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Abstract

This paper reviews the recent developments in specifi-
cation languages, static and run-time analyses as well as
applications of integrity constraints for XML.

1 Introduction

XML data [11], just like traditional databases, may be
specified by both type constraints and integrity constraints.
XML Schema [31], for example, supports types and integrity
constraints (e.g., keys and foreign keys). The distinction be-
tween types and integrity constraints is rather arbitrary [14].
A “type” in XML, such as a DTD [11] considered as an ex-
tended context-free grammar, typically means a restriction
on the element structure of a document, and does not relate
data values across elements. The term “integrity constraint”
in XML is often used to mean extensions of relational in-
tegrity constraints such as keys, foreign keys, and func-
tional dependencies, which depend primarily on the equal-
ity of data values. We follow this convention and focus on
integrity constraints for XML, subsequently referred to as
XML constraints in this paper. There has also been a host of
work on XML types and typechecking (see, e.g., [3, 25, 32]),
which will not be discussed in this paper.

The study of integrity constraints has been recognized
as one of the most important yet challenging areas of XML
research [32]. For relational databases, constraints are es-
sential to schema design, query optimization, efficient stor-
age and access methods (see, e.g., [1]). For all the reasons
that relational constraints are important, XML constraints
are also needed. In addition, unlike the relational model,
XML is being increasingly used as the prime standard for
data exchange and as a uniform model for data integration,
and XML data is commonly used by remote applications that
know nothing a priori about the semantics of the data. With
this come many new applications of XML constraints in,
e.g., assisting in preserving the semantics of the data during
transformation to a new model, detecting inconsistencies in
integrated data, and rewriting queries from XML to SQL and
vice versa [2, 8, 9, 10, 16, 18, 19, 23, 26, 33].

Generalizing relational constraints to XML constraints
is nontrivial. The hierarchical nature of XML data calls
for not only (a) absolute constraints that hold on an entire

XML document, such as dependencies found in relational
databases, but also (b) relative constraints that only hold on
sub-documents, beyond what we encountered in traditional
databases. Thus we need richer languages for specifying
XML constraints than we do in the relational setting.

To make effective use of XML constraints it is often nec-
essary to reason about them, both at compile-time (for con-
sistency and implication analyses) and at run-time (for in-
cremental constraint checking). Since XML constraints are
more complicated than relational dependencies, the static
analyses of XML constraints are more intriguing than their
relational counterparts. Add to this the difficulty introduced
by XML types (e.g., DTDs), which are far more complex than
relational schemas. Thus static analyses that may be trivial
for relational databases are intractable or even undecidable
for XML [5, 13, 21]. Run-time checking of XML constraints
is also harder and it depends on whether the XML data is in
a native store [2, 9] or shredded into relations [10].

We next review XML constraint languages (Section 2),
static and run-time analyses of XML constraints (Section 3),
and applications of XML constraints in practice (Section 4);
research directions are also identified (Section 4). This pa-
per is by no means a comprehensive survey: a number of re-
lated articles are not referenced due to the space constraint.

2 Constraint Languages for XML

Keys, foreign keys, functional and embedded dependen-
cies have been proposed and studied for XML.

Keys and foreign keys. Although a number of dependency
formalisms were developed for relational databases, keys
and foreign keys are the ones used most often in practice
and are supported by the SQL standard [24]. They provide a
mechanism by which one can uniquely identify a tuple in a
relation and refer to a tuple from another relation.

Primitive keys and foreign keys are supported by XML
DTDs [11] through the use of ID and IDREF attributes, re-
spectively. While an ID attribute can uniquely identify an
element within an XML document, it is more like an inter-
nal “pointer” rather than a key. (a) ID attributes are not well
scoped. In contrast to keys, they are unique within the entire
document rather than among a designated set of elements.
Thus one cannot, for example, allow a student element and
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Figure 1. An example XML document

a person element to use the same SSN as an ID. (b) Using
ID attributes as keys means that we are limiting ourselves
to unary keys and to using attributes rather than elements.
(c) One can specify at most one ID attribute for an element
type, while in practice one may want more than one key.
Similarly, IDREF attributes are also restricted to be unary
and are not well scoped; thus it is not surprising that a tak-
ing IDREF attribute of a student may point to a fellow stu-
dent rather than a course element as it intends to.

