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Abstract

Big data introduces challenges to query answering, fromrth& practice. A number of questions arise. What queries ar
“tractable” on big data? How can we make big data “small” s this feasible to find exact query answers? When exact agswe
are beyond reach in practice, what approximation theoryhedp us strike a balance between the quality of approximageyq
answers and the costs of computing such answers? To geblseqgery answers in big data, what else do we necessarily do i
addition to coping with the size of the data? This positiopgraaims to provide an overview of recent advances in theystéid
querying big data. We propose approaches to tackling tHeméenging issues, and identify open problems for futuseaech.
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1. Introduction FN LN AC city salary | status
ty: | Mary | Smith | 20 | Beijing | 50k single
Big data is a term that is almost as popular as “internet” ¢,: [ Mary | Webber| 10 | Beijing | 50k | married
was back 20 years ago. It refers to a collection of data sets¢;: [ Mary | Webber| 10 | Beijing | 80k | married
so large and complex that it becomes difficult to process us-g;: Bob Luth 212 | NYC 80Kk | married
ing traditional database management tools or data prowgessi s,: [ Robert| Luth 212 | NYC 55Kk | married
applications [92]. More specifically, big data is often cmar
terized with four V's: Volumefor the scale of the datd/eloc-
ity for its streaming or dynamic naturdarietyfor its different . . )
forms (heterogeneity), anderacity for the uncertainty (poor SUch aquery can be expressed in, e.g., relational algebng, w
quality) of the data [64]. Such data comes from social net!®n 80N ="mary' Ko by using selection operator [1], where
works .g.,Facebook, Twitter, Sina Weibo), e-commerce sys-/%0 IS the relation schema ab,. To answer the querg in
tems €.g.,Amazon, Taobao), finance.g.,stock transactions), o, We need to find all tuples i, that satisfy the selection
sensor networks, software logs, e-government and sciergifi  condition:FN = “Mary”, i.e., tuples ¢,,t, andt;. 0
search ¢.g.,environmental research), just to name a few, where
data is easily of PetaByte (PB)'® bytes) or ExaByte (EB, In the context of big data, query answering becomes far more
10'8 bytes) size. The chances are that big data will generate &hallenging than what we have seen in Example 1. The new
big impacts on our daily lives as internet has done. complications include but are not limited to the following.

New challenges As big data researchers, we do not confinePata. In contrast to a single traditional databdsg, there are
with the general characterization of big data. We are more intyPically multiple data sources with information relevambur
terested in what specific technical problems or researciesss dueries. For instance, a recent study shows that many demain
big data introduces to query answering. Given a datBsahd have tens of thousands of Web sources [224,,restaurants,

a queryQ, query answerings to find the answer§(D) to Q hotels, schools. Moreover, tr_lese data sources often havge |

in D. HereQ can be an SQL query on relational data, a key_volume of data é€.g.,of PB size) and are frequently updated.
word query to search documents, or a personalized sociatsea They have different formats and may not come with a schema,

query on social networkg(g.,Graph Search of Facebook [29]). @S opposed to structured relational data. Furthermoreyman
data sources ammnreliable their data is typically “dirty”.

Figure 1: An employee datasély

Example 1. A fraction D, of an employee dataset of a com-
pany is shown in Figure 1. Each tuple iy specifies the first-
name EN), last namel(N), salary and maritalstatus of an em-
ployee, as well as the area codk() andcity of her office. A
queryQy is to find distinct employees whose first name is Mary.

Query. Queries posed on big data are no longer limited to our
familiar SQL queries. They are often for document search, so
cial search or even for data analysis such as data mininge-Mor
over, their semantics also differs from traditional queri©n
one hand, it can be more flexible: one may want approximate
answers instead of exact answé}sD). On the other hand,
Email addressesaenf ei @ nf . ed. ac. uk (Wenfei Fan), one could ask query answering to be ontology-mediated by cou
huai j p@uaa. edu. cn (Jinpeng Huai) pling datasets with a knowledge base [12], or personalineld a
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context-aware [86] such that the same query gets different a ter how large the underlying datasetis. For instance, when
swers when issued by different people in different location @ is a Boolean conjunctive quera.k.a. SPC query [1]), we

These tell us that query answering in big data is a depar’Jheed, at mﬂC;SNer tuples .frorr]nD to "‘t‘)nsw?'Q’ Ilndgpehnderllc)tl of
ture from our familiar terrain of traditional database qesrlt e Size oD, where| Q]| is the number of tuples in the tableau

raises a number of questions. Does big data give rise to amy ne_rep(;esen_tal\tlon 0% Th's. IS a:so fche (I:as_fe for manyf perfsonal-
fundamental problems? In other words, do we need new theoﬂge socia sEarc guerlgsa r_ltumvhe y,1ra Cldfkfgdo D ((j)r
for querying big data? Do we need to develop new methodol? nsweringl) has a bounded size, thénis scale independent

ogy for query processing in the context of big data? What-prac'n, D [36]' .., we can efficiently comput@(D) no mat_ter how
tical techniques could we use to cope with the sheer volume c}?'g D |s._Th|s suggests that we study how to determine whether
big data? In addition to the scalability of query answerilgpa a query is scale independent in a dataset.
rithms, what else do we have to pursue in order to find sensible In addition, we develop several practical techniques fdk-ma
or even correct query answers in big data? ing big data “small”. These include (a) distributed query
processing by partial evaluation [47], with provable perfo
Querying big data. This paper presents an overview of recentmance guarantees on both response time and network traffic;
advances in the study of these problems. Itis a progresstrepqb) query-preserving data compression [45]; (c) view-Hase
of the International Research Center on Big Data at Beihanguery answering [50]; and (d) bounded incremental computa-
University [10], which was established in September 2008, a tjon [49, 82]. All these techniques allow us to comp@eD)
has been working on querying big data since then. We repoiith a cost that isiot a function of the size o, and have
how we tackle the problems mentioned above. proven effective in querying social networks. The list is ex-

BD-tractability. The first question we need to answer is whatClusive: there are many other techniques for making big data
queries araractableon big data. Given a querg and a big small” and hence, making queries feasible on big data.
datasetD, we want to know whether we can compup¢D)

e . s Query-driven and data-driven approximationSome queries
within our available resources such as time and space. Aslfou

. o oF o neither are BD-tractable nor can be made BD-tractable. An
In most t_extbookse(.g.,[_l, 81)). a _class of queries IS tradition- example is graph pattern matching by subgraph isomorphism.
ally consideredractableif there exists an algorithm for answer- Here queny is a graph pattern, datasbtis a graph, and the
ing _its queries in tﬁme bounded by a polynomial in the size OfanswerQ(D) is the set of all subgraphs @ that are isomor-
the input FTIM_E)’ €., gdatabase and aquer‘ othervyords_, phic to@Q. Such queries are expensive: iN®-complete even
a class of queries igasiblefrom a theoretical perspective ifits 1 jacide whether there exists a subgraptbahat is isomor-

worst-case time complexity .B.TIME' while a C'as? is COUSid' phicto@! Itis beyond reach in the context of big to compute

ered d|ff|_cult to solve when it idlP-hard. _Th|s notion of time exact answer§ (D). In light of this, algorithms for processing

complexity dates back to 1965 [60] and is almost 50-years Oldsuch queries on big data anecessarily inexactWe may have
When it comes to big data, howevétTIME queries may  to settle withheuristics “quick and dirty” algorithms which re-

no longer be feasible. For instance, consider the q@grand  turn approximate answers that are not necessarily optBal [
dstasetDo fg|ven.|r(1j.ExampIe L. To Codmpugo(%)) n the This highlights the need for studying the next question: how
absence of any Indices, oné may need to S0AN ASSUMING -~ oo we developpproximation algorithmg.e., heuristics which
the fastest Solid State Drives (SSD) with disk scanning d;peefind answers that are guaranteed to be not far from the exact
of 6GB/s [85], a linear scan df, takes 166,666 seconds when o

ery answers? We propose two types of approximation.
Dy consists of 1PB of data; that is, 2,777 minutes, 46 hours(,:]u y answ . P p .W P _ PP X_I |
or 1.9 days! WherD, has 1EB of data, we have to wait 5.28 (1) Query-driven approximationFor certain queries we can
years for a linear scan df,. That is, everlinear-time(O(n)) ~ reélax their semantics and reduce the complexity of query pro
queries becomimfeasiblein the context of big data. cessing. One example is the class of graph pattern queries me

This suggests that we revise the classical computational co fuoned above,. for SOC""}I network analysis. Instea(_j of adopt
plexity theory for querying big data. To this end, we propase ing subgraph isomorphism for graph pattern matching, we can

notion of BD-tractable querie$38], to help us determine what ;Jhse (rews;oni Of)f graprr:smt?latlon [?16.42’](74]' Trt'ns rtE:h.Jl.C
queries are tractable or feasible on big data. e complexity of graph pattern matching from intractabili

by subgraph isomorphism to quadratic-time or cubic-time by

Making queries BD-tractable It is not surprising that many (revised) graph simulation! Better still, the revised na8 of

query classes are not BD-tractable. The next questionaiftur graph simulation allow us to catch more sensible matches in

asks whether we can make these query classes BD-tractablg@cial data analysis than subgraph isomorphism can find.

