
On Verifying Consistency of XML Speci�cations

Marcelo Arenas

Department of Computer Science

University of Toronto

marenas@cs.toronto.edu

Wenfei Fan

Internet Management Research Dept

Bell Laboratories

wenfei@research.bell-labs.com

Leonid Libkin
�

Department of Computer Science

University of Toronto

libkin@cs.toronto.edu

Abstract

XML speci�cations often consist of a type de�nition
(typically, a DTD) and a set of integrity constraints.
It has been shown previously that such speci�cations
can be inconsistent, and thus it is often desirable to
check consistency at compile-time. It is known that
for general keys and foreign keys, and DTDs, the con-
sistency problem is undecidable; however, it becomes
NP-complete when all keys are one-attribute (unary),
and tractable, if no foreign keys are used.

In this paper, we consider a variety of constraints for
XML data, and study the complexity of the consis-
tency problem. Our main conclusion is that in the
presence of foreign keys, compile-time veri�cation of
consistency is usually infeasible. We look at two types
of constraints: absolute (that hold in the entire doc-
ument), and relative (that only hold in a part of the
document). For absolute constraints, we extend ear-
lier decidability results to the case of multi-attribute
keys and unary foreign keys, and to the case of con-
straints involving regular expressions, providing lower
and upper bounds in both cases. For relative con-
straints, we show that even for unary constraints, the
consistency problem is undecidable. We also estab-
lish a number of restricted decidable cases.

1 Introduction

XML data, just like relational and object-oriented
data, can be speci�ed in a certain data de�nition lan-
guage. While the exact details of XML data de�ni-

�Research aÆliation: Bell Laboratories.

tion languages are still being worked out, it is clear
that all of them would contain a form of document de-
scription, as well as integrity constraints. Constraints
are naturally introduced when one considers trans-
formations between XML and relational databases
[16, 27, 26, 17, 20, 11], as well as integrating several
XML documents [3, 4, 13].

Document descriptions usually come in the form of
DTDs (Document Type De�nition), and constraints
are typically natural analogs of the most common
relational integrity constraints: keys and foreign
keys. Indeed, a large number of proposals (e.g.,
[29, 33, 30, 5]) support speci�cations for keys and
foreign keys.

We investigate XML speci�cations with DTDs and
keys and foreign keys. We study the consistency,
or satis�ability, of such speci�cations: given a DTD
and a set of constraints, whether there are XML doc-
uments conforming to the DTD and satisfying the
constraints.

In other words, we want to validate XML speci�ca-
tions statically, at compile-time. Invalid XML spec-
i�cations are likely to be more common than in-
valid speci�cations of other kinds of data, due to the
rather complex interaction of DTDs and constraints.
Furthermore, many speci�cations are not written at
once, but rather in stages: as new requirements are
discovered, they are added to the constraints, and
thus it is quite possible that at some point they may
be contradictory.

An alternative to the static validation would be a dy-
namic approach: simply attempt to validate a docu-
ment with respect to a DTD and a set of constraints.
This, however, would not tell us whether repeated
failures are due to a bad speci�cation, or problems
with the documents.

The consistency analysis for XML speci�cations is
not nearly as easy as for relational data (any set of
keys and foreign keys can be declared on a set of
relational attributes). Indeed, [14] showed that for

students courses

studentstudent

takenBy takenBy record

@sid @sid @id

.
prof prof

acc

@num

acc

@num

. . .

labsfaculty

r

. . .
record

@id

dbLab
. . .

pcLabcs108 cs434cs340

(a)

capital

capitalcapital

province capital

@inProvince

province

@inProvince

country

@name

"Belgium" "Holland"

country

@name

"Limburg""Limburg"

@name

"Hasselt"

db

. . .

.
.

"Limburg" "Limburg"

@name

"Maastricht"

(b)

Figure 1: Examples of XML documents

DTDs and arbitrary keys and foreign keys, the con-
sistency problem is undecidable. Furthermore, under
the restriction that all keys and foreign keys are unary
(single-attribute), the problem is NP-complete.

These results only revealed the tip of the iceberg,
as many other
avors of XML constraints exist, and
are likely to be added to future standards for XML
such as XML Schema [33]. One of our goals is to
study such constraints. In particular, we concen-
trate on constraints with regular expressions, and
relative constraints that only hold in a part of the
document. Furthermore, for classes of constraints
with high lower bounds, we are interested in their
tractable, or at least decidable restrictions. We now
give examples of new kinds of constraints considered
here, and explain the consistency problem for them.

Constraints with regular expressions. As XML data
is hierarchically structured, one is often interested in
constraints speci�ed by regular expressions. For ex-
ample, consider an XML document (represented as a
node-labeled tree) in Fig. 1 (a), which conforms to
the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>

<!ELEMENT students (student+)>
<!ELEMENT courses (cs340, cs108, cs434)>

<!ELEMENT faculty (prof+)>
<!ELEMENT labs (dbLab, pcLab)>
<!ELEMENT student (record)>

/* similarly for prof

<!ELEMENT cs434 (takenBy+)
/* similarly for cs340, cs108

<!ELEMENT dbLab (acc+)
/* similarly for pcLab

Here we omit the descriptions of elements whose type
is string (PCDATA). Assume that each record ele-

ment has an attribute id, each takenBy has an at-
tribute sid (for student id), and each acc has an at-
tribute num.

One may impose the following constraints over the
DTD of that document:

r: �:(student [prof):record:id !
r: �:(student [prof):record,

r: �:cs434:takenBy:sid � r: �:student:record:id,

r: �:dbLab:acc:num � r: �:cs434:takenBy:sid,

r: �:cs434:takenBy:sid ! r: �:cs434:takenBy.

Here is a wildcard that matches any label (tag) and
� is its Kleene closure that matches any path. The
�rst constraint says that id is a key for all records of
students and professors. Furthermore, sid is a key for
students taking cs434. The other constraints spec-
ify foreign keys, which assert that cs434 can only be
taken by students, and only students who are taking
cs434 can have an account in the database lab.

Clearly, there is an XML tree satisfying both the
DTD and the constraints. As was mentioned ear-
lier, speci�cations are rarely written at once. Now
suppose a new requirement is discovered: all faculty
members must have a dbLab account. Consequently,
one adds a new foreign key:

r:faculty:prof:record:id � r: �:dbLab:acc:num;

r: �:dbLab:acc:num ! r: �:dbLab:acc:

However, this addition makes the whole speci�cation
inconsistent. This is because previous constraints
postulate that dbLab users are students taking cs434,
and no professor can be a student since id is a key for
both students and professors, while the new foreign
key insists upon professors also being dbLab users and
the DTD enforces at least one professor to be present

in the document. Thus no XML document both con-
forms to the DTD and satis�es all the constraints.

The consistency problem for regular expression con-
straints is at least as hard as for constraints speci�ed
for element types with simple attributes: NP-hard in
the unary case and undecidable in general [14]. We
use results from [2, 14, 24] to show that in the unary
case, the problem remains decidable, but the lower
bound becomes PSPACE.

Relative integrity constraints. Many types of con-
straints are speci�ed for an entire document. A di�er-
ent kind of constraints, called relative, was proposed
recently [5] { those constraints only hold in a part of
a document. As an example, consider an XML doc-
ument that for each country lists its administrative
subdivisions (e.g., into provinces or states), as well
as capitals of provinces. A DTD is given below and
an XML document conforming to it is depicted in
Figure 1 (b).

<!ELEMENT db (country+)>

<!ELEMENT country (province+, capital+)>
<!ELEMENT province (capital, city�)>

Each country has a nonempty sequence of provinces
and a nonempty sequence of province capitals, and for
each province we specify its capital and perhaps other
cities. Each country and province has an attribute
name, and each capital has an attribute InProvince.

Now suppose we want to de�ne keys for countries and
provinces. One can state that country name is a key
for country elements. It is also tempting to say that
name is a key for province, but this may not be the
case. The example in Figure 1 (b) clearly shows that;
which Limburg one is interested in probably depends
on whether one's interests are in database theory, or
in the history of the European Union. To overcome
this problem, we de�ne name to be a key for province
relative to a country; indeed, it is extremely unlikely
that two provinces of the same country would have
the same name. Thus, our constraints are:

country.name ! country,

country(province.name ! province),

country(capital.inProvince ! capital),

country(capital.inProvince � province.name).

The �rst constraint is like those we have encoun-
tered before: it is an absolute key, which applies
to the entire document. The rest are relative con-
straints which are speci�ed for sub-documents rooted
at country elements. They assert that for each coun-
try, name is a key of province elements, inProvince is
a key of all capital descendants of the country element
and it is a foreign key referring to name of province el-
ements in the same sub-document. In contrast to reg-
ular expression constraints given earlier, these con-

straints are de�ned for element types, e.g., the �rst
constraint is a key for all country elements in the en-
tire document, and the third constraint is a (relative)
key for all capital elements in a sub-document rooted
at a country node.

To illustrate the interaction between constraints and
DTDs, observe that the above speci�cation { which
might look reasonable at �rst { is actually inconsis-
tent!

To see this, let T be a tree that satis�es the speci�ca-
tion. The constraints say that for any sub-document
rooted at a country c, the number of its capital el-
ements is at most the number of province elements
among c's descendants. The DTD says that each
province has a capital element as a child and that
each country element has at least one capital child.
Thus, the number of capital descendants of c is larger
than the number of province descendants of c, which
contradicts the previous bound. Hence, the speci�-
cation is inconsistent.

Relative constraints appear to be quite useful for cap-
turing information about XML documents that can-
not possibly be speci�ed by absolute constraints. It
turns out, however, that the consistency problem is
much harder for them: it is undecidable even for
single-attribute keys and foreign keys.

Given this negative result, we look at restrictions that
would give us decidability. They come in the form of
extra conditions on the \geometry" of foreign keys
that relate the two sides of the inclusion in the DTD
tree representing a non-recursive DTD. We show that
the problem is decidable if relative constraints are
\hierarchical"; furthermore, if foreign keys do not
talk about attributes that are \too far" from each
other, the problem is PSPACE-complete.

Tractable and decidable restrictions. Since expensive
lower bounds, and even undecidability, were estab-
lished for most versions of the consistency problem,
we would like to see some interesting tractable, or de-
cidable, restrictions. In case of absolute constraints,
the results of [14] consider either single attributes or
multi-attribute sets for both keys and foreign keys,
and thus say nothing about the intermediate case in
which only keys are allowed to be multi-attribute.
This class of constraints is rather common and arises
when relational data is translated into XML. While
often identi�ers are used as single-attribute keys,
other sets of attributes can form a key as well (e.g.,
via SQL unique declaration) and those typically con-
tain more than one attribute. We show that the con-
sistency problem for this class of constraints, when
every key is primary (i.e., at most one key is de�ned
for each element type), remains decidable.

A number of trivial restrictions for tractability of ab-
solute constraints are known (e.g., a �xed DTD, no

foreign keys). Restrictions on DTDs are unlikely to
help: [14] showed that the consistency problem for
unary absolute constraints is NP-hard for very simple
DTDs (no Kleene star, no recursion). There are two
further ways to restrict the problem: one can impose
a bound on the number of constraints, or a bound on
the depth of the DTDs. We show that neither one
in isolation gives us tractability, but when the two
restrictions are combined, the consistency problem is
in NLOGSPACE.

The main conclusion of this paper is that while
many proposals such as XML Schema [33] and XML
Data [30] support the facilities provided by the DTDs
as well as integrity constraints, and while it is possible
to write inconsistent speci�cations, checking consis-
tency at compile-time appears to be infeasible, even
for fairly small speci�cations.

Related work. Consistency was studied for other
data models, such as object-oriented and extended
relational (e.g., with support for cardinality con-
straints), see [9, 10, 19].

A number of speci�cations for XML keys and for-
eign keys have been proposed, e.g., XML Schema [33],
XML-Data [30]. A recent proposal [5] introduced rel-
ative constraints, which were further studied in [6].
To the best of our knowledge, consistency of XML
constraints in the presence of schema speci�cations
was only investigated in [14]. However, [14] did not
consider relative constraints, constraints de�ned with
regular expressions and the class of multi-attribute
keys and unary foreign keys. Other constraints for
semi-structured data, di�erent from those considered
here, were studied in, e.g. [2, 7, 15]. The latter also
studies the consistency problem; the special form of
constraints used there makes it possible to encode
consistency as an instance of conjunctive query con-
tainment.

Organization. Section 2 de�nes DTDs, and abso-
lute keys and foreign keys for XML. Section 3 studies
the class of absolute multi-attribute keys and unary
foreign keys, and the class of regular expression con-
straints which is an extension of absolute constraints
with regular path expressions. Section 4 de�nes and
investigates relative keys and foreign keys. We also
provide several complexity results for implication of
XML constraints. Section 5 summarizes the main re-
sults of the paper.

2 Notations

DTDs, XML trees, paths We formalize the notion
of DTDs as follows (cf. [29, 8, 23, 14]).

De�nition 2.1 A DTD (Document Type De�nition)
is de�ned to be D = (E; A; P; R; r), where:

� E is a �nite set of element types;

� A is a �nite set of attributes, disjoint from E;

� for each � 2 E, P (�) is a regular expression �,
called the element type de�nition of � :

� ::= S j � 0 j � j �j� j �; � j ��

where S denotes the string type, � 0 2 E, � is the
empty word, and \j", \;" and \�" denote union,
concatenation, and the Kleene closure;

� for each � 2 E, R(�) is a set of attributes in A;

� r 2 E and is called the element type of the root.

We normally denote element types by � and at-
tributes by l, and assume that r does not appear in
P (�) for any � 2 E. We also assume that each � in
Enfrg is connected to r, i.e., either � appears in P (r),
or it appears in P (� 0) for some � 0 that is connected
to r.

An XML document is typically modeled as a node-
labeled tree. Below we describe valid XML doc-
uments w.r.t. a DTD, along the same lines as
XQuery [34], XML Schema [33] and DOM [28].

De�nition 2.2 Let D = (E; A; P; R; r) be a DTD.
An XML tree T conforming to D, written T j= D, is
de�ned to be (V; lab; ele; att; val; root), where

� V is a �nite set of nodes;

� lab is a function that maps each node in V to
a label in E [A [fSg; a node v 2 V is called
an element of type � if lab(v) = � and � 2 E,
an attribute if lab(v) 2 A, and a text node if
lab(v) = S;

� ele is a function that for any � 2 E, maps each
element v of type � to a (possibly empty) list
[v1; :::; vn] of elements and text nodes in V such
that lab(v1) : : : lab(vn) is in the regular language
de�ned by P (�);

� att is a partial function from V � A to V such
that for any v 2 V and l 2 A, att(v; l) is de�ned
i� lab(v) = � , � 2 E and l 2 R(�);

� val is a partial function from V to string values
such that for any node v 2 V , val(v) is de�ned
i� lab(v) = S or lab(v) 2 A;

� root is the root of T : root 2 V and lab(root) =
r.

For any node v 2 V , if ele(v) is de�ned, then the
nodes v0 in ele(v) are called the subelements of v.
For any l 2 A, if att(v; l) = v0, then v0 is called an
attribute of v. In either case we say that there is
a parent-child edge from v to v0. The subelements
and attributes of v are called its children. The graph
de�ned by the parent-child relation is required to be a
rooted tree.

In an XML tree T , for each v 2 V , there is a unique
path of parent-child edges from the root to v, and
each node has at most one incoming edge. The root
is a unique node labeled with r. If a node x is la-
beled � in E, then the functions ele and att de�ne
the children of x, which are partitioned into subele-
ments and attributes. The subelements of x are or-
dered and their labels observe the regular expression
P (�). In contrast, its attributes are unordered and
are identi�ed by their labels (names). The function
val assigns string values to attributes and to nodes
labeled S.

Our model is simpler than the models of XQuery and
XML Schema as DTDs support only one basic type
(PCDATA or string) and do not have complex type
constructs. Unlike the data model of XQuery, we do
not consider nodes representing namespaces, process-
ing instructions and references. These simpli�cations
do not a�ect the lower bounds, however.

We also use the following notations. Referring to an
XML tree T , if x is a � element in T and l is an at-
tribute in R(�), then x:l denotes the l attribute value
of x, i.e., x:l = val(att(x; l)). If X is a list [l1; : : : ; ln]
of attributes in R(�), then x[X] = [x:l1; : : : ; x:ln].
For any element type � 2 E, ext(�) denotes the set
of all the � elements in T . For any l 2 R(�), ext(�:l)
denotes fx:l j x 2 ext(�)g, the set of all the l-attribute
values of � nodes.

Given a DTD D = (E; A; P; R; r) and element types
�; � 0 2 E, a string �1:�2: � � � :�n over E is a path
in D from � to � 0 if �1 = � , �n = � 0 and for
each i 2 [2; n], �i is a symbol in the alphabet of
P (�i�1). Moreover, Paths(D) = fp j there is � 2
E such that p is a path in D from r to �g.

We say that a DTD is non-recursive if Paths(D) is
�nite, and recursive otherwise. We also say that D
is a no-star DTD if the Kleene star does not occur
in any regular expression P (�) (note that this is a
stronger restriction than being �-free: a regular ex-
pression without the Kleene star yields a �nite lan-
guage, while the language of a �-free regular expres-
sion may still be in�nite as it allows boolean operators
including complement).

Keys and foreign keys We consider two forms of
constraints for XML: absolute constraints that hold

on the entire document, denoted by AC; and relative
constraints that hold on certain sub-documents, de-
noted by RC. Below we de�ne absolute keys and for-
eign keys; their variations using regular expressions
will be de�ned in Section 3.2, and relative constraints
will be formally de�ned in Section 4. The constraints
given in Section 1 are instances of regular constraints
and relative constraints, which are slightly di�erent
from what we present in this section.

A class of absolute keys and foreign keys, denoted
by AC�;�K ;FK (we shall explain the notation shortly),

is de�ned for element types as follows. An AC�;�K ;FK

constraint ' over a DTD D = (E; A; P; R; r) has
one of the following forms:

� Key. � [X] ! � , where � 2 E and X is a
nonempty set of attributes in R(�). An XML
tree T satis�es ', denoted by T j= ', if

8x; y 2 ext(�) (
^
l2X

(x:l = y:l)! x = y):

� Foreign key. It is a combination of two con-
straints: an inclusion constraint �1[X] � �2[Y]
and a key constraint �2[Y]! �2, where �1; �2 2
E, X;Y are nonempty lists of attributes in
R(�1), R(�2) of the same length. This constraint
is satis�ed by a tree T if T j= �2[Y] ! �2, and
in addition

8x 2 ext(�1) 9 y 2 ext(�2) (x[X] = y[Y]):

That is, � [X]! � says that the X-attribute values of
a � element uniquely identify the element in ext(�),
and �1[X] � �2[Y] says that the list of X-attribute
values of every �1 node in T must match the list of
Y -attribute values of some �2 node in T . We use two
notions of equality to de�ne keys: value equality is
assumed when comparing attributes, and node iden-
tity is used when comparing elements. We shall use
the same symbol `=' for both, as it will never lead to
ambiguity.