The hierarchical nature of XML data demands more than
mild generalizations of relational constraints. To illustrate
this let us consider the XML document depicted in Fig. 1.
For each country, the document lists its provinces and capi-
tals of provinces. Suppose we want to define keys for coun-
tries and provinces. One can state that country name is a key
for country elements. It is also tempting to say that name is
a key for province, but as shown in Fig. 1, both Holland
and Belgium have a province named Limburg. On the other
hand, name is indeed a key of provinces relative to country
elements: it is extremely unlikely that two provinces of the
same country would have the same name. This motivated
the notion of relative keys proposed in [12]:
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where ��� and ��� are regular (or XPATH) expressions, and�

is a set of regular (or XPATH) expressions; ��������� and
�

are referred to as the context path, the target path, and the
key paths of  , respectively. An XML document ! satisfies
 if and only if for any node " reached from the root of !
via ��� , and for any nodes "$#%��"%& reachable from " via �'� ,
if from "$# and "%& the same (set of) values are reached via�

, then "(# and ")& must be the same node. Here the value
equality is defined on a textual encoding of XML elements
(i.e., subtrees; see [12] for the details). The relative key  
applies to all subtrees rooted at nodes reached via the con-
text path � � . In a special case when � � is the empty path,
it applies to the entire document and is referred as an abso-
lute key. For example, the following are keys on the XML
document of Fig. 1 (in an abused XPATH syntax):

�'* = � (//country({name} �+� )),��, = //country(//province({name} �-� )),��. = //country(//capital ({inProvince} �-� )),

where  /# is an absolute key in which ���1032 , �'� = //coun-
try, and

�
= {name}; it says that name is a key of country

elements in the entire document. The rest are relative keys
specified for subtrees rooted at country elements (note that
� � is //country in  & and  �4 ). They assert that for each
country 5 , name is a key of all province descendants of 5 ,
and inProvince is a key of all capital descendants of 5 .

Similarly, a relative foreign key is defined as [5]:
6 ��� � �	� *87 9�*�:<; ��, 7 9 , : � ,

where ��#=�>�?& are regular (XPATH) expressions, @ AB#DC and
@ A & C are lists of regular (XPATH) expressions, and � � is the
context path as above. An XML document ! satisfies E if
and only if for any node " reached from the root of ! via
� � , for any " # reached from " via � # there exists " & reached
from " via � & , such that the list of values reached via A #
from " # equal those reached via A & from " & . When the con-
text path ��� is 2 , E is called an absolute foreign key. For
example, the following is a relative foreign key on Fig. 1:

6GF
= //country(//capital[inProvince] ; province[name]),

which says that for each country 5 , inProvince is a foreign
key of all province descendants of 5 referring to name of
province elements in the same sub-document rooted at 5 .

A key  (resp. foreign key E ) is unary if the set
�

of
key paths (resp. A # �>A & ) is a singleton. Let HJI denoteK  # �� & �> �4(��E�L%M ; all the XML constraints in HJI are unary.

Relative constraints capture information that cannot pos-
sibly be specified by absolute constraints.
Constraints in XML Schema [31]. XML Schema adopted
[30] a variation of absolute keys and foreign keys proposed
in [12, 5]. It defines constraints using a fragment of XPATH,
and imposes a uniqueness restriction on the values reached
via paths in

�
in keys (resp. AB#���AN& in foreign keys).