We approach this by studying both its fundamental problemgp) pata-driven approximationin some applications we may

and practical techniques, by making big data “small”. not be able to relax query semantics. To this end, we pro-
To understand what it takes to compute answg(®) of  pose a notion ofesource-bounded approximation this pa-

a query@ in a datasetD, we want to identifya core of D per. In contrast to traditional approximation algorithrnattdi-

for answering@, i.e., a minimum subseD¢, of D such that rectly operate on a given big datagdet we first reduceD to

Q(D)=Q(Dg). Indeed, it often suffices to fetch a small or “small data” D¢ with a “lower resolution”« € (0, 1], such that

even a bounded subsBy, of D for computing@(D), no mat-  |Dg|<«|D|. We then computé)(D) as approximate query
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answers toR, such thatQ(Dg) is within a performance ra- The study of querying big data is still in its infancy, and it
tio n to the exact answeR) (D). We explore theconnection has raised as many questions as it has answered. In light of
between the resolution and the quality bound, to strike a  this, we also identify open research issues in this papeat, an
balancebetween the computation cost and the quality of thepropose approaches to tackling them. We hope that the paper
approximate answers. Our preliminary study [52] has shownvill incite interest in the study of querying big data, and we
that for personalized social search queries, the perfocmemy  invite interested colleagues to join forces with us in thelgt

tio remains 100% even when the resolutioris as small as

0.0015% (15%1075). That is, we can reduc® of 1PB to D¢ _. _ o

of 15GB, while still retaining exact answers for such queirie 2 Tractability Revised for Querying Big Data

Big data = quantity + quality To compute high-quality query This section studies the following problem: given a cl@ss
answers from big data, it is often insufficient just to depelo Of queries that we need to use, we want to determine wheher
scalable algorithms to cope with large volume of the data. Tds tractable in big data.e.,it is feasible to answer the queries of
illustrate this, let us consider the following example. @ in big data within our available resources. As we have seen

in Section 1, polynomial time can no longer provide a charac-
Example 2. Recall queryQ, and dataseD, from Example 1. tgrization forQ to be tractable in big data. This suggests that

Suppose that we have efficient techniques in place to compufg, reyise the traditional notion of tractability, and defB-

Qo(Do) for big Dy. As remarked earlie)o(Do) consists of 5 ctapility, i.e., tractability for queries on big data.

three tupleg,,t, andts. The question is: can we trugty (Do) . .

to be the correct answer to what the user wants to find? Below we _present a notion of BD-tractable queries. We en-
Unfortunately, there are at least three reasons that diditre courage the interested reader to consult [38] for details.

our trust inQo(Dy). (1) Intuplet,, attributet, [AC] is 20 and  Preliminaries. We start with a review of two well-studied com-

t1[city] is Beijing, while the area code of Beijing is 10. In light plexity classes (see,g.,[58, 67] for details).

of this, tuplet; is “inconsistent” and hence, its quality is in

question. (2) The chances are that all three tuple$, andt;

refer to the same person; in other words, they do not repiesen

distinct employees. (3) Furthermore, the datag&t may be

incomplete: for some employees whose first name is also Mary,

their records are not included i,. In light of these, we do

not know whether the answéx, (D) is correct or not! O

e The complexity clas® consists of all decision problems
that can be solved by a deterministic Turing machine in
polynomial time PTIME), i.e.,in n°(") time, wheren is
the size of the input (datasétand queryQ in our case).

e The parallel complexity clad$C, known as Nick’s Class,
consists of all decision problems that can be solved by tak-

. : o), \ 1
From the example we can see that when the datasets are dirty, N9 O(log ( _) ”)(;“('Be onaPRAM (parallel random access
we cannot trust the answers to our queries in those datasets. machine) withn processors.
other words, no matter how big datasets we can handle and |, s paper we focus on query classes rather than decision

how fast our query processing algorithms are, the query aroblems. We usé® to denote the set of aPTIME query
swers computed may not be correct and hence may be uselegglsses We say that a query clgsis in NC if all of its queries

Unfortunately, real-life data is often dirty [33], and theae of 1, be answered in paraligblylog-time, i.e., polynomial time

data quality problems is far worse in the context of big data;, ihe logarithmof the input using a PRAM with polynomially

since real-life da.ta sources are ofte_n unreliable. Theegtbe many processors. Such a query clashighly parallel feasi-
study of the quality of big data is as important as technidoes ble, i.e., its queries can be efficiently answered opaxallel

coping with its quantity; that iig data = quantity + quality  computer [58]. It is also known that a large classNgF algo-

This motivates us to study the quality of big data. We con+ithms can be implemented in the MapReduce framework [69],
sider five central issues of data quality: data consiste848}; [ such that if arNC algorithm takeg time, than its correspond-
data accuracy [16], information completeness [32], data cu ing MapReduce counterpart tak@$t) rounds. We us&lC to
rency [40] and entity resolution [31], from theory to praeti  denote the set of all such paralfellylog-time query classes. It
We study how to repair dirty data [20, 43, 46] and how to de-should be remarked that there have been revisions of the PRAM

duce true values of an entity [39], among other things, emphamodel by requirindog » processors instead of’(!) [25].
sizing new challenges introduced by big data.
BD-tractability . To make query answering feasible in big data,

Organization. The remainder of the paper is organized as fol-we adopt two ideas: (1) using parallel machines, and (2) sep-
lows. We start with BD-tractability in Section 2. We studyake  arating offline and online processes. The second idea sisgges
independence and present several practical techniquesdor  that we preprocess a datageby, e.g.,building indices or com-

ing queries BD-tractable in Section 3. When BD-tractabd@al pressing the data, which yields dataskt such that all queries
rithms for computing exact query answers are beyond reach im Q on D can subsequently be processedi@honline effi-
practice, we study approximate query answering in Sectjon 4iently. When the data is static or whén can be incrementally

by proposing query-driven approximation and data-driven a maintained efficiently, the preprocessing step can be dersil
proximation. We study the other side of big data, namelya datas anoffline process with ane-time cost Preprocessing has
quality, in Section 5. Finally, Section 6 concludes the pape  been a common practice of database people for decades.
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Example 3. Recall queryQ, and datase®, from Example 1. be answered i (log|D|) time by using the indices iH(Dy).
ExtendingQ, let us consider a clasg, of Boolean selection In fact, the class of all relational algebra queries extedde
queries A queryQ in Q, is to find whether there exists a tuple with transitive closure is also iBDT over ordered relational
t€ Dy such thatt[A] =¢, where A is an attribute ofD, ande  datasets, since those queries ard\ifi in this setting [88]. O

is a constant. A naive evaluation @f would require a linear

scan ofDy. To efficiently answer queries @ in Do, we can  \aking queries BD-tractable. Some query classe§ are
first build B trees on the values of the attributes Bf,, as  not BD-tractable, but can be transformed to a BD-tractable
a one-time preprocessing step offline. Then we can evatllate query class by means m-factorizations A re-factorization re-
queries inQy on Dy in O(log | Do|) time using the indices. That partitions the data and query parts rand identifies a dataset
is, we no longer need to sca, when processingachquery  for preprocessing, such that after the preprocessinguisies

in Qy. WhenD, consists of 1PB of data, we can get the results;gn pe subsequently answered in paraitéylog-time.

in 5 seconds with the indices rather than 1.9 days. O ) -~
Complexity clas8DT. More specifically, we say that a class

Based on these two ideas, below we propose a revision of thig Of duériescan be made BD-tractabiéthere exist threlC
traditional notion of tractable query classes. computable functions (-), m(-) andp(-,-) such that for all

. . . (D, Q) in the language of pairs forQ,
To be consistent with the complexity classes that are tradi-

tionally studied for decision problems [58, 67], we conside ® D'=m(D,Q), Q"'=m(D,Q), (D,Q)=p(D",Q"), and
Boolean query classeg, and represen® as alanguages of e the query clas®’'={Q’ | Q'=m2(D,Q),(D,Q)€ S} is
pairs (D, Q), whereQ is aquery inQ, D is a database on which BD-tractable.

Q is defined, and) (D) is true. In other words$ can be con-
sidered as a binary relation such that, Q) € S if and only if
Q(D) is true. We refer th asthe language fo©.

Intuitively, 71 (-) and m2(-) re-partitionz=(D,Q) into a
“data” part D’ =7 (z) and a “query” partQ’ =m2(z), andp
7 ] is an inverse function that restores the original instanfrem
_ We say that a language of pairs isin complexity clas€q 1, () andm(z). The data parD’ is picked fromz and will
ifitis in Cq to decide whether a paiD,Q) €5, 1., Q(D)is e preprocessed, such that after the preprocessing stéfe al

true. HereCq may be the sequential complexity cld3®sr the queries)’ € Q' can then be answered in parapelylog-time.

llel lexity clashlC, ther things.
parallel complexity clastiC, among other things We useBDT to denote the set of all query classes that can be

Complexity clas8DT". We say that a clas@ of queries is madeBD-tractable. ObvioushBDT? is a subset oBDT, when
BD-tractableif there exist P TIME-computable preprocessing D=r,(D,Q), Q=m2(D,Q), andp is the identity function. As
functionII on datasets and a languasfeof pairs such that for  will be seen nextBDT" is a proper subset &DT unlessP =
queriesQ € Q and all dataset®, NC, i.e.,there is a query class that isBDT but not inBDT".

e (D,Q) is in the language of pairs for Q if and only if
(II(D),Q)e S’, and

e S’isinNC,i.e.,the language of paifd1(D),Q) isin NC.

Example 5. Consider Breadth-Depth Search (BDS) [58]:

e Input: An undirected grapliz = (V, E') with a numbering
on the nodes, and a pafi:,v) of nodes inv.

We denote b\BD T the set of all BD-tractable query classes.
B query e Question: Isu visited before in the breadth-depth search

Intuitively, functionII(-) preprocesse® and generates an- of G induced by the vertex numbering?
other structurd’ =II(D) offline, in PTIME. After this, forall
queries € Q that are defined oM, Q(D) can be answered by
evaluatingl (D’) online inNC, i.e., in parallelpolylog-time.

Observe the following. (a) As shown in Example 3, parallel
polylog-time is feasible on big data. MoreovedC is robust
and well-understood. It is one of the few parallel complexit
classes whose connections with classical sequential @iyl
classes have been well studied (s2g,,[58]). (b) We consider
PTIME preprocessing feasible since it ioae-timeprice and
is performedoffline Note that the preprocessing step is also
expected to be conducted usipgrallel machinespossibly by
allocating more resources.g.,computing nodes) to it than to
online query answering. Moreover, by requiring thit) is in
PTIME, the size oflI(D) is bounded by a polynomial.