Constraints of AC�;�K ;FK are generally referred to as
multi-attribute constraints as they may be de�ned
with multiple attributes. An AC�;�K ;FK constraint is
said to be unary if it is de�ned in terms of a single
attribute; that is, jX j=jY j= 1 in the above de�ni-
tion. In that case, we write �:l ! � for unary keys,
and �1:l1 � �2:l2, �2:l2 ! �2 for unary foreign keys.
As in relational databases, we also consider primary
keys: for each element type, at most one key can be
de�ned.

We shall use the following notations for subclasses
of AC�;�K ;FK : subscripts K and FK denote keys and
foreign keys, respectively. When the primary key re-
striction is imposed, we use subscript PK instead of

K. The superscript `�' denotes multi-attribute, and
`1' means unary. When both superscripts are left out,
we mean that both keys and foreign keys are unary.

We shall be dealing with the following subclasses
of AC�;�K ;FK : AC�;1K ;FK denotes the class of multi-
attribute keys and unary foreign keys; ACK ;FK is the

class of unary keys and unary foreign keys; AC�;1PK ;FK

is the class of primary multi-attribute keys and unary
foreign keys; and ACPK ;FK is the class of primary
unary keys and unary foreign keys.

Consistency, or satis�ability problem We are in-
terested in the consistency, or satis�ability problem
for XML constraints considered together with DTDs:
that is, whether a given set of constraints and a DTD
are satis�able by an XML tree. Formally, for a class
C of integrity constraints we de�ne the XML speci�-
cation consistency problem SAT(C) as follows:

PROBLEM: SAT(C)
INPUT: A DTD D, a set � of C-constraints.
QUESTION: Is there an XML tree T such that

T j= D and T j= �?

It is known [14] that SAT(AC�;�K ;FK) is undecid-

able, but SAT(ACK ;FK) and SAT(ACPK ;FK) are NP-
complete.

Constraint implication Another classical problem is
the implication problem for a class of constraints C,
denoted by Impl(C). Here, we consider it in the pres-
ence of DTDs. We write (D;�) ` � if for every XML
tree T , T j= D and T j= � imply T j= �. The
implication problem Impl(C) is to determine, given
any DTD D and any set � [f�g of C constraints,
whether or not (D;�) ` �. It was shown in [14] that
Impl(AC�;�K ;FK) is undecidable and Impl(ACK ;FK) is
coNP-complete.

3 Absolute integrity constraints

In this section, we establish the decidability and
lower bounds for SAT(AC�;1PK ;FK) and SAT(ACregK ;FK),
the consistency problems for absolute primary multi-
attribute keys and unary foreign keys, and for abso-
lute regular unary keys and unary foreign keys. The
class ACregK ;FK is an extension of ACK ;FK with regular
path expressions, which will be de�ned shortly. We
also study tractable restrictions of SAT(ACK ;FK).

3.1 Multi-attribute keys

We know that SAT(ACK ;FK), the consistency prob-
lem for unary absolute keys and foreign keys, is
NP-complete. In contrast, SAT(AC�;�K ;FK) is unde-
cidable. This leaves a rather large gap: namely,
SAT(AC�;1K ;FK), where only keys are allowed to be

multi-attribute (note that since a key is part of a

foreign key, the other restriction, to AC1;�K ;FK , does

not make sense).

The reason for the undecidability of SAT(AC�;�K ;FK) is
that the implication problem for functional and inclu-
sion dependencies can be reduced to it [14]. However,
this implication problem is known to be decidable { in
fact, in cubic time { for single-attribute inclusion de-
pendencies [12], thus giving us hope to get decidabil-
ity for multi-attribute keys and unary foreign keys.

While the decidability of the consistency problem for
AC�;1K ;FK is still an open problem, we resolve a closely-

related problem, SAT(AC�;1PK ;FK). That is, the consis-
tency problem for multi-attribute primary keys and
unary foreign keys. Recall that a set � of AC�;1K ;FK

constraints is said to be primary if for each element
type � , there is at most one key in � de�ned for �
elements. We prove the decidability by showing that
complexity-wise, the problem is equivalent to a cer-
tain extension of integer linear programming studied
in [22]:

PROBLEM: PDE (Prequadratic Diophantine
Equations)

INPUT: An integer n �m matrix A, a vector
~b 2 Zn, and a set E � f1; : : : ;mg3.

QUESTION: Is there a vector ~x 2 N
m such that

A~x � ~b and xi � xj � xk for all
(i; j; k) 2 E.

Note that for E = ;, this is exactly the integer lin-
ear programming problem [24]. Thus, PDE can be
thought of as integer linear programming extended
with inequalities of the form x � y � z among vari-
ables. It is therefore NP-hard, and [22] proved an
NEXPTIME upper bound for PDE. The exact com-
plexity of the problem remains unknown.

Recall that two problems P1 and P2 are polynomially
equivalent if there are PTIME reductions from P1 to
P2 and from P2 to P1. We now show the following.

Theorem 3.1 SAT(AC�;1PK ;FK) and PDE are polyno-
mially equivalent.

Proof sketch. The proof is by a careful extension of
the coding used in [14] for unary keys and foreign
keys; we show that conditions of the form x � y � z
suÆce to encode arbitrary keys. 2

It is known that the linear integer programming prob-
lem is NP-hard and PDE is in NEXPTIME. Thus
from Theorem 3.1 follows immediately:

Corollary 3.2 SAT(AC�;1PK ;FK) is NP-hard, and can
be solved in NEXPTIME. 2

Obviously we cannot obtain the exact complexity of
SAT(AC�;1PK ;FK) without resolving the corresponding
question for PDE, which appears to be quite hard
[22].

The result of Theorem 3.1 can be generalized to dis-
joint AC�;1K ;FK constraints: that is, a set � of AC�;1K ;FK

constraints in which for any two keys � [X] ! �
and � [Y] ! � (on the same element type �) in �,
X \Y = ;. The proof of Theorem 3.1 applies almost
verbatim to show the following.

Corollary 3.3 The restriction of SAT(AC�;1K ;FK) to
disjoint constraints is polynomially equivalent to
PDE.

3.2 Regular expression constraints

Just as in XML-Data and XML Schema, speci�ca-
tions of AC�;�K ;FK constraints are associated with el-
ement types. To capture the hierarchical nature of
XML data, constraints can also be de�ned on a col-
lection of elements identi�ed by a regular path expres-
sion. It is common to �nd path expressions in query
languages for XML (e.g., XQuery [34], XSL [32]).

We de�ne a regular (path) expression over a DTD
D = (E; A; P; R; r) as follows:

� ::= � j � j j �:� j � [� j ��;

where � denotes the empty word, � is an element type
in E, and ` ' stands for wildcard that matches any
symbol in E. We assume that � does not include
the type r for the root element unless � = r:�0 where
�0 does not include r; thus, ` ' is just a shorthand for
E n frg. A regular expression de�nes a language over
the alphabet E, which will be denoted by � as well.

Recall that a path in a DTD is a list of E sym-
bols, that is, a string in E�. Any pair of nodes
x; y in an XML tree T with y a descendant of x
uniquely determines the path, denoted by �(x; y),
from x to y. We say that y is reachable from x
by following a regular expression � over D, denoted
by T j= �(x; y), i� �(x; y) 2 �. For any �xed
T , let nodes(�) stand for the set of nodes reachable
from the root by following the regular expression �:
nodes(�) = fy j T j= �(root; y)g. Note that for any
element type � 2 E, nodes(r: �:�) = ext(�).

We now de�ne XML keys and foreign keys with reg-
ular expressions. Let D = (E; A; P; R; r) be a
DTD. Given a regular expression � over D, a key
over D is an expression ' of the form �:�:l ! �:� ,
where � 2 E; l 2 R(�). For any XML tree T that
conforms to D, T satis�es ' (T j= ') if for any
x; y 2 nodes(�:�), x:l = y:l implies x = y. Given
two regular expressions �1; �2 over D, a foreign key
over D is a combination of the inclusion constraint
�1:�1:l1 � �2:�2:l2 and a key �2:�2:l2 ! �2:�2, where
�1; �2 2 E, li 2 R(�i); i = 1; 2. Here T j= ' if
T j= �2:�2:l2 ! �2:�2, and for every x 2 nodes(�1:�1)
there exists y 2 nodes(�2:�2) such that x:l1 = y:l2.

We use ACregK ;FK to denote the set of all unary con-
straints de�ned with regular expressions. For exam-
ple, the constraints over the school DTD that we have
seen in Section 1 are instances of ACregK ;FK . We do not
consider multi-attribute constraints here, since they
subsume AC�;�K ;FK (by using r: �:� for �), and thus
consistency is undecidable for them.

For SAT(ACregK ;FK), we are able to establish both an
upper and a lower bound. The lower bound already
indicates that the problem is perhaps infeasible in
practice, even for very simple DTDs. Finding the
precise complexity of the problem remains open, and
does not appear to be easy.

Theorem 3.4

a) SAT(ACregK ;FK) can be solved in NEXPTIME.

b) For non-recursive no-star DTDs, SAT(ACregK ;FK)
is PSPACE-hard.

Proof sketch. a) Following [14], we code both the
DTD and the constraints with linear inequalities over
integers. However, compared to the proof of [14], the
current proof is considerably harder due to the fol-
lowing. First, regular expressions in DTDs (\hori-
zontal" regular expressions) interact in a certain way
with regular path expressions in constraints (those
correspond to \vertical" paths through the trees). To
eliminate this interaction, we �rst reduce the problem
to that over certain simple DTDs. The next problem
is that regular path expressions in constraints can in-
teract with each other. To model them with linear
inequalities, we must introduce exponentially many
variables that account for all possible Boolean combi-
nations of those regular languages. The last problem
is coding the DTDs in such a way that variables cor-
responding to each node have the information about
the path leading to the node, and its relationship with
the regular path expressions used in constraints. For
that, we adopt the technique of [2], and tag all the
variables in the coding of DTDs with states of the
product automaton for all the automata correspond-
ing to the regular expressions in constraints. Putting

everything together, we reduce SAT(ACregK ;FK) to the

existence of a solution of an (almost) instance of lin-
ear integer programming, which happens to be of ex-
ponential size; hence the NEXPTIME bound.

b) We encode the quanti�ed boolean formula problem
(QBF) as an instance of SAT(ACregK ;FK). 2

3.3 Restrictions for tractability

Since most
avors of the consistency problem for
XML constraints are intractable, one is interested in
�nding suitable restrictions that admit polynomial-
time algorithms. Some { rather severe { restric-
tions of this kind were given in [14]: for example,
SAT(ACK) (no foreign keys) is solvable in PTIME, as
is SAT(ACK ;FK) for any �xed DTD. A more natural
way of putting restrictions appears to be by speci-
fying what kinds of regular expressions are allowed
in the DTDs. However, the hardness result can be
proved even for DTDs with neither recursion nor the
Kleene star [14].

We show that the hardness result for SAT(ACK ;FK)
is very robust, and withstands severe restrictions on
constraints and DTDs: namely, a bound on the total
number of constraints, and a bound on the depth of
the DTD. However, imposing both of these bounds
simultaneously makes SAT(ACK ;FK) tractable.

For a non-recursive DTD D, the set Paths(D) is �-
nite. We de�ne the depth of a non-recursive DTD
D as Depth(D) = maxp2Paths(D) length(p). By a
depth-d SAT(ACK ;FK) we mean the restriction of
SAT(ACK ;FK) to pairs (D;�) with Depth(D) � d.

By a k-constraint SAT(ACK ;FK) we mean the restric-
tion of the consistency problem to pairs (D;�) where
j � j � k (considering each foreign key as one con-
straint). A k-constraint depth-d SAT(ACK ;FK) is a
restriction to (D;�) with j� j� k and Depth(D) � d.

Theorem 3.5 For non-recursive no-star DTDs:

a) both k-constraint SAT(ACK ;FK) and depth-d
SAT(ACK ;FK) are NP-hard, for k � 2 and
d � 2.

b) for any �xed k; d > 0, the k-constraint depth-d
SAT(ACK ;FK) is solvable in NLOGSPACE. 2

3.4 Lower bounds for implication

We now state a simple result that gives us lower
bounds for the complexity of implication, if we know
the complexity of the satis�ability problem. Re-
call that for a complexity class K, coK stands for
f �P j P 2 Kg.

Proposition 3.6 For any class C of XML con-
straints that contains ACK ;FK , if SAT(C) is K-
hard for some complexity class K that contains
DLOGSPACE, then Impl(C) is coK-hard. 2

It was shown in [14] that Impl(AC�;�K ;FK) is undecid-

able and Impl(ACK ;FK) is coNP-hard (in fact, coNP-
complete). Now we derive:

Corollary 3.7 Impl(AC�;1PK ;FK) is coNP-hard, and

Impl(ACregK ;FK) is PSPACE-hard. 2

4 Relative integrity constraints

Since XML documents are hierarchically structured,
one may be interested in the entire document as well
as in its sub-documents. The latter gives rise to rela-
tive integrity constraints [5, 6], that only hold on cer-
tain sub-documents. Below we de�ne relative keys
and foreign keys. Recall that we use RC to denote
various classes of such constraints. We use the nota-
tion x � y when x and y are two nodes in an XML
tree and y is a descendant of x.

Let D = (E; A; P; R; r) be a DTD. A relative key
is an expression ' of the form �(�1:l ! �1), where
l 2 R(�1). It says that relative to each node x of
element type � , l is a key for all the �1 nodes that are
descendants of x. That is, if a tree T conforms to D,
then T j= ' if

8x 2 ext(�) 8 y; z 2 ext(�1)�
(x � y) ^ (x � z) ^ (y:l = z:l)! y = z

�
:

A relative foreign key is an expression ' of the form
�(�1:l1 � �2:l2) and �(�2:l2 ! �2), where li 2
R(�i); i = 1; 2. This constraint indicates that for each
x in ext(�), l1 is a foreign key of descendants of x of
type �1 that references a key l2 of �2-descendants of x.
That is, T j= ' i� T j= �(�2:l2 ! �2) and T satis�es

8 x 2 ext(�) 8 y1 2 ext(�1)
�
(x � y1)!

9 y2 2 ext(�2) ((x � y2) ^ y1:l1 = y2:l2)
�
:

Here � is called the context type of '. Note that
absolute constraints are a special case of the rela-
tive constraints when � = r: i.e., r(�:l ! �) is the
usual absolute key. Thus, the consistency problem
for multi-attribute relative constraints is undecidable
[14], and hence we only consider unary relative con-
straints here.

Following the notations for AC, we use RCK ;FK to
denote the class of all unary relative keys and foreign
keys; RCPK ;FK means the primary key restriction.

For example, the constraints given in Section 1 over
the country/province/capital DTD are instances of
RCK ;FK .

Recall that SAT(ACK ;FK), the consistency problems
for absolute unary constraints, is NP-complete. One
would be tempted to think that SAT(RCK ;FK), the
consistency problems for relative unary constraints,
is decidable as well. We show, however, in Sec-
tion 4.1, that this is not the case. In light of this neg-
ative result, we identify several decidable subclasses
of RCK ;FK , which we call hierarchical constraints , in
Section 4.2.

4.1 Undecidability of consistency

We now show that there is an enormous di�er-
ence between unary absolute constraints, where
SAT(ACK ;FK) is decidable in NP, and unary relative
constraints. We consider the consistency problem for
those, that is, SAT(RCK ;FK). Clearly, the problem is
r.e.; it turns out that one cannot lower this bound.

Theorem 4.1 SAT(RCK ;FK) is undecidable.

Proof sketch. By reduction from Hilbert's 10th prob-
lem [21]. 2

In the proof of Theorem 4.1, all relative keys are pri-
mary. Thus, we obtain:

Corollary 4.2 SAT(RCPK ;FK), the restriction of
SAT(RCK ;FK) to primary keys, is undecidable. 2

4.2 Decidable hierarchical constraints

Often, relative constraints for XML documents have a
hierarchical structure. For example, to store informa-
tion about books we can use the structure presented
in Figure 2 (a), with four relative constraints:

library(book :isbn ! book); (1)

book(author :name ! author); (2)

book(chapter :number ! chapter); (3)

chapter (section:title ! section): (4)

(1) says that isbn is a key for books, (2) says that
two distinct authors of the same book cannot have
the same name and (3) says that two distinct chap-
ters of the same book cannot have the same number.
Constraint (4) asserts that two distinct sections of
the same chapter cannot have the same title.

This speci�cation has a hierarchical structure: there
are three context types (library, book, and chapter),
and if a constraint restricts one of them, it does not

impose a restriction on the others. For instance, (1)
imposes a restriction on the children of library, but
it does not restrict the children of book. To ver-
ify if there is an XML document conforming to this
schema, we can separately solve three consistency
problems for absolute constraints: one for the sub-
schema containing the element types library, book and
isbn; another for book, author, name, chapter and
number; and the last one for chapter, section, and
title.

On the other hand, the example in �gure 2 (b) does
not have a hierarchical structure. In this case, au-
thor info stores information about the authors of
books, and, therefore, the following relative foreign
key is included:

library(author info:name ! author info);

library(author :name � author info:name):

In this case, nodes of type author are restricted from
context types library and book. Thus, we cannot sep-
arate the consistency problems for nodes of types li-
brary and book.

Below we formalize the notion of hierarchical relative
constraints via the notion of hierarchical DTDs and
sets of relative constraints. We prove that the con-
sistency problem for this kind of DTDs and sets of
constraints is decidable and show that under some
additional restrictions, it is PSPACE-complete.