Functional dependencies. Generalizations of relational
functional dependencies (FDs) have also been defined for
XML [8, 33]. FDs of [8] are of the form

� #BO � & , where
�QP

is a set of paths for RTSU@WV(��XYC . The semantics of these FDs is
given in terms of relational FDs over a relational coding of
XML data. The coding maps paths in an XML document !
to relational tuples, referred to as tree tuples; based on the
coding, ! satisfies

� # O � & if and only if for any tree tuplesZ # � Z & in the coding of ! , if Z #Y[ � # 0 Z &)[ � # and Z #Y[ � # is well
defined, then Z #Y[ � & 0 Z &%[ � & . XML FDs of [33], referred to
XFDs, are interpreted over XML trees directly. Both forms of
XML FDs are absolute constraints and are defined in terms
of simple paths, i.e., sequences of XML tags. Neither [8]
nor [33] considered relative XML FDs or FDs defined with
more general path expressions that allow the Kleene star (in
regular expressions), wildcard or descendants (in XPATH).
XICs. Recall that relational embedded constraints are syn-
tactically defined as (see, e.g., [1], for the details):
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where �N��� are conjunctions of relational atoms.

A generalization of relational embedded constraints, re-
ferred to as XICs, was introduced for XML in [17]:��� *������ ����� ��� � � *�
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where , ��- P are conjunctions of simple XPATH expressions
interpreted as binary predicates. Relative functional and in-
clusion dependencies for XML can be expressed as XICs.

In summary, the language of XICs is the most expressive
constraint language studied so far for XML, and it subsumes
the language of (relative) keys and foreign keys of [12, 5].
Keys and foreign keys of XML Schema are a variation of
absolute constraints of [12, 5]. FDs of [8, 33] generalize a
very restricted set of absolute keys of [12], analogous to the
extension of relational keys to relational FDs.

3 The Analyses of XML Constraints

We emphasize the static analyses of XML constraints, in-
cluding the consistency and implication analyses and XML
constraint propagation. We also discuss run-time constraint
checking, on which little work has been done.
Consistency and Implication Analyses. These are the
central problems for reasoning about XML constraints.

An XML specification (schema) typically consists of a
DTD . (type) and a set H of XML constraints. The consis-
tency problem is to determine, given an XML specification/ . � H�0 , whether or not there exists an XML document that
both conforms to the DTD . and satisfies the constraints H .

The implication problem in the absence of DTDs (resp. in
the presence of DTDs) is to determine, given a set H of XML
constraints and another constraint  (resp. and a DTD . ),
whether or not for any XML document ! , if ! satisfies H
(resp. and conforms to . ) then ! satisfies  .
Keys and foreign keys. In relational databases, the consis-
tency analysis is trivial: one can specify arbitrary (primary)
keys and foreign keys in SQL, without worrying about con-
sistency. In the context of XML, however, there is intricate
interaction between XML constraints and DTDs, and the in-
teraction complicates the consistency analysis [21].

To illustrate the interaction, recall the set H I of unary
XML keys and foreign keys given earlier on the country doc-
ument of Fig. 1, and consider the DTD . I below:

<!ELEMENT db (country 1 )>
<!ELEMENT country (province 1 , capital 1 )>
<!ELEMENT province (capital, city 2 )>

The DTD imposes type constraints on XML documents: each
country has a nonempty list of provinces followed by a

nonempty list of province capitals, and for each province
we specify its capital and perhaps other cities. In addition,
each country and province has an attribute name, and each
capital has an attribute inProvince (not shown in . I ).

The specification
/ . I)� HTI�0 , which might look reasonable

at first, is actually inconsistent! To see this, let ! be an XML
tree that satisfies the

/ . I � H I 0 . The constraints  �&%�> 4 and
E L say that for any subtree rooted at a country 5 , the num-
ber of its capital elements is at most the number of province
elements among 5 ’s descendants. The DTD says that each
province has a capital element as a child and that each coun-
try has at least one capital child. Thus, the number of cap-
ital descendants of 5 is larger than the number of province
descendants of 5 , which contradicts the previous bound.

This tells us that the consistency analysis for XML is
more intricate than its relational counterpart. Indeed, the
following complexity bounds for XML consistency analysis
[5, 21] are self-evident. (a) it is undecidable for a class 3�4
of absolute keys and foreign keys defined in terms of very
restricted XPATH expressions; (b) it is already intractable
for only unary keys and foreign keys in 3�4 ; (c) it is un-
decidable even for unary relative keys and foreign keys;
(d) it is PSPACE-hard for absolute unary keys and foreign
keys defined in terms of regular path expressions. Upper
bounds and several tractable special cases have also been
given in [5, 21]. See [7] for a recent survey.