A breadth-depth search starts at a nodand visits all its chil-
dren, pushing them onto a stack in the reverse order induged b
the vertex numbering as the search proceeds. After allsof
children are visited, the search continues with the nodehen t
top of the stack, which plays the role of

In the problem statement of BDS given above, the entire in-
put,i.e.xz=(G, (u,v)), is treated as a query, while its data part
is empty. In this setting, there is nothing to be preprocgsse
Moreover, it is known that BDS R-complete (cf. [58]), i.e., it
is the hardest problem in the complexity classUnlessP =
NC, such a query cannot be processed in parallgylog-time.
In other words, this class of BDS queries is noBRT® unless
P = NC. Itis also known that the question whettier NC is

as hard as our familiar open question whettles NP.

Example 4. As we have seen in Example 3, the cléksof Nonetheless, there exists a re-factorizatian, 72, p) of its
Boolean selection queries is BDT". Indeed, functiodI(:) instancest= (G, (u,v)) that identifiesG' as the data part and
preprocesses a datasél, by building BT-trees on attributes  (u,v) as the query part. More specifically; (x) =G, w2 (z) =
of Dy in PTIME. After this, all queries irQ, posed onDy can  (u,v), and p mapsm (z) and m2(x) back toz. Given this,
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we define preprocessing(-) as the function that performs classQ is to decide, given a quer® € Q, a dataseD and an
breadth-depth search off based on the ordering on the ver- element, whetherec Q(D), i.e.,e is in the answer t6) in D.
tices, and returns a list/ consisting of all the nodes ¥ in the

same order as they are visited during the search. THéR) Open issues There has been a host of recent work on re-
is clearly in PTIME in |G|. LetS’ be the language of pairs vising the traditional complexity theory to characteriztad
(M, (u,v)) such that: appears before in M. Obviously, one intensive computation on big data. The revisions are defimed
can decide whetheM, (u,v)) € S’ by binary searches oi/, terms of computational costs [38], communication (cooaein
in O(log|M]|) time. Hence BDS is iBDT. In other words, tion) rounds [61, 71], or MapReduce steps [69] and data ship-
while BDS is not BD-tractable, it can be made BD-tractable byments [3] in the MapReduce framework [23]. Our notions of
means of a re-factorization. In light of this, BDS provides aBD-tractability focus on computational costs [38]. Thedstis
witness that separaté&@DT andBDT?, unlessP = NC. 0 still preliminary, and a number of questions remain open.

(1) The first question concerns what complexity class pegis
Fundamental issues There are several important questions incharacterizes online query processing that is feasibleign b
connection with BD-tractability. Whaeductionscan we useto  data. As a starting point we adoNC because (a)C is con-
transform one query class BDT to another? Does there exist sidered highly parallel feasible [58]; (b) paraltellylog-time is
a natural ClaSQ of queries that isompletéor BDT, i.e., Q is feasible on b|g data; and (C) mahM: a|gorithms can be imp|e-
a class of the “hardest” queries BDT? How large isSBDT?  mented in the MapReduce framework [69], which is being used
In other words, is it a new complexity class or the sam®as in cloud computing and data centers for processing big data.
or NC? The same questions also ariseB@T". In fact, these  HoweverNC is defined in the PRAM model, which may not be

are the “standard” questions one would have to answer for anyccurate for real-life parallel frameworks such as MapRedu

complexity class, including our familidt andNP. These call for a full treatment of parallel computation mede

These questions have been studied®DT andBDT® [38].  that are more practical than PRAM for characterizing atzéa

o A form of NC-reductions<)€ has been defined f@DT,  resources in the real world. Such models should take into ac-
which is transitivei(e.,if Q;<N°Q, andQ,<N Q4 then countboth compuj[z_;\tlonal complexity and communécatlon costs
nggcQg) and compatible withBDT (i.e., if ngfNaC Upon the ava|_lab|I|ty of such model_s, the cIe&BT of BD-
Q, and Q, is in BDT, then so isQ;). Similarly, NC- tractable queries should then be revised accordingly.
reductions have been defined BD T with these proper-
ties. In contrast to our familig? TIME-reductions folNP
problems (seeg.g.,[81]), these reductions require a pair
of NC functions,i.e.,both are in parallgbolylog-time.

(2) The second question concerns the complexity of pregsace

ing. Letus us€Q[Cp, Cg] to denote the set of all query classes

that can be answered by preprocessing the data sets in the com

plexity classCp and subsequently answering the querieSdn

e There exists @omplete query clasg,, for BDT under ThenBDT” can be represented BQ[P,NC]. One may con-
<NC reductionsj.e., Q,, is in BDT and moreover, for all sider other complexity class€s-> instead ofP. For instance,

X . .. .
quaery classe® € BDT, Q<gc 0,,. However, the ques- one may considePQ[NC,NC] by requmr.lg.the preprocessing
tion whether there exists a complete query clasST® step to be conducted more efficiently; this is not very irggng
is as hard as the open question whefherNC. sincePQ[NC,NC] coincides withNC. On the other hand, one

may want to considet » beyondP, e.g.,NP andPSPACE (i.e.,

e NC CBDT= P. Thatis, allPTIME query classes can be PQ[NP,NC] andPQ[PSPACE,NC]). This is another debatable
made BD-tractable via proper re-factorizations, or in othe issue that demands further study. No matter Wwh@iCp,Cq]
words, by transforming them to a query clas8iDT via  we use, one has to strike a balance between its expressier pow
<NC reductions. In contrast, unlegs= NC, BDTYcP, and computational cost in the context of big data.

i.e., BDT? is indeed a proper subset Bf and hence, not

all PTIME queries are BD-tractable (3) BD-tractability has only been studied for Boolean gesri

and decision problems, as people usually do in complexity th
These results are not only of theoretical interest, but@lee  ory. Nevertheless, BD-tractability for general queriesyell

vide guidance for us to answer queries in big data. For iegtan as for search and function problems, remains to be studied.
given a query clasg, we can conclude that it can be made BD- ) ) ) )
tractable if we can find a\C reduction to a complete query (4) There are a number of open issues in connection with query

classQ,, of BDT. If so, we are warranted an effective algo- €valuation with preprocessing. Given a query class, howean
rithm for answering queries a® in big data. Indeed, such an effequvely identify a re-factorization that approprlately_plcks
algorithm can be developed by simply composing K@ re- the right dataset to be preprocessed? What preprocessitey st

duction and arNC algorithm for processing,,, queries; then 9i€s should we use? If a query class cannot be made BD-
the algorithm remains in parallgblylog-time. tractable, can we still answer its queries in big data? We wil

address some of these questions in the next a few sections.
One may ask what query classes may not be made BD-

tractable. The results above also tell us the following:easl (5) The last question concerns the existence of a complete
P = NP, all query classes for which the membership problem isquery class foBDT. However, this is as hard as the problem
NP-hard are not iBDT. The membership problefar a query  whether® = NC, which is as hard as whethBr= NP.
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3. Making Big Data Small Example 6 [36] Some real-life queries are actually scale inde-
pendent. For example, below are (slightly modified) persona

Following up the notion of BD-tractability presented in the jzed search queries taken from Graph Search of Facebook [29]
last section, we next investigate how we can make queries BD-

tractable. There are many ways to do this, such as building u
indices as we have seen in Example 3. In this section we foc
on a particular approach, byaking big data small Suppose
that we need to answer a cla@of queries in a big datasé?.
We propose to reducP to a dataseD’ (or a number of frag-
mentsD’) of a manageable sizesuch that (1) for all queries ~ Q1(name) = Jid(friend(po, id) A person(id,name,NYQ)).
Qe Q, Q(D)=Q(D'), and (2) we can efficiently answefin  Opserve the following. (1) In personalized social searaes
D" within our available resources. In other words, as a preprogyaluate queries with a specified person, esg.in Q1. (2)
cessing step, we reduce hig to small D’ such that we can patasetD; is often big in real life. For instance, Facebook has
still compute exact answe€g(D) by accessing only the small more thant billion users with140 billion friend links [28]. A
datasetD’ instead of operating on the original big directly. naive computation of the answer €@, even ifpo is known,
The idea is simple. Butto implement it, we need to settle sevimay fetch the entir®,, and is cost prohibitive.
eral fundamental questions and develop practical teckesiqu  Nonetheless, we can compue(D;) by accessing only a
Below we first study questions concerning whether it is possismall subseDy,, of D;. Indeed, Facebook has a limit of 5000
ble at all to find a small datasé?’ such thatQ(D)=Q(D’).  friends per user (cf. [7]), andd is a key ofperson. Thus by
We then present several practical techniques to make b&y dayising indices ond attributes, we can identif{, , which con-
small, which have been evaluated by using social network anasists of a subseb ; of friend including all friends ofpy, and a
ysis as a testbed, and have proven effective in the applitati  setD,, of person tuplest such that|id] = '[id2] for some tuple
t"in Dy. ThenQ1(Dg,) = Q1(D1). Moreover,Dg, contains
3.1. Scale Independence at most 10000 tuples @, , and is much smaller thah;. Thus
We start with fundamental problems associated with the ap&: is scale independent i, w.r.t. M >10000. In fact, one
proach to making big data small. We first study the existencean verify thatQ, is scale independent in all instances of the
of a small subseD’ of D such that we can answéyin D by  schemagperson andfriend that satisfy the two constraints.
accessing only the data i’. We then present effective meth-
ods for identifying such &’. We invite the interested reader to
consult [36] for a detailed report on this subject.

