aPTIME-computable preprocessing
functionΠ on datasets and a languageS′ of pairs such that for
queriesQ∈Q and all datasetsD,

• 〈D,Q〉 is in the languageS of pairs forQ if and only if
〈Π(D),Q〉∈S′, and

• S′ is in NC, i.e., the language of pairs〈Π(D),Q〉 is in NC.

We denote byBDT0 the set of all BD-tractable query classes.

Intuitively, functionΠ(·) preprocessesD and generates an-
other structureD′=Π(D) offline, inPTIME. After this, forall
queriesQ∈Q that are defined onD, Q(D) can be answered by
evaluatingQ(D′) online inNC, i.e., in parallelpolylog-time.

Observe the following. (a) As shown in Example 3, parallel
polylog-time is feasible on big data. Moreover,NC is robust
and well-understood. It is one of the few parallel complexity
classes whose connections with classical sequential complexity
classes have been well studied (see,e.g.,[58]). (b) We consider
PTIME preprocessing feasible since it is aone-timeprice and
is performedoffline. Note that the preprocessing step is also
expected to be conducted usingparallel machines, possibly by
allocating more resources (e.g.,computing nodes) to it than to
online query answering. Moreover, by requiring thatΠ(·) is in
PTIME, the size ofΠ(D) is bounded by a polynomial.

Example 4. As we have seen in Example 3, the classQ0 of
Boolean selection queries is inBDT0. Indeed, functionΠ(·)
preprocesses a datasetD0 by buildingB+-trees on attributes
of D0 in PTIME. After this, all queries inQ0 posed onD0 can

be answered inO(log|D|) time by using the indices inΠ(D0).
In fact, the class of all relational algebra queries extended
with transitive closure is also inBDT0 over ordered relational
datasets, since those queries are inNC in this setting [88]. �

Making queries BD-tractable. Some query classesQ are
not BD-tractable, but can be transformed to a BD-tractable
query class by means ofre-factorizations. A re-factorization re-
partitions the data and query parts forQ and identifies a dataset
for preprocessing, such that after the preprocessing, its queries
can be subsequently answered in parallelpolylog-time.

Complexity classBDT. More specifically, we say that a class
Q of queriescan be made BD-tractableif there exist threeNC

computable functionsπ1(·), π2(·) andρ(·, ·) such that for all
〈D,Q〉 in the languageS of pairs forQ,

• D′=π1(D,Q), Q′=π2(D,Q), 〈D,Q〉=ρ(D′,Q′), and

• the query classQ′={Q′ | Q′=π2(D,Q),〈D,Q〉∈S} is
BD-tractable.

Intuitively, π1(·) and π2(·) re-partition x=〈D,Q〉 into a
“data” partD′=π1(x) and a “query” partQ′=π2(x), andρ

is an inverse function that restores the original instancex from
π1(x) andπ2(x). The data partD′ is picked fromx and will
be preprocessed, such that after the preprocessing step, all the
queriesQ′∈Q′ can then be answered in parallelpolylog-time.

We useBDT to denote the set of all query classes that can be
madeBD-tractable. Obviously,BDT0 is a subset ofBDT, when
D=π1(D,Q), Q=π2(D,Q), andρ is the identity function. As
will be seen next,BDT0 is a proper subset ofBDT unlessP =
NC, i.e., there is a query class that is inBDT but not inBDT0.

Example 5. Consider Breadth-Depth Search (BDS) [58]:

• Input: An undirected graphG=(V,E) with a numbering
on the nodes, and a pair(u,v) of nodes inV .

• Question: Isu visited beforev in the breadth-depth search
of G induced by the vertex numbering?

A breadth-depth search starts at a nodes and visits all its chil-
dren, pushing them onto a stack in the reverse order induced by
the vertex numbering as the search proceeds. After all ofs’s
children are visited, the search continues with the node on the
top of the stack, which plays the role ofs.

In the problem statement of BDS given above, the entire in-
put, i.e.,x=(G,(u,v)), is treated as a query, while its data part
is empty. In this setting, there is nothing to be preprocessed.
Moreover, it is known that BDS isP-complete (cf. [58]), i.e., it
is the hardest problem in the complexity classP. UnlessP =
NC, such a query cannot be processed in parallelpolylog-time.
In other words, this class of BDS queries is not inBDT0 unless
P = NC. It is also known that the question whetherP = NC is
as hard as our familiar open question whetherP = NP.

Nonetheless, there exists a re-factorization(π1,π2,ρ) of its
instancesx=(G,(u,v)) that identifiesG as the data part and
(u,v) as the query part. More specifically,π1(x)=G, π2(x)=
(u,v), and ρ mapsπ1(x) and π2(x) back tox. Given this,

4

we define preprocessingΠ(·) as the function that performs
breadth-depth search onG based on the ordering on the ver-
tices, and returns a listM consisting of all the nodes inV in the
same order as they are visited during the search. ThenΠ(G)
is clearly in PTIME in |G|. Let S′ be the language of pairs
〈M,(u,v)〉 such thatu appears beforev in M . Obviously, one
can decide whether(M,(u,v))∈S′ by binary searches onM ,
in O(log |M |) time. Hence BDS is inBDT. In other words,
while BDS is not BD-tractable, it can be made BD-tractable by
means of a re-factorization. In light of this, BDS provides a
witness that separatesBDT andBDT0, unlessP = NC. �

Fundamental issues. There are several important questions in
connection with BD-tractability. Whatreductionscan we use to
transform one query class inBDT to another? Does there exist
a natural classQ of queries that iscompletefor BDT, i.e.,Q is
a class of the “hardest” queries inBDT? How large isBDT?
In other words, is it a new complexity class or the same asP

or NC? The same questions also arise forBDT0. In fact, these
are the “standard” questions one would have to answer for any
complexity class, including our familiarP andNP.

These questions have been studied forBDT andBDT0 [38].

• A form of NC-reductions6NC
fa has been defined forBDT,

which is transitive (i.e., if Q16
NC
fa Q2 andQ26

NC
fa Q3 then

Q16
NC
fa Q3) and compatible withBDT (i.e., if Q16

NC
fa

Q2 andQ2 is in BDT, then so isQ1). Similarly, NC-
reductions have been defined forBDT0 with these proper-
ties. In contrast to our familiarPTIME-reductions forNP

problems (see,e.g.,[81]), these reductions require a pair
of NC functions,i.e.,both are in parallelpolylog-time.

• There exists acomplete query classQm for BDT under
6NC

fa reductions,i.e.,Qm is in BDT and moreover, for all
query classesQ∈BDT, Q6NC

fa Qm. However, the ques-
tion whether there exists a complete query class forBDT0

is as hard as the open question whetherP = NC.

• NC ⊆BDT= P. That is, allPTIME query classes can be
made BD-tractable via proper re-factorizations, or in other
words, by transforming them to a query class inBDT via
6NC

fa reductions. In contrast, unlessP = NC, BDT0⊂P,
i.e., BDT0 is indeed a proper subset ofP, and hence, not
all PTIME queries are BD-tractable.

These results are not only of theoretical interest, but alsopro-
vide guidance for us to answer queries in big data. For instance,
given a query classQ, we can conclude that it can be made BD-
tractable if we can find a6NC

fa reduction to a complete query
classQm of BDT. If so, we are warranted an effective algo-
rithm for answering queries ofQ in big data. Indeed, such an
algorithm can be developed by simply composing theNC re-
duction and anNC algorithm for processingQm queries; then
the algorithm remains in parallelpolylog-time.

One may ask what query classes may not be made BD-
tractable. The results above also tell us the following: unless
P = NP, all query classes for which the membership problem is
NP-hard are not inBDT. The membership problemfor a query

classQ is to decide, given a queryQ∈Q, a datasetD and an
elemente, whethere∈Q(D), i.e.,e is in the answer toQ in D.

Open issues. There has been a host of recent work on re-
vising the traditional complexity theory to characterize data-
intensive computation on big data. The revisions are definedin
terms of computational costs [38], communication (coordina-
tion) rounds [61, 71], or MapReduce steps [69] and data ship-
ments [3] in the MapReduce framework [23]. Our notions of
BD-tractability focus on computational costs [38]. The study is
still preliminary, and a number of questions remain open.

(1) The first question concerns what complexity class precisely
characterizes online query processing that is feasible on big
data. As a starting point we adoptNC because (a)NC is con-
sidered highly parallel feasible [58]; (b) parallelpolylog-time is
feasible on big data; and (c) manyNC algorithms can be imple-
mented in the MapReduce framework [69], which is being used
in cloud computing and data centers for processing big data.
However,NC is defined in the PRAM model, which may not be
accurate for real-life parallel frameworks such as MapReduce.

These call for a full treatment of parallel computation models
that are more practical than PRAM for characterizing available
resources in the real world. Such models should take into ac-
countboth computational complexity and communication costs.
Upon the availability of such models, the classBDT0 of BD-
tractable queries should then be revised accordingly.

(2) The second question concerns the complexity of preprocess-
ing. Let us usePQ[CP ,CQ] to denote the set of all query classes
that can be answered by preprocessing the data sets in the com-
plexity classCP and subsequently answering the queries inCQ.
ThenBDT0 can be represented byPQ[P,NC]. One may con-
sider other complexity classesCP instead ofP. For instance,
one may considerPQ[NC,NC] by requiring the preprocessing
step to be conducted more efficiently; this is not very interesting
sincePQ[NC,NC] coincides withNC. On the other hand, one
may want to considerCP beyondP, e.g.,NP andPSPACE (i.e.,
PQ[NP,NC] andPQ[PSPACE,NC]). This is another debatable
issue that demands further study. No matter whatPQ[CP ,CQ]
we use, one has to strike a balance between its expressive power
and computational cost in the context of big data.