For the implication analysis in the presence of DTDs, it is
known [5] that for any class 5 of XML constraints that con-
tains unary (primary) keys and foreign keys, if its associated
consistency problem is K-hard for some complexity class K
that contains DLOGSPACE, then its implication problem is
coK-hard. Thus the lower bound for the implication anal-
ysis of 5 follows from its consistency counterpart. Several
upper bounds have also been given in [5, 21].

For the implication analysis in the absence of DTDs, it
is already undecidable for absolute keys and foreign keys
defined in terms of simple paths [22]. It is in PTIME and is
finitely axiomatizable (i.e., there exists a finite set of infer-
ence rules sound and complete for implication) for relative
keys alone defined in terms of a fragment of XPATH [13].

Constraints in XML Schema. A number of lower bounds
[5, 21] for the consistency and implication analyses of abso-
lute keys and foreign keys carry over to XML-Schema con-
straints, including the undecidability and intractability re-
sults mentioned above. Furthermore, the additional unique-
ness condition imposed by XML Schema on the definition
of keys makes the analyses even harder. For example, for
XML-Schema keys alone, the consistency problem is al-
ready intractable [6], while in contrast, it is in linear time
for even relative keys in the absence of this condition [7].

Functional dependencies. For the implication analysis of
FDs of [8], it was shown that the problem is in PTIME or



is coNP-complete under various restricted DTDs [8]. For
generic DTDs, the implication problem remains open.

XICs. While a full treatment of the consistency and impli-
cation problems for XICs of [17] is not yet in place, Chase
and Backchase algorithms were developed using XICs [19],
which emphasize the natural connection between the im-
plication analysis and query reformulation, along the same
lines as the Chase algorithm for relational dependencies
(see, e.g., [1]). A completeness result and several (suffi-
cient) termination conditions were established [19], which
assure that the algorithms terminate and find minimal query
reformulations for certain restricted XICs, XML queries and
views. The connection between the implication analysis of
XICs and the containment analysis for a fragment of XPATH
in the presence of XICs was explored in [17].

Constraint Propagation. Constraint propagation is an-
other static analysis, which has proven important in design-
ing normalized relational schema for storing XML data [16].

The propagation problem from XML keys to relational
FDs is to determine, given a mapping � from XML to rela-
tions of a schema � , a set H of XML keys and a relational
FD � on � , whether or not H�� 0�� ��� � , i.e., whether for
any XML document ! , if ! satisfies H then its relational
representation � / ! 0 satisfies � . The ability to determine
H	� 0 � �
� � is useful in checking the consistency of prede-
fined relational schema for storing XML data.

We also want to find a minimum cover of FDs: given a
universal relation � , a set H of XML keys, and a mapping
� from XML to � , compute a minimum cover ��
B� for the
set ��� of all FDs on � propagated from H via � . Here
��
B� is a non-redundant subset of (the exponentially large)
��� such that all the FDs of ��� can be derived from ��
B� .
With this one can design a relational storage for XML data
as follows: start with a rough (universal) schema, and then
decompose � into a BCNF or 3NF guided by ��
B� [16]. This
is analogous to designing relational database schema [1].

For XML keys of [12] and a practical mapping language
defined in terms of XPATH, PTIME algorithms and inference
systems have been developed [16] for computing XML key
propagation and finding a minimum cover. A followup [15]
of [16] considered XML FD propagation, for which, how-
ever, even the decidability is not yet known.

The topic of constraint propagation deserves a full treat-
ment. (a) For XML data stored in relations, constraint
propagation may play an important role in checking XML
constraints and in querying and updating XML data using
a RDBMS. (b) Constraint propagation yields a connection
between XML and traditional data models at the semantic
level, and is likely to be effective in defining information-
preserving transformations between XML and databases.
However, no work has studied constraint propagation from
relations to XML, or between XML and other data models.