LetD = (E; A; P; R; r) be a non-recursive DTD and
� be a set of RCK ;FK -constraints over D. We say
that � 2 E is a restricted type if � = r or � is the
context type of some �-constraint. A restricted node
in an XML tree is a node whose type is a restricted
type. The scope of a restricted node x is the sub-
tree rooted at x consisting of: (1) all element nodes
y that are reachable from x by following some path
�1:�2: � � � :�n (n � 2) such that for every i 2 [2; n�1],
�i is not a restricted type, and (2) all the attributes
of the nodes mentioned in (1). For instance, a node
of type book in the example shown in �gure 2 (a) is a
restricted node and its scope includes a node of type
book and some nodes of types author, name, chapter
and number.

Given two restricted types �1 and �2, we say that �1,
�2 is a con
icting pair in (D;�) if the scopes of the
nodes of types �1 and �2 are related by a foreign key.
Formally, �1; �2 2 E is a con
icting pair in (D;�) i�
�1 6= �2 and (1) there is a path in D from �1 to �2
and �2 is the context type of some constraint in �;
and (2) there is �3 2 E such that �2 6= �3 and there
exists a path in D from �2 to �3 and for some �4 2 E,
either �1(�3:l3 � �4:l4) or �1(�4:l4 � �3:l3) is in �.
As an example, library and book in �gure 2 (b) are a
con
icting pair, whereas they are not in �gure 2 (a).

If a speci�cation (D;�) does not contain con
icting

library

book*

author* chapter*

section*

@isbn

@name @number

@title

(a) A hierarchical structure

library

book*

chapter*author*

section*

@isbn

@name @number

@title

@name @affiliation

author_info*

(b) A non-hierarchical structure

Figure 2: Two schemas for storing data in a library.

pairs, then we say that (D;�) is hierarchical. If this
speci�cation is consistent, then we can construct a
tree conforming to D and satisfying � hierarchically,
never looking at more than the scope of a single re-
stricted node. We prove this property in theorem 4.3.

We de�ne the language HRCK ;FK as f(D;�) j D is a
non-recursive DTD, � is a set of RCK ;FK -constraints
and (D;�) is hierarchicalg. In this case, the input
of SAT(HRCK ;FK) is (D;�) 2 HRCK ;FK , and the
problem is to determine whether there is an XML
tree conforming to D and satisfying �.

Theorem 4.3 SAT(HRCK ;FK) is decidable.

Proof sketch. To prove this theorem, �rst we prove a
lemma stating the following. Suppose that f : N ! N

is a function such that for any consistent (D;�) 2
HRCK ;FK , there is a tree T j= D, T j= � in which
the size of the scope of each restricted node is at
most the value of f on the size of the DTD naturally
associated with that scope. Then SAT(HRCK ;FK) is
in NSPACE(log(f)).

Second, by using the techniques of [14] we prove that

f(x) can be taken to be 22
xk

, where k � 1 is a �xed
constant. We conclude that SAT(HRCK ;FK) is in
EXPSPACE. 2

The algorithm in the proof gives an exponential space
upper bound. We can lower it by imposing some
further conditions on the \geometry" of constraints
involved: namely, that for any inclusion constraint
�(�1:l1 � �2:l2), �1:l1 and �2:l2 are not too far from
each other.

Formally, let D be a non-recursive DTD and � a set
of RCK ;FK -constraints over D such that (D;�) is hi-
erarchical. Given d > 1, (D;�) is d-local if, whenever
�1; �2 are restricted types, �2 is a descendant of �1 and
no other node on the path from �1 to �2 is a context

type of a �-constraint, then the length of that path
is at most d.

Let d-HRCK ;FK be the language f(D;�) j (D;�) 2
HRCK ;FK and is d-localg.

Theorem 4.4 For any d > 1, SAT(d-HRCK ;FK) is
PSPACE-complete.

Proof sketch. The membership follows from the
lemma used in the proof of Theorem 4.3. For hard-
ness, we use reduction from QBF. 2

4.3 Implication problem

Note that RCK ;FK and HRCK ;FK include ACK ;FK .
Thus from Proposition 3.6 we derive:

Corollary 4.5 Impl(RCK ;FK) is undecidable, and
Impl(HRCK ;FK) is PSPACE-hard. 2

5 Conclusion

We studied the problem of statically checking XML
speci�cations, which may include various schema def-
initions as well as integrity constraints. As observed
earlier, static validation is quite desirable as an alter-
native to dynamic checking. Our main conclusion is
that, however desirable, the static checking is hard:
even with very simple document de�nitions given by
DTDs, and (foreign) keys as constraints, the com-
plexity ranges from NP-hard to undecidable.

The main results are summarized in Figures 3, 4 (we
also included the main results from [14] in those �g-
ures). When one deals with absolute constraints,
which hold in an entire document, the general consis-
tency problem is undecidable. It is solvable in NEXP-

Class AC�;�K ;FK [14] AC�;1PK ;FK ACregK ;FK ACK ;FK [14]
description multi-attribute multi-attribute unary regular unary keys,

keys and primary keys, path constraints foreign keys
foreign keys unary foreign keys (keys, foreign keys)

Upper bound undecidable NEXPTIME NEXPTIME NP
Lower bound undecidable NP PSPACE NP

Figure 3: Complexity of the consistency problem for absolute constraints

Class RC�;�K ;FK [14] RCK ;FK HRCK ;FK d-HRCK ;FK , d > 1
description multi-attribute unary keys unary hierarchical unary hierarchical

keys, foreign keys foreign keys constraints constraints, d-local
Upper bound undecidable undecidable EXPSPACE PSPACE
Lower bound undecidable undecidable PSPACE PSPACE

Figure 4: Complexity of the consistency problem for relative constraints

TIME if foreign keys are single-attribute, and is NP-
complete if so are all the keys as well. However, if reg-
ular expressions are allowed in single-attribute con-
straints, the lower bounds becomes at least PSPACE.

For relative constraints, which are only required to
hold in a part of a document, the situation is quite
bleak, as even the very simple case of single-attribute
constraints is undecidable. By imposing certain re-
strictions on the \geometry" of those constraints, we
can show that the problem is decidable, although
PSPACE-hard; further restrictions make it PSPACE-
complete. We also saw that these results are quite ro-
bust, as hardness is often achieved on relatively sim-
ple constraints and DTDs.

Although most of the results of the paper are neg-
ative, the techniques developed in the paper help
study consistency of individual XML speci�cation
with type and constraints. These techniques in-
clude, e.g., the connection between regular expres-
sion constraints and integer linear programming and
automata.

One open problem is to close the complexity gaps.
However, these are by no means trivial: for exam-
ple, SAT(AC�;1PK ;FK) was proved to be equivalent to
a problem related to Diophantine equations whose
exact complexity remains unknown. In the cases of
SAT(ACregK ;FK) and SAT(HRCK ;FK), we think that it
is more likely that our lower bounds correspond to the
exact complexity of those problems. However, the al-
gorithms are quite involved, and we do not yet see
a way to simplify them to prove the matching upper
bounds.

Another topic for future work is to study the inter-
action between more complex XML constraints, e.g.,
those de�ned in terms of XPath [31], and more com-

plex schema speci�cations such as XML Schema [33]
and the type system of XQuery [34]. Our lower
bounds apply to those settings, but it is open whether
upper bounds remain intact.

Acknowledgments We thank Michael Benedikt for his
comments. M. Arenas and L. Libkin are supported in
part by grants from the Natural Sciences and Engineer-
ing Research Council of Canada and from Bell University
Laboratories. W. Fan is currently on leave from Temple
University, and is supported in part by NSF grant IIS
00-93168.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Regular path queries
with constraints. JCSS, 58(4):428{452, 1999.

[3] C. Baru et al. XML-based information mediation
with MIX. In SIGMOD'99, pages 597{599.

[4] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data.
In ICDT'99, pages 296{313.

[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. In WWW'10, 2001.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Reasoning about keys for XML. In
DBPL'01.

[7] P. Buneman, W. Fan, and S. Weinstein. Path
constraints in semistructured databases. JCSS,
61(2):146{193, 2000.

[8] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Representing and reasoning on XML documents: A
description logic approach. JLC 9 (1999), 295{318.

[9] D. Calvanese, M. Lenzerini. Making object-oriented
schemas more expressive. In PODS'94, pages 243{
254.

[10] D. Calvanese and M. Lenzerini. On the interac-
tion between ISA and cardinality constraints. In
ICDE'94, pages 204{213.

[11] M. Carey et al. XPERANTO: Publishing object-
relational data as XML. In WebDB 2000.

[12] S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi.
Polynomial-time implication problems for unary in-
clusion dependencies. J. ACM, 37(1):15{46, Jan.
1990.

[13] A. Eyal and T. Milo. Integrating and customiz-
ing heterogeneous e-commerce applications. VLDB
Journal, 10(1):16{38, 2001.

[14] W. Fan and L. Libkin. On XML integrity constraints
in the presence of DTDs. In PODS'01, pages 114{
125.

[15] M. Fernandez, D. Florescu, A. Levy, and D. Suciu.
Verifying integrity constraints on web sites. In IJ-
CAI'99, pages 614{619.

[16] M. Fernandez, A. Morishima, D. Suciu, and W. Tan.
Publishing relational data in XML: the SilkRoute ap-
proach. IEEE Data Eng. Bull., 24(2):12{19, 2001.

[17] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDMBS. IEEE Data Eng. Bull.,
22(3):27{34, 1999.

[18] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[19] P. C. Kanellakis. On the computational complex-
ity of cardinality constraints in relational databases.
Information Processing Letters, 11(2):98{101, 1980.

[20] D. Lee and W. W. Chu. Constraints-preserving
transformation from XML document type de�nition
to relational schema. In ER'2000.

[21] Y. Matiyasevich. Hilbert's 10th Problem. MIT Press,
1993.

[22] D. McAllester, R. Givan, C. Witty, and D. Kozen.
Tarskian set constraints. In LICS'96, pages 138{147.

[23] F. Neven. Extensions of attribute grammars for
structured document queries. In DBPL'99, pages 99{
116.

[24] C. H. Papadimitriou. On the complexity of integer
programming. J. ACM, 28(4):765{768, 1981.

[25] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[26] J. Shanmugasundaram et al. EÆciently publishing
relational data as XML documents. In VLDB'2000.

[27] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying XML documents: Limitations
and opportunities. In VLDB'1999.

[28] W3C. Document Object Model (DOM) Level 1 Spec-
i�cation. W3C Recommendation, Oct. 1998.

[29] W3C. Extensible Markup Language (XML) 1.0.
W3C Recommendation, Feb. 1998.

[30] W3C. XML-Data. W3C Note, Jan. 1998.

[31] W3C. XML Path Language (XPath). Nov. 1999.

[32] W3C. XSL Transformations (XSLT). Nov. 1999.

[33] W3C. XML Schema. W3C Working Draft, May
2001.

[34] W3C. XQuery 1.0: An XML Query Language. W3C
Working Draft, June 2001.

APPENDIX

Proofs

Proof of Theorem 3.1

We start by showing a reduction from SAT(AC�;1PK ;FK) to PDE. As the �rst step, we encode AC
�;1
PK ;FK constraints

by a prequadratic Diophantine system.

Let D be a DTD (E; A; P; R; r) and � be a set of AC�;1PK ;FK constraints, i.e., primary AC�;1K ;FK constraints. We
encode � with a set C� of integer constraints, referred to as the cardinality constraints determined by �. For
any ' 2 �,

� if ' is a key constraint � [l1; : : : ; lk]! � , then C� contains jext(�)j � jext(�:l1)j � : : : � jext(�:lk)j;

� if ' is a unary foreign key �1:l1 � �2:l2 and �2:l2 ! �2, then C� contains jext(�1:l1)j � jext(�2:l2)j and
jext(�2)j � jext(�2:l2)j.

In addition, for any � 2 E and l 2 R(�), jext(�:l)j � jext(�)j and 0 � jext(�:l)j are in C�. Observe that
for a unary key �:l ! � we have both jext(�:l)j � jext(�)j and jext(�)j � jext(�:l)j in C�. Thus C� assures
jext(�)j = jext(�:l)j.

We write T j= C� if T satis�es all the constraints of C�. Note that C� is equivalent (in fact, can be converted
in linear time) to a prequadratic Diophantine system since x � x1 � : : : � xk can be written as constraints of the
form x � y �z by introducing k�2 fresh variables, e.g., x � x1 �x2 �x3 �x4 is equivalent to x � x1 �z1, z1 � x2 �z2
and z2 � x3 � x4 (in the sense that the former is satis�able i� the latter is). Thus, without loss of generality,
assume that C� consists of linear and prequadratic integer constraints only.

It should be noted that C� can be computed in time linear in the size of � and D.

The lemma below shows that C� characterizes the consistency of � if keys in � are primary.

Lemma 1 Let D be a DTD, � be a set of AC�;1PK ;FK constraints over D, and C� be the set of cardinality

constraints determined by �. Then there exists an XML tree T1 such that T1 j= D and T1 j= � i� there exists
an XML tree T2 such that T2 j= D and T2 j= C�. In addition, any XML tree valid w.r.t. D and satisfying �
also satis�es C�. 2

Proof. It is easy to see that for any XML tree T1 that satis�es �, it must be the case that T1 j= C�. Conversely,
we show that if there exists an XML tree T2 = (V; lab; ele; att; val; root) such that T2 j= D and T2 j= C�, then
we can construct an XML tree T1 such that T1 j= D and T1 j= �.

We construct T1 from T2 by modifying the function val while leaving V; lab; ele; att and root unchanged. More
speci�cally, we modify val(v) if lab(v) 2 A, i.e., if v is an attribute, and leave val(v) unchanged otherwise.
Let S = f�:l j � 2 E; l 2 R(�)g. To de�ne the new function, denoted by val0, we �rst associate a set of
string values with each �:l in S. Let N be the maximum cardinality of ext(�:l) in T2, i.e., N � jext(�:l)j
in T2 for all �:l 2 S. Let VS = fai j i 2 [1; N]g be a set of distinct string values. For each �:l 2 S, let
V�:l = fai j i 2 [1; jext(�:l)j]g, and for each x 2 ext(�), let val0(att(x; l)) be a string value in V�:l such that
in T1, ext(�:l) = V�:l. In addition, for each key � [l1; : : : ; lk] ! � in �, let x[l1; : : : ; lk] be a distinct list of
string values from V�:l1 � : : : � V�:lk . This is possible because by the de�nition of T1, (1) ext(�) in T1 equals
ext(�) in T2; (2) jext(�:l)j in T1 equals jext(�:l)j in T2; (3) T2 j= C� and jext(�)j � jext(�:l1)j � : : : � jext(�:lk)j
is in C�; and (4) since ' is the only key de�ned for � elements, the population of the attributes l1; : : : ; lk of
x is independent of the population of any other attributes of x. It should be noted that it may be the case
that V�1:l1 � V�2:l2 even if � does not imply �1:l1 � �2:l2. This does not lose generality as we do not intend
to capture negation of foreign keys. We next show that T1 is indeed what we want. It is easy to verify that
T1 j= D given the construction of T1 from T2 and the assumption that T2 j= D. To show that T1 j= �, we

consider ' 2 � in the following cases. (1) If ' is a key � [l1; : : : ; lk] ! � , it is immediate from the de�nition of
T1 that T1 j= ' since for any x 2 ext(�), x[l1; : : : ; lk] is a distinct list of string values from V�:l1 � : : : � V�:lk .
(2) If ' is �1:l1 � �2:l2, then T2 j= jext(�1:l1)j � jext(�2:l2)j by T2 j= C�. Recall that by the de�nition of val0,
for i 2 [1; 2], V�i:li = fai j i 2 [1; jext(�i:li)j]g and in T1, ext(�i:li) = V�i:li . Thus ext(�1:l1) � ext(�2:l2) in T1.
That is, T1 j= '. Therefore, T1 j= D and T1 j= �. 2

The above lemma takes care of coding the constraints; the next step is to code DTDs. For that, we use the
technique developed in [14]: for each DTD D, one can compute in linear time in the size of D a set 	D of linear
inequalities on nonnegative integers, referred to as the set of cardinality constraints determined by D, which
includes jext(�)j as a variable for each element type � in D, but it does not have jext(�:l)j as a variable for any
attribute l of � . Moreover, it has the following properties [14]:

� if 	D has a nonnegative integer solution, then there exists an XML tree T valid w.r.t. D such that the
cardinality of ext(�) in T equals the value of the variable jext(�)j in the solution for each element type �
in D;

� if there exists an XML tree T valid w.r.t. D then 	D has a nonnegative integer solution such that the
value of the variable jext(�)j in the solution equals the cardinality of ext(�) in T .

We now combine this coding with the coding for AC�;1PK ;FK constraints. Given a DTD D and a �nite set � of

AC�;1PK ;FK constraints over D, we de�ne the set of cardinality constraints determined by D and � to be

	(D; �) = 	D [C� [f(jext(�)j > 0)! (jext(�:l)j > 0) j � 2 E; l 2 R(�)g;

where C� is the set of cardinality constraints determined by �, 	D is the set of cardinality constraints determined
by D, and constraints (jext(�)j > 0) ! (jext(�:l)j > 0) are to ensure that every � element has an l attribute.
Note that jext(�:l)j � jext(�)j is already in C�. Constraints in 	(D; �) are either linear integer constraints or
inequalities of the form x � y � z, which come from C�, or constraints of the form x > 0! y > 0. Note that if
we leave out constraints of the form x > 0! y > 0, 	(D; �) is a prequadratic Diophantine system.

We say that 	(D; �) is consistent if and only if 	(D; �) admits a nonnegative integer solution. That is, there
is a nonnegative integer assignment to the variables in 	(D; �) such that all the constraints in 	(D; �) are
satis�ed. The system is computable in linear time in the size of D and �.

Lemma 2 Let D be a DTD, � be a �nite set of AC�;1PK ;FK constraints over D, and 	(D; �) be the set of

cardinality constraints determined by D and �. Then 	(D; �) is consistent if and only if there is an XML tree
T such that T j= D and T j= �. 2

Proof. Suppose that there exists an XML tree T such that T j= D and T j= �. Then there is a nonnegative
integer solution to 	D such that for each element type � in D, the value of the variable jext(�)j equals the
number of � elements in T . By Lemma 1 and T j= �, we have T j= C�. We extend the solution of 	D to be one
to 	(D; �) by letting the variable jext(�:l)j equal the number of distinct l attribute values of all � elements in
T , for each element type � and attribute l of � in D. Since T j= C�, this extended assignment satis�es all the
constraints in C�. In addition, if jext(�)j > 0 then jext(�:l)j > 0 since every � element in T has an l attribute.
Hence the assignment is indeed a nonnegative solution to 	(D; �). This is, 	(D; �) is consistent.