) Query (@, is to find allNYCfriends of a persorpg, from
datasetD;. Here D; consists of two relations specified by
person(id, name, city) andfriend(idy,id» ), which record the ba-
sic information of people (with a key) and their friend rela-
tionships, respectively. Que€y;, can be written as follows:

(2) Consider another querg,, which is to find from a dataset
D, all A-ratedNYCrestaurants that were visited gy Cfriends
of pg in 2013. HereD, consists of four relations, specified
To simplify the discussion we consider relational querie. by a relational schemaR, including person and friend as
R be arelational schemad.,R=(Ri,...,R,), whereR;isa  apove, as well agstr(rid, name, city, rating) (with rid as a key)
relation schema [1])D a database instance &, ) aqueryin  and visit(id, rid,yy,mm,dd) (indicating that persorid visited

query clas<) such as relational algebra or conjunctive queriesyestaurantrid on a given date). The@, can be expressed as:
and M a non-negative integer. LéD| denote the size oD, Q2(rm,yy) = 3id, rid, pn, mm, dd (friend (po, id)

measured as the total number of tuples in relationd of Avisit(id, rid. 2013, mm, dd) A person(id, pn, NYC)

The definition. We say that) is scale independent i w.r.t. A restr(rid, rn,NYC A)).

M if there exists a subsd?,, C D such that Note that quenyQ, is also scale-independent. Indeed, (a) a
e [Dp|<M,and year has at most 365 days; and (b) it is safe to assume that on
e Q(Dg)=Q(D). a given day, each persod dines out at most once. Putting

these together with the constraints &iend and person (i.e.,
a person can have at most 5000 friends at Facebook,iénd
is a key ofperson), one can computé),(D-) by accessing a
bounded number of tuples, instead of scanning the entie
Indeed Q- is scale independent for all instances of schefa
One step further, we say th@t is scale independent foR ~ under these constraints. O
w.r.t. M if for all instancesD of R, @ is scale independent in
D w.rt. M,i.e.,one can always find a cofe, with at most\/
tuples for answering@) in D.

That is, to answef) in D, we need only to fetch at mogt/
tuples fromD, regardless of how bi@ is. We refer toDg as
acorefor answeringy in D. Note thatD, may not be unique.
As will be seen shortly, we want to findrainimumcore.

One can show that a querty is scale independent for any
schemaR over which@ is defined wher) is either
) . e a Boolean conjunctive query Q|| <M, or
The term “scale independence” is borrowed from [6, 7, 8]. _ . .
The need for studying scale independence is evidentinipeact ~ * a top_-k: cor_1]unct|ve query for a constaktand a scoring
It allows us to answef) in big D by accessing a small dataset function f if k[|Qf <M,
within our available resources. Moreovergdfis scale indepen- where||Q| is the number of tuple templates in the tableau pre-
dent forRk, we can answef) without performance degradation sentation of the conjunctive quey [1]. Here @ is Boolean
when D grows, and hence, makg scalable with D|. if for any instanceD of R, Q(D) returns true ifQ(D) is



nonempty and false otherwise; argl is a topx query if
Q(D) returns a subsd? CQ(D) such that (a)J consists of
at mostk tuples (U|=k if |Q(D)|>k), and (b) for all tuples
teQ(D)\U andseU, f(s)> f(t) [30].

Decision problems To determine whether a que€y is scale
independent, we need to study the following decision prokle
e The scale independence problem (&, D).
— INPUT: A relational schem&, an instance of R,

Example 7. Continuing with Example 6, we would have a tu-
ple (friend,id1,5000,T") for some valud' in the access schema
A. That s, there exists an index @ such that ifid; is pro-
vided, at most 5000 tuples with such an id exidtiend, and it
takes timél" to retrieve those. In addition, we would have a tu-
ple (person,id,1,7") in A, indicating thatid is a key forperson
with a known timel” for retrieving the tuple for a giveid. O

Computing a core by leveraging access scher@aen a rela-

a query@ € Q overR, andM > 0.
— QUESTION Is @ scale independent i w.r.t. M?

e The scale independence problem §r

— INPUT: R, a query@ € Q overR, andM > 0.
— QUESTION Is @) scale independent fag w.r.t. M?

That is, we want to find minimum cores for answeri{g

The complexity bounds of these problems have been estab-

lished [36]. The problems are rather intriguing. For ins&n
the first one isz2-complete WPNP™) when Q is the class of
conjunctive queries, and it BRSPACE-complete wher@ is re-
lational algebrai(e., first-order logic). Worse still, the second
problem becomes undecidable for relational algebra. st
surprising in database theory: for instance, the classieah-
bership problem (see Section 2\N&-complete for conjunctive
gueries, and®SPACE-complete for relational algebra [1].

Identifying a core. We have seen that it is rather expensive to
determine whether a quety is scale independent. Moreover,
even afterQ is found scale independent in a datasgktit is
non-trivial to identify a coreD, for answering? in D with a

bounded size. As an example, consider a Boolean conjunctive

query over a relational schenf®. As remarked earlier, we
know that(Q is scale independent fa®. The question is: is
there an efficient algorithm that, given an instaiatef R, finds
acoreDg C D such thaiDg| < ||Q[ andQ(Dq)=Q(D)?

We approach this following the common practice of database

people: we provide a sufficient condition for checking wieeth
Q is scale independent and if so, for helping us efficiently com
pute a core for answering. This is formalized as follows.

Access schema\Ve define amccess schemad over a relational
schemar to be a set of tuplegk, X, N, T'), where

e Ris arelation schema iR,

e X is a set of attributes ak, and

e N andT are natural numbers.

We say that a database instardgef R conforms to the ac-
cess schemd if for each(R, X, N,T') € A:

e for each tuple of values of attributes of X, the set
ox=az(R) has at mostV tuplesi.e., there exist at most
N tuplest in R such that[X]=a; and

e ox_z(R) can be retrieved fronD in time at mosfT.

That is, there exists an index dhthat allows efficient retrieval
of certain tuples fronD, and there is a bound on the number of
such tuples. Access schemas areombinatiorof indices and

tional schemak, we say that a querg) is scale independent
under access scherpif for all instanced of R that conform

to A, the answer)(D) can be computed in time that depends
only on A and@, but not onD. That is,( is scale indepen-
dent forR in the presence afl, independent of the size of the
underlyingD. The following results are known.

e There s a set of syntactic rules for us to determine whether
a relational algebra query is scale independent unddr
this provides us with a systematic method and a sufficient
condition to check wheth&p can be answered by access-
ing a bound number of tuples in all instancedd{36].

e For conjunctive querie®, there exists a characterization,
i.e.,a sufficient and necessary condition, to decide whether
Q is scale independent unddr, better still, the decision

problem is in polynomial time in the size ¢fand.A [17].

If Q is scale independent unddr, then an efficient query
plan can be worked out using the rules, such that we can
find a coreD¢ with a bounded size an@(D)=Q(Dg).

For conjunctive queries, there has been an experimental
study with real-life data that shows such a query plan take
9 seconds as opposed to 14 hours by commercial sys-
tem MySQL [17]! Moreover, it is easy to mine access
constraints from real-life data, and a large percentage of
queries are scale independent under simple access con-
straints. In other words, the approach by exploring scale
independence is effective and practical.

3.2. Making Queries BD-tractable

We next turn to practical techniques for making big data
small, and hence, BD-tractable. We take graph pattern match
ing in social graphs as our application domain, and present
four data reduction strategies as examples, namely, lolisél
query processing via partial evaluation [47], query-préisg
data compression [45], view-based query answering [5@], an
bounded incremental computation [49, 82]. The idea behind
these approaches is simple. When our datasé$ a social
graphG andq@ is a pattern query, the complexity of computing
query answe(G) (the set of matches @ in GG) is measured
by a functionf (|Q|,|G]). Sincef(-,-) may be the lower bound
of the computation and cannot be further reduced, [aNds
typically small in practice, we redudé/|, i.e., by making big
G small, to reduce the response time of query answering.

Graph pattern matching. We start with a review of graph pat-
tern matching in social graphs, which typically represecia

database dependencies, which are commonly used in practiceetworks.e.g.,Facebook, Twitter, LinkedIn.
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Social graphs A social graph is a node-labeled directed graphevaluation (see [68] for a survey). Given a functjf(s, d) and
G=(V,E, fa), where (a) is a finite set of nodes; (F CV x part of its inputs, partial evaluation is to specializé s, d) with

V, in which (v,v") denotes an edge from nodeo v’; and (c)  respect to the known input That is, it conducts as much as
fa(+) is afunction that associates each node V with a tuple  possible the part of (s,-)’s computation that depends only on
fa(v)=(4A1=au,...,A,=a,), whereq; is a constant, and; s, and generates a partial answieg,, a residual functiory’(-)

is referred to as aattribute of v, written asv.A;. In social that depends on the as yet unavailable input

graphs, each node denotes a person, and its attributestioarry  This idea can be naturally applied to distributed graph pat-
contents of the nOd@.g.,labeL keyWOI’dS, blOgS, rating. An tern matching. Consider a graph patté}'rposed on a grapﬁ!
edge represents a relationship between two people. that is partitioned into fragments= (F1,..., F;,), whereF; is

Patterns A graph patternis given as = (Vo Eq, f,), where  Stored in sites;. We compute(G) as follows.

(1) The same patter@ is posted to each fragmentjh.

(2) Upon receiving patter®, each siteS; computes gartial

. ] . answerQ(F;) of Q in fragmentF;, in parallel, by taking

e fu(-) is a function defined o', such that for each node F; as the known input while treating the fragments that
u, f»(u) is thesearch conditiorfor u, defined as a con- reside in the other sites gst unavailablénputd.
junction of atomic formulas of the forml op a; here A (3) A coordinator siteS, collects partial answers from all the
denotes an attribute, is a constant, andp is one of the sites. It then assembles the partial answers and finds the
comparison operators, <,=,#, >, >. answerQ(G) to @ in the entire grapldr.