(3) BD-tractability has only been studied for Boolean queries
and decision problems, as people usually do in complexity the-
ory. Nevertheless, BD-tractability for general queries, as well
as for search and function problems, remains to be studied.

(4) There are a number of open issues in connection with query
evaluation with preprocessing. Given a query class, how canwe
effectively identify a re-factorization that appropriately picks
the right dataset to be preprocessed? What preprocessing strate-
gies should we use? If a query class cannot be made BD-
tractable, can we still answer its queries in big data? We will
address some of these questions in the next a few sections.

(5) The last question concerns the existence of a complete
query class forBDT0. However, this is as hard as the problem
whetherP = NC, which is as hard as whetherP = NP.

5

3. Making Big Data Small

Following up the notion of BD-tractability presented in the
last section, we next investigate how we can make queries BD-
tractable. There are many ways to do this, such as building up
indices as we have seen in Example 3. In this section we focus
on a particular approach, bymaking big data small. Suppose
that we need to answer a classQ of queries in a big datasetD.
We propose to reduceD to a datasetD′ (or a number of frag-
mentsD′) of a manageable size, such that (1) for all queries
Q∈Q, Q(D)=Q(D′), and (2) we can efficiently answerQ in
D′ within our available resources. In other words, as a prepro-
cessing step, we reduce bigD to smallD′ such that we can
still compute exact answersQ(D) by accessing only the small
datasetD′ instead of operating on the original bigD directly.

The idea is simple. But to implement it, we need to settle sev-
eral fundamental questions and develop practical techniques.
Below we first study questions concerning whether it is possi-
ble at all to find a small datasetD′ such thatQ(D)=Q(D′).
We then present several practical techniques to make big data
small, which have been evaluated by using social network anal-
ysis as a testbed, and have proven effective in the application.

3.1. Scale Independence

We start with fundamental problems associated with the ap-
proach to making big data small. We first study the existence
of a small subsetD′ of D such that we can answerQ in D by
accessing only the data inD′. We then present effective meth-
ods for identifying such aD′. We invite the interested reader to
consult [36] for a detailed report on this subject.

To simplify the discussion we consider relational queries.Let
R be a relational schema (i.e.,R=(R1, . . . ,Rn), whereRi is a
relation schema [1]),D a database instance ofR, Q a query in
query classQ such as relational algebra or conjunctive queries,
andM a non-negative integer. Let|D| denote the size ofD,
measured as the total number of tuples in relations ofD.

The definition. We say thatQ is scale independent inD w.r.t.
M if there exists a subsetDQ⊆D such that

• |DQ|≤M , and

• Q(DQ)=Q(D).

That is, to answerQ in D, we need only to fetch at mostM
tuples fromD, regardless of how bigD is. We refer toDQ as
acorefor answeringQ in D. Note thatDQ may not be unique.
As will be seen shortly, we want to find aminimumcore.

One step further, we say thatQ is scale independent forR
w.r.t. M if for all instancesD of R, Q is scale independent in
D w.r.t. M , i.e.,one can always find a coreDQ with at mostM
tuples for answeringQ in D.

The term “scale independence” is borrowed from [6, 7, 8].
The need for studying scale independence is evident in practice.
It allows us to answerQ in big D by accessing a small dataset
within our available resources. Moreover, ifQ is scale indepen-
dent forR, we can answerQ without performance degradation
whenD grows, and hence, makeQ scalable with|D|.

Example 6 [36] Some real-life queries are actually scale inde-
pendent. For example, below are (slightly modified) personal-
ized search queries taken from Graph Search of Facebook [29].

(1) QueryQ1 is to find all NYC friends of a personp0, from
a datasetD1. HereD1 consists of two relations specified by
person(id,name,city) andfriend(id1, id2), which record the ba-
sic information of people (with a keyid) and their friend rela-
tionships, respectively. QueryQ1 can be written as follows:

Q1(name) = ∃id
(

friend(p0, id)∧person(id,name,NYC)
)

.

Observe the following. (1) In personalized social searcheswe
evaluate queries with a specified person, e.g.,p0 in Q1. (2)
DatasetD1 is often big in real life. For instance, Facebook has
more than1 billion users with140 billion friend links [28]. A
naive computation of the answer toQ1, even ifp0 is known,
may fetch the entireD1, and is cost prohibitive.

Nonetheless, we can computeQ1(D1) by accessing only a
small subsetDQ1

of D1. Indeed, Facebook has a limit of 5000
friends per user (cf. [7]), andid is a key ofperson. Thus by
using indices onid attributes, we can identifyDQ1

, which con-
sists of a subsetDf of friend including all friends ofp0, and a
setDp of person tuplest such thatt[id] = t′[id2] for some tuple
t′ in Df . ThenQ1(DQ1

) = Q1(D1). Moreover,DQ1
contains

at most 10000 tuples ofD1, and is much smaller thanD1. Thus
Q1 is scale independent inD1 w.r.t. M ≥10000. In fact, one
can verify thatQ1 is scale independent in all instances of the
schemasperson andfriend that satisfy the two constraints.

(2) Consider another queryQ2, which is to find from a dataset
D2 all A-ratedNYCrestaurants that were visited byNYCfriends
of p0 in 2013. HereD2 consists of four relations, specified
by a relational schemaR2 including person and friend as
above, as well asrestr(rid,name,city, rating) (with rid as a key)
and visit(id, rid,yy,mm,dd) (indicating that personid visited
restaurantrid on a given date). ThenQ2 can be expressed as:

Q2(rn,yy) = ∃id, rid,pn,mm,dd
(

friend(p0, id)
∧visit(id, rid,2013,mm,dd)∧ person(id,pn,NYC)

∧ restr(rid, rn,NYC,A)
)

.

Note that queryQ2 is also scale-independent. Indeed, (a) a
year has at most 365 days; and (b) it is safe to assume that on
a given day, each personid dines out at most once. Putting
these together with the constraints onfriend and person (i.e.,
a person can have at most 5000 friends at Facebook, andid

is a key ofperson), one can computeQ2(D2) by accessing a
bounded number of tuples, instead of scanning the entireD2.
Indeed,Q2 is scale independent for all instances of schemaR2

under these constraints. �

One can show that a queryQ is scale independent for any
schemaR over whichQ is defined whenQ is either

• a Boolean conjunctive query if||Q||≤M , or

• a top-k conjunctive query for a constantk and a scoring
functionf if k||Q||≤M ,

where||Q|| is the number of tuple templates in the tableau pre-
sentation of the conjunctive queryQ [1]. HereQ is Boolean
if for any instanceD of R, Q(D) returns true ifQ(D) is

6

nonempty and false otherwise; andQ is a top-k query if
Q(D) returns a subsetU ⊆Q(D) such that (a)U consists of
at mostk tuples (|U |=k if |Q(D)|≥k), and (b) for all tuples
t∈Q(D)\U ands∈U , f(s)≥f(t) [30].

Decision problems. To determine whether a queryQ is scale
independent, we need to study the following decision problems.

• The scale independence problem for(Q,D).

– INPUT: A relational schemaR, an instanceD of R,
a queryQ∈Q overR, andM ≥0.

– QUESTION: Is Q scale independent inD w.r.t. M?

• The scale independence problem forQ.

– INPUT: R, a queryQ∈Q overR, andM ≥0.
– QUESTION: Is Q scale independent forR w.r.t. M?

That is, we want to find minimum cores for answeringQ.

The complexity bounds of these problems have been estab-
lished [36]. The problems are rather intriguing. For instance,
the first one isΣp

3-complete (NPNP
NP

) whenQ is the class of
conjunctive queries, and it isPSPACE-complete whenQ is re-
lational algebra (i.e., first-order logic). Worse still, the second
problem becomes undecidable for relational algebra. This is not
surprising in database theory: for instance, the classicalmem-
bership problem (see Section 2) isNP-complete for conjunctive
queries, andPSPACE-complete for relational algebra [1].

Identifying a core. We have seen that it is rather expensive to
determine whether a queryQ is scale independent. Moreover,
even afterQ is found scale independent in a datasetD, it is
non-trivial to identify a coreDQ for answeringQ in D with a
bounded size. As an example, consider a Boolean conjunctive
queryQ over a relational schemaR. As remarked earlier, we
know thatQ is scale independent forR. The question is: is
there an efficient algorithm that, given an instanceD ofR, finds
a coreDQ⊆D such that|DQ|≤||Q|| andQ(DQ)=Q(D)?

We approach this following the common practice of database
people: we provide a sufficient condition for checking whether
Q is scale independent and if so, for helping us efficiently com-
pute a core for answeringQ. This is formalized as follows.

Access schema. We define anaccess schemaA over a relational
schemaR to be a set of tuples(R,X,N,T), where

• R is a relation schema inR,

• X is a set of attributes ofR, and

• N andT are natural numbers.

We say that a database instanceD of R conforms to the ac-
cess schemaA if for each(R,X,N,T)∈A:

• for each tuple of values̄a of attributes ofX , the set
σX=ā(R) has at mostN tuples i.e., there exist at most
N tuplest in R such thatt[X]= ā; and

• σX=ā(R) can be retrieved fromD in time at mostT .

That is, there exists an index onX that allows efficient retrieval
of certain tuples fromD, and there is a bound on the number of
such tuples. Access schemas area combinationof indices and
database dependencies, which are commonly used in practice.