Conversely, suppose that 	(D; �) admits a nonnegative integer solution. Then there exists an XML tree T such
that T j= D and moreover, for each element type � in D, the cardinality of ext(�) in T equals the value of the
variable jext(�)j in the solution. We construct a new tree T 0 from T by modifying the de�nition of the function
val such that in T 0, for each element type � and attribute l of � , the number of distinct l attribute values of all
� elements equals the value of the variable jext(�:l)j in the solution. This is possible since jext(�:l)j � jext(�)j
is in C�, and the assignment is also a solution to C�. Thus T 0 j= D and T 0 j= C�. Observe that since it is
a solution of 	(D; �), we have jext(�:l)j > 0 if jext(�)j > 0, and thus every � element in T 00 can have an l
attribute. Hence by Lemma 1, there exists an XML tree T 00 such that T 00 j= D and T 00 j= �. 2

We now conclude the proof of reduction from SAT(AC�;1PK ;FK) to PDE. By Lemma 2, given any DTD D and

any �nite set � of AC�;1PK ;FK constraints, there exists an XML tree T such that T j= D and T j= � i� 	(D;�)

has a nonnegative integer solution. Such a solution requires jext(�:l)j > 0 if jext(�)j > 0. To ensure this, let �

be a system that includes all linear integer constraints and prequadratic constraints in 	(D;�) and moreover,
jext(�)j � jext(�:l)j � jext(�)j for each constraint (jext(�)j > 0) ! (jext(�:l)j > 0) in 	(D;�). Observe that
� is a prequadratic Diophantine system. In addition, 	(D; �) has a nonnegative integer solution i� � has a
nonnegative integer solution. To see this, observe that for any nonnegative integer assignment to jext(�)j and
jext(�:l)j, (jext(�)j > 0) ! (jext(�:l)j > 0) i� jext(�)j � jext(�:l)j � jext(�)j. Indeed, if a nonnegative solution
satis�es jext(�)j � jext(�:l)j � jext(�)j then it cannot assign 0 to the variable jext(�:l)j if jext(�)j > 0. Conversely,
if a solution satis�es (jext(�)j > 0)! (jext(�:l)j > 0) then it is obvious that jext(�)j � jext(�:l)j � jext(�)j holds
as long as the solution consists of nonnegative integers. Thus D and � are consistent i� the prequadratic
Diophantine system � has a nonnegative integer solution. Observe that � can be computed in linear time in
the size of 	(D; �), and 	(D; �) can be computed in linear time in the size of D and � (denoted by n). Hence

it takes O(n) time to compute �. Therefore, there is a PTIME reduction from SAT(AC�;1PK ;FK) to PDE.

We now move to the other direction, a reduction from PDE to SAT(AC�;1PK ;FK). Without loss of generality, we

show it for the case of PDE instances with a nonnegative matrix A and a nonnegative vector ~b, since we can
code any linear inequality in the same way and thus the proof extends straightforwardly to arbitrary instance
of PDE.

Given an instance of PDE, i.e., a system S consisting of a set Sl of linear equations/inequalities on nonnegative
integers and a set Sp of prequadratic constraints of the form xi � xj � xk, we de�ne a DTD D and a set �

of AC�;1PK ;FK constraints such that S has a nonnegative solution i� there is an XML tree T satisfying � and

conforming to D. We use X = fxi j i 2 [1; n]g to denote the set of all the variables in S. Assume that
Sl = fej j j 2 [1;m]g and ej has one of the following forms:

aj1 x1 + : : :+ ajn xn op bj ;

where op is either \�" or \�", and bj and a
j
i are nonnegative integers.

We de�ne the DTD D = (E; A; P; R; r) as follows:

(1) For each variable xi, we de�ne a distinct element type Xi and moreover, distinct element types CXi;j ; DXi;j

for each j 2 [1;m]. In addition, for each p = xi � xs � xk in Sp, we de�ne distinct element types Xp
i ; NX

p
i , and

distinct element types CXp
i;j ; DX

p
i;j for each j 2 [1;m]. That is, for each prequadratic equation xi � xs � xk

in Sp, we create a distinct copy of Xi. For each linear constraint ej , we de�ne distinct element types Ej ; Uj ; Bj

and a distinct element type Ui;j for each i 2 [1; n]. We use r to denote the root element type. That is,

E = frg

[fEj ; Uj ; Bj j j 2 [1;m]g

[fXi j i 2 [1; n]g

[fCXi;j ; DXi;j ; Ui;j j i 2 [1; n]; j 2 [1;m]g

[fXp
i ; NX

p
i j p = xi � xj � xk 2 Spg

[fCXp
i;j ; DX

p
i;j j j 2 [1;m]; p = xi � xs � xk 2 Spg

(2) A = flg [fli;j ; li;k j (xi � xj �xk) 2 Spg. That is, A has an attribute l and moreover, for each prequadratic
constraint xi � xj � xk in Sp, A includes two extra attributes li;j and li;k.

(3) We de�ne production rules as follows:

P (r) = E1, : : : , Em, (X1)
�, : : : , (Xn)

�, (Xp1
1)�, : : : , (Xpn

n)�, /* for each pi = xi � xj � xk in Sp
P (Ej) = Bj , : : : , Bj , (U1;j)

�, : : : , (Un;j)
� /* bj many occurrences of Bj ; for each ej 2 Sl

P (Ui;j) = Uj /* for all i 2 [1; n] and j 2 [1;m]
P (Uj) = � /* for all j 2 [1;m]

P (Xi) = CXi;1, : : : , CXi;m /* for all i 2 [1; n]
P (CXi;j) = DXi;j , : : : , DXi;j /* aij many occurrences of DXi;j ;

/* for all i 2 [1; n] and j 2 [1;m]
P (DXi;j) = � /* for all i 2 [1; n] and j 2 [1;m]

P (Xp
i) = CXp

i;1, : : : , CX
p
i;m; NX

p
i /* for all p = xi � xj � xk in Sp

P (CXp
i;j) = DXp

i;j , : : : , DX
p
i;j /* aij many occurrences of DXi;j ,

Ej EmE1

Uj

CXi,j @lCXi,1Un,jU1,j Ui,j Ui,j

p
DXi,j

@l

Uj

@l @l @l

@l
Uj

@l@l
Uj

@l

@l

r

@l

Bj Bj

@l @l

X1 Xi XnXi

CXi,mCXi,1CXi,m CXi,j

DXi,j
p

DXi,j DXi,j

ppp

Xi XnXi

@l @l

p
@l_i,j @l_i,kNXi

@l

X1
pp p p

.

.

.

. . .

. . .

. . .

. . .

.

Figure 5: A tree used in the proof of Theorem 3.1

/* for all p = xi � xs � xk in Sp and j 2 [1;m];
P (DXp

i;j) = � /* for all p = xi � xs � xk in Sp and j 2 [1;m]

Intuitively, referring to an XML tree conforming to D, we use jext(Xi)j to code the value of the variable xi in

S. We encode the coeÆcient aji with DXi;j and the term aji xi with CXi;j . The value of a
j
i xi is encoded with

jext(DXi;j)j under Xi. Moreover, for each prequadratic equation p = xi � xj � xk in Sp, we give the same
treatment to the copy Xp

i of Xi. We encode jext(Xp
i)j with jext(NX

p
i)j. Indeed, by P (X

p
i), in any XML tree

valid w.r.t. D, jext(Xp
i)j = jext(NXp

i)j. The reason to use Xp
i and NXp

i is to ensure that the set � of AC�;1K ;FK

constraints de�ned below is primary. We use Ej to code the linear constraint ej in Sl. More speci�cally, we

encode the value of aji xi with jext(Ui;j)j, bj with jext(Bj)j and the value of aj1 x1 + : : :+ ajn xn with jext(Uj)j.

(4) We de�ne the attribute function R as follows: for each of Xi, NX
p
i , Uj , Bj , Ui;j and DXi;j , let l be its

attribute. In addition, for each p = xi � xj �xk in Sp, let R(X
p
i) consist of li;j and li;k. For all other element type

� , let R(�) be empty. Intuitively, we shall de�ne l attribute as a key and use li;j and li;k to code prequadratic
constraint xi � xj � xk.

An XML tree conforming to D has the form shown in Figure 5.

Given the DTD D, we de�ne a set � of AC�;1PK ;FK constraints over D.

(1) For each � ranging over Xi, NX
p
i , Uj , Bj , Ui;j , DXi;j and DX

p
i;j , � includes a key:

�:l ! �:

That is, l is a key of � .

(2) For each i 2 [1; n], j 2 [1;m] and p = xi � xs � xk in Sp, � includes

Ui;j :l � DXi;j :l; DXi;j :l � Ui;j :l; Ui;j :l � DXp
i;j :l; DXp

i;j :l � Ui;j :l:

These ensure that the encoding of the term aji xi are consistent.

(3) For each ej = aj1 x1 + : : :+ ajn xn op bj , if op is \�" then � includes

Uj :l � Bj :l;

and if op is \�" then � includes

Bj :l � Uj :l:

This constraint captures the linear inequality ej .

(4) For each p = xi � xj � xk in Sp, � includes

Xp
i [li;j ; li;k]! Xp

i ; Xp
i :li;j � Xj :l; Xp

i :li;k � Xk:l:

Intuitively, these constraints encode the prequadratic constraint xi � xj � xk.

(5) For each p = xi � xj � xk in Sp, � includes

Xi:l � NXp
i :l; NXp

i :l � Xi:l:

These constraints ensure jext(Xi)j = jext(NXp
i)j. Since by the DTD D, jext(Xp

i)j = jext(NXp
i)j, these con-

straints in fact ensure that jext(Xi)j = jext(Xp
i)j, i.e., X

p
i is indeed a copy of Xi.

Clearly, the set � is primary, i.e., for any element type � there is at most one key de�ned. In fact, we use copies
Xp
i of Xi just to ensure that � is primary.

We next show that the encoding is indeed a PTIME reduction from PDE to SAT(AC�;1PK ;FK). Suppose that S
has a nonnegative solution. Then we construct an XML tree T conforming to D as shown in Figure 5, and
moreover, for each i 2 [1; n] and each p = xi � xj � xk in Sp, let jext(Xi)j and jext(X

p
i)j in T equal the value

of the variable xi in the solution. By the de�nitions of D and �, it is easy to verify T j= �. In particular, for

each p = xi � xj � xk in Sp, T satis�es the AC�;1K ;FK constraints coding the inequality given above, by Lemma 1.

Conversely, suppose that there exists an XML tree T such that T j= D and T j= �. We construct a solution of
S by letting variable xi equal jext(Xi)j in T . Again by Lemma 1 and the de�nitions of D and �, it is easy to
verify that it is indeed a nonnegative integer solution. In particular, each p = xi � xj �xk in Sp holds because of
jext(Xp

i)j � jext(Xj)j � jext(Xk)j and jext(X
p
i)j = jext(Xi)j. Finally, observe that the encoding can be computed

in PTIME in the size of S. Thus there is a PTIME reduction from PDE to SAT(AC�;1PK ;FK).

This completes the proof of Theorem 3.1. 2

Proof of Theorem 3.4

The proof is a bit long, so we �rst give a rough outline. The idea is similar to the proof of the NP membership for
SAT(ACK ;FK) [14]: we code both the DTD and the constraints with linear inequalities over integers. However,
compared to the proof of [14], the current proof is considerably harder due to the following. First, regular
expressions in DTDs (\horizontal" regular expressions) interact in a certain way with regular expressions in
integrity constraints (those correspond to \vertical" paths through the trees). To eliminate this interaction, we
�rst show how to reduce the problem to that over narrow DTDs, in which no wide horizontal regular expressions
are allowed. The next problem is that regular expressions in constraints can interact with each other. Thus,
to model them with linear inequalities, we extend the approach of [14] by introducing exponentially many
variables that account for all possible Boolean combinations of regular languages given by expressions used in
constraints. The last problem is coding the DTDs in such a way that variables corresponding to each node have
the information about the path leading to the node, and its relationship with the regular expressions used in
constraints. For that, we adopt the technique of [2], and tag all the variables in the coding of DTDs with states
of a certain automaton (the product automaton for all the automata corresponding to the regular expressions
used in constraints).

Putting everything together, we reduce SAT(ACregK ;FK) to the existence of solution of an (almost) instance of
linear integer programming, which happens to be of exponential size; hence the NEXPTIME bound.

And now it is time to �ll in all the details. First, we need some additional notation. For any regular expression
� over a DTD D, any element type � 2 E and any attribute l 2 R(�), we write values(�:�:l) to denote the set
fval(y:l) j y 2 nodes(�:�)g. Observe that for any � 2 E, and l 2 R(�), values(r: �:�:l) = ext(�:l)

We start by explaining the process of narrowing the DTDs. Intuitively, we replace long \horizontal" regular
expressions in P (�) by shorter ones. Formally, consider a DTD D = (E; A; P; R; r). For each � 2 E, P (�) is a
regular expression �. A DTD is basically an extended regular grammar (cf. [8, 23]); thus � ! � can be viewed
as the production rule for � . We rewrite the regular expression by introducing a set N of new element types
(nonterminals) such that the production rules of the new DTD have one of the following forms:

� ! �1; �2 � ! �1 j �2 � ! ��1 � ! � 0 � ! S � ! �

where �; �1; �2 are element types in E [N , � 0 2 E, S is the string type and � denotes the empty word. More
speci�cally, we conduct the following \narrowing" process on the production rule � ! �:

� If � = (�1; �2), then we introduce two new element types �1; �2 and replace � ! � with a new rule
� ! �1; �2. We proceed to process �1 ! �1 and �2 ! �2 in the same way.

� If � = (�1j�2), then we introduce two new element types �1; �2 and replace � ! � with a new rule
� ! �1 j �2. We proceed to process �1 ! �1 and �2 ! �2 in the same way.

� If � = ��1, then we introduce a new element type �1 and replace � ! � with � ! ��1 . We proceed to
process �1 ! �1 in the same way.

� If � is one of � 0 2 E, S or �, then the rule for � remains unchanged.

We refer to the set of new element types introduced when processing � ! P (�) as N� and the set of production
rules generated/revised as P� . Observe that N� \ E = ; for any � 2 E.

We de�ne a new DTD DN = (EN ; A; PN ; RN ; r), referred to as the narrowed DTD of D (or just a narrow
DTD if D is clear from the context), where

� EN = E [
[
�2E

N� , i.e., all element types of E and new element types introduced in the narrowing process;

� PN =
[
�2E

P� , i.e., production rules generated/revised in the narrowing process;

� RN (�) = R(�) for each � 2 E, and RN (�) = ; for each � 2 EN nE.

Note that the root element type r and the set A of attributes remain unchanged. Moreover, elements of any
type in EN nE do not have any attribute. The only kind of PN production rules whose right-hand side contains
element type of E are of the form � ! � 0, where � 0 2 E. It is easy to see that DN is computable in linear time.

Observe that an XML tree T valid w.r.t. D may not conform to DN and vice versa. Furthermore, an ACregK ;FK

constraint ' over D may be satis�ed by T but it may not be satis�ed by any XML trees conforming to DN .
To explore the connection between XML trees valid w.r.t. D and those valid w.r.t. DN , we interpret regular
expressions and ACregK ;FK constraints over D in XML trees valid w.r.t. DN .

The restriction of a word � to D is the list of E symbols in �. Let �:� be a regular expression over D and T be
an XML tree. We say that a node x in T is reachable by following �:� w.r.t. D from the root of T , denoted
by T j=D �:�(root; x), i� the restriction of �(root; x) to D is in the language de�ned by �:� , where �(root; x)
is the path from root to x in T . Similarly, we use T j=D �:�(x; y) to denote that a node y in T is reachable
from a node x by following �:� w.r.t. D. We use nodesD(�:�) to denote the set of nodes of T reachable from
the root by following �:� w.r.t. D, i.e., the set fy j T j=D �:�(root; y)g. For each l 2 R(�), valuesD(�:�:l)
stands for the set fy:l j y 2 nodesD(�:�)g. Observe that if T j= D then nodesD(�:�) = nodes(�:�) and
nodesD(�:�) = nodes(�:�) in T .

An XML tree T satis�es an ACregK ;FK constraint ' w.r.t. a DTD D, denoted by T j=D ', i� (1) if ' is a key

�:�:l ! �:� , then for any two nodes x; y 2 nodesD(�:�) in T , x:l = y:l implies x = y; (2) if ' is a foreign key:
�1:�1:l1 � �2:�2:l2 and �2:�2:l2 ! �2:�2, then T j=D �2:�2:l2 ! �2:�2 and for every x 2 nodesD(�1:�1) there
exists y 2 nodesD(�2:�2) in T such that x:l1 = y:l2. Again, if T j= D then T j=D ' i� T j= '.

Using these we are now ready to establish the connection between D and DN , which allows us to consider only
narrow DTDs from now on.

Lemma 3 Let D be a DTD, DN be the narrowed DTD of D and � be a set of ACregK ;FK constraints over D.

Then there exists an XML tree T1 such that T1 j= D and T1 j= � i� there exists an XML tree T2 such that
T2 j= DN and T2 j=D �.

Proof. It suÆces to show the following:

Claim: Given any XML tree T1 j= D one can construct an XML tree T2 by modifying T1 such that T2 j= DN ,
and vice versa. Furthermore, for any regular expression �:� over D and l 2 R(�), jnodesD(�:�)j in T2 equals
jnodes(�:�)j in T1, and valuesD(�:�:l) in T2 equals values(�:�:l) in T1.