We say that a node in a social graphG satisfiesthe search The idea behind this is simple: we divide a lsignto a col-
condition of a pattern nodein (), denoted as ~ v, if foreach  |ection F=(F1,...,F,) of fragments, such that the response
atomic formula A op @’ in f,(u), there exists an attributd  time is determined by the cost of computi@§F;,) (step 2),
defined byf(v) such that. A op a. whereF}, is the largest fragment i, and the cost of assem-

Graph pattern matchingGiven a social grapk and a graph bling _partial answers (.step 3). In other words, its paralteh-
pattern(, we want to compute the sét(G) of all matches in; putational _co_st is (_jommated by t_he largest fragment rr_alther

for Q. In this section we consider a simple semantics for grapian the original big grap&. In this way, we reduce a big to
pattern matching, based on graph simulation [77], which haSmall fragments?, and hence, reduce the response time. When
been widely used in Web site classification and social msiti IS Nt already partitioned and distributed, one may first par
detection, among other things.¢..[15, 19, 79, 97]). tition G aspreprocessingIn particular, when we can afford a
number of processors, eaéhmay have a manageable size and

hence, the computation 6f(F;) is feasible at each site.

There are many ways to develop distributed algorithms for
graph pattern matching. To evaluate and assess these algo-
rithms, we propose the following criteria. We say that a dis-
tributed algorithm7 is scalable parallelif for all patterns@,

e for each(u,v)€ S, (@)u~w, and (b) for each edge:,v’) all graphs and all fragmentation$ of G,

We ri;‘(gqt%;‘haesrea;ﬁ;grﬁg%@fﬁ/gn E such tha(u',v) € 5. o if its parallel computation cost is bounded by a polynomial
: in|Q|, |F.| and|Vy|, and

It is known that ifQ <G, then there exists a uniqumeaxi- . . .
mummatchs, [62] ?e_ for any matchs in G for Q g‘CS e the '|[0ta|\I data shipped is bounded by a polynomidlih
(o] ) - " ’ —_ o and Vf ,

We defineQ(G) = S, if Q<imG, andQ(G) = () otherwise.
Itis known that it take® (| Q|2 +|Q||G| +|G|?) time to com- whereV is the set of nodes with edges across different frag-
puteS, [62], where|G| denotes the size @f measured in the ments inF. That is, the response time @f is dominated by

number of nodes and edges; similarly for the $igeof Q. As  the size of the query, the largest fragment/in and howr
remarked earlier, real-life social graphs are typically, lsi.g., PartitionsG, rather thanby the size of the underlyinG; sim-

Facebook graph has more thamillion nodes and 40 billion ilarly for its network trafﬁc. In practicgVy| is tyF’ica"y much
links [28]. Hence it is often prohibitively expensive to cpate ~ Smaller thanG|, and|Q| is also small. Hence, if algorithi
Q(G) for social graphg7 in the real world. These highlight has this property, then the more processors are availdige, t

the need for developing efficient techniques for graph patte Smaller the fragments tend to be, and therefore, the lesdlglar
matching to cope with the sheer size@f computation time and network traffic are needed,

o ) _ ) ) ) Note that MapReduce algorithms require us to re-distribute
Distributed query processing with partial evaluation. Dis-  the data in each round of Map and Reduce; hence, they are not
tributed query processing is perhaps the most popular appro - scajable parallel. In contrast, there exist scalable [eritjo-
to querying big data, notably MapReduce [23]. Here we advorithms for distributed graph simulation based on partialev
cate distributed query processing with partial evaluation ation. Part of the results has been reported in [47] for pagte

Partial evaluation has been used in a variety of applicationdefined in terms of regular expressions. It is shown thaether
including compiler generation, code optimization and flata  exists a distributed algorithm to answer such pattern gseri
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o V) is afinite set of nodes anfd, is a set of directed edges,
as defined for social graphs; and

We say that a social grapghi matchesa graph patterid) via
graph simulation denoted byQ <G, if there exists a binary
relationS C Vi, x V that is inductively defined as follows:

o for each pattern nodec V;,, there exists a nodec V' in
the social graph such that,v) € S; and



e by visiting each site once,
o in O(|F,||Q*+|Q*|Vy|?) time, and
o with O(|Q|?|V¢|?) communication cost.

Q' are equivalent,e.,for all datasetd), Q andQ’ produce the
same answers iy, and moreover, (b{p’ refers only to) and
its extensiond’(D), without accessing the underlyirg.

View-based query answering suggests another approach to

That is, it has performance guarantees on both response tinmeaking big data to small. As an example, consider graph pat-

and communication cost, as well as on site visits.

Query preserving graph compression Another approach to
reducing the size of big grapfi is by means of compressing
G, relative to a clas® of queries of users’ choice,g.,graph
pattern queries. More specifically,cuery preserving graph
compressiorfor Q is a pair(R, P), whereR(-) is acompres-
sion function and P(-) is apost-processing functiorFor any
graphG, G.= R(G) is thecompressed grapbomputed from
G by R(-), such that (1) G.|<|G|, and (2)for all queries
QeQ, Q(G)=P(Q(G.)). Here P(Q(G,)) is the result of
post-processing the answepsG.) to Q in G...

That is, wepreprocesss by computing the compresséd.
of G offline. After this step, for any quer§ € Q, the answers
Q(G) to @ in the big G can be computed by evaluating the
same( on the smalleiG,. online. MoreoverQ(G.) can be
computedwithout decompressing'.. Note that the compres-
sion schema isossy we do not need to restore the original
G from G.. That is,G. only needs to retain the information
necessary for answering queriesdn and hence can achieve a

bettercompression ratio than lossless compression schemes.

For a query clas®, if G. can be computed iRTIME and
moreover, queries il can be answered usin@,. in parallel

polylog-time, perhaps by combining with other techniques such

as indexing and distributed processing, tli&is BD-tractable.

tern queries for social network analysis. Given a big gréph
one may identify a seV of views (pattern queries) and mate-
rialize them withV(G) of matches for patterns of in G, as a
preprocessingtep offline. Then matches for pattex@san be
computed online by using(G) only. In practice V(G) is typ-
ically much smaller thads, and hence, this approach allows us
to query bigG by accessing small(G). Better still, the views
can be incrementally maintained in response to changés to
and adaptively adjusted to cover various patterns. In lafht
this, this approach has generated renewed interest foyigger
big graphs as well as other forms of big data [8, 36, 50].

More specifically, for pattern queries based on graph simu-
lation in social network analysis, we know the following [50
Given a graph patter@ and a se¥’ of view definitions,

e itisin O(|Q|*|V|) time to decide whether quety can be

answered by using views; and if so,

¢ Q(G) can be computed i@ (|Q||V(G)|+|V(G)|?) time;

e better still,|[V(G)| is about 4% oflG| (i.e., |V|+|E]) on
average for real-life social graphs; and as a result of these

e the view-based approach takes no more than 6% of the
time needed for computing(G) directly in G on average.

Contrast these with th€(|Q|*+|Q||G|+|G|*) complexity of
graph simulation! Note that)| and |V| are sizes of pattern
gueries and are typically much smaller th@iin real life.

The effectiveness of this approach has been verified [45], ) )
for graph pattern matching based on graph simulation, and fdncremental graph pattern matching. Given a patterr@) and
reachability queries as a special caise. (whether there exists & 9raph(y, aspreprocessingve computel () once. Wherts
a path from one node to another via social links). More specifilS Updated byAG, instead of recomputin@ (G AG) starting
cally, the following has been reported in [45]. from scratch, we mcremgn_tal_ly compuleV/ such thaQ(G@_

_ ) AG) = Q(G)®AM, to minimize unnecessary recomputation.

e There exists a query preserving compressinP) for  |n real life, AG is typically small: only 5% to 10% of nodes are
graph pattern matching with simulation, such that for anyypdated weekly [80]. WhenG is small, A M is often small as
graphG = (V. E, fa), R(-) is in O(|E[log|V]) time, and  el|, and is much less costly to compute tiQ(G'& AG). The
P(-)isinlinear time in the size of the query answer. idea has also been adopted for querying big data [8, 36, 49].
This compression scheme reduces the sizes of real-life so- The benefit is more evident if there exists a bounded incre-
cial graphs by 98% and 57%, and query evaluation timemental matching algorithm. As argued in [82], incremental a
by 94% and 70% on average, for reachability queries angorithms should be analyzed in terms|6GHANGED| = |AG]|
pattern queries with graph simulation, respectively. + |AM], the size of changes in the input and output, which
represents the updating costs that arleerent tothe incre-
mental problem itself. An incremental algorithm is said & b
semi-boundedf its cost can be expressed as a polynomial of
|[CHANGED| and|Q)]| [49]. That is, its cost depends only on
the size ofthe changesnd the size opattern@, independent
of the size of big&z. This effectively makes big: small, since
|CHANGED| <« |G, andQ is typically small in practice.

For graph pattern matching via graph simulation, it has been
shown that there exists a semi-bounded incremental dgorit
in O(JAG|(]Q||CHANGED|+|CHANGED]I?)) time [49].

In general, a query clagd can be considered BD-tractable if
(a) preprocessin@(D) is in PTIME, and (b)Q(D&AD) can

Better still, compresse@'. can be efficiently maintained.
Given a graph’, a compressed grapgh,. = R(G) of G,
and updategAG to GG, we can compute change®’. to
G. such thatG.® AG. = R(GP AG), without decom-
pressingG. [45]. As a result, for each graph, we need
to compute its compressed graph oncefor all patterns
Whend is updated(.. is incrementally maintained.