Example 7. Continuing with Example 6, we would have a tu-
ple (friend, id1,5000,T) for some valueT in the access schema
A. That is, there exists an index onid1 such that ifid1 is pro-
vided, at most 5000 tuples with such an id exist infriend, and it
takes timeT to retrieve those. In addition, we would have a tu-
ple(person, id,1,T ′) in A, indicating thatid is a key forperson

with a known timeT ′ for retrieving the tuple for a givenid. �

Computing a core by leveraging access schema. Given a rela-
tional schemaR, we say that a queryQ is scale independent
under access schemaA if for all instancesD of R that conform
to A, the answerQ(D) can be computed in time that depends
only onA andQ, but not onD. That is,Q is scale indepen-
dent forR in the presence ofA, independent of the size of the
underlyingD. The following results are known.

• There is a set of syntactic rules for us to determine whether
a relational algebra queryQ is scale independent underA;
this provides us with a systematic method and a sufficient
condition to check whetherQ can be answered by access-
ing a bound number of tuples in all instances ofD [36].

• For conjunctive queriesQ, there exists a characterization,
i.e.,a sufficient and necessary condition, to decide whether
Q is scale independent underA; better still, the decision
problem is in polynomial time in the size ofQ andA [17].

• If Q is scale independent underA, then an efficient query
plan can be worked out using the rules, such that we can
find a coreDQ with a bounded size andQ(D)=Q(DQ).
For conjunctive queries, there has been an experimental
study with real-life data that shows such a query plan take
9 seconds as opposed to 14 hours by commercial sys-
tem MySQL [17]! Moreover, it is easy to mine access
constraints from real-life data, and a large percentage of
queries are scale independent under simple access con-
straints. In other words, the approach by exploring scale
independence is effective and practical.

3.2. Making Queries BD-tractable

We next turn to practical techniques for making big data
small, and hence, BD-tractable. We take graph pattern match-
ing in social graphs as our application domain, and present
four data reduction strategies as examples, namely, distributed
query processing via partial evaluation [47], query-preserving
data compression [45], view-based query answering [50], and
bounded incremental computation [49, 82]. The idea behind
these approaches is simple. When our datasetD is a social
graphG andQ is a pattern query, the complexity of computing
query answerQ(G) (the set of matches ofQ in G) is measured
by a functionf(|Q|, |G|). Sincef(·, ·) may be the lower bound
of the computation and cannot be further reduced, and|Q| is
typically small in practice, we reduce|G|, i.e., by making big
G small, to reduce the response time of query answering.

Graph pattern matching. We start with a review of graph pat-
tern matching in social graphs, which typically represent social
networks,e.g.,Facebook, Twitter, LinkedIn.

7

Social graphs. A social graph is a node-labeled directed graph
G=(V,E,fA), where (a)V is a finite set of nodes; (b)E⊆V ×
V , in which (v,v′) denotes an edge from nodev to v′; and (c)
fA(·) is a function that associates each nodev in V with a tuple
fA(v)=(A1 =a1, . . . ,An =an), whereai is a constant, andAi

is referred to as anattribute of v, written asv.Ai. In social
graphs, each node denotes a person, and its attributes carrythe
contents of the node,e.g., label, keywords, blogs, rating. An
edge represents a relationship between two people.

Patterns. A graph pattern is given asQ = (VQ,EQ,fv), where

• VQ is a finite set of nodes andEQ is a set of directed edges,
as defined for social graphs; and

• fv(·) is a function defined onVQ such that for each node
u, fv(u) is thesearch conditionfor u, defined as a con-
junction of atomic formulas of the formA op a; hereA

denotes an attribute,a is a constant, andop is one of the
comparison operators<,≤,=, 6=,>,≥.

We say that a nodev in a social graphG satisfiesthe search
condition of a pattern nodeu in Q, denoted asv∼u, if for each
atomic formula ‘A op a’ in fv(u), there exists an attributeA
defined byfA(v) such thatv.A op a.

Graph pattern matching. Given a social graphG and a graph
patternQ, we want to compute the setQ(G) of all matches inG
for Q. In this section we consider a simple semantics for graph
pattern matching, based on graph simulation [77], which has
been widely used in Web site classification and social position
detection, among other things (e.g.,[15, 19, 79, 97]).

We say that a social graphG matchesa graph patternQ via
graph simulation, denoted byQEsimG, if there exists a binary
relationS⊆VQ×V that is inductively defined as follows:

• for each pattern nodeu∈VQ, there exists a nodev∈V in
the social graph such that(u,v)∈S; and

• for each(u,v)∈S, (a)u∼v, and (b) for each edge(u,u′)
in EQ, there is an edge(v,v′) in E such that(u′,v′)∈S.

We refer toS as amatchin G for Q.

It is known that ifQEsimG, then there exists a uniquemaxi-
mummatchSo [62], i.e., for any matchS in G for Q, S⊆So.
We defineQ(G) = So if QEsimG, andQ(G) = ∅ otherwise.

It is known that it takesO(|Q|2+|Q||G|+|G|2) time to com-
puteSo [62], where|G| denotes the size ofG measured in the
number of nodes and edges; similarly for the size|Q| of Q. As
remarked earlier, real-life social graphs are typically big, e.g.,
Facebook graph has more than1 billion nodes and140 billion
links [28]. Hence it is often prohibitively expensive to compute
Q(G) for social graphsG in the real world. These highlight
the need for developing efficient techniques for graph pattern
matching to cope with the sheer size ofG.

Distributed query processing with partial evaluation. Dis-
tributed query processing is perhaps the most popular approach
to querying big data, notably MapReduce [23]. Here we advo-
cate distributed query processing with partial evaluation.

Partial evaluation has been used in a variety of applications
including compiler generation, code optimization and dataflow

evaluation (see [68] for a survey). Given a functionf(s,d) and
part of its inputs, partial evaluation is to specializef(s,d) with
respect to the known inputs. That is, it conducts as much as
possible the part off(s, ·)’s computation that depends only on
s, and generates a partial answer,i.e., a residual functionf ′(·)
that depends on the as yet unavailable inputd.

This idea can be naturally applied to distributed graph pat-
tern matching. Consider a graph patternQ posed on a graphG
that is partitioned into fragmentsF =(F1, . . . ,Fn), whereFi is
stored in siteSi. We computeQ(G) as follows.

(1) The same patternQ is posted to each fragment inF .
(2) Upon receiving patternQ, each siteSi computes apartial

answerQ(Fi) of Q in fragmentFi, in parallel, by taking
Fi as the known inputs while treating the fragments that
reside in the other sites asyet unavailableinputd.

(3) A coordinator siteSc collects partial answers from all the
sites. It then assembles the partial answers and finds the
answerQ(G) to Q in the entire graphG.

The idea behind this is simple: we divide a bigG into a col-
lectionF =(F1, . . . ,Fn) of fragments, such that the response
time is determined by the cost of computingQ(Fm) (step 2),
whereFm is the largest fragment inF , and the cost of assem-
bling partial answers (step 3). In other words, its parallelcom-
putational cost is dominated by the largest fragmentFm, rather
than the original big graphG. In this way, we reduce a bigG to
small fragmentsFi, and hence, reduce the response time. When
G is not already partitioned and distributed, one may first par-
tition G aspreprocessing. In particular, when we can afford a
number of processors, eachFi may have a manageable size and
hence, the computation ofQ(Fi) is feasible at each site.

There are many ways to develop distributed algorithms for
graph pattern matching. To evaluate and assess these algo-
rithms, we propose the following criteria. We say that a dis-
tributed algorithmT is scalable parallelif for all patternsQ,
all graphsG and all fragmentationsF of G,

• if its parallel computation cost is bounded by a polynomial
in |Q|, |Fm| and|Vf |, and

• the total data shipped is bounded by a polynomial in|Q|
and|Vf |,

whereVf is the set of nodes with edges across different frag-
ments inF . That is, the response time ofT is dominated by
the size of the query, the largest fragment inF , and howF
partitionsG, rather thanby the size of the underlyingG; sim-
ilarly for its network traffic. In practice|Vf | is typically much
smaller than|G|, and|Q| is also small. Hence, if algorithmT
has this property, then the more processors are available, the
smaller the fragments tend to be, and therefore, the less parallel
computation time and network traffic are needed,

Note that MapReduce algorithms require us to re-distribute
the data in each round of Map and Reduce; hence, they are not
scalable parallel. In contrast, there exist scalable parallel algo-
rithms for distributed graph simulation based on partial evalu-
ation. Part of the results has been reported in [47] for patterns
defined in terms of regular expressions. It is shown that there
exists a distributed algorithm to answer such pattern queries

8

• by visiting each site once,

• in O(|Fm||Q|2+|Q|2|Vf |2) time, and

• with O(|Q|2|Vf |2) communication cost.

That is, it has performance guarantees on both response time
and communication cost, as well as on site visits.

Query preserving graph compression. Another approach to
reducing the size of big graphG is by means of compressing
G, relative to a classQ of queries of users’ choice,e.g.,graph
pattern queries. More specifically, aquery preserving graph
compressionfor Q is a pair〈R,P 〉, whereR(·) is a compres-
sion function, andP (·) is apost-processing function. For any
graphG, Gc =R(G) is thecompressed graphcomputed from
G by R(·), such that (1)|Gc|≤|G|, and (2) for all queries
Q∈Q, Q(G)=P (Q(Gc)). HereP (Q(Gc)) is the result of
post-processing the answersQ(Gc) to Q in Gc.