For if the claim holds, we can show the lemma as follows. Assume that there exists an XML tree T1 such
that T1 j= D and T1 j= �. By the claim, there is T2 such that T2 j= DN . Suppose, by contradiction, there is
' 2 � such that T2 6j= '. If ' is a key �:�:l ! �:� , then there two distinct nodes x; y 2 nodesD(�:�) in T1
such that x:l = y:l. In other words, jvaluesD(�:�:l)j < jnodesD(�:�)j in T2. Since T1 j= ', it must be the case
that jvalues(�:�:l)j = jnodes(�:�)j in T1 since the value x:l of each x 2 nodes(�:�) uniquely identi�es x among
nodes(�:�). This contradicts the claim that jnodesD(�:�)j in T2 equals jnodes(�:�)j in T1 and valuesD(�:�:l)
in T2 equals values(�:�:l) in T1. If ' is a foreign key: �1:�1:l1 � �2:�2:l2 and �2:�2:l2 ! �2:�2, then either
T2 6j=D �2:�2:l2 ! �2:�2 or there is x 2 nodesD(�1:�1) such that for all y 2 nodesD(�2:�2) in T2, x:l1 6= y:l2. If it
is the �rst case, then the argument for keys shows that it leads to a contradiction. If it is the second case, then we
have x:l1 62 valuesD(�2:�2:l2). By the claim, x:l1 2 values(�1:�1:l1) in T1. Since T1 j= ', x:l1 2 values(�2:�2:l2)
in T1. Again by the claim, we have x:l1 2 valuesD(�2:�2:l2) in T2, which contradicts the assumption. The proof
for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1; lab1; ele1; att; val; root) such that T1 j= D, we construct
an XML tree T2 by modifying T1 such that T2 j= DN . Consider a � element v in T1. Let ele1(v) = [v1; :::; vn]
and w = lab1(v1) : : : lab1(vn). Recall N� and P� , the set of nonterminals and the set of production rules
generated when narrowing � ! P (�). Let Q� be the set of E symbols that appear in P� plus S. We can view
G = (Q� ; N� [f�g; P� ; �) as an extended context free grammar, where Q� is the set of terminals, N� [f�g the
set of nonterminals, P� the set of production rules and � the start symbol. Since T1 j= D, we have w 2 P (�).
By a straightforward induction on the structure of PN (�) it can be veri�ed that w is in the language de�ned by
G. Thus there is a parse tree T (w) of the grammar G for w, and w is the frontier (the list of leaves from left
to right) of T (w). Without loss of generality, assume that the root of T (w) is v, and the leaves are v1; : : : ; vn.
Observe that the internal nodes of T (w) are labeled with element types in N� except that the root v is labeled
� . Intuitively, we construct T2 by replacing each element v in T1 by such a parse tree. More speci�cally, let
T2 = (V2; lab2; ele2; att; val; root). Here V2 consists of nodes in V1 and the internal nodes introduced in the
parse trees. For each x in V2, let lab2(x) = lab1(x) if x 2 V1, and otherwise let lab2(x) be the node label of x in
the parse tree where x belongs. Note that nodes in V2nV1 are elements of some type in EN nE. If lab2(x) is some
element type � , let ele2(x) be the list of its children in the parse tree. Note that att and val remain unchanged.
By the construction of T2 it can be veri�ed that T2 j= DN ; and moreover, for any regular expression �:� over
D and l 2 R(�), jnodesD(�:�)j in T2 equals jnodes(�:�)j in T1 and valuesD(�:�:l) in T2 equals values(�:�:l) in
T1 because, among other things, (1) none of the new nodes, i.e., nodes in V2 nV1, is labeled with an E type; (2)
no new attributes are de�ned; and (3) the ancestor-descendent relation on T1 elements is not changed in T2.

Conversely, assume that there is T2 = (V2; lab2; ele2; att; val; root) such that T2 j= DN . We construct an
XML tree T1 by modifying T2 such that T1 j= D. For any node v 2 V2 with lab(v) = � and � 2 EN n E, we
substitute the subelements of v for v in ele(v0), where v0 is the parent of v. In addition, we remove v from V2,
lab2(v) from lab2, and ele2(v) from ele2. Observe that by the de�nition of DN , no attributes are de�ned for
elements of any type in EN n E. We repeat the process until there is no node labeled with element type in
EN nE. Now let T1 = (V1; lab1; ele1; att1; val1; root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the end
of the process, respectively. Observe that att, val and root remain unchanged. By the de�nition of T1 it can be
veri�ed that T1 j= D; and in addition, for any regular expression �:� over D and l 2 R(�), jnodes(�:�)j in T1
equals jnodesD(�:�)j in T2, and values(�:�:l) in T1 equals valuesD(�:�:l) in T2, because, among other things,
none of the nodes removed is labeled with a type of E and the attribute function att is unchanged. 2

We now move to encoding ACregK ;FK constraints in terms of integer constraints. Let D be a DTD (E; A; P; R; r)

and � be a set of ACregK ;FK constraints over D. Let DN be the narrowed DTD of D. To encode �, let
�1:�1:l1; : : : ; �k:�k :lk be an enumeration of all regular expressions and attributes that appear in �, and � be
the set of functions � : f1; : : : ; kg ! f0; 1g which are not identically 0. For every �, we introduce a new variable
z�. In any XML tree valid w.r.t. DN , the intended interpretation of z� is the cardinality of\

i:�(i)=1

valuesD(�i�i:li) n
[

j:�(j)=0

valuesD(�j :�j :lj):

That is, the variables z� describe all possible intersections of valuesD(�i:�i:li) and their complements. Note that
there are exponentially many new variables in total. Using these variables, we de�ne the set of the cardinality
constraints determined by �, denoted by C�, which consists of the following:

� for each i 2 [1; k], jvaluesD(�i:�i:li)j =
X

�:�(i)=1

z�;

� for each i; j 2 [1; k],
X

�:�(i)=1;�(j)=0

z� = 0 if �i � �j (for each � and l such that �i:�:l and �j :�:l appear

in �), or if �i:�i:li � �j :�j :lj is in �; these encode inclusion constraints as well as containment of regular
expressions;

� for each key �i:�i:li ! �i:�i in �, jvaluesD(�i:�i:li)j = jnodesD(�i:�i)j;

� for each i 2 [1; k], jvaluesD(�i:�i:li)j � jnodesD(�i:�i)j and 0 � jvaluesD(�i:�i:li)j.

We use T j= C� to denote that there is an integer solution to C� such that in T , for each i 2 [1; k],
jvaluesD(�i:�i:li)j and jvaluesD(�i:�i)j equal the values assigned to these variables by the solution. Note that
C� can be computed in exponential time in j�j, and its size is exponential in j�j as well.

The lemma below shows that C� characterizes the consistency of �.

Lemma 4 Let DN be the narrowed DTD of D, � be a set of ACregK ;FK constraints over D, and C� be the set of

cardinality constraints determined by �. Then there exists an XML tree T1 such that T1 j= DN and T1 j=D �
i� there exists an XML tree T2 such that T2 j= DN and T2 j= C�. In addition, any XML tree valid w.r.t. DN

and satisfying � w.r.t. D also satis�es C�.

Proof. It is easy to see that for any XML tree T1, if T1 j=D �, it must be the case that T1 j= C�. Indeed, given
valuesD(�i:�i:li) and nodesD(�i:�i) in T1 for all i 2 [1; k], we can compute an assignment to the variables z�
by the equations in C�. It is easy to verify that the assignment is a solution of integer constraints in C� and
moreover, T1 j= C�.

Conversely, we show that if there exists an XML tree T2 = (V; lab; ele; att; val; root) such that T2 j= DN and
T2 j= C�, then we can construct an XML tree T1 such that T1 j= D and T1 j=D �. We construct T1 from T2 by
modifying the function val while leaving V; lab; ele; att and root unchanged. More speci�cally, we modify val(v)
if v is an attribute of a node in nodesD(�:�) for some regular expression �:� in �, and leave val(v) unchanged
otherwise. To do this, for each z� we create a set s� of distinct string values such that js�j = z� and s�\s�0 = ; if

� 6= �0. For each i 2 [1; k], we de�ne a set Si by Si =
[

�:�(i)=1

s� such that in T2, valuesD(�i:�i:li) = Si. That is,

for each �i element x in nodesD(�i:�i) in T2, let val
0(att(x; li)) be a string value in Si such that valuesD(�i:�i:li)

in T2 equals Si. This is possible because by the de�nition of T1, (1) nodesD(�i:�i) in T1 equals nodesD(�i:�i) in

T2; (2) jvaluesD(�i:�i:li)j in T1 equals jvaluesD(�i:�i:li)j in T2 by C� constraint jvaluesD(�i:�i:li)j =
X

�:�(i)=1

z�

and by jSij =
X

�:�(i)=1

z�; (3) 0 � jvaluesD(�i:�i:li)j and jvaluesD(�i:�i:li)j � jnodesD(�i:�i)j are in C�; and (4)

T2 j= C�.

We next show that T1 has the desired properties. It is easy to verify T1 j= DN given the construction of T1
from T2 and the assumption T2 j= DN . From the discussion above follows that T1 j= C�. To show T1 j=D �,
we consider ' 2 � in the following cases. (1) If ' is a key �i:�i:li ! �i:�i, it is immediate from the de�nition of
T1 that T1 j=D ' since T1 j= jvaluesD(�i:�i:li)j = jnodesD(�i:�i)j. That is, each x 2 nodesD(�i:�i) in T1 has a
distinct li attribute value and thus the value of its li attribute uniquely identi�es x among nodes in nodesD(�i:�i).

(2) If ' is �i:�i:li � �j :�j :lj , then it is easy to see that valuesD(�i:�i:li)nvaluesD(�j :�j :lj) =
[

�:�(i)=1

s� n
[

�:�(j)=1

s�

=
[

�:�(i)=1;�(j)=0

s�. Since s� \ s�0 = ; if � 6= �0, jvaluesD(�i:�i:li) n valuesD(�j :�j :lj)j =
X

�:�(i)=1;�(j)=0

z�. Since

T1 j= C� and
X

�:�(i)=1;�(j)=0

z� = 0 is in C�, we have jvaluesD(�i:�i:li) n valuesD(�j :�j :lj)j = 0. That is,

valuesD(�i:�i:li) � valuesD(�j :�j :lj) in T1. Thus T1 j=D '. Therefore, T1 is indeed an XML tree such that
T1 j= DN and T1 j=D �. 2

Next, we move to encoding of DTDs, more speci�cally, narrow DTDs. Let D = (E; A; P; R; r) and � be a set
of ACregK ;FK constraints over D. We encode the narrowed DTD DN = (EN ; A; PN ; RN ; r) of D with a system

	�
D of integer constraints such that there exists an XML tree valid w.r.t. DN i� 	�

D admits an integer solution.

The coding is developed w.r.t. �. More speci�cally, to capture the interaction between DN and constraints of
�, the system 	�

D accommodates certain variables in C�, i.e., jnodesD(�:�)j for each regular expression �:� in
�. In other words, 	�

D speci�es the dependencies imposed by DN on the number of � elements reachable by
following �:� w.r.t. D.

To capture jnodesD(�:�)j in 	�
D, consider, for each regular expression in �, an automaton that recognizes that

expression. Let M be the deterministic automaton equivalent to the product of all these automata. We refer
to M as the DFA for �. Let sM be the start state of M and Æ be its transition function. Given an XML tree
T valid w.r.t. DN , for each � element x in T we de�ne

state(x) =

(
s if there is a simple path �:� over D such that

T j=D �:�(root; x), and s = Æ(sM ; �:�)
unde�ned otherwise

The connection between M and T w.r.t. �:� is described by the following lemma:

Lemma 5 Let D be a DTD, DN be the narrowed DTD of D, � be a set of ACregK ;FK constraints over D, M be
the DFA for �, and �:� be a regular expression in �. Then for any XML tree T valid w.r.t. DN and any �
element x in T , x 2 nodesD(�:�) in T i� state(x) contains some �nal state f�:� of the automaton for �:� .

In other words, nodesD(�:�) in T consists of all � elements x such that state(x) (which is a tuple of states of
automata corresponding to regular expressions in �) contains some �nal state f�:� of the automaton for �:� . A
similar idea was exploited in [2].

Proof. Since T is a tree, there exists a unique simple path � over D such that T j=D �:�(root; x). Thus
x 2 nodesD(�:�) in T i� �:� 2 �:� . If �:� 2 �:� , then there must be a �nal state f�:� in the automaton
for �:� and a state s in M such that s = Æ(sM ; �:�) and s contains f�:� . Thus s = state(x). Conversely, if
state(x) contains a �nal state f�:� in the automaton for �:� , then �:� 2 �:� since s = Æ(sM ; �:�). Therefore,
x 2 nodesD(�:�) in T . 2

We next de�ne a system 	�
D of integer constraints. The variables used in the constraints of 	�

D are described
as follows. For each element type � 2 E and each state s in M such that s = Æ(sM ; �:�) for some simple path
� 2 E�, we create a distinct variable xs� . Intuitively, in an XML tree T valid w.r.t. DN , we use xs� to keep
track of the number of � elements with state s. Recall N� , the set of element types introduced in the narrowing
process of � ! P (�). Note that N� and E are disjoint. For each � 0 2 N� and each state s for � , we also create
a distinct variable xs� 0 . In the XML tree T , we use xs� 0 to keep track of the number of � 0 descendants of a �
element with state s. There are exponentially many variables (in the size of D and �) in total since M is a
DFA. Using these, we de�ne an integer constraint to specify � 0 ! PN (�

0) at state s for each � 0 2 N� [f�g as
follows. Let us use 	s

� to denote the set of integer constraints de�ned for N� [f�g at s.

� If PN (�
0) = �1 for some element type �1 2 E, then 	s

� includes xs� 0 = xs
0

�1
, where s0 is the state Æ(s; � 0).

� If PN (�
0) = (�1; �2), then 	s

� includes x
s
� 0 = xs�1 and x

s
� 0 = xs�2 , where �1; �2 2 N� by the narrowing process.

Referring to the XML tree T , these assure that each � 0 element in T must have a �1 subelement and a �2
subelement.

� If PN (�
0) = (�1j�2), then 	s

� includes xs� 0 = xs�1 + xs�2 , where �1; �2 2 N� . Referring to the tree T , these
assure that each � 0 element in T must have either a �1 subelement or a �2 subelement, and thus the sum of
the number of these �1 subelements and the number of �2 subelements equals the number of � 0 elements.

� If PN (�
0) = ��1 , then 	s

� includes (xs�1 > 0) ! (xs� 0 > 0), where �1 2 N� . Referring to the XML tree T ,
this assures that each �1 subelement in T must have a � 0 element as its parent.

In addition, 	s
� includes xs� 0 � 0 for each � 0 2 N� [f�g. These assure that the numbers of elements in an XML

tree cannot be negative. Note that in the coding, under a � element at state s, the descendants of any type in
N� do not change state as they do not appear in the DFA M , whereas descendants of type � 0 2 E change state.
Note that the coding of Kleene closure here is quite di�erent from its coding in [14].

By our restriction on regular expressions regarding element type r, there is a unique variable xsr associated with
r, where s is the start state sM of M . We write xr for x

s
r.

Given these, we de�ne the set of cardinality constraints determined by DTD D w.r.t. a set � of ACregK ;FK

constraints over D, denoted by 	�
D, to be the set consisting of the following:

� all the constraints in 	s
� for each � 2 E and each state s given above;

� xr = 1; i.e., there is a unique root in each XML tree valid w.r.t. DN ;

� jnodesD(�:�)j =
X

f�:� in s

xs� for each regular expression �:� in �, where xs� 's are all those variables

associated with � such that s contains some �nal state in the automaton for �:� .

Observe that by Lemma 5, in an XML tree T valid w.r.t. DN ,
X

f�:� in s

xs� is indeed jnodesD(�:�)j, the cardinality

of the set of � elements in T that are reachable from the root by following �:� w.r.t. D. Note that 	�
D can be

computed in EXPTIME in jDj and j�j, and the size of 	�
D is exponential in jDj and j�j.

We say that 	�
D is consistent i� it has an integer solution. We next show that 	�

D indeed characterizes the
DTD DN .

Lemma 6 Let DN be the narrowed DTD of D and 	�
D be the set of cardinality constraints determined by D

w.r.t. a set � of ACregK ;FK constraints over D. Then 	�
D is consistent if and only if there is an XML tree T

such that T j= DN . In addition, for each regular expression �:� in �, jnodesD(�:�)j in T equals the value of
the variable jnodesD(�:�)j given by the solution to 	�

D.

Proof. First, assume that there is an XML tree T = (V; lab; ele; att; val; root) valid w.r.t. DN . We de�ne an
integer solution of 	�

D as follows. For each element x of type � 2 E, let Sx be the set of its descendants of
some type � 0 2 N� . More speci�cally, Sx is computed as follows. Initially, let x be in Sx. For any y 2 Sx with
type � 0 2 N� [f�g, consider � 0 ! PN (�

0). If PN (�
0) = (�1; �2), then �1; �2 must be in N� by the narrowing

process, and y has a �1 subelement y1 and a �2 subelement y2 by T j= DN . Let Sx also include y1 and y2.
If PN (�

0) = (�1j�2), then y has a subelement y1 which is either of type �1 or �2. Let Sx also include y1. If
PN (�

0) = ��1 , then y has a list of �1 subelements. Let Sx also include these subelements. We repeat the process
until no further change can be made to Sx. For each y 2 Sx, let state(y) = state(x). Given this, we de�ne
the integer solution. For each variable xs� in 	�

D, let its value be the number of � elements x in T such that
state(x) = s, where s is the state in xs� . For each regular expression �:� in �, let jnodesD(�:�)j be the sum of the

variables xs� in the constraint jnodesD(�:�)j =
X

f�:� in s

xs� . This de�nes an integer assignment since T is �nite.

It can be veri�ed that the assignment is an integer solution of 	�
D. Indeed, it satis�es the constraint xr = 1

and constraints of the form jnodesD(�:�)j =
X

f�:� in s

xs� by the de�nition of the assignment. Moreover, one

can verify that it also satis�es constraints of 	s
� for each element type � and each state s, by a straightforward

induction on the structure of PN (�). In particular, it satis�es constraints of the form (xs�1 > 0)! (xs� 0 > 0) for

each � 0 ! ��1 in PN , since each �1 subelement in T has a � 0 parent. Therefore, 	�
D is consistent. Moreover, by

Lemma 5, for each regular expression �:� in �, the value of the variable jnodesD(�:�)j in the solution is indeed
jnodesD(�:�)j in T .