Graph pattern matching using views This technique is com-
monly used (see [73, 59] for surveys). Given a qu@rg Q
and a sel of view definitions,query answering using views
is to reformulate) into another query)’ such that (a)? and



be incrementally computed in paraliglylog-time. If so, itis  widely used in industry.

feasible to ans in response to changes to big d&ta _ . .
I e i P g '9 (5) As we have seen, view-based query answering provides us

Remarks and open issuesWe remark the following. with an effective technique for querying big data. To malaepr

1) Th ber of other effective techni ‘ tical use of it, however, we need to answer the following ques
(1) There are a number of other effective techniques foryjuer tion. Given a query workload, what views should we select to

ing big data, notably indexing we have seen earlier. These te build and maintain, such that the queries can be efficiemtiy a

nique§ and the strategies outlingd abpve can be, and sheyld t%Wered by using views or better still, be scale independent?
combined together, when querying big data.

(2) View-based and incremental techniques can help us mal
queries scale independent[36]. More specifically, whenemgu
@ is not scale independent, we may still make it feasible to The strategies we have seen in Section 3 help us make it
query big datancrementallyi.e., to evaluate) incrementally  feasible to answesomequeries in big data. However, some
in response to changesD to D, by accessing a/-fraction  queries may not be made BD-tractable. An example is graph
of the dataseD. That is, we comput€ (D), once and offline, pattern matching defined with subgraph isomorphism:NtRs

and then incrementally answé} on demand. We may also complete even to decide whether there exists a match (d. [81
achievescale independence using views., when a sel of  For such queries, it is beyond reach to find exact answergjin bi
views is defined, we rewrit@ into Q" usingV, such thatforany data. Moreover, as remarked earlier, even for queries trat ¢
datasetD, we can computé)(D) by usingQ’, which accesses be answered ifPTIME, it is sometimes too costly to compute
materialized view3’(D) and fetches only a bounded amount of their exact answers in big data. In light of this, we oftenéht
data fromD. We refer the interested reader to [36] for details. evaluate these queries by usiimgxactalgorithms, preferably
approximation algorithms with performance guarantees.

kf. Approximate Query Answering

We conclude the section with several open issues.
This section proposes two approaches to developing approx-

(1) As we have seen in Section 3.1, access schemas help Us gtion algorithms for answering queries in big data, nefer
termine whether a query is scale independent and if so, digvel , 55 query-driven and data-driven approximation.
an efficient plan to evaluate the query. A practical quesiiks

how to design an “optimal” access schema for a given query 4 Query Driven Approximation
workload, such that we can answer as many given queries as_

possible by accessing a bounded amount of data. For some query class&3 we can relax its semantics, such

that it is less costly to answer queri@sof Q in a big dataset
(2) As remarked earlier, Boolean conjunctive queries aaesc D under the new semantics, and moreover, the ang)(ér)
independent even in the absence of access schema. A natuggll gives users what they want. To illustrate this, we dive

question is: given a Boolean conjunctive quérand a dataset examples: graph pattern matching and foguery answering.
D on which@ is defined, how can we efficiently identify a core

of D for answering?, in the absence of access schema? Graph pattern matching revisited. We first review graph
pattern matching defined in terms of subgraph isomorphism.

Consider a social graptr=(V,E, f4) and a graph pattern
aQ:(VQ7EQ7fv) as defined in Section 3.2. Consider a sub-
graphG'=(V',E’, f,) of G, whereV" is a subset oV, and

E’ andf’, are restrictions of andf4 onV’, respectively.

(3) The third question concerns distributed pattern matghi
Does there exist a distributed algorithm at all that, given
pattern query@ and a graphG that is partitioned intaF =
(F1y,...,F,), computes the matché€XG) of @ in G, such that
its response time and data shipment depend on the sizandl ) )
the largest fragment,, of F only? This question asks about e say thatG’ matches@ by isomorphism denoted as
the possibility or impossibility of distributed query pessing @ JissG’, if there is abijective functiorh(-) : Vo — V" such that
with certain performance guarantees. Recent work has shown ¢ 4~ h(u) for each node. e Ve, and

that this is beyond reach for distributed graph simulatialr (
though distributed simulation has certain performanceaua
tees) [51]. However, the question remains open for disteithu
pattern matching by.g.,subgraph isomorphism. Graph pattern matchingy subgraph isomorphisia to com-

(4) A more general question asks about parallel scalabftity ~ Pute, given a social graii and a graph pattei@, the se)(G)

a query class, does there exist an algorithm for answering it all subgraphs7’ of G such thatQ <. This semantics
queries such that the more processors are used, the lesis tim&as been proposed for social graph analysis. However,rit s i
takes? That is, if we could afford “unlimited” resourceserth ~ fractable even in the classical computational complekigpty

a parallel scalable algorithm makes it feasible to answer tht© compute(G) based on subgraph isomorphism.

queries on big data, by using more computing facilities.r&€he  In light of the high complexity, we adopt graph simulation fo
has been work on this issue. Unfortunately, the prior work fo graph pattern matching instead of subgraph isomorphisin [42
cuses on either shared-memory architectures [72] or MapRé&hat is, we checlk) <G (Section 3) rather tha@ <G’ for
duce [69, 89]. A “standard” notion of parallel scalabiligyiot  subgraphg?’ of G. In fact, several revisions of graph simu-
yet in place for general shared-nothing architecturesclvhire  lation have been proposed, by allowing pattern edges to map
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e for each pair(u,u’) of nodes inVy, (u,u')€ Eq if and
only if (h(u),h(u’))€E".



to paths [42], incorporating edge labels [41], and retagjriire 90]. An NPO A has a sef of instances, and for each instance
topology of graph patterns [74]. These reduce the complexitz € I and each feasible solutignof z, there exists a positive
of graph pattern matching from intractability (subgrammi®r-  scorem(zx,y) indicating the quality measure gf Consider a
phism) to low polynomial time (quadratic time or cubic time) functionn(-) from natural numbers to the ran¢@ 1].

Better still, it has been shown_using re_al-life social net_wo An algorithm 7 is calleda n-approximation algorithm for
that graph pattern matching with (revisions of) graph sanul proplem 4 if for each instancer €1, 7 computes a feasible
tion is able to capture more sensible matches in social grap§p|utiony of x such thatR(z,y) >n(|z|), whereR(z,y) is the
analysis than subgraph isomorphism can find. In other Wordsperformance ratiof y w.rt. z, defined as follows [21]:

by relaxing the semantics of graph pattern matching from sub

graph isomorphism to (revised) graph simulation, we can find opt(z) if Ais a minimization problem
high-quality matches for social data analysis in much liess.t R(z,y)= %Ei’ y;

. . Y) it Ais a maximization problem
Top-k graph pattern matching. As remarked earlier, even opt(z)

quadratic-time or cubic-time complexity may be too high whe
querying big data. In light of this, we may further relax thee s
mantics of graph pattern matching defined with (revisedplgra o
simulation and hence reduce the cost of the computation. not too far fromopt(z) (i.e.,tis bo_und_ed by7(|x|_)). _
. . ' However, suchPTIME approximation algorithms directly
In social data analysis we often want to find matches of a L

. . . i . operate on the original instances of a problem, and may not

particular pattern node,, in @) as “query focus” [11]. That is,

we just want those nodes in a social gra@hhat are matches work well when querying big data for the following reasons.
of u, in Q(G), rather than the entire s€(G) of matches for (1) As we have seen in SectionR2TIME algorithms one: may
Q. Indeed, a recent survey shows thats of social queries be beyond reach in practice wheris big. Moreover, approxi-
are to find matches of specific pattern nodes [78]. Moreovernation algorithms are needed for problems that are trawditip
it often suffices to find tog: matches ofu, in Q(G). More  considered tractable [58], not limited KPO.

specifically, assume a scoring functiefl) that given a match
v of u,, returns a non-negative real numbér). For a positive
integerk, top-k graph pattern matchings to find a set/ of
matches ofi, in Q(G), such thall has exactlyc matches and
moreover, for anys-element set/’ of matches oti,, s(U’) <
s(U), wheres(U) is defined as,cpys(v). When there exist Resource-bounded approximation To cope with this, below
less thark matches ofy, in Q(G), U includes all the matches we propose resource-bounded approximation. In a nutshell,
(see.e.q.,[30], for top-£ query answering). given a small ratiax€ (0,1) and a queryy posed on a dataset

This suggests that we develop algorithms to find top- [» We extract a fractiorq of D such that Dg|<a|D|, and
matches wittthe early termination propertj80], i.e.,they stop ~ COmputeapproximate a_”SWG@(DQ)- Herea is called are-
as soon as a set of tdpmatches is foundyithoutcomputing ~ Source ratioor aresolution !t is determlnfed by our available
the entireQ(G). While the worst-case time complexity of such resources for query evaluation, such as time and space.
algorithms may be no better than their counterparts for com- Intuitively, the idea is the same as how we process our photos
puting the entire)(G), they may only need to inspect part of When we cannot afford the time or storage for photos of high
big G, without paying the price of full-fledged graph pattern resolution, we settle with smaller images with lower retolu
matching. Indeed, for graph pattern matching defined ingermto reduce the cost, as long as such images are not too rough.

of graph simulation, we find that topmatching algorithms just  To formalize the idea, we first revise the notion of perfor-
inspect 65%—70% of the matches@{() on average in real- mance ratios for query answering. We then define resource-

life social graphs [48], even when diversity is taken into@mt  pounded approximation and demonstrate its effectiveness.
to remedy the over-specification problem of retrieving t@e h

mogeneous answers [56], which makes toguery answering Accuracy of query answer<onsider a query) and a dataset
a much harder bi-criteria optimization problem [24]. D. The exact answers @ in D are typically a se)(D).
Suppose that an algorithh computes a sét” of approximate

answers t@) in D. We define therecision and recall of the set

4.2. Data Driven Approximation _
L Y for (@, D) in the standard way, as follows:
In some applications we may not be able to relax the se-

mantics of our queries. To this end, we propose a data-driven  ,recision(Q, D,Y) = |Y0Q(D)|7
approximation strategy, referred to as resource-bounged a 1Y
proximation. Below we first review traditional approxinati _|YNnQ(D)|

schemes, and then introduce resource-bounded approaimati recall(@, D,Y) = :

QD)

Traditional approximation algorithms . Previous work on this  Thatis,precision is the ratio of the number of correct answers in
subject has mostly focused on developRMBIME approxima- Y to the total number of answers whilerecall is the ratio of
tion algorithms foNP-optimization problemsNPOs) [21, 58,  the number of correct answerslhto the total number of exact
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whereopt(z) is the optimal solution of:. That is, while the
solutiony found by algorithm7 (z) may not be optimal, it is

(2) In contrast ta\POs that ask for a single optimum, answer-
ing a query@ in a dataset is to finda setQ(D) of query
answers. Thus we need to revise the notion of performance ra-
tios to assess the quality of a set of feasible answers.




answers irQ (D). Based on these, we define thecuracy ofY’  are supported by Graph Search of Facebeoty,, “find me alll
for (@, D) by adopting the usud'-measure [93]: my friends in Beijing who like cycling” [29].