That is, wepreprocessG by computing the compressedGc

of G offline. After this step, for any queryQ∈Q, the answers
Q(G) to Q in the big G can be computed by evaluating the
sameQ on the smallerGc online. Moreover,Q(Gc) can be
computedwithout decompressingGc. Note that the compres-
sion schema islossy: we do not need to restore the original
G from Gc. That is,Gc only needs to retain the information
necessary for answering queries inQ, and hence can achieve a
bettercompression ratio than lossless compression schemes.

For a query classQ, if Gc can be computed inPTIME and
moreover, queries inQ can be answered usingGc in parallel
polylog-time, perhaps by combining with other techniques such
as indexing and distributed processing, thenQ is BD-tractable.

The effectiveness of this approach has been verified [45],
for graph pattern matching based on graph simulation, and for
reachability queries as a special case (i.e., whether there exists
a path from one node to another via social links). More specifi-
cally, the following has been reported in [45].

• There exists a query preserving compression〈R,P 〉 for
graph pattern matching with simulation, such that for any
graphG = (V,E,fA), R(·) is in O(|E| log |V |) time, and
P (·) is in linear time in the size of the query answer.

• This compression scheme reduces the sizes of real-life so-
cial graphs by 98% and 57%, and query evaluation time
by 94% and 70% on average, for reachability queries and
pattern queries with graph simulation, respectively.

• Better still, compressedGc can be efficiently maintained.
Given a graphG, a compressed graphGc =R(G) of G,
and updates∆G to G, we can compute changes∆Gc to
Gc such thatGc⊕∆Gc = R(G⊕∆G), without decom-
pressingGc [45]. As a result, for each graphG, we need
to compute its compressed graphGc oncefor all patterns.
WhenG is updated,Gc is incrementally maintained.

Graph pattern matching using views. This technique is com-
monly used (see [73, 59] for surveys). Given a queryQ∈Q
and a setV of view definitions,query answering using views
is to reformulateQ into another queryQ′ such that (a)Q and

Q′ are equivalent,i.e., for all datasetsD, Q andQ′ produce the
same answers inD, and moreover, (b)Q′ refers only toV and
its extensionsV(D), without accessing the underlyingD.

View-based query answering suggests another approach to
making big data to small. As an example, consider graph pat-
tern queries for social network analysis. Given a big graphG,
one may identify a setV of views (pattern queries) and mate-
rialize them withV(G) of matches for patterns ofV in G, as a
preprocessingstep offline. Then matches for patternsQ can be
computed online by usingV(G) only. In practice,V(G) is typ-
ically much smaller thanG, and hence, this approach allows us
to query bigG by accessing smallV(G). Better still, the views
can be incrementally maintained in response to changes toG,
and adaptively adjusted to cover various patterns. In lightof
this, this approach has generated renewed interest for querying
big graphs as well as other forms of big data [8, 36, 50].

More specifically, for pattern queries based on graph simu-
lation in social network analysis, we know the following [50].
Given a graph patternQ and a setV of view definitions,

• it is in O(|Q|2|V|) time to decide whether queryQ can be
answered by using viewsV ; and if so,

• Q(G) can be computed inO(|Q||V(G)|+|V(G)|2) time;

• better still, |V(G)| is about 4% of|G| (i.e., |V |+|E|) on
average for real-life social graphs; and as a result of these,

• the view-based approach takes no more than 6% of the
time needed for computingQ(G) directly inG on average.

Contrast these with theO(|Q|2+|Q||G|+|G|2) complexity of
graph simulation! Note that|Q| and |V| are sizes of pattern
queries and are typically much smaller thanG in real life.

Incremental graph pattern matching. Given a patternQ and
a graphG, aspreprocessingwe computeQ(G) once. WhenG
is updated by∆G, instead of recomputingQ(G⊕∆G) starting
from scratch, we incrementally compute∆M such thatQ(G⊕
∆G) = Q(G)⊕∆M , to minimize unnecessary recomputation.
In real life,∆G is typically small: only 5% to 10% of nodes are
updated weekly [80]. When∆G is small,∆M is often small as
well, and is much less costly to compute thanQ(G⊕∆G). The
idea has also been adopted for querying big data [8, 36, 49].

The benefit is more evident if there exists a bounded incre-
mental matching algorithm. As argued in [82], incremental al-
gorithms should be analyzed in terms of|CHANGED| = |∆G|
+ |∆M |, the size of changes in the input and output, which
represents the updating costs that areinherent to the incre-
mental problem itself. An incremental algorithm is said to be
semi-boundedif its cost can be expressed as a polynomial of
|CHANGED| and |Q| [49]. That is, its cost depends only on
the size ofthe changesand the size ofpatternQ, independent
of the size of bigG. This effectively makes bigG small, since
|CHANGED|≪|G|, andQ is typically small in practice.

For graph pattern matching via graph simulation, it has been
shown that there exists a semi-bounded incremental algorithm
in O(|∆G|(|Q||CHANGED|+|CHANGED|2)) time [49].

In general, a query classQ can be considered BD-tractable if
(a) preprocessingQ(D) is in PTIME, and (b)Q(D⊕∆D) can

9

be incrementally computed in parallelpolylog-time. If so, it is
feasible to answerQ in response to changes to big dataD.

Remarks and open issues. We remark the following.

(1) There are a number of other effective techniques for query-
ing big data, notably indexing we have seen earlier. These tech-
niques and the strategies outlined above can be, and should be,
combined together, when querying big data.

(2) View-based and incremental techniques can help us make
queries scale independent [36]. More specifically, when a query
Q is not scale independent, we may still make it feasible to
query big dataincrementally, i.e., to evaluateQ incrementally
in response to changes∆D to D, by accessing aM -fraction
of the datasetD. That is, we computeQ(D), once and offline,
and then incrementally answerQ on demand. We may also
achievescale independence using views, i.e., when a setV of
views is defined, we rewriteQ intoQ′ usingV , such that for any
datasetD, we can computeQ(D) by usingQ′, which accesses
materialized viewsV(D) and fetches only a bounded amount of
data fromD. We refer the interested reader to [36] for details.

We conclude the section with several open issues.

(1) As we have seen in Section 3.1, access schemas help us de-
termine whether a query is scale independent and if so, develop
an efficient plan to evaluate the query. A practical questionasks
how to design an “optimal” access schema for a given query
workload, such that we can answer as many given queries as
possible by accessing a bounded amount of data.

(2) As remarked earlier, Boolean conjunctive queries are scale
independent even in the absence of access schema. A natural
question is: given a Boolean conjunctive queryQ and a dataset
D on whichQ is defined, how can we efficiently identify a core
of D for answeringQ, in the absence of access schema?

(3) The third question concerns distributed pattern matching.
Does there exist a distributed algorithm at all that, given a
pattern queryQ and a graphG that is partitioned intoF =
(F1, . . . ,Fn), computes the matchesQ(G) of Q in G, such that
its response time and data shipment depend on the size ofQ and
the largest fragmentFm of F only? This question asks about
the possibility or impossibility of distributed query processing
with certain performance guarantees. Recent work has shown
that this is beyond reach for distributed graph simulation (al-
though distributed simulation has certain performance guaran-
tees) [51]. However, the question remains open for distributed
pattern matching by,e.g.,subgraph isomorphism.

(4) A more general question asks about parallel scalability: for
a query class, does there exist an algorithm for answering its
queries such that the more processors are used, the less timeit
takes? That is, if we could afford “unlimited” resources, then
a parallel scalable algorithm makes it feasible to answer the
queries on big data, by using more computing facilities. There
has been work on this issue. Unfortunately, the prior work fo-
cuses on either shared-memory architectures [72] or MapRe-
duce [69, 89]. A “standard” notion of parallel scalability is not
yet in place for general shared-nothing architectures, which are

widely used in industry.

(5) As we have seen, view-based query answering provides us
with an effective technique for querying big data. To make prac-
tical use of it, however, we need to answer the following ques-
tion. Given a query workload, what views should we select to
build and maintain, such that the queries can be efficiently an-
swered by using views or better still, be scale independent?

4. Approximate Query Answering

The strategies we have seen in Section 3 help us make it
feasible to answersomequeries in big data. However, some
queries may not be made BD-tractable. An example is graph
pattern matching defined with subgraph isomorphism: it isNP-
complete even to decide whether there exists a match (cf. [81]).
For such queries, it is beyond reach to find exact answers in big
data. Moreover, as remarked earlier, even for queries that can
be answered inPTIME, it is sometimes too costly to compute
their exact answers in big data. In light of this, we often have to
evaluate these queries by usinginexactalgorithms, preferably
approximation algorithms with performance guarantees.

This section proposes two approaches to developing approx-
imation algorithms for answering queries in big data, referred
to as query-driven and data-driven approximation.

4.1. Query Driven Approximation

For some query classesQ we can relax its semantics, such
that it is less costly to answer queriesQ of Q in a big dataset
D under the new semantics, and moreover, the answerQ(D)
still gives users what they want. To illustrate this, we givetwo
examples: graph pattern matching and top-k query answering.

Graph pattern matching revisited. We first review graph
pattern matching defined in terms of subgraph isomorphism.
Consider a social graphG=(V,E,fA) and a graph pattern
Q=(VQ,EQ,fv) as defined in Section 3.2. Consider a sub-
graphG′=(V ′,E′,f ′

A) of G, whereV ′ is a subset ofV , and
E′ andf ′

A are restrictions ofE andfA onV ′, respectively.