Conversely, assume that 	�
D admits an integer solution. Observe that the solution assigns a nonnega-

tive integer to each variable because of inequalities in 	�
D. We show that there exists an XML tree

T = (V; lab; ele; att; val; root) such that T j= DN . To do so, for each element type � and state s for � ,
we create xs� many distinct � elements and label them with � . Let ext(�) denote the set of all � elements
created above. In addition, for each � 2 EN such that � ! S is in PN , we create xs� many distinct string
elements and label them with S. Let ext(S) denote the set of all the string elements created. Finally, for any
� 2 E, v 2 ext(�) and l 2 R(�), we create a distinct node and label it with l. We refer to this node as vl. Let

V =
[
�2E

ext(�) [ext(S) [
[
�2E

fvl j v 2 ext(�); l 2 R(�)g:

The functions lab, att and val are de�ned as follows: for each v 2 V and l 2 A,

lab(v) =

�
� if v 2 ext(�) and � 2 EN [fSg
l if v = v0l for some v0l

att(v; l) =

�
vl if vl 2 V
unde�ned otherwise

val(v) =

�
empty string if lab(v) is S or l, where l 2 A
unde�ned otherwise

It is easy to verify that these functions are well de�ned. Let root be the node labeled r, which is unique since
xr = 1 is in 	�

D. Finally, to de�ne the function ele, we do the following. For each x
s
� in 	�

D, we choose x
s
� many

distinct vertices labeled � and mark them with xs� . Note that every � element in V can be marked once and only
once. Starting at root, for each � element x marked with xs� , consider PN (�) and constraints of 	�

D. If PN (�)

is � 0 2 E, then we choose a distinct � 0 element y marked with xs
0

� 0 and let ele(x) = [y], where xs� = xs
0

� 0 is 	�
D.

If PN (�) = S, then we choose a string element y and let ele(x) = [y]. If PN (�) = (�1; �2), then we choose a �1
element y1 marked with xs�1 and a �2 element y2 marked with xs�2 , and let ele(x) = [y1; y2]. If PN (�) = (�1j�2),
then we choose an element y of either type �1 or �2, and let ele(x) = [y]. If PN (�) = ��1 , then we choose a list
~v of �1 elements and let ele(x) = ~v. By the constraints in 	�

D, each element of V can be chosen once and only
once. By induction on the structure of PN (�), one can verify that T de�ned in this way is indeed an XML tree
and T j= DN . Therefore, there exists an XML tree valid w.r.t. DN .

Finally, to see that jnodesD(�:�)j in T equals the value n�:� of the variable jnodesD(�:�)j in the solution for
each regular expression �:� in �, it suÆces to show that for each � 2 E and each � element x in T , if x is marked
with xs� in the construction, then state(x) = s where s is the state in xs� . For if it holds, by Lemma 5, we have

jnodesD(�:�)j in T equals n�:� by the constraint jnodesD(�:�)j =
X

f�:� in s

xs� in 	�
D for each �:� in �. Since

T is a tree, there is a unique simple path � 2 E� such that T j=D �(root; x). We show the claim by induction
on the length j�j of �. If j�j = 0, i.e., � = �, then x is the root and obviously, state(x) = sM = s. Assume the
claim for � and we show that the claim holds for �:� . Let y be the � 0 element in T such that T j=D �(root; y)

and T j=D �(y; x). Suppose that y is marked with xs
0

� 0 in the construction. By the induction hypothesis, we

have state(y) = s0, where s0 is the state in xs
0

� 0 . It is easy to see state(x) = Æ(s0; �). By the de�nition of 	s0

� 0

constraints, s is precisely the state Æ(s0; �). Thus state(x) = s. This proves the claim and thus the lemma. 2

We now combine the encodings for constraints and the DTDs, and present a system 	(D; �) of linear integer
constraints for a DTD D and a set � of ACregK ;FK constraints. The set 	(D; �), called the set of cardinality
constraints determined by D and �, is de�ned to be:

	�
D [C� [fjnodesD(�:�)j > 0! jnodesD(�:�:l)j > 0 j �:� is a regular expression in �, l 2 R(�)g;

where C� is the set of cardinality constraints determined by �, and 	�
D is the set of cardinality constraints

determined by D w.r.t. �. The system 	(D; �) is said to be consistent i� it has an integer solution that
satis�es all of its constraints.

Observe that 	(D; �) can be partitioned into two sets: 	(D; �) = 	l(D; �) [c(D; �), where 	l(D; �)
consists of linear integer constraints, and 	c(D; �) consists of constraints of the form (x > 0! y > 0), which
come from two sources:

� For each regular expression �:� in �, (jnodesD(�:�)j > 0) ! (jnodesD(�:�:l)j > 0) is in 	c(D; �). That
is, if there is a � element reachable by following �:� w.r.t. D, then the � element must have an l attribute.

� Recall P� 0 , the set of production rules generated in the narrowing process of � 0 ! P (� 0) for � 0 2 E. For
each � ! ��1 in P� 0 for some � 0 2 E and each state s for � 0, 	c(D; �) includes (xs�1 > 0)! (xs� > 0). That
is, each �1 subelement must have a parent � element.

It should be noted that the sizes of 	c(D; �) and 	(D; �) are exponential in jDj and j�j.

We next show that 	(D; �) indeed characterizes the consistency of D and �.

Lemma 7 Let D be a DTD, � be a �nite set of ACregK ;FK constraints over D, and 	(D; �) be the set of

cardinality constraints determined by D and �. Then 	(D; �) is consistent if and only if there is an XML tree
T such that T j= D and T j= �.

Proof. Let DN be the narrow DTD corresponding to D. By Lemma 3, it suÆces to show that 	(D; �) is
consistent if and only if there is an XML tree T such that T j= DN and T j=D �.

Suppose that there exists an XML tree T such that T j= DN and T j=D �. We show that 	(D; �) has an
integer solution. By Lemma 4, we have T j= C�. By Lemma 6, one can de�ne an integer assignment to the
variables in 	�

D such that all the constraints in 	�
D are satis�ed. Moreover, the assignment assures that for

each regular expression �:� in �, the value of the variable jnodesD(�:�)j equals the number of all � elements
in T reachable by following �:� w.r.t. D. We extend the assignment as follows: for each regular expression �:�
in �, let the value of the variable jvaluesD(�:�:l)j be the number of distinct l attribute values of all nodes in
nodesD(�:�) in T . Thus by T j= C�, this extended assignment satis�es all the equalities and inequalities in
C�. In addition, if jnodesD(�:�)j > 0 then jvaluesD(�:�:l)j > 0 since every � element in T has an l attribute.
Hence the assignment is indeed a solution to 	(D; �). Thus 	(D; �) is consistent.

Conversely, suppose that 	(D; �) has an integer solution. We show that there is an XML tree T such that
T j= DN and T j=D �. By Lemma 6, given an integer solution to 	(D; �), we can construct an XML tree
T 0 = (V; lab; ele; att; val; root) such that T 0 j= DN . Moreover, for each regular expression �:� in �, there
are exactly n�:� many � elements in T 0 reachable by following �:� w.r.t. D, where n�:� is the value of the
variable jnodesD(�:�)j in 	(D; �). We modify the de�nition of the function val such that for each regular
expression �:� in � and each l 2 R(�) that occurs in �, the number of distinct l attribute values of all nodes
of nodesD(�:�) in T 0 equals the value of the variable jvaluesD(�:�:l)j in the assignment. This is possible
since jvaluesD(�:�:l)j � jnodesD(�:�)j is in C�, and the assignment is also a solution to C�. Moreover, since
(jnodesD(�:�)j > 0) ! (jvaluesD(�:�:l)j > 0) is in 	(D; �), each � element in nodesD(�:�) can have an
attribute. Let T 00 denote the XML tree obtained by modifying the val function of T 0. Then it is easy to verify
that T 00 j= C� and T 00 j= D. Hence by Lemma 4, there is an XML tree T such that T j= DN and T j=D �. 2

We need another lemma for a mild generalization of linear integer constraints.

Lemma 8 Given a system A~x � ~b of linear integer constraints together with conditions of the form (xi > 0)!

(xj > 0), where A is an n�m matrix on integers, ~b is an n-vector on integers and 1 � i; j � n, the problem of
determining whether the system admits a nonnegative integer solution is in NP.

Proof. Let c1; : : : ; cp enumerate the conditions of the form (x > 0) ! (y > 0), ck being (x1k > 0) ! (x2k > 0).
Consider 2p instances of the integer linear programming Ij obtained by adding, for each k � p, either x1k =

x2k = 0, or x1k; x
2
k > 0 to A~x � ~b. Clearly, the original system of constraints has a solution i� some Ij has a

solution. By [24], Ij has a solution i� it has a solution whose size is polynomial in A;~b. Hence, to check if the
original system of constraints has a solution, it suÆces to guess a polynomial size solution; thus, the problem is
in NP. 2

The proof of Theorem 3.4 a) now follows from Lemmas 7 and 8. Given any DTD D and any �nite set � of
ACregK ;FK constraints over D, we compute, in exponential time in jDj and j�j, the system 	(D;�) whose size is

also exponential in jDj and j�j. By Lemma 8, one can check in NEXPTIME whether 	(D;�) has a nonnegative
integer solution, which, by Lemma 7, happens i� there exists an XML tree T such that T j= D and T j= �.

Proof of b) We establish the PSPACE-hardness by reduction from the QBF-CNF problem. An instance of
QBF-CNF is a quanti�ed boolean formula in prenex conjunctive normal form. The problem is to determine
whether this formula is valid. QBF-CNF is known to be PSPACE-complete [25].

Let � be a formula of the form

Q1x1 � � �Qmxm ; (5)

where eachQi 2 f8; 9g (1 � i � m) and is a propositional formula in conjunctive normal form, say C1^� � �^Cn,
that mentions variables x1; : : : ; xm. We construct a DTD D� and a set �� of ACregK ;FK -constraint such that

� is valid if and only if there is an XML tree conforming to D� and satisfying ��. We construct a DTD
D� = (E; A; P; R; r) as follows.

E = fr; Cg [
m[
i=1

fxi; �xi; Nxi ; Pxig;

A = flg:

To de�ne the function P , �rst we consider the quanti�ers of �. We consider Q1 to de�ne P on the root r:

P (r) =

�
(Nx1 jPx1); C Q1 = 9

(Nx1 ; Px1); C Q1 = 8

In general, for each 1 � i � m� 1, we consider quanti�er Qi+1 to de�ne P (Nxi) and P (Pxi):

P (Nxi) = P (Pxi) =

�
Nxi+1 jPxi+1 Qi+1 = 9

Nxi+1 ; Pxi+1 Qi+1 = 8

We represent the formula as a regular expression. Given a clause Cj =
Wp
i=1 yi _

Wq
i=1 :zi (j 2 [1; n]), tr(Cj)

is de�ned to be the regular expression y1j � � � jypj�z1j � � � j�zq. We de�ne P on the element types Nxm and Pxm
as P (Nxm) = P (xxm) = tr(C1); : : : ; tr(Cn). Finally, for the rest of the elements in E, we de�ne P as �. We
de�ne the function R as follows.

R(r) = R(Pxi) = R(Nxi) = ; 1 � i � m
R(C) = R(xi) = R(�xi) = flg 1 � i � m.

Finally, �� contains the following foreign keys:

r: �:Nxi :
�:xi:l � r:C:C:l, r:C:C:l ! r:C:C i 2 [1;m]

r: �:Pxi :
�:�xi:l � r:C:C:l, r:C:C:l ! r:C:C i 2 [1;m]

For instance, for the formula 8x19x28x3(x1 _ x2 _:x3), an XML tree conforming to D is shown in �gure 6. In
this tree, a node of type Nxi represents a negative value (0) for the variable xi and a node of type Pxi represents
a positive value (1) for this variable. Thus, given that the root has two children of types Nx1 and Px1 , the
values 0 and 1 are assigned to x1 (representing the quanti�er 8x1). Nodes of type Nx1 has one child of type
either Nx2 or Px2 , and, therefore, either 0 or 1 is assigned to x2 (representing the quanti�er 9x2). The same
holds for nodes of type Px2 . The fourth level of the tree represents the quanti�er 8x3.

In �gure 6, every path from the root r to a node of type either Nx3 or Px3 represents a truth assignment for
the variables x1, x2, x3. For example, the path from the root to the node u represents the truth assignment �u:
�u(x1) = 0, �u(x2) = 1 and �u(x3) = 0. To verify that all these assignments satisfy the formula x1 _ x2 _ :x3
we use the set of constraint ��.

We will to prove that �, de�ned in (5), is valid if and only if there is an XML tree T conforming to D� and
satisfying ��. We will show only the \if" direction. The \only if" direction is similar.

Suppose that there is an XML tree T such that T j= D� and T j= ��. To prove that � is valid, it suÆces
to prove that each path from the root r to a node of type either Nxm or Pxm represents a truth assignment
satisfying . Let p one of these paths and let n be the node reachable from the root by following p. We de�ne
the truth assignment �p as follows.

�p(xi) =

�
1 p contains a node of type Pxi
0 Otherwise:

We have to prove that �p(Ci) = 1 for each i 2 [1; n]. Given that T j= D�, n has as a child a node n0 whose
type is in tr(Ci). If the type of n

0 is xj , then given that T j= r: �:Nxj :
�:xj :l � r:C:C:l and there are no nodes

in T reachable by following the path r:C:C, we conclude that p contains a node of type Pxj , and, therefore,
�(Ci) = 1 since �p(xj) = 1. If the type of n0 is �xj ,then given that T j= r: �:Pxj :

�:�xj :l � r:C:C:l we conclude
that p contains a node of type Nxj , and, therefore, �p(Ci) = 1 since �p(:xj) = 1. Therefore, � is a valid
formula. 2

Px3

Nx1 Px1

Nx3 Px3Nx3

r

.

.

. .

.

. .

.

.

u

Px2 Nx2

(x1jx2j�x3)

C

Figure 6: An XML tree conforming to the DTD constructed from 8x19x28x3(x1 _ x2 _ :x3).

Proof of Theorem 3.5

Proof of a) First, we will prove the NP-hardness of depth-d SAT(ACK ;FK) (d � 2). It suÆces to prove the
NP-hardness of depth-2 SAT(ACK ;FK). We do this by reduction from SAT-CNF.

Let ' be a propositional formula of the form C1 ^ � � � ^ Cn, where each Ci (1 � i � n) is a clause. Assume
that ' mentions propositional variables x1, : : : , xm. We construct a DTD D' and a set of ACK ;FK -constraints
�' such that Depth(D') = 2 and ' is satis�able if and only if there is an XML tree T conforming to D' and
satisfying �'. De�ne a DTD D' = (E; A; P; R; r) as follows.

E =fr; x1; : : : ; xm; �x1; : : : ; �xmg [fCi;j j Ci mentions literal xjg [f �Ci;j j Ci mentions literal :xjg;

A =flg:

In order to de�ne P , �rst we de�ne a function for translating clauses into regular expressions. If the set of
literals mentioned in Ci (1 � i � n) is fxj1 ; : : : ; xjp ;:xk1 ; : : : ;:xkqg, then

tr(Ci) = Ci;j1 j � � � jCi;jp j �Ci;k1 j � � � j �Ci;kq :

We de�ne the function P on the root as follows.

P (r) = tr(C1); : : : ; tr(Cn); (x1j�x1); : : : ; (xmj�xm):

For the rest of the element types in E, we de�ne P as �. We de�ne R as follows: R(r) = ; and R(x) = flg
for each x 2 E n frg. Finally, the set of constraints �' is de�ned as follows. For each Ci;j 2 E, the foreign
key Ci;j :l � xj :l, xj :l ! xj is contained in �'. For each �Ci;j 2 E, the foreign key �Ci;j :l � �xj :l, �xj :l ! �xj is
contained in �'.

For example, if ' = (x1 _ :x2) ^ (:x1 _ x3), then D' is of the form shown in �gure 7 and �' = fC1;1 � x1:l;
x1:l ! x1; �C1;2:l � �x2:l; �x2:l ! �x2; �C2;1:l � �x1:l; �x1:l ! �x1:l; C2;3:l � x3:l; x3:l ! x3g.

We will prove that ' is satis�able if and only if there is an XML tree T conforming to D' and satisfying �'.
If ' is satis�able, then there is a truth assignment � such that �(Ci) = 1 for each i 2 [1; n]. By considering �
we construct an XML tree T conforming to D' and satisfying �'. For each i 2 [1; n], there is a literal lj in
Ci such that �(lj) = 1. If lj = xj , then the root of T has a child of type Ci;j . If lj = :xj , then it has a child
of type �Ci;j . Moreover, for each i 2 [1;m], if �(xi) = 1, then the root of T has a child of type xi, otherwise
it has a child of type �xi. Finally, we give value 1 to each attribute in T . It is straightforward to prove that T
conforms to D' and satis�es �'.

C1;1j �C1;2
�C2;1jC2;3 x1j�x1 x2j�x2 x3j�x3

l l l l l l l l ll

r

Figure 7: DTD D' for ' = (x1 _ :x2) ^ (:x1 _ x3).

If there is an XML tree T conforming to D' and satisfying �', then we de�ne a truth assignment � as follows.
For each i 2 [1;m], if T has a node of type xi, then �(xi) = 1, otherwise �(xi) = 0. We have to prove that
�(Ci) = 1 for each i 2 [1; n]. Given that T conforms to D', its root has as a child a node n whose type is in the
regular expression tr(Ci). If the type of n is Ci;j , then Ci mentions literal xj and T has a child of type xj , since
T must satisfy the foreign key Ci;j :l � xj :l, xj :l! xj . Thus, we conclude that �(Ci) = 1 because �(xj) = 1. If
the type of n is �Ci;j , then Ci mentions literal :xj and T has a child of type �xj , since T must satisfy the foreign
key �Ci;j :l � �xj :l, �xj :l! �xj . Thus, we conclude that �(Ci) = 1 because �(xj) = 0.

Therefore, we conclude that depth-2 SAT(ACK ;FK) is NP-hard.

Next, we prove the NP-hardness of 2-constraint SAT(ACK ;FK) by reduction from SUBSET SUM.

An instance of the SUBSET SUM problem is a number a and a set of numbers S, all given in binary. The
problem is to determine whether there is S0 � S such that

P
x2S0 x = a. It is known to be NP-complete [18].

Suppose that S = fa1; : : : ; ang. We construct a DTD Da;S and a set of ACK ;FK -constraints �a;S containing
two constraints such that there is an XML tree T conforming to Da;S and satisfying �a;S if and only if there is
S0 � S such that

P
x2S0 x = a. We de�ne the DTD Da;S = (E; A; P; R; r) as follows.

We introduce new element types V , V1, : : : , Vn for coding the values of a, a1, : : : , an, respectively. De�ne P (r) =
V; (V1j�); (V2j�); : : : ; (Vnj�). If a =

Pm

i=1 2
ki , where 0 � k1 < k2 < : : : < km, then P (V) = Xk1 ; Xk2 ; : : : ; Xkm .