- A personalized search is specified by a graph patfgin
pre(.:lélon(Q’DD’;) reca”ﬁQ’ %}Q which a node,, is designated to map to a particular node (per-
precision(Q, D,Y') +recall(@, D, Y) son)v, in a social grapltz. As in the case for to-graph pat-

as the harmonic mean of precision and recall. Obviously, th&M matching described earlier, the patt@ralso has a partic-

largeraccuracy(Q, D,Y') is, the more accurafg is. ular “output” pattern node,,. The search is to compu@(G),
the set of all matches of the output pattern negeof @ in

graphG, while the “personalized” node,, is mapped tov,

accuracy(Q,D,Y)=2

When bothQ)(D) andY” aref), i.e.,no answer exists, we treat
accuracy(Q, D,Y’) as1; we consideprecision only if Q(D) is in G. Such searches are similar to what we have seen in Ex-

0 butY is not, andrecall only if D is § butQ(D) is not. ample 6. In contrast to queries given there, here we consider
Resource-bounded query answetilfge now present resource- queries that are graph patterns rather than relational queries,
bounded approximation algorithms. Le€ (0,1) be aresource  and moreover, may not be scale independeagt.in

ratio (or resolutior), andQ be a class of queries. For such patterns, we have developed resource-bounded ap-
Given a dataseb and a query) in Q, an algorithnZ for @  proximation algorithms for graph pattern matching defined i
guerieswith resource-bound: does the following: terms of subgraph isomorphism and graph simulation (see Sec

tion 3.2). We have experimented with these algorithms using

visits a fractionD of D such thatDg|<«|D|, and . .
¢ Q {Dq|=alD| real-life social graphs. The results are very encouraging.

e computes)(Dg) as approximate answers. find that our algorithms are efficient: they are 135 and 240
We say thatZ hasaccuracy ration for Q if for all datasets times faster than traditional pattern matching algorittoased
D and all querie®) € £, accuracy(Q, D,Q(Dg)) > 1. on graph simulation and subgraph isomorphism, respegtivel

Better still, the algorithms are accurate: even when theures
ratio o is as small ag5x10~%, the algorithms return matches
with 100% accuracy! Observe that whénconsists of 1PB of
data,«|G| is down to 15GBi.e.,resource-bounded approxima-

Algorithm 7 consists of two steps: it first reduces tigto a  tion truly makes big data small, without paying too high apri
small D¢, and then computes approximate query answers, botbf sacrificing the accuracy of query answers.

by accessing a bounded amount of data. Observe the following a similar idea has also been verified effective by BlinkDB

(1) Dynamic reduction Recall that traditional data reduction [4]- BlinkDB adaptively samples data to find approximate an-
schemes such as compression, summarization and data sy#!rs o relational queries within a probabilistic erroubd
opses, buildhe same structure for all queriés, 9, 27, 53, 54, and time constraints. In other words, it answers queriasgusi
65, 66, 70, 84, 91]. This is also how the strategies of Se@ipn data sample®), of a dataseD, instead ofD.

do. We refer to such strategieswasform reduction

In contrast, resource-bounded approximation adopty-a
namic reduction strategwvhich finds a small dataség with
only information needed for aimput query@, and hence, al- )
lows higher accuracy within the boundD| on data accessed. that resource-bounded algorithms gararanteeior Q. A dual
One can use any techniques for dynamic reduction, includinBrOblem IS t(_) find, given an accuracy guarar*r_teﬁe minimum
those for data synopses such as sampling and sketchingyas |fesource ratiox that resource-bounded algorithms can take.
as the procesdisits a bounded amount of data I (2) Another problem is to study, given an access scheia
how can we develop a resource-bounded algorithm that makes
maximum use of4 to retrieve data efficientlyi.e., it visits a
minimum amount of data that is not covered Ay

Note that the accuracy ratigis in the rangg0,1]. When
n=1, algorithm7 finds exact answersor all datasetsD and
queries) i.e.,the algorithm has 100% accuracy.

Open issuesThere is naturally more to be done.

(1) For a clasxQ of queries, the first problem is to find, given
a resource ratiay, the maximum provable accuracy ratip

(2) Approximate query answering Algorithm 7 computes
Q(Dg) by accessing|D| amount of data rather than the entire
D. It aims to achieve the best performance ratio withjb|.

(3) Scale independence When @ is scale independent in (3) The thllrd top|c is t_o develop res.ource-bolunded apprexim
D w.rt. some M >a|D|, resource-bounded approximation tion algonthms in various application dgmams. For ins@n
achieves 100% accuradye., with performance ratig = 1. for social searches that are not personalizedwhen no nodes
in a graph pattern are designated to map to fixed nodes in a so-
(4) Access schemaThe notion of resource-bounded approxi- cial graphG, can we develop effective resource-bounded ap-
mation can be readily defined under an access schérfsge  proximation algorithms for graph pattern matching?
Section 3.1), to efficiently retrieve a bounded amount ofdat ) o
for query processing by leveraging indices and boundé.in ~ (4) Finally, approximation classes for resource-bounded a
proximation need to be defined, along the same lines as

Personalized social searchTo verify the effectiveness of the their counterparts for traditional approximation algionits
approach, we have conducted a preliminary study of personafe.g., APX, PTAS, FPTAS [21]). Similarly, approximation-
ized social search in real-life social graphs [52]. Suchi@dess  preserving reductions should be developed, and complete pr
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lems for those classes need to be identified for these classes thent[AC] must be 10. As a data quality rule, this CFD catches
the inconsistency in tuplg: ¢, [AC] andt[city] violate the CFD.

5. Data Quality: The Other Side of Big Data Data accuracyrefers to the closeness of values in a database
to the true values of the entities that the database valpes-re
We have so far focused only on how to cope with the volumesent. Observe that data may be consistent but not accurate. F
(quantity) of big data. Nonetheless, as remarked eathigr, instance, one may have a rule for data consisteagy< 120,
data = quantity+ quality. This section addresses data quality indicating that a person’s age does not exceed 120. Consider
issues. We report the state of the art of this line of researchy tuplet representing a high school student, wifage] =40.
and identify challenges introduced by big data. The primaryyhile ¢ is notinconsistent, it may not be accurate: a high school

purpose of this section is to advocate the study of the qualitstudent is typically no older than 19 years old.
of big data, which has been overlooked by and large, although

data quality and data quantity are equally important. There has been recent work on data accuracy [16]: given tu-

plest; andt, pertaining to the same entiéywe decide whether

t1 is more accurate than in the absence dhe true value oé.

It is also based on integrity constraints as data qualigsiul
We begin with an overview of central technical issues in Con_lnformation completenessoncerns whether our database has

nection with data quality. We then present current apprescch

to tackling these issues. We invite the interested readesre complete information to answer our queries. Given a databas
) D and a queryy, we want to know whether the complete an-
sult [33] for a recent survey on the subject.

swer toQ can be found by using only the datafih As shown
Data quality problems. Data in the real world is often dirty. in Example 2, wherD does not include complete information
It is common to find real-life data inconsistent, inaccurate  for a query, the answer to the query may not be correct.

complete, out of date and duplicated. Error rate of business |nformation completeness has been a longstanding problem.
data is approximately 1%-5%, and for some companies it i\ theory of relative information completeness has receireign
above 30% [83]. In most data warehouse projects, data cleaproposed [32], to decide whether our database has complete i
ing accounts for 30%-80% of the development time and budtormation to answer our queries, and if not, how we can expand

get [87], for improving the quality of the data rather tham fo ne gatabase and make it complete, by including more data.
developing the systems. When it comes to incomplete infor-

mation, it is estimated that “pieces of information pereeias ~Data currencyis also known asimeliness It aims to identify
being needed for clinical decisions were missing from 13.694h€ current values of entities, and to answer queries wih th
to 81% of the time” [76]. When data currency is concerned, jturrent values, in the absence of valid timestamps.

is known that “2% of records in a customer file become obso- For example, recall the datasbt from Figure 1. Suppose
lete in one month” [26]. That is, in a database of 500 000 custhat we know that tuples , t, andt; refer to the same person
tomer records, 10 000 records may go stale per month, 120 00Mary. Note that these tuples have two distinct values4tiry:
records per year, and within two years about 50% of all the&s0k and 80k, one is current and the other is stale. We want to
records may be obsolete. As remarked earlier, the scaleeof thlecide which one is current, when their timestamps are ngssi
data quality problem is far worse in the context of big data.

5.1. Central Issues of Data Quality

A data currency theory has recently been proposed in [40], to
Why do we care about dirty data? As shown in Example 2deduce data currency when temporal information is onlylyart
we may not get correct query answers if our data is dirty. As &nown or not available at all. It is based on data quality sule
result, dirty data routinely leads to misleading analytiegults  defined in terms of temporal constraints. For instance, we ca
and biased decisions, and accounts for loss of revenues; cre specify a rule asserting that the salary of each employee in a
bility and customers. For example, it is reported that dildja  company doesiot decrease, as commonly found in the real
costUs businesses 600 billion dollars every year [26]. world. Then we can deduce that Mary’s current salary is 80k.