We say thatG′ matchesQ by isomorphism, denoted as
QEisoG

′, if there is abijective functionh(·) :VQ→V ′ such that

• u∼h(u) for each nodeu∈VQ, and

• for each pair(u,u′) of nodes inVQ, (u,u′)∈EQ if and
only if (h(u),h(u′))∈E′.

Graph pattern matchingby subgraph isomorphismis to com-
pute, given a social graphG and a graph patternQ, the setQ(G)
of all subgraphsG′ of G such thatQEisoG

′. This semantics
has been proposed for social graph analysis. However, it is in-
tractable even in the classical computational complexity theory
to computeQ(G) based on subgraph isomorphism.

In light of the high complexity, we adopt graph simulation for
graph pattern matching instead of subgraph isomorphism [42].
That is, we checkQEsimG (Section 3) rather thanQEisoG

′ for
subgraphsG′ of G. In fact, several revisions of graph simu-
lation have been proposed, by allowing pattern edges to map

10

to paths [42], incorporating edge labels [41], and retaining the
topology of graph patterns [74]. These reduce the complexity
of graph pattern matching from intractability (subgraph isomor-
phism) to low polynomial time (quadratic time or cubic time).
Better still, it has been shown using real-life social networks
that graph pattern matching with (revisions of) graph simula-
tion is able to capture more sensible matches in social graph
analysis than subgraph isomorphism can find. In other words,
by relaxing the semantics of graph pattern matching from sub-
graph isomorphism to (revised) graph simulation, we can find
high-quality matches for social data analysis in much less time.

Top-k graph pattern matching. As remarked earlier, even
quadratic-time or cubic-time complexity may be too high when
querying big data. In light of this, we may further relax the se-
mantics of graph pattern matching defined with (revised) graph
simulation and hence reduce the cost of the computation.

In social data analysis we often want to find matches of a
particular pattern nodeuo in Q as “query focus” [11]. That is,
we just want those nodes in a social graphG that are matches
of uo in Q(G), rather than the entire setQ(G) of matches for
Q. Indeed, a recent survey shows that15% of social queries
are to find matches of specific pattern nodes [78]. Moreover,
it often suffices to find top-k matches ofuo in Q(G). More
specifically, assume a scoring functions(·) that given a match
v of uo, returns a non-negative real numbers(v). For a positive
integerk, top-k graph pattern matchingis to find a setU of
matches ofuo in Q(G), such thatU has exactlyk matches and
moreover, for anyk-element setU ′ of matches ofuo, s(U ′)≤
s(U), wheres(U) is defined asΣv∈Us(v). When there exist
less thank matches ofuo in Q(G), U includes all the matches
(see,e.g.,[30], for top-k query answering).

This suggests that we develop algorithms to find top-k

matches withthe early termination property[30], i.e., they stop
as soon as a set of top-k matches is found,withoutcomputing
the entireQ(G). While the worst-case time complexity of such
algorithms may be no better than their counterparts for com-
puting the entireQ(G), they may only need to inspect part of
big G, without paying the price of full-fledged graph pattern
matching. Indeed, for graph pattern matching defined in terms
of graph simulation, we find that top-k matching algorithms just
inspect 65%–70% of the matches inQ(G) on average in real-
life social graphs [48], even when diversity is taken into account
to remedy the over-specification problem of retrieving too ho-
mogeneous answers [56], which makes top-k query answering
a much harder bi-criteria optimization problem [24].

4.2. Data Driven Approximation

In some applications we may not be able to relax the se-
mantics of our queries. To this end, we propose a data-driven
approximation strategy, referred to as resource-bounded ap-
proximation. Below we first review traditional approximation
schemes, and then introduce resource-bounded approximation.

Traditional approximation algorithms . Previous work on this
subject has mostly focused on developingPTIME approxima-
tion algorithms forNP-optimization problems (NPOs) [21, 58,

90]. An NPO A has a setI of instances, and for each instance
x∈I and each feasible solutiony of x, there exists a positive
scorem(x,y) indicating the quality measure ofy. Consider a
functionη(·) from natural numbers to the range(0,1].

An algorithmT is calleda η-approximation algorithm for
problemA if for each instancex∈I, T computes a feasible
solutiony of x such thatR(x,y)≥η(|x|), whereR(x,y) is the
performance ratioof y w.r.t. x, defined as follows [21]:

R(x,y)=















opt(x)

m(x,y)
if A is a minimization problem

m(x,y)

opt(x)
if A is a maximization problem

whereopt(x) is the optimal solution ofx. That is, while the
solutiony found by algorithmT (x) may not be optimal, it is
not too far fromopt(x) (i.e., it is bounded byη(|x|)).

However, suchPTIME approximation algorithms directly
operate on the original instances of a problem, and may not
work well when querying big data for the following reasons.

(1) As we have seen in Section 2,PTIME algorithms onx may
be beyond reach in practice whenx is big. Moreover, approxi-
mation algorithms are needed for problems that are traditionally
considered tractable [58], not limited toNPO.

(2) In contrast toNPOs that ask for a single optimum, answer-
ing a queryQ in a datasetD is to find a setQ(D) of query
answers. Thus we need to revise the notion of performance ra-
tios to assess the quality of a set of feasible answers.

Resource-bounded approximation. To cope with this, below
we propose resource-bounded approximation. In a nutshell,
given a small ratioα∈(0,1) and a queryQ posed on a dataset
D, we extract a fractionDQ of D such that|DQ|≤α|D|, and
computeapproximate answersQ(DQ). Hereα is called are-
source ratioor a resolution. It is determined by our available
resources for query evaluation, such as time and space.

Intuitively, the idea is the same as how we process our photos.
When we cannot afford the time or storage for photos of high
resolution, we settle with smaller images with lower resolution
to reduce the cost, as long as such images are not too rough.

To formalize the idea, we first revise the notion of perfor-
mance ratios for query answering. We then define resource-
bounded approximation and demonstrate its effectiveness.

Accuracy of query answers. Consider a queryQ and a dataset
D. The exact answers toQ in D are typically a setQ(D).
Suppose that an algorithmT computes a setY of approximate
answers toQ in D. We define theprecision and recall of the set
Y for (Q,D) in the standard way, as follows:

precision(Q,D,Y) =
|Y ∩Q(D)|

|Y |
,

recall(Q,D,Y) =
|Y ∩Q(D)|

|Q(D)|
.

That is,precision is the ratio of the number of correct answers in
Y to the total number of answers inY , whilerecall is the ratio of
the number of correct answers inY to the total number of exact

11

answers inQ(D). Based on these, we define theaccuracy ofY
for (Q,D) by adopting the usualF -measure [93]:

accuracy(Q,D,Y)=2
precision(Q,D,Y) recall(Q,D,Y)

precision(Q,D,Y)+recall(Q,D,Y)

as the harmonic mean of precision and recall. Obviously, the
largeraccuracy(Q,D,Y) is, the more accurateY is.

When bothQ(D) andY are∅, i.e.,no answer exists, we treat
accuracy(Q,D,Y) as1; we considerprecision only if Q(D) is
∅ butY is not, andrecall only if D is ∅ butQ(D) is not.

Resource-bounded query answering. We now present resource-
bounded approximation algorithms. Letα∈(0,1) be aresource
ratio (or resolution), andQ be a class of queries.

Given a datasetD and a queryQ in Q, an algorithmT for Q
querieswith resource-boundα does the following:

• visits a fractionDQ of D such that|DQ|≤α|D|, and

• computesQ(DQ) as approximate answers.

We say thatT hasaccuracy ratioη for Q if for all datasets
D and all queriesQ∈LQ, accuracy(Q,D,Q(DQ))≥η.

Note that the accuracy ratioη is in the range(0,1]. When
η=1, algorithmT finds exact answersfor all datasetsD and
queriesQ i.e., the algorithm has 100% accuracy.

Algorithm T consists of two steps: it first reduces bigD to a
smallDQ, and then computes approximate query answers, both
by accessing a bounded amount of data. Observe the following.

(1) Dynamic reduction. Recall that traditional data reduction
schemes such as compression, summarization and data syn-
opses, buildthe same structure for all queries[2, 9, 27, 53, 54,
65, 66, 70, 84, 91]. This is also how the strategies of Section3.2
do. We refer to such strategies asuniform reduction.

In contrast, resource-bounded approximation adopts ady-
namic reduction strategy, which finds a small datasetDQ with
only information needed for aninput queryQ, and hence, al-
lows higher accuracy within the boundα|D| on data accessed.
One can use any techniques for dynamic reduction, including
those for data synopses such as sampling and sketching, as long
as the processvisits a bounded amount of data inD.

(2) Approximate query answering. Algorithm T computes
Q(DQ) by accessingα|D| amount of data rather than the entire
D. It aims to achieve the best performance ratio withinα|D|.

(3) Scale independence. When Q is scale independent in
D w.r.t. some M ≥α|D|, resource-bounded approximation
achieves 100% accuracy,i.e.,with performance ratioη=1.

(4) Access schema. The notion of resource-bounded approxi-
mation can be readily defined under an access schemaA (see
Section 3.1), to efficiently retrieve a bounded amount of data
for query processing by leveraging indices and bounds inA.

Personalized social search. To verify the effectiveness of the
approach, we have conducted a preliminary study of personal-
ized social search in real-life social graphs [52]. Such searches

are supported by Graph Search of Facebook,e.g.,“find me all
my friends in Beijing who like cycling” [29].