De�ne P on fX0; X1; : : : ; Xkm�1; Xkmg as follows:

P (Xi) =

�
� i = 0

Xi�1; Xi�1 Otherwise

If Vj =
Pm

i=1 2
li , where j 2 [1; n] and 0 � l1 < l2 < : : : < lm, then P (Vj) = Yl1 ; Yl2 ; : : : ; Ylm . De�ne P on

fY0; Y1; : : : ; Ylm�1; Ylmg as follows:

P (Yi) =

�
� 0 i = 0

Yi�1; Yi�1 Otherwise

The set E contains all the element types mentioned in the previous paragraph. Moreover, A = flg, R(�) =
R(� 0) = flg and R is de�ned as ; for the rest of the elements in E. Finally, the set of constraints �a;S contains
two foreign keys: �:l � � 0:l, � 0:l ! � 0 and � 0:l � �:l, �:l ! � . Observe that the size of Da;s and �a;S is
polynomial in the size of a and S.

For instance, if a = 101 and S = f11; 110g, then P (r) = V; (V1j�); (V2j�). An XML tree conforming to Da;S is
shown in �gure 8. Notice that the number of � -elements that are descendants of V is 5, since we use the node
V for coding the binary value 101. Besides, notice that the number of � 0-elements that are descendants of V1 is
3, since we use the node V1 for coding the binary value 11. The tree shown in �gure 8 does not contain a node
of type V2. Given that P (r) = V; (V1j�); (V2j�), we can choose whether a node of type Vi is going to be included
(i 2 [1; 2]). Thus, we use the regular expression (V1j�); (V2j�) for coding all the possible subsets of S.

We will prove that there is an XML tree T conforming to Da;S and satisfying �a;S if and only if there is
S0 � S such that

P
x2S0 x = a. If there is an XML tree conforming to Da;S and satisfying �a;S, then de�ne

S0 = fai j T contains a node of type Vig. Given that T j= �a;S, we conclude that
P

x2S0 x = a.

X0

����

�
0

�
0

X0X0X0X0

�
0

Y0

r

V V1

X2 Y1 Y0

X1 X1 � Y0

Figure 8: An XML tree conforming to the DTD Da;S for a = 101 and S = f11; 110g.

If there is S0 � S such that
P

x2S0 x = a, then de�ne an XML tree T as follows. For each i 2 [1; n], the
root of T has a child of type Vi if and only if ai 2 S0. For each child of the root, de�ne its descendant
in such a way that they conform to Da;S. Given that

P
x2S0 x = a, there is an integer k such that k =

jfx j x is a node in T of type �gj = jfy j y is a node in T of type � 0gj. Assign the set of values 1, 2, : : : , k to
fx:l j x is a node in T of type �g and fy:l j y is a node in T of type � 0g. It is straightforward to verify that T
conforms to Da;S and satis�es �a;S .

Therefore, we conclude that 2-constraint SAT(ACK ;FK) is NP-hard.

Proof of b) In this proof we will use the following lemma.

Lemma 9 ([14]) Given a DTD D1 and a set �1 of ACK ;FK -constraints, there is a set of cardinality constraints
C�1 such that the following statements are equivalent:

1. There is a tree T1 such that T1 j= D1 and T1 j= �1.

2. There is a tree T2 such that T2 j= D1 and T2 j= C�1 .

These cardinality constraints are constructed as follows. For each key �:l ! � 2 �1, jext(�)j = jext(�:l)j is in
C�1 . For each inclusion dependency �1:l1 � �2:l2 2 �1, jext(�1:l1)j � jext(�2:l2)j is in C�1 .

We use this result to construct a nondeterministic algorithm that veri�es whether a given speci�cation (D;�)
is consistent. This algorithm works in space O(j�j � Depth(D) � log(jDj)). Thus, for any �xed k; d > 0, the
k-constraint depth-d SAT(ACK ;FK) is solvable in NLOGSPACE.

Let D = (E; A; P; R; r) be a non-recursive no-star DTD and � a set of ACK ;FK -constraints. Let Restricted(�)
be the set

f� j � 2 E and � is mentioned in some constraint in �g [

f�:l j � 2 E; l 2 R(�) and �:l is mentioned in some constraint in �g:

To verify if (D;�) is consistent, we execute a simple nondeterministic algorithm: Guess an XML tree T con-
forming to D and verify whether T satis�es C�. To implement this algorithm, it is not necessary to store the
entire tree T ; it suÆces to store the value of jext(x)j in T , for each x 2 Restricted(�), since we only need to
check whether these values satisfy C�. The following procedure implements this idea.

Count(s: regular expression)
if s 2 E then

if s 2 Restricted(�) then
jext(s)j := jext(s)j+ 1
for each s:l 2 Restricted(�) do

if jext(s:l)j = 0 then jext(s:l)j := 1
else

ip a coin
if \head" then jext(s:l)j := jext(s:l)j+ 1

Count(P (s))
else if s = s1; s2 then

Count(s1)
Count(s2)

else if s = s1js2 then

ip a coin
if \head" then Count(s1)
else Count(s2)

Initially, jext(x)j = 0 for each x 2 Restricted(�). The algorithm is invoked as Count(r), where r is the type of
the root. In each step, it veri�es whether the regular expression s is an element type. If this is the case, then
it veri�es whether s 2 Restricted(�). If this holds, it increments jext(s)j, since it found another node of type
s, and for each s:l 2 Restricted(�), it
ips a coin for deciding whether to assign a new value to the attribute
l (and then increment jext(s:l)j) or to copy this value from attribute l of another node of type s (and leave
jext(s:l)j intact). Notice that if jext(s:l)j = 0, then it is not possible to copy the value of l from another node of
type s, and, therefore, the algorithm must assign the value 1 to jext(s:l)j. Finally, for each s 2 E, it recursively
invokes to Count(P (s)).

If s 62 E, then s = (s1; s2), s = (s1js2) or s = �, where s1 and s2 are regular expressions. If s = (s1; s2),
then in order to generate an XML tree conforming to D the algorithm invokes to Count(s1) and Count(s2). If
s = (s1js2), then in order to generate an XML tree conforming to D, the algorithm nondeterministically decides
to invoke to Count(s1) or Count(s2). Finally, if s = �, then the algorithm does not execute any instruction.

When Count(r) �nishes, it guessed a tree T conforming to D and for each element type x 2 Restricted(�) it
stored the value of jext(x)j. Thus, to verify whether (D;�) is consistent, we check whether these values satisfy
the set of cardinality constraint C�.

Given that D is a non-recursive no-star DTD, for each x 2 Restricted(�), jext(x)j � jDjDepth(D). Thus, the
previous algorithm works in space O(j�j � log(jDjDepth(D))) = O(j�j �Depth(D) � log(jDj)), since jRestricted(�)j
is O(j�j). Therefore, if j�j and Depth(D) are �xed, then SAT(ACK ;FK) is solvable in NLOGSPACE. 2

Proof of Proposition 3.6

It suÆces to provide a DLOGSPACE reduction from SAT(C) to the complement of Impl(C). Given any DTD
D = (E; A; P; R; r) and any set � of C constraints, we de�ne another DTD D0 and a key ' and a foreign key
� in ACK ;FK such that there exists an XML tree conforming to D and satisfying � i� (D;� [f�g) 6` '.

We de�ne D0 = (E0; A0; P 0; R0; r), where E0 is E plus two new element types EX and DY , A
0 is A plus a new

attribute K, P 0 is identical to P except:

P 0(r) = P (r); DY ; DY ; EX /* P (r) followed by two DY elements and an EX element
P 0(DY)= P 0(EX) = �

and R0 is the same as R except R0(DY) = R0(EX) = fKg. We de�ne a unary key ' and a unary inclusion
constraint � as follows:

' : DY :K ! DY ; � : DY :K � EX :K; EX :K ! EX :

Clearly this can be done in DLOGSPACE. We next show that this is indeed a reduction. First, assume that
there exists a tree T j= D0 and T j=

V
� ^ � ^ :', then we construct another tree T 0 by removing DY , EX

T

r

Dy Dy Ex

@K @K @K

Figure 9: An XML tree conforming to D0 in the proof of Proposition 3.6

elements from T . Obviously, T 0 j= D and T 0 j= �. Conversely, suppose that there is a tree T j= D and T j= �.
We construct another tree T 0 from T as shown in Figure 9. Let us refer to the two DY elements in T 0 as
d1; d2, and the EX element as e. Let d1:K = d2:K = e:K. Then it is easy to see that T 0 j= D0, T 0 j= � and
T 0 j= � ^ :'. 2

Proof of Theorem 4.1

We establish the undecidability of the consistency problem for unary relative keys and foreign keys by reduction
from the Hilbert's 10th problem [21]. To do this, we consider a variation of the Diophantine problem, referred
as the positive Diophantine quadratic system problem. An instance of the problem is

P1(x1; : : : ; xk) = Q1(x1; : : : ; xk) + c1

P2(x1; : : : ; xk) = Q2(x1; : : : ; xk) + c2

:::

Pn(x1; : : : ; xk) = Qn(x1; : : : ; xk) + cn

where Pi and Qi are polynomials in which all coeÆcients are positive integers, 1 � i � n. The degree of Pi is
at most 2 and the degree of each of its monomial is at least 1, 1 � i � n. Each polynomial Qi satis�es the same
condition, and each ci is a non-negative integer constant, 1 � i � n. The problem is to determine, given any
positive Diophantine quadratic system, whether it has a non-negative integer solution.

The positive Diophantine quadratic system problem is undecidable. To prove this, it is straightforward to reduce
to it another variation of the Diophantine problem, the positive Diophantine equation problem, which is known
to be undecidable. An instance of this problem is R(�y) = S(�y), where R and S are polynomials in which all
coeÆcients are positive integers, and the problem is to determine whether it has a non-negative integer solution.

Thus, if we reduce the positive Diophantine quadratic system problem to the consistency problem for unary
relative keys and foreign keys, we prove that the second problem is undecidable. We will do this in the rest
of this proof. More precisely, given a quadratic equation we will show how to represent it by using a DTD
and a set of constraints. It is straightforward to extend this representation to consider an arbitrary number of
quadratic equations.

Consider the following equation

mX
i=1

aix�i +

nX
i=m+1

aix�ix�i =

pX
i=1

bix
i +

qX
i=p+1

bix
ixÆi + o: (6)

In this equation, for every i 2 [1; n] and j 2 [m+ 1; n], ai is a positive integer and x�i , x�j represent variables,
where �i 2 [1; k] and �i 2 [1; k]. Moreover, for every i 2 [1; q] and j 2 [p+1; q], bi is a positive integer and x
i ,
xÆj represent variables, where
i 2 [1; k] and Æi 2 [1; k]. Finally, o is a positive integer.

To codify the previous equation, we need to de�ne a DTD D = (E;A; P;R; r) and a set of constraints �. D
includes the following elements and attributes:

E = fr;X; Y g [
k[
i=1

fnig [
n[
i=1

f�ig [
n[

i=m+1

f�0i; �i; ci; di; eig [

q[
i=1

f
ig [

q[
i=p+1

f
0i; Æi; fi; gi; hig

A = fvg

In this DTD, r is the root. Each element ni is used to store the value of the variable xi. In the XML trees
that we consider in this proof, each node of type ni has an attribute v. Two di�erent nodes of type ni contain
di�erent values in v and the total number of values of v in these nodes represents the value of xi, that is,
jext(ni:v)j is equal to the value of xi. Moreover, nodes of type either X or Y also have an attribute v, and
they are used, like in the previous case, to store the values of the left hand side and the right hand side of (6),
respectively.

We de�ne P (r) as follows:

P (r) = n�1; : : : ; n
�
k; �

�
1; : : : ; �

�
m; �m+1; : : : ; �n;

�
1 ; : : : ;

�
p ;
p+1; : : : ;
q ; Y; : : : ; Y| {z }

o times

We de�ne the function P on �i and �i as follows:

P (�i) = X; : : : ;X| {z }
ai times

if 1 � i � m

P (�i) = (�i; ci; ci; X; : : : ; X| {z }
ai times

)�; �0i if m+ 1 � i � n

P (
i) = Y; : : : ; Y| {z }
bi times

if 1 � i � p

P (
i) = (Æi; fi; fi; Y; : : : ; Y| {z }
bi times

)�;
0i if p+ 1 � i � q

In order to codify (6) we need to represent the multiplication between two variables. To do this, we use �0i and

0i.

P (�0i) = (�i; di; di)
�; (�ij(ci; ei)�) if m+ 1 � i � n

P (
0i) = (Æi; gi; gi)
�; (
ij(fi; hi)�) if p+ 1 � i � q

For the rest of the elements of the DTD, P is de�ned as �.

P (�i) = � if m+ 1 � i � n P (Æi) = � if p+ 1 � i � q
P (ci) = � if m+ 1 � i � n P (fi) = � if p+ 1 � i � q
P (di) = � if m+ 1 � i � n P (gi) = � if p+ 1 � i � q
P (ei) = � if m+ 1 � i � n P (hi) = � if p+ 1 � i � q
P (X) = � P (Y) = �
P (ni) = � if 1 � i � k

Finally, we include the following attributes:

R(r) = ;
R(ni) = fvg 1 � i � k
R(X) = R(Y) = fvg
R(�i) = fvg 1 � i � n
R(
i) = fvg 1 � i � q
R(�i) = R(ci) = R(di) = R(ei) = fvg m+ 1 � i � n
R(Æi) = R(fi) = R(gi) = R(hi) = fvg p+ 1 � i � q
R(�0i) = ; m+ 1 � i � n
R(
0i) = ; p+ 1 � i � q

To ensure that XML documents that conform to D represent equation (6) we need to add a set of constraints
�. This set contains the following absolute keys:

r(X:v ! X) r(Y:v ! Y)
r(�i:v ! �i) for every 1 � i � n r(
i:v !
i) for every 1 � i � q
r(�i:v ! �i) for every m+ 1 � i � n r(Æi:v ! Æi) for every p+ 1 � i � q
r(ci:v ! ci) for every m+ 1 � i � n r(fi:v ! fi) for every p+ 1 � i � q
r(di:v ! di) for every m+ 1 � i � n r(gi:v ! gi) for every p+ 1 � i � q
r(ei:v ! ei) for every m+ 1 � i � n r(hi:v ! hi) for every p+ 1 � i � q
r(ni:v ! ni) for every 1 � i � k

� contains the following absolute foreign keys:

r(X:v � Y:v), r(Y:v ! Y)
r(Y:v � X:v), r(X:v ! X)
r(ns:v � �i:v), r(�i:v ! �i) 1 � i � n and the value of �i is equal to s
r(�i:v � ns:v), r(ns:v ! ns) 1 � i � n and the value of �i is equal to s
r(ns:v � ei:v), r(ei:v ! ei) m+ 1 � i � n and the value of �i is equal to s
r(ei:v � ns:v), r(ns:v ! ns) m+ 1 � i � n and the value of �i is equal to s
r(ns:v �
i:v), r(
i:v !
i) 1 � i � q and the value of
i is equal to s
r(
i:v � ns:v), r(ns:v ! ns) 1 � i � q and the value of
i is equal to s
r(ns:v � hi:v), r(hi:v ! hi) p+ 1 � i � q and the value of Æi is equal to s
r(hi:v � ns:v), r(ns:v ! ns) p+ 1 � i � q and the value of Æi is equal to s

Finally, � contains the following relative foreign keys:

�i(�i:v � di:v) �i(di:v ! di) m+ 1 � i � n
�i(di:v � �i:v) �i(�i:v ! �i) m+ 1 � i � n
�0i(�i:v � ci:v) �0i(ci:v ! ci) m+ 1 � i � n
�0i(ci:v � �i:v) �0i(�i:v ! �i) m+ 1 � i � n

i(Æi:v � gi:v)
i(gi:v ! gi) p+ 1 � i � q

i(gi:v � Æi:v)
i(Æi:v ! Æi) p+ 1 � i � q

0i(Æi:v � fi:v)
0i(fi:v ! fi) p+ 1 � i � q

0i(fi:v � Æi:v)
0i(Æi:v ! Æi) p+ 1 � i � q

We need to prove that there is an XML tree T such that T j= D and T j= � if and only if there exists a
non-negative integer solution for (6). To do this, we will prove that every XML tree T satisfying D and �
codi�es equation (6). More precisely, if the value of every variable xi is vi and jext(ni:v)j = vi, for i 2 [1; k],
then

jext(X:v)j =

mX
i=1

aiv�i +

nX
i=m+1

aiv�iv�i ; (7)

jext(Y:v)j =

pX
i=1

biv
i +

qX
i=p+1

biv
ivÆi + o: (8)

If an XML tree T j= D, then there exists n children of the root x1, : : : , xn of types �1, : : : , �n, respectively.
Every node of type X appears as a descendant of some xi. Thus, given that r(X:v ! X) 2 �, in order to prove
(7) it suÆces to prove that the number of values of v in the X-nodes that are descendant of xi (1 � i � n) is
equal to the ith term of the left hand of (7), that is,

jfext(x:v) j xi � x and x is of type Xgj = aiv�i 1 � i � m,
jfext(x:v) j xi � x and x is of type Xgj = aiv�iv�i m+ 1 � i � n.

In order to prove (8), we also have to prove that a set of equations is valid. But, this set is analogous to the set
of equations for the type X . Thus, we will show only that the equations for nodes of type X are valid.

If 1 � i � m, it is easy to see that the total number of X-nodes that are descendant of xi is equal to aiv�i .
Thus, let i be an integer in [m+ 1; n], let s be the value of �i in (6) and let t be the value of �i in (6).

Next, we prove that jfext(x:v) j xi � x and x is of type Xgj = aivsvt by induction on vs. Here, we will show
only the case vs = 2. It is straightforward to extend this idea for any value of vs.

Given that fr(�i:v ! �i); r(ns:v ! ns); r(�i:v � ns:v); r(ns:v � �i:v)g � �, we can deduce that jext(�i:v)j =
jext(ns:v)j = vs. Thus, we know that in T there are exactly vs nodes of type �i, since v is a key for �i. Each of
them has a child of type �0i. Then, there are exactly vs nodes of type �

0
i, and the last one must have children

of type ei, as we show in �gure 10.

(�i; ci; ci; X; : : : ; X)� �0i

�i

(�i; di; di)� �i

�0i(�i; ci; ci; X; : : : ; X)�

(�i; di; di)� (ci; ei)�

r1

r2

r3

r4

Figure 10: Part of the tree T .