Below we highlight five central issues of data quality. Data deduplicatioraims to identify tuples in one or more rela-
tions that refer to the same real-world entity. It is alsown@s
entity resolution, duplicate detection, record matchiegord
linkage, merge-purge, database hardening, and objedifieden
cation (for data with complex structures such as graphs).

Data consistencyefers to the validity and integrity of data rep-
resenting real-world entities. It aims to detect incomsistes
or conflicts in the data. For instance, tupleof Figure 1 is
inconsistent: its area code is 20 while its city is Beijing.

For example, consider tuples ¢t andts in Figure 1. To an-
swer queryy, of Example 1, we want to know whether these
tuples refer to the same employee Mary. The answer is affir-
mative if, e.g.,there exists another relation which indicates that
Mary Smith and Mary Webber have the same email account.

Inconsistencies are identified as violationslata dependen-
cies(a.k.a. integrity constraints [1]). Errors in a single rela-
tion can be detected by intrarelation constraints such adico
tional functional dependencies (CFDs) [34], while erran®as
different relations can be identified by interrelation doaisits
such as conditional inclusion dependencies (CINDs) [75). A The need for studying data deduplication is evident in data
example CFD for the data of Figure 1 isity = “Beijing” cleaning, data fusion and payment card fraud detectionngmo
—AC=10, asserting that for any tupteif t[city] = “Beijing”, other things. No matter how important it is, data dedupidrat
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is nontrivial. Tuples pertaining to the same object may haveve want to decide whethdp has complete information to an-
different representations in various data sources. Maetlve  swer an input query), among other things.
data sources may contain errors. These make it hard, if notim £ 5 centralized databage, given a set® of CFDs and
possible, to match a pair of tuples by simply checking whetheC|NDS, a fixed number of SQL queries can hatomati-
their attributes pairwis_e equal. Wo_rse still, it is often_tmstly cally generated such that, when being evaluated againgie
to compare and examine every pair of tuples from big data.  4eries return all and only those tuplegirthat violates: [33].
Data deduplication is perhaps the most extensively studiedhat is, we can effectively detect inconsistencies by leging
topic of data quality. A variety of approaches have been proexisting facility of commercial relational database syste
posed (see [63] for a survey). In particular, a class of dyinam
constraints has been studied for data deduplication, kramsvn
matching dependencies (MDs), as data quality rules [31].

Data repairing After the errors are detected, we want to au-
tomatically localize the errors and fix the errors. We alseche
to identify tuples that refer to the same entity, and for each
Improving data quality. We have seen that real-life data is tity, determine its latest and most accurate values frondéta
often dirty, and dirty data is costly. In light of these, efige  in our database. When some data is missing, we need to decide
techniques have to be in place to improve data quality. To ddvhat data we should import and where to import it from, so that
this, a central question concerns how we can tell whether oue Will have sufficient information for tasks at hand.

data is dirty or clean. To this end, we need data quality ides  This highlights the need fatata repairing[5]. Given a set:
detect semantic errors in our data and fix those errors. A numysf dependencies and an instarieef a database scherfi, it

ber of dependency (constraint) formalisms have been peapos js to find a candidateepair of D, i.e.,another instanc®’ of R

as data quality rules, and are being used in industgy,CFDs,  such thatD’ satisfies® and D’ minimally differsfrom the orig-
CINDs and MDs. Below we briefly describe the basic function-inal databaseé). The data repairing problem is, nevertheless,
ality of a rule-based system for data quality management.  highly nontrivial: it is NP-complete even when a fixed set of
traditional functional dependencies (FDs) or a fixed senolti-
sion dependencies (INDs) is used as data quality rules [h4].
light of these, several heuristic algorithms have beenldpeel,

Discovering data quality rules To use dependencies as data
quality rules, itis necessary to have efficient technigngdace

that canautomatically discovedependencies from data. In- ! h '
deed, it is unrealistic to just rely on human experts to desig {0 effectively repair data by employing FDs and INDs [14],

data quality rules via an expensive and long manual prooess, CFDS [20, 96], CFDs and MDs [46] as data quality rules.

count on business rules that have been accumulated. This sug The data repairing methods mentioned above are essentially
gests that we learn informative and interesting data qualies  heuristic: while they improve the overall quality, they dotn
from (possibly dirty) data, and prune away insignificanesul ~ guarantee to find correct fixes for each error deteétedthey

More specifically, given a databag, the discovery prob- do not warrant a precision and recall of 100%. Worse stilyth
lemis to find aminimal coverof all dependencie(g.,CFDs, MaY introduce new errors when trying to repair the data. ldenc
CINDs, MDs) that hold oD, i.e., a non-redundant set of de- they are not accurate enough to repair critical data suchiras c
pendencies that is logically equivalent to the set of alletep ical data, in which a minor error may have disastrous conse-

dencies that hold o). Several algorithms have been devel- duences. This highlights the quest for effective methodmitb
oped for discovering CFDs and MDs.{.,[18, 35, 55]). certain fixesthat are guaranteed correct. Such a method has

o _ _ . been developed in [43]. It guarantees that whenever it @sdat
Validating data quality rules A given setx of dependencies, data, it correctly fixes an error without introducing newoest
either automatically discovered or manually designed by do The rule discovery, rule validation, error detection anthda

main experts, may be dirty itself. In light of this we have to o :
. N, ! , : . repairing methods mentioned above have been supported by
identify “consistent” dependencies from i.e., those rules that : ST

%ommermal systems and have proven effective in industry.

make sense, to be used as data quality rules. Moreover, wle ne
to remove redundancies fromvia the implication analysis of ]
the dependencies, to speed up data cleaning process. 5.2. New Challenges Introduced by Big Data

This problem is nontrivial. It isSNP-complete to decide  Previous work on data quality has mostly focused on re-
whether a given set of CFDs is satisfiable [34]. Neverthelesdational data residing in a centralized database. To improv
there has been an approximation algorithm for extractingta s the quality of big data and hence, get sensible answers to our
>’ of consistent rules from a sét of possibly inconsistent dueries in big data, new techniques have to be developed.
CFDs, while guaranteeing that' is within a constant bound
of the maximum consistent subsetofisee [34] for details).

Repairing distributed data. Big data is often distributed. In

the distributed setting, all the data quality issues meeiib
Detecting errors After a validated set of data quality rules is above become more challenging. For example, consider error
identified, the next question concerns how to effectivelglta detection. As remarked earlier, this is simple in a certedi
errors in a database by using these rules. Given 2 gétton-  database system: SQL queries can be automatically gederate
sistent data quality rules and a databBseve want tadetectin-  so that we can execute them against our database and catch all
consistenciem D, i.e.,to find all tuples inD that violate some inconsistencies and conflicts. In contrast, this is momgguing

rule in 3. When it comes to relative information completeness,n distributed data: it necessarily requires us to ship tata
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one site to another. In this setting, error detection witinimi  Coupling with knowledge bases A large part of big data
mum data shipment or minimum response time becolfés comes from Web sources or social networks. To improve the
complete [37], and the SQL-based techniques no longer workquality of such data, we ultimately have to use knowledgebas

For distributed data, effective batch algorithms [37] amd i and ontology. A number of knowledge bases are being devel-
cremental algorithms [44] have been developed for detgctinoPed, such as Knowledge Graph [57], Yago [95], and Wiki [94].
errors, with certain performance guarantees. Howeverdist ~ However, the quality of these knowledge bases needs to be im-
covery and data repairing algorithms remain to be developeBroved themselves. This suggests that we study the follow-
for distributed data. These are highly challenging. Faeinse, ~ INg. How to detect inconsistencies and conflicts in a knogéed
data repairing for centralized databases is alré¢Ricomplete  base? How to repair a knowledge base? How to make use of
even when a fixed set 6Dsis taken as data quality rules [14], available knowledge bases to clean data from the Web?
i.e.,when only the siz¢D| of datasets is concerneal k.a.data
complexity [1]). WhenD is of PB size and) is distributed, itS . Conclusion

computational and communication costs are prohibitive.
We have reported an account of recent work of the Interna-

Deducing the true values of entities To answer a query in tional Research Center on Big Data at Beihang University, on
big data, we may have to use data from tens of thousandguerying big data. Our main conclusion is as follows.

sources [22]. With this comes the need for data fusion ane con
flict resolution [13]. That is, for each entity we need to iden-
tify the setD, of data items that refer to the sam&om those
sources, and moreover, deduce the true valuefi@m D.. e \We need to revise complexity theory and approximation
theory to characterize what we can do and what is impos-
sible for computing exact or approximate query answers.

e Query answering in big data is radically different from
what we know about querying traditional databases.

Example 8. Recall Figure 1. Suppose that,t; andt; come
from different sources. We need data deduplication mettwds
determine whether they refer to the same person Mary. Ifgo, w e Querying big data is challenging, but doable. It calls for a
want to find the true values of Mary. To do this, we may need  set of new effective query processing techniques.

to, e.g., reason about both data currency and consistensy. A . . i .

an example, for attributeN (last name), Mary has two conflict ~ ® Big data = quantity + quality. These are the two sides of
values: Smith and Webber. We want to know what is the latest ~ the same coin, and neither works well when taken alone.
and correct value. To this end, we know that marital status ca  Summing up, we believe that the need for studying query an-
only change from single to married, and that her last name angwering in big data cannot be overstated, and that the dtibjec
marital status are correlated. From these we can deduce thad rich source of questions and vitality. We reiterate ouit@av
the true value oEN of Mart is Webber. tion to interested colleagues to join us in the study.

As another example, suppose thatind s, of Figure 1 refer
to the same person. To deduce the true value of Nigfirst
name), we may use a CFIPN = “Bob” — FN = “Robert”.
This rule for data consistency allows us to normalize e
attribute and change nickname Bob to Robert. O
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