A personalized search is specified by a graph patternQ in
which a nodeup is designated to map to a particular node (per-
son)vp in a social graphG. As in the case for top-k graph pat-
tern matching described earlier, the patternQ also has a partic-
ular “output” pattern nodeuo. The search is to computeQ(G),
the set of all matches of the output pattern nodeuo of Q in
graphG, while the “personalized” nodeup is mapped tovp

in G. Such searches are similar to what we have seen in Ex-
ample 6. In contrast to queries given there, here we consider
queriesQ that are graph patterns rather than relational queries,
and moreover, may not be scale independent inG.

For such patterns, we have developed resource-bounded ap-
proximation algorithms for graph pattern matching defined in
terms of subgraph isomorphism and graph simulation (see Sec-
tion 3.2). We have experimented with these algorithms using
real-life social graphs. The results are very encouraging.We
find that our algorithms are efficient: they are 135 and 240
times faster than traditional pattern matching algorithmsbased
on graph simulation and subgraph isomorphism, respectively,
Better still, the algorithms are accurate: even when the resource
ratio α is as small as15∗10−6, the algorithms return matches
with 100% accuracy! Observe that whenG consists of 1PB of
data,α|G| is down to 15GB,i.e.,resource-bounded approxima-
tion truly makes big data small, without paying too high a price
of sacrificing the accuracy of query answers.

A similar idea has also been verified effective by BlinkDB
[4]. BlinkDB adaptively samples data to find approximate an-
swers to relational queries within a probabilistic error-bound
and time constraints. In other words, it answers queries using
data samplesDQ of a datasetD, instead ofD.

Open issues. There is naturally more to be done.

(1) For a classQ of queries, the first problem is to find, given
a resource ratioα, the maximum provable accuracy ratioη
that resource-bounded algorithms canguaranteefor Q. A dual
problem is to find, given an accuracy guaranteeη, the minimum
resource ratioα that resource-bounded algorithms can take.

(2) Another problem is to study, given an access schemaA,
how can we develop a resource-bounded algorithm that makes
maximum use ofA to retrieve data efficiently,i.e., it visits a
minimum amount of data that is not covered byA.

(3) The third topic is to develop resource-bounded approxima-
tion algorithms in various application domains. For instance,
for social searches that are not personalized,i.e.,when no nodes
in a graph pattern are designated to map to fixed nodes in a so-
cial graphG, can we develop effective resource-bounded ap-
proximation algorithms for graph pattern matching?

(4) Finally, approximation classes for resource-bounded ap-
proximation need to be defined, along the same lines as
their counterparts for traditional approximation algorithms
(e.g.,APX, PTAS, FPTAS [21]). Similarly, approximation-
preserving reductions should be developed, and complete prob-

12

lems for those classes need to be identified for these classes.

5. Data Quality: The Other Side of Big Data

We have so far focused only on how to cope with the volume
(quantity) of big data. Nonetheless, as remarked earlier,big
data = quantity+ quality. This section addresses data quality
issues. We report the state of the art of this line of research,
and identify challenges introduced by big data. The primary
purpose of this section is to advocate the study of the quality
of big data, which has been overlooked by and large, although
data quality and data quantity are equally important.

5.1. Central Issues of Data Quality

We begin with an overview of central technical issues in con-
nection with data quality. We then present current approaches
to tackling these issues. We invite the interested reader tocon-
sult [33] for a recent survey on the subject.

Data quality problems. Data in the real world is often dirty.
It is common to find real-life data inconsistent, inaccurate, in-
complete, out of date and duplicated. Error rate of business
data is approximately 1%–5%, and for some companies it is
above 30% [83]. In most data warehouse projects, data clean-
ing accounts for 30%-80% of the development time and bud-
get [87], for improving the quality of the data rather than for
developing the systems. When it comes to incomplete infor-
mation, it is estimated that “pieces of information perceived as
being needed for clinical decisions were missing from 13.6%
to 81% of the time” [76]. When data currency is concerned, it
is known that “2% of records in a customer file become obso-
lete in one month” [26]. That is, in a database of 500 000 cus-
tomer records, 10 000 records may go stale per month, 120 000
records per year, and within two years about 50% of all the
records may be obsolete. As remarked earlier, the scale of the
data quality problem is far worse in the context of big data.

Why do we care about dirty data? As shown in Example 2,
we may not get correct query answers if our data is dirty. As a
result, dirty data routinely leads to misleading analytical results
and biased decisions, and accounts for loss of revenues, credi-
bility and customers. For example, it is reported that dirtydata
costUS businesses 600 billion dollars every year [26].

Below we highlight five central issues of data quality.

Data consistencyrefers to the validity and integrity of data rep-
resenting real-world entities. It aims to detect inconsistencies
or conflicts in the data. For instance, tuplet1 of Figure 1 is
inconsistent: its area code is 20 while its city is Beijing.

Inconsistencies are identified as violations ofdata dependen-
cies (a.k.a. integrity constraints [1]). Errors in a single rela-
tion can be detected by intrarelation constraints such as condi-
tional functional dependencies (CFDs) [34], while errors across
different relations can be identified by interrelation constraints
such as conditional inclusion dependencies (CINDs) [75]. An
example CFD for the data of Figure 1 is:city = “Beijing”
→AC=10, asserting that for any tuplet, if t[city] = “Beijing”,

thent[AC] must be 10. As a data quality rule, this CFD catches
the inconsistency in tuplet1: t1[AC] andt[city] violate the CFD.

Data accuracyrefers to the closeness of values in a database
to the true values of the entities that the database values repre-
sent. Observe that data may be consistent but not accurate. For
instance, one may have a rule for data consistency:age≤120,
indicating that a person’s age does not exceed 120. Consider
a tuplet representing a high school student, witht[age]=40.
While t is not inconsistent, it may not be accurate: a high school
student is typically no older than 19 years old.

There has been recent work on data accuracy [16]: given tu-
plest1 andt2 pertaining to the same entitye, we decide whether
t1 is more accurate thant2 in the absence ofthe true value ofe.
It is also based on integrity constraints as data quality rules.

Information completenessconcerns whether our database has
complete information to answer our queries. Given a database
D and a queryQ, we want to know whether the complete an-
swer toQ can be found by using only the data inD. As shown
in Example 2, whenD does not include complete information
for a query, the answer to the query may not be correct.

Information completeness has been a longstanding problem.
A theory of relative information completeness has recentlybeen
proposed [32], to decide whether our database has complete in-
formation to answer our queries, and if not, how we can expand
the database and make it complete, by including more data.

Data currencyis also known astimeliness. It aims to identify
the current values of entities, and to answer queries with the
current values, in the absence of valid timestamps.

For example, recall the datasetD0 from Figure 1. Suppose
that we know that tuplest1, t2 andt3 refer to the same person
Mary. Note that these tuples have two distinct values forsalary:
50k and 80k, one is current and the other is stale. We want to
decide which one is current, when their timestamps are missing.

A data currency theory has recently been proposed in [40], to
deduce data currency when temporal information is only partly
known or not available at all. It is based on data quality rules
defined in terms of temporal constraints. For instance, we can
specify a rule asserting that the salary of each employee in a
company doesnot decrease, as commonly found in the real
world. Then we can deduce that Mary’s current salary is 80k.

Data deduplicationaims to identify tuples in one or more rela-
tions that refer to the same real-world entity. It is also known as
entity resolution, duplicate detection, record matching,record
linkage, merge-purge, database hardening, and object identifi-
cation (for data with complex structures such as graphs).

For example, consider tuplest1, t2 andt3 in Figure 1. To an-
swer queryQ0 of Example 1, we want to know whether these
tuples refer to the same employee Mary. The answer is affir-
mative if,e.g.,there exists another relation which indicates that
Mary Smith and Mary Webber have the same email account.

The need for studying data deduplication is evident in data
cleaning, data fusion and payment card fraud detection, among
other things. No matter how important it is, data deduplication

13

is nontrivial. Tuples pertaining to the same object may have
different representations in various data sources. Moreover, the
data sources may contain errors. These make it hard, if not im-
possible, to match a pair of tuples by simply checking whether
their attributes pairwise equal. Worse still, it is often too costly
to compare and examine every pair of tuples from big data.

Data deduplication is perhaps the most extensively studied
topic of data quality. A variety of approaches have been pro-
posed (see [63] for a survey). In particular, a class of dynamic
constraints has been studied for data deduplication, knownas
matching dependencies (MDs), as data quality rules [31].

Improving data quality . We have seen that real-life data is
often dirty, and dirty data is costly. In light of these, effective
techniques have to be in place to improve data quality. To do
this, a central question concerns how we can tell whether our
data is dirty or clean. To this end, we need data quality rulesto
detect semantic errors in our data and fix those errors. A num-
ber of dependency (constraint) formalisms have been proposed
as data quality rules, and are being used in industry,e.g.,CFDs,
CINDs and MDs. Below we briefly describe the basic function-
ality of a rule-based system for data quality management.

Discovering data quality rules. To use dependencies as data
quality rules, it is necessary to have efficient techniques in place
that canautomatically discoverdependencies from data. In-
deed, it is unrealistic to just rely on human experts to design
data quality rules via an expensive and long manual process,or
count on business rules that have been accumulated. This sug-
gests that we learn informative and interesting data quality rules
from (possibly dirty) data, and prune away insignificant rules.

More specifically, given a databaseD, the discovery prob-
lem is to find aminimal coverof all dependencies (e.g.,CFDs,
CINDs, MDs) that hold onD, i.e., a non-redundant set of de-
pendencies that is logically equivalent to the set of all depen-
dencies that hold onD. Several algorithms have been devel-
oped for discovering CFDs and MDs (e.g.,[18, 35, 55]).