Run-Time Analysis. The constraint checking problem is to
determine, given an XML document ! and a set H of XML
constraints, whether or not ! satisfies H . A related problem
is incremental constraint checking, which is to determine,
given H , ! that satisfies H , and an XML update � on ! ,
whether or not the updated document � / !�0 satisfies H . It
is desirable to check constraints incrementally by limiting
the checking to the area affected by the updates and thus
minimizing unnecessary recomputation.

For XML data in its native format, (incremental) con-
straint checking has been studied [10, 9, 2]. A constraint
checking technique was studied in data integration [10] for
(relative) XML keys and inclusion constraints. It treats both
DTDs and XML constraints in a uniform framework via con-
straint compilation, based on a nontrivial extension of at-
tribute grammars. For incremental constraint checking, a
technique was developed in [9] for a large class of XML
constraints defined in terms of XPATH, based on a code gen-
erator that produces incremental checking code. Another
incremental technique was proposed in [2] for relative XML
keys and foreign keys, based essentially on an extension of
incremental techniques for attribute grammars.

4 Applications of XML Constraints

We next review applications in which XML constraints
have proven useful, and suggest topics for future research.
Schema design: normal forms for XML. Normal forms
for XML schema were first studied in [8], which proposed a
generalization of relational BNCF, referred to as XNF. The
definition of XNF and the algorithms for lossless decompo-
sition into XNF [8] are based on XML FDs, along the same
lines as their relational counterparts. These provide a guide-
line for producing well-designed XML, and are useful for
preventing XML update anomalies, among other things. An-
other XML normal form was studied in [33], based on XFDs.

As mentioned earlier, constraint propagation from XML
to relations has been used in designing semantic-preserving
and normalized relational schema for storing XML data [16].
Querying XML data. Answering XML queries using a
RDBMS is important both for XML data stored in relations
and for XML views exported from relations. Efficient tech-
niques for XML query rewriting and optimization have been
developed in [19, 18] by encoding certain XICs and XQuery
queries in terms of relational queries and disjunctive embed-
ded dependencies [28], and by using Chase and Backchase
algorithms. These have led to a number of theoretical re-
sults [19] and a prototype system, MARS [18]. Another
optimization technique for XML-SQL query translation was
studied in [26] by capitalizing on (relational) constraints.
Updating XML data. Based on the incremental constraint
checking technique of [9] mentioned above, a constraint-
maintenance tool has been developed and is being used at



Lucent Technologies. Techniques for the consistency anal-
ysis also have obvious application in XML editors, e.g., XML
Spy [4]. There is, however, much more to be done in this
line of research. First, the complexity of (incremental) con-
straint checking has not been studied. Second, while it is
common to find XML data stored in relations, there has not
been a full treatment of (incremental) constraint checking
for XML data stored in a RDBMS.
Data exchange and integration. One often wants to in-
tegrate data w.r.t. a predefined XML schema. Given dis-
tributed source database schemas

� # � [ [�[ � ��� and a tar-
get XML schema

/ . �DH�0 , we want to define a mapping �
such that, given source instances

� # � [ [ [ � ��� , � / � # � [�[ [ � ��� 0
is an XML document that both conforms to the fixed DTD .
and satisfies the given XML constraints H . In such schema-
directed XML integration, it is nontrivial to guarantee that .
and H are both satisfied. To this end the constraint compila-
tion and checking technique of [10] has proven effective.

In data integration applications, one may be able to an-
swer queries even without a complete description of the
mapping � . As pointed out by [27], exploiting integrity con-
straints may be useful for overcoming the incompleteness
of the specification. Although there has been an enormous
amount of work in this regard for relational and nested rela-
tional data (e.g., [20, 29]), developing XML integration sys-
tems for querying incomplete information using constraints
is an important topic for future work.
Data cleaning. When overlapping information from mul-
tiple sources is integrated, inconsistencies and conflicts in
the data may emerge as violations of integrity constraints
on the integrated data. XML constraint repair may yield
an effective technique for cleaning integrated XML data, as
suggested by preliminary work [23], and it may also lead to
automated tools for repairing Web sites with broken links.
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