Validating data quality rules. A given setΣ of dependencies,
either automatically discovered or manually designed by do-
main experts, may be dirty itself. In light of this we have to
identify “consistent” dependencies fromΣ, i.e.,those rules that
make sense, to be used as data quality rules. Moreover, we need
to remove redundancies fromΣ via the implication analysis of
the dependencies, to speed up data cleaning process.

This problem is nontrivial. It isNP-complete to decide
whether a given set of CFDs is satisfiable [34]. Nevertheless,
there has been an approximation algorithm for extracting a set
Σ′ of consistent rules from a setΣ of possibly inconsistent
CFDs, while guaranteeing thatΣ′ is within a constant bound
of the maximum consistent subset ofΣ (see [34] for details).

Detecting errors. After a validated set of data quality rules is
identified, the next question concerns how to effectively catch
errors in a database by using these rules. Given a setΣ of con-
sistent data quality rules and a databaseD, we want todetect in-
consistenciesin D, i.e., to find all tuples inD that violate some
rule inΣ. When it comes to relative information completeness,

we want to decide whetherD has complete information to an-
swer an input queryQ, among other things.

For a centralized databaseD, given a setΣ of CFDs and
CINDs, a fixed number of SQL queries can beautomati-
cally generated such that, when being evaluated againstD, the
queries return all and only those tuples inD that violateΣ [33].
That is, we can effectively detect inconsistencies by leveraging
existing facility of commercial relational database systems.

Data repairing. After the errors are detected, we want to au-
tomatically localize the errors and fix the errors. We also need
to identify tuples that refer to the same entity, and for eachen-
tity, determine its latest and most accurate values from thedata
in our database. When some data is missing, we need to decide
what data we should import and where to import it from, so that
we will have sufficient information for tasks at hand.

This highlights the need fordata repairing[5]. Given a setΣ
of dependencies and an instanceD of a database schemaR, it
is to find a candidaterepair of D, i.e.,another instanceD′ of R
such thatD′ satisfiesΣ andD′ minimally differsfrom the orig-
inal databaseD. The data repairing problem is, nevertheless,
highly nontrivial: it is NP-complete even when a fixed set of
traditional functional dependencies (FDs) or a fixed set of inclu-
sion dependencies (INDs) is used as data quality rules [14].In
light of these, several heuristic algorithms have been developed,
to effectively repair data by employing FDs and INDs [14],
CFDs [20, 96], CFDs and MDs [46] as data quality rules.

The data repairing methods mentioned above are essentially
heuristic: while they improve the overall quality, they do not
guarantee to find correct fixes for each error detected,i.e., they
do not warrant a precision and recall of 100%. Worse still, they
may introduce new errors when trying to repair the data. Hence,
they are not accurate enough to repair critical data such as clin-
ical data, in which a minor error may have disastrous conse-
quences. This highlights the quest for effective methods tofind
certain fixesthat are guaranteed correct. Such a method has
been developed in [43]. It guarantees that whenever it updates
data, it correctly fixes an error without introducing new errors.

The rule discovery, rule validation, error detection and data
repairing methods mentioned above have been supported by
commercial systems and have proven effective in industry.

5.2. New Challenges Introduced by Big Data

Previous work on data quality has mostly focused on re-
lational data residing in a centralized database. To improve
the quality of big data and hence, get sensible answers to our
queries in big data, new techniques have to be developed.

Repairing distributed data. Big data is often distributed. In
the distributed setting, all the data quality issues mentioned
above become more challenging. For example, consider error
detection. As remarked earlier, this is simple in a centralized
database system: SQL queries can be automatically generated
so that we can execute them against our database and catch all
inconsistencies and conflicts. In contrast, this is more intriguing
in distributed data: it necessarily requires us to ship datafrom

14

one site to another. In this setting, error detection with mini-
mum data shipment or minimum response time becomesNP-
complete [37], and the SQL-based techniques no longer work.

For distributed data, effective batch algorithms [37] and in-
cremental algorithms [44] have been developed for detecting
errors, with certain performance guarantees. However, rule dis-
covery and data repairing algorithms remain to be developed
for distributed data. These are highly challenging. For instance,
data repairing for centralized databases is alreadyNP-complete
even when a fixed set ofFDs is taken as data quality rules [14],
i.e.,when only the size|D| of datasets is concerned (a.k.a.data
complexity [1]). WhenD is of PB size andD is distributed, its
computational and communication costs are prohibitive.

Deducing the true values of entities. To answer a query in
big data, we may have to use data from tens of thousands
sources [22]. With this comes the need for data fusion and con-
flict resolution [13]. That is, for each entitye, we need to iden-
tify the setDe of data items that refer to the samee from those
sources, and moreover, deduce the true value ofe from De.

Example 8. Recall Figure 1. Suppose thatt1, t2 and t3 come
from different sources. We need data deduplication methodsto
determine whether they refer to the same person Mary. If so, we
want to find the true values of Mary. To do this, we may need
to, e.g., reason about both data currency and consistency. As
an example, for attributeLN (last name), Mary has two conflict
values: Smith and Webber. We want to know what is the latest
and correct value. To this end, we know that marital status can
only change from single to married, and that her last name and
marital status are correlated. From these we can deduce that
the true value ofLN of Mart is Webber.

As another example, suppose thats1 ands2 of Figure 1 refer
to the same person. To deduce the true value of hisFN (first
name), we may use a CFD:FN = “Bob” → FN = “Robert”.
This rule for data consistency allows us to normalize theFN

attribute and change nickname Bob to Robert. �

From the example we can see that to deduce the true val-
ues of an entity, we need tocombineseveral techniques: data
deduplication, data consistency and data currency, among other
things. This can be done in a uniform logical framework based
on data quality rules. There has been recent preliminary work
on the topic [39]. Nonetheless, there is much more to be done.

Cleaning data with complex structures. Data quality tech-
niques have been mostly studied for structured data with a reg-
ular structure and a schema, such as relational data. When it
comes to big data, however, data typically has an irregular struc-
ture and does not have a schema. For example, an entity may be
represented as a subgraph in a large graph, such as a person ina
social graph. In this context, all the central issues of dataquality
have to be revisited. These are far more challenging than their
counterparts for relational data, and effective techniques are not
yet in place. Consider data deduplication, for instance. Given
two graphs (without a schema), we want to determine whether
they represent the same object. To do this, we need to extend
data quality rules from relations to graphs.

Coupling with knowledge bases. A large part of big data
comes from Web sources or social networks. To improve the
quality of such data, we ultimately have to use knowledge bases
and ontology. A number of knowledge bases are being devel-
oped, such as Knowledge Graph [57], Yago [95], and Wiki [94].
However, the quality of these knowledge bases needs to be im-
proved themselves. This suggests that we study the follow-
ing. How to detect inconsistencies and conflicts in a knowledge
base? How to repair a knowledge base? How to make use of
available knowledge bases to clean data from the Web?

6. Conclusion

We have reported an account of recent work of the Interna-
tional Research Center on Big Data at Beihang University, on
querying big data. Our main conclusion is as follows.

• Query answering in big data is radically different from
what we know about querying traditional databases.

• We need to revise complexity theory and approximation
theory to characterize what we can do and what is impos-
sible for computing exact or approximate query answers.

• Querying big data is challenging, but doable. It calls for a
set of new effective query processing techniques.

• Big data = quantity + quality. These are the two sides of
the same coin, and neither works well when taken alone.

Summing up, we believe that the need for studying query an-
swering in big data cannot be overstated, and that the subject is
a rich source of questions and vitality. We reiterate our invita-
tion to interested colleagues to join us in the study.

Acknowledgments. Fan and Huai are supported in part by 973
Program2014CB340302. Fan is also supported in part byNSFC
61133002, 973 Program2012CB316200, Guangdong Innovative
Research Team Program2011D005and Shenzhen Peacock Pro-
gram1105100030834361, China,EPSRC EP/J015377/1, UK, and
NSF III 1302212, US.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-
Wesley, 1995.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses
for approximate query answering. InSIGMOD, pages 275–286, 1999.

[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environ-
ment. InEDBT, pages 99–110, 2010.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: queries with bounded errors and bounded response times on
very large data. InEuroSys, pages 29–42, 2013.

[5] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. InPODS, pages 68–79, 1999.

[6] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin,and D. A.
Patterson. PIQL: Success-tolerant query processing in thecloud.PVLDB,
5(3):181–192, 2011.

[7] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky,
J. Trutna, and H. Oh. SCADS: Scale-independent storage for social com-
puting applications. InCIDR, 2009.

[8] M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Pat-
terson. Generalized scale independence through incremental precompu-
tation. InSIGMOD, pages 625–636, 2013.

15

[9] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for
approximate query processing. InSIGMOD, pages 539–550, 2003.

[10] Beihang University. International Research Center atBig Data.
http://rcbd.buaa.edu.cn/en/index.html.

[11] M. Bendersky, D. Metzler, and W. Croft. Learning concept importance
using a weighted dependence model. InWSDM, pages 31–40, 2010.

[12] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data
access: a study through disjunctive datalog, CSP, and MMSNP. In PODS,
pages 213–224, 2013.

[13] J. Bleiholder and F. Naumann. Data fusion.ACM Comput. Surv., 41(1),
2008.

[14] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by valuemodification. In
SIGMOD, pages 143–154, 2005.

[15] J. Brynielsson, J. Högberg, L. Kaati, C. Martenson, and P. Svenson. De-
tecting social positions using simulation. InASONAM, pages 48–55,
2010.

[16] Y. Cao, W. Fan, and W. Yu. Determining the relative accuracy of at-
tributes. InSIGMOD, pages 565–576, 2013.

[17] Y. Cao, W. Fan, and W. Yu. Bounded conjunctive queries.PVLDB, pages
1231 – 1242, 2014.

[18] F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB,
1(1):1166–1177, 2008.

[19] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding replicated Web
collections.SIGMOD Rec., 29(2):355–366, 2000.

[20] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:
Consistency and accuracy. InVLDB, pages 315–326, 2007.

[21] P. Crescenzi, V. Kann, and M. Halldórsson. A compendium of NP opti-
mization problems.
http://www.nada.kth.se/∼viggo/wwwcompendium/.

[22] N. N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of structured
data on the Web.PVLDB, 5(7):680–691, 2012.

[23] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters.Commun. ACM, 51(1):107–113, 2008.

[24] T. Deng and W. Fan. On the complexity of query result diversification.
PVLDB, 6(8):577–588, 2013.

[25] R. Dorrigiv, A. López-Ortiz, and A. Salinger. Optimalspeedup on a low-
degree multi-core parallel architecture (LoPRAM). InSPAA, pages 185–
187, 2008.

[26] W. W. Eckerson. Data quality and the bottom line: Achieving business
success through a commitment to high quality data. Technical report, The
Data Warehousing Institute, 2002.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
pages 226–231, 1996.

[28] Facebook.http://newsroom.fb.com.
[29] Facebook. Introducing Graph Search.

https://en-gb.facebook.com/about/graphsearch.
[30] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware.JCSS, 66(4):614–656, 2003.
[31] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for record

matching.VLDB J., 20(4):495–520, 2011.
[32] W. Fan and F. Geerts. Relative information completeness. ACM Trans.

on Database Systems, 35(4), 2010.
[33] W. Fan and F. Geerts.Foundations of Data Quality Management. Morgan

& Claypool Publishers, 2012.
[34] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional func-

tional dependencies for capturing data inconsistencies.ACM Trans. on
Database Systems, 33(1), 2008.

[35] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional
dependencies.TKDE, 23(5):683–698, 2011.

[36] W. Fan, F. Geerts, and L. Libkin. On scale independence for querying big
data. InPODS, pages 51–62, 2014.

[37] W. Fan, F. Geerts, S. Ma, and H. Müller. Detecting inconsistencies in
distributed data. InICDE, pages 64–75, 2010.

[38] W. Fan, F. Geerts, and F. Neven. Making queries tractable on big data
with preprocessing.PVLDB, 6(8):577–588, 2013.

[39] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data currency and con-
sistency for conflict resolution. InICDE, pages 470–481, 2013.

[40] W. Fan, F. Geerts, and J. Wijsen. Determining the currency of data.ACM
Trans. on Database Systems, 37(4), 2012.

[41] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular expressions to

graph reachability and pattern queries. InICDE, pages 39–50, 2011.
[42] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching:

From intractability to polynomial time.PVLDB, 3(1):1161–1172, 2010.
[43] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with

editing rules and master data.VLDB J., 21(2):213–238, 2012.
[44] W. Fan, J. Li, N. Tang, and W. Yu. Incremental detection of inconsisten-

cies in distributed data.TKDE, 2014.
[45] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression.

In SIGMOD, pages 157–168, 2012.
[46] W. Fan, S. Ma, N. Tang, and W. Yu. Interaction between record matching

and data repairing.ACM J. of Data and Information Quality, 2014.
[47] W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed

reachability queries.PVLDB, 5(11):1304–1315, 2012.
[48] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching.

PVLDB, 6(13):1510–1521, 2013.
[49] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. ACM

Trans. on Database Systems, 38(3), 2013.
[50] W. Fan, X. Wang, and Y. Wu. Answering graph pattern queries using

views. InICDE, pages 184–195, 2014.
[51] W. Fan, X. Wang, and Y. Wu. Distributed graph simulation: Impossibility

and possibility.PVLDB, pages 1083 – 1094, 2014.
[52] W. Fan, X. Wang, and Y. Wu. Querying big graphs within bounded re-

sources. InSIGMOD, pages 301–312, 2014.
[53] M. N. Garofalakis and P. B. Gibbons. Wavelet synopses with error guar-

antees. InSIGMOD, pages 476–487, 2004.
[54] P. B. Gibbons and Y. Matias. Synopsis data structures for massive data

sets. InSODA, pages 909–910, 1999.
[55] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On generating

near-optimal tableaux for conditional functional dependencies. PVLDB,
1(1):376–390, 2008.

[56] S. Gollapudi and A. Sharma. An axiomatic approach for result diversifi-
cation. InWWW, pages 381–390, 2009.

[57] Google. Knowledge Graph.
http://www.google.co.uk/insidesearch/features/ search/knowledge.html.

[58] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo.Limits to Parallel Compu-
tation: P-Completeness Theory. Oxford University Press, 1995.

[59] A. Y. Halevy. Answering queries using views: A survey.VLDB J.,
10(4):270–294, 2001.

[60] J. Hartmanis and R. E. Stearns. On the computational complexity of algo-
rithms.Trans. American Mathematical Society, 117:285–306, May 1965.

[61] J. M. Hellerstein. The declarative imperative: Experiences and conjec-
tures in distributed logic.SIGMOD Record, 39(1):5–19, 2010.

[62] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on
finite and infinite graphs. InFOCS, pages 453–462, 1995.

[63] T. N. Herzog, F. J. Scheuren, and W. E. Winkler.Data Quality and Record
Linkage Techniques. Springer, 2009.

[64] IBM. IBM big data platform.
http://www-01.ibm.com/software/data/bigdata/.

[65] Y. E. Ioannidis and V. Poosala. Histogram-based approximation of set-
valued query-answers. InVLDB, pages 174–185, 1999.

[66] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel. Optimal histograms with quality guarantees. InVLDB, pages
275–286, 2009.

[67] D. S. Johnson. A catalog of complexity classes. InHandbook of Theoret-
ical Computer Science, Volume A: Algorithms and Complexity(A). The
MIT Press, 1990.

[68] N. D. Jones. An introduction to partial evaluation.ACM Comput. Surv.,
28(3):480–503, 1996.

[69] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for
MapReduce. InSODA, pages 938–948, 2010.

[70] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data: An Introduc-
tion to Cluster Analysis. John Wiley, 1990.

[71] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In
PODS, pages 223–234, 2011.

[72] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient
parallel algorithms.TCS, 71(1):95–132, 1990.

[73] M. Lenzerini. Data integration: A theoretical perspective. In PODS,
pages 233–246, 2002.

[74] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing
topology in graph pattern matching.ACM Trans. on Database Systems,
39(1), 2014.

16

[75] S. Ma, W. Fan, and L. Bravo. Extending inclusion dependencies with
conditions.TCS, pages 64–95, 1998.

[76] D. W. Miller Jr., J. D. Yeast, and R. L. Evans. Missing prenatal records
at a birth center: A communication problem quantified. InAMIA Annu
Symp Proc., pages 535–539, 2005.

[77] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[78] M. Morris, J. Teevan, and K. Panovich. What do people asktheir social

networks, and why? A survey study of status message Q&A behavior. In
CHI, pages 1739–1748, 2010.

[79] L. D. Nardo, F. Ranzato, and F. Tapparo. The subgraph similarity prob-
lem. TKDE, 21(5):748–749, 2009.

[80] A. Ntoulas, J. Cho, and C. Olston. What’s new on the Web? The evolution
of the Web from a search engine perspective. InWWW, pages 1 – 12,
2004.

[81] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.
[82] G. Ramalingam and T. Reps. On the computational complexity of dy-

namic graph problems.TCS, 158(1-2):213–224, 1996.
[83] T. Redman. The impact of poor data quality on the typicalenterprise.

Commun. ACM, 2:79–82, 1998.
[84] P. Rösch and W. Lehner. Sample synopses for approximate answering of

group-by queries. InEDBT, pages 403–414, 2009.
[85] G. Santos. SSD ranking: The fastest solid state drives.

http://www.fastestssd.com/ featured/ssd-rankings-the-fastest-solid-
state-drives/#pcie, Oct 2012.

[86] T. K. Sellis. Personalization in web search and data management. In
Model and Data Engineering, pages 1–1. Springer, 2011.

[87] C. C. Shilakes and J. Tylman. Enterprise information portals. Technical
report, Merrill Lynch, Inc., New York, NY, Nov. 1998.

[88] D. Suciu and V. Tannen. A query language for NC.J. Comput. Syst. Sci.,
55(2):299–321, 1997.

[89] Y. Tao, W. Lin, and X. Xiao. Minimal MapReduce algorithms. SIGMOD,
pages 529–540, 2013.

[90] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[91] J. S. Vitter and M. Wang. Approximate computation of multidimensional

aggregates of sparse data using wavelets. InSIGMOD, pages 193–204,
1999.

[92] Wikipedia. Big data.
http://en.wikipedia.org/wiki/Bigdata#citenote-23.

[93] Wikipedia. F-measure.
http://en.wikipedia.org/wiki/Precisionand recall.

[94] Wikipedia. Wiki.
http://en.wikipedia.org/wiki/Wiki.

[95] Wikipedia. Yago.
http://en.wikipedia.org/wiki/YAGO(database).

[96] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, andI. F. Ilyas.
Guided data repair.PVLDB, 4(5):279–289, 2011.

[97] L. Zou, L. Chen, and M. T.̈Ozsu. Distance-join: Pattern match query in
a large graph database. InPVLDB, pages 886–897, 2009.

17