We know that r(ci:v ! ci) and r(ei:v ! ei) are elements of �. Therefore, we can conclude that in the subtree
T4 of T whose root is r4, jfext(x:v) j x is a child of r4 of type cigj = jfext(x:v) j x is a child of r4 of type eigj,
since P (�0i) = (�i; di; di)

�; (�ij(ci; ei)
�). But, fr(nt:v ! nt), r(ei:v ! ei), r(nt:v � ei:v), r(ei:v � nt:v)g � �,

and, therefore, jfext(x:v) j x is a child of r4 of type cigj = jext(nt:v)j. Thus, given that r4 is a node of type
�0i we can use constraints �0i(�i:v ! �i), �

0
i(ci:v ! ci), �

0
i(�i:v � ci:v), �

0
i(ci:v � �i:v), to conclude that

jfext(x:v) j x is a child of r4 of type �igj = jext(nt:v)j = vt. In addition to this, the number of children of r4 of
type di is 2vt, because �

0
i(di:v ! di) 2 � and P (�0i) = (�i; di; di)

�; (�ij(ci; ei)�).

Given that r3 is a node of type �i we can use constraints �i(�i:v ! �i), �i(di:v ! di), �i(�i:v � di:v),
�i(di:v � �i:v) to conclude that jfext(x:v) j x is a child of r3 of type �igj = vt, since there are 2vt descendants
of r3 of type di and vt children of r4 of type �i. In addition to this, the number of children of r3 of type X is
aivt and the number of children of r3 of type ci is 2vt, because of the de�nition of P (�i).

We can use the argument given in the previous paragraph to conclude, by induction, that the number of children
of r2 of type �i and the number of its children of type di are vt and 2vt, respectively. Thus, the number of
children of r1 of type X is aivt and the number of descendants of r1 of type X is 2aivt. In general, if we continue
with this process we will infer that the number of descendants of xi of type X is vsaivt, since there are vs nodes
of type �i. This conclude our proof, since jfext(x:v) j xi � x and x is of type Xgj = aivsvt. 2

Proof of Theorem 4.3

To prove this theorem we need to introduce some terminology. Let D = (E; A; P; R; r) be a non-recursive
DTD, � a set of RCK ;FK -constraint over D and T an XML tree conforming to D and satisfying �. A string
w1 � � �wn over E is a path in T if there is a sequence of vertices v1; � � � ; vn�1; vn in V such that v1 = root, vi+1
is a child of vi (i 2 [1; n� 1]) and lab(vi) = wi (i 2 [1; n]). PathsD(T) is the set of paths in T .

Let x be a node in T of type � . The node x is a restricted node if � = r or � is the context type of some

constraint in �. If x is a restricted node, then

Scope(x) = fy j y is a node in T and y = x or there is a path w = �1:�2: � � � :�n such that

y is reachable from x by following path w and for every i 2 [2; n� 1];

�i is not the context type of some constraint in �g:

Moreover, if (D;�) is hierarchical, then for each � 2 E such that � = r or � is the context type of some
constraint in �, a restricted DTD D� = (E� ; A� ; P� ; R� ; �) is de�ned as follows.

1. E� is the set of elements types:

f� 0 j � 0 = � or there is a path w = �1:�2: � � � :�n in D from � to � 0 such that

for every i 2 [2; n� 1]; �i is not the context type of some constraint in �g:

2. A� = fl 2 A j there is � 0 2 E� n f�g such that l 2 R(� 0)g.

3. P� (�) = P (�). For each � 0 2 E� n f�g, if � 0 is the context type of some constraint in �, then P� (�
0) = �,

otherwise P� (�
0) = P (� 0).

4. For each � 0 2 E� n f�g, R� (�
0) = R(� 0). Moreover, R� (�) = ;.

It is straightforward to prove the following lemma.

Lemma 10 Let D = (E; A; P; R; r) be a non-recursive DTD, � a set of RCK ;FK -constraints over D and T
an XML tree conforming to D and satisfying �. For each node y in T there is at most one restricted node x in
T such that y 6= x and y 2 Scope(x).

To prove theorem 4.3, �rst we need to prove the following lemma.

Lemma 11 If there exists a function f : N ! N satisfying the following condition:

1. For each (D;�) 2 HRCK ;FK , if (D;�) is consistent, then there is an XML tree T conforming to D and
satisfying � such that for each restricted node x in T , jScope(x)j � f(jD� j), where � is the type of x.

Then SAT(HRCK ;FK) is in NSPACE(log(f)).

Proof. In order to prove the lemma, �rst we need to introduce some terminology. Let D = (E; A; P; R; r) be
a non-recursive DTD, � a set of RCK ;FK -constraints over D, � 2 E and w a path in D from r to � . Then, a
set of ACK ;FK -constraints �w over D� is de�ned as follows.

� For every key �1(�2:l2 ! �2) 2 �, if �1 is a symbol in w and �2 2 E� , then �2:l2 ! �2 is in �w.

� For every inclusion dependency �(�1:l1 � �2:l2), �1:l1 � �2:l2 is in �w.

Assume that (D;�) 2 HRCK ;FK . To verify whether (D;�) is consistent we have to check if there is an XML
tree T conforming to D and satisfying � such that for each restricted node x in T , jScope(x)j � f(jD� j), where
� is the type of x. In order to do this, we can use a simple non-deterministic algorithm:

CheckConsistency(w: path, visited : array)
Let � := last(w)
Generate D�

for each w0 2 paths(D) do /� creates a new copy of visited �/
visited 0[w0] = visited [w0].

T := GenerateTree(D�, w, visited
0)

if T 6j= �w then return(false)
else

for each w0 such that visited 0[w0] = 1 and P (last(w0)) 6= P� (last(w
0)) do

if CheckConsistency(w0, visited 0) = false then return(false)
return(true)

In this algorithm, last(w) represents the last element type of the path w and visited (visited 0) is an array
indexed by the paths in the DTD D. Function GenerateTree guesses and returns an XML tree conforming to
D� of size at most f(jD� j). Initially, we set up all the values of visited as 0 and invoke CheckConsistency(r,
visited). CheckConsistency construct the DTD Dr and invokes GenerateTree(Dr, r, visited

0). This function
guesses an XML tree Tr of size at most f(jDrj) conforming to Dr. Besides, for each path w0 2 PathsDr

(Tr) it
changes the value of visited 0[w0] to 1, indicating that this path has been visited. If Tr 6j= �r, then it returns
false. Otherwise, it has guessed the part of an XML tree T that could conforms to D and satisfy �. This part
correspond to the scope of the root. In order to continue guessing T , the algorithm has to consider all the leaves
� of Tr for which P (�) 6= Pr(�). For each of them, we recursively apply the same algorithm.

The previous algorithm works in space O(f), since GenerateTree guesses XML trees of size at most f(jDj). It
is possible to improve this by using the same idea considered in the proof of Theorem 3.5 (b). By using Lemma
9, we can replace the function GenerateTree by a new function Count.

Count(D1: DTD, w: path, s: regular expression, visited : array)
if s = � then return(values of ext)
else if s 2 E1 then = � D1 = (E1; A1; P1; R1; r1) � =

jext(s)j := jext(s)j+ 1
visited [w:s] := 1
for each l 2 R1(s) do

if jext(s:l)j = 0 then jext(s:l)j := 1
else

ip a coin
if \head" then jext(s:l)j := jext(s:l)j+ 1

Count(D1, w:s, P1(s), visited)
else if s = s1; s2 then

Count(D1, w, s1, visited)
Count(D1, w, s2, visited)

else if s = s1js2 then

ip a coin
if \head" then Count(D1, w, s1, visited)
else Count(D1, w, s2, visited)

else if s = s�1 then

guess n 2 [0; f(jD1j)]
for i := 1 to n do

Count(D1, w, s1, visited)

This algorithm is invoked as Count(D� , w
0, � , visited). It guesses an XML tree T conforming to D� and instead

of storing this tree, for each element node s 2 E� and l 2 R� (s) it stores jext(s)j and jext(s:l)j. For each path
w 2 Paths(D�), it changes the value of visited [w

0:w] to 1, where w0 is a path from the root to an element node
that has at least one child of type � .

Initially, jext(x)j = 0 for each x 2 E� . In each step, Count veri�es whether the regular expression s is an
element type. If this is the case, it increments jext(s)j, since it found another node of type s, and for each
l 2 R� (s), it
ips a coin for deciding whether to assign a new value to the attribute l (and then increment
jext(s:l)j) or to copy this value from attribute l of another node of type s (and leave jext(s:l)j intact). Notice
that if jext(s:l)j = 0, then it is not possible to copy the value of l from another node of type s, and, therefore,
the algorithm must assign the value 1 to jext(s:l)j. Finally, for each s 2 E, it recursively invokes to Count(D� ,
w:s, P� (s), visited).

If s 62 E, then s = (s1; s2), s = (s1js2) or s = �, where s1 and s2 are regular expressions. If s = (s1; s2), then
in order to generate an XML tree conforming to D the algorithm invokes to Count(D� , w, s1, visited) and
Count(D� , w, s2, visited). If s = (s1js2), then in order to generate an XML tree conforming to D, the algorithm
nondeterministically decides to invoke to Count(D� , w, s1, visited) or Count(D� , w, s2, visited). Finally, if
s = �, then the algorithm returns the values of jext(s)j for each s 2 E� and jext(s:l)j for each s 2 E� and
l 2 R� (s) .

A new version of CheckConsistency that uses Count is de�ned as follows.

CheckConsistency(w: path, visited : array)
Let � := last(w) and w1 be the path obtained from w by removing its last element
Generate D�

for each w0 2 paths(D) do
visited 0[w0] = visited [w0].

values of ext := Count(D� , w1, � , visited
0)

if values of ext do not satisfy C�w then return(false)
else

for each w0 such that visited 0[w0] = 1 and P (last(w0)) 6= P� (last(w
0)) do

if CheckConsistency(w0, visited 0) = false then return(false)
return(true)

Notice that the previous algorithm works in space O(log(f)), since Count works in space O(log(f)) (all the
values stored by this function are less than or equal to f(jDj)). Thus, we conclude that SAT(HRCK ;FK) is in
NSPACE(log(f)). 2

In order to �nish the proof of theorem 4.3, we have to �nd the function f mentioned in the previous lemma.
We do this in the following lemmas.

Lemma 12 Given a non-recursive DTD D and a set � of ACK ;FK -constraints over D, there is a �xed poly-
nomial p such that if there is an XML tree T conforming to D and satisfying �, then there is an XML tree T 0

conforming to D and satisfying � such that jT 0j � 22
p(jDj)

and PathsD(T
0) � PathsD(T).

Proof. In [14] it is shown that the consistency problem for DTDs and ACK ;FK -constraints is in NP. Given a
DTD D = (E; A; P; R; r) and a set � of ACK ;FK -constraints, [14] shows how to construct a polynomial size
system of linear integer equations �(D;�) including, among others, variables fx� j � 2 Eg and fx�:l j � 2
E and l 2 R(�)g. The system admits a solution if and only if there is an XML tree T conforming to D and
satisfying � such that jext(�)j is equal to the value of x� , for each � 2 E, and jext(�:l)j is equal to the value of
x�:l, for each � 2 E and l 2 R(�). We will use this result in order to prove the lemma.

Let D0 be a DTD (E; A; P; R; r) and �0 be a set of ACK ;FK -constraints. In order to prove this lemma, we
need to de�ne from D0 a new DTD D1 = (E1; A; P1; R1; r) such that

� E1 = E [Paths(D0).

� For each � 2 E n frg, P1(�) = �. For each w 2 Paths(D0), P1(w) = fw(P (last(w))), where last(w) is
the last symbol of w and fw is a homomorphism de�ned as fw(�

0) = � 0; w:� 0 (� 0; w:� 0 is a string with two
symbols: the element type � 0 and the path w:� 0), for each � 0 in the alphabet of P (last(w)).

� For each � 2 E, R1(�) = R(�). Moreover, for each w 2 Paths(D0), R1(w) = ;.

It is straightforward to verify the following lemma.

Lemma 13 There is an XML tree T0 conforming to D0 and satisfying �0 i� there is an XML tree T1 conforming
to D1 and satisfying �0 such that:

1. For each � 2 E, jext(�)j in T0 is equal to jext(�)j in T1.

2. For each � 2 E and l 2 R(�), jext(�:l)j in T0 is equal to jext(�:l)j in T1.

3. For each w 2 Paths(D0), jext(w)j in T1 is equal to the number of nodes in T0 reachable from the root by
following the path w.

Suppose that T0 is an XML tree conforming to D0 and satisfying �0. Then, there is an XML tree T1 conforming
to D1, satisfying �0 and satisfying the conditions mentioned in Lemma 13. Thus, the system of linear equations
�(D1;�0) admits a solution. Moreover, the system of linear equations

�0(D1;�0) = �(D1;�0) [fxw = 0 j w 2 Paths(D0) n PathsD0(T0)g

admits a solution since T1 satis�es the third condition of the lemma. But, if this system has a solution, it has
a polynomial size solution [24]. Thus, given that the size of �0(D1;�0) is polynomial in the size of D1 and �0,
we conclude that there is a �xed polynomial s and a solution of �0(D1;�0) such that for every variable x in
�0(D1;�0), the value of x is at most 2s(jD1j+j�0j). Moreover, for each w 2 Paths(D0) n PathsD0(T0) the value
of xw is equal to 0.

Therefore, by using the result in [14] we conclude that there is an XML tree T 0
1 conforming to D1 and satisfying

�0 such that jext(�)j � 2s(jD1j+j�0j) for each � 2 E, jext(�:l)j � 2s(jD1j+j�0j) for each � 2 E and l 2 R(�),
jext(w)j � 2s(jD1j+j�0j) for each w 2 Paths(D0), and jext(w)j = 0 for each w 2 Paths(D0) n PathsD0(T0). The
size of D1 is exponential in the size of D0 and the size of �0 is polynomial in the size of D0 (it is easy to prove
that j�0j is O(jEj3jAj2)). Therefore, by using Lemma 13 we conclude that there is �xed polynomial p and an

XML tree T 0
0 conforming to D0 and satisfying �0 such that jT 0

0j � 22
p(jD0j)

. Moreover, given that jext(w)j = 0 in
T 0
1 for each w 2 Paths(D0) nPathsD0(T0), we deduce that PathsD0(T

0
0) � PathsD0(T0). This proves the lemma.

2

Lemma 14 Given a non-recursive DTD D = (E; A; P; R; r) and a set � of RCK ;FK -constraints over D, if
(D;�) is consistent and hierarchical, then there is an XML tree T conforming to D and satisfying � such that

for each restricted node x in T , jScope(x)j � 22
p(jD� j)

, where � is the type of x and p is the polynomial mentioned
in Lemma 12.

Proof. Let D = (E; A; P; R; r) be a non-recursive DTD and � be a set of RCK ;FK -constraints over D such
that (D;�) is hierarchical. Suppose that T = (V; lab; ele; att; val; root) is an XML tree such that T j= D and
T j= �. We will prove that there exists an XML tree T 0 conforming to D and satisfying � such that for each

restricted node x in T 0 of type � , jScope(x)j � 22
p(jD� j)

. To do this, we will inductively de�ne T 0 from T .

Let Dr = (Er ; Ar; Pr; Rr; r) and �r be the following set of ACK ;FK -constraints over Dr:

� For every key r(�1:l1 ! �1) 2 �, if �1 2 Er, then �1:l1 ! �1 2 �r.

� For every inclusion dependency r(�1:l1 � �2:l2) 2 �, �1:l1 � �2:l2 2 �r.

Notice that in the last rule we do not have to impose the condition �1; �2 2 Er, since (D;�) is hierarchical.

Given that (D;�) is consistent, we can conclude that (Dr;�r) is consistent. Let Tr be a subtree of T whose
element nodes are Scope(root). In this subtree we do not include the attributes of r. Moreover, for each
node x 2 Scope(root) n frootg, we also include all the children of x whose label is S and all the attributes
of x. It is straightforward to prove that Tr conforms to Dr and satis�es �r. Thus, we can use Lemma 12

to conclude that there is an XML tree T 0
r conforming to Dr and satisfying �r such that jT 0

rj � 22
p(jDrj)

and
PathsDr

(T 0
r) � PathsDr

(Tr).

In order to construct the �rst levels of the tree T 0, we give a fresh set of values to the attributes of root and we
include T 0

r as a subtree of T 0 rooted at note root, as it is shown in �gure 11. We call this subtree T1.

Notice that T1 does not necessarily satisfy the DTD D, since in order to construct Dr for some elements types
� we rede�ne P (�) as Pr(�) = �. These elements correspond to some of the leaves of the tree T1.

Let x be a node in T1 of type � , where � is an element type such that P (�) 6= Pr(�). Let w be the path in
T1 such that x is reachable from the root by following w. We de�ne �w as a set ACK ;FK -constraints over the
restricted DTD D� :

� For every key �1(�2:l2 ! �2) 2 �, if �1 is a symbol in w and �2 2 E� , then �2:l2 ! �2 is in �w.

� For every inclusion dependency �(�1:l1 � �2:l2), �1:l1 � �2:l2 is in �w.

Notice that if there is an element type �1 such that �1(�2:l2 � �3:l3) is an inclusion dependency in �, �1 is an
ancestor of � and �1 appears as a symbol in w, then neither �2 nor �3 can be a descendant of � , since (D;�)
is hierarchical. Thus, we need only to consider inclusion dependencies of the form �(�2:l2 � �3:l3) in order to
de�ne �w.

T1

T2

T3

T4

T5

T6

copy of T 0
r

node x

copy of T 0
w

.

.

.

.

.

.

.

.

root

Figure 11: Construction of tree T 0.

Given that PathsDr
(T 0

r) � PathsDr
(Tr), there is a node y in T of type � such that y is reachable from the root

of T by following the path w. It is easy to verify that the subtree Tw of T whose nodes are Scope(y) conforms
to D� and satis�es �w, since T j= � and T j= D. Thus, we can apply Lemma 12 to conclude that there is a

tree T 0
w conforming to D� and satisfying �w such that jT 0

wj � 22
p(jD� j)

. We de�ne a new tree T2 by giving a
fresh set of values to the attributes of T 0

w. We put this tree as the subtree of T 0 rooted at node x, as it is shown
in �gure 11.

We continue de�ning T 0 until we reach the last level in T . We get a tree T 0 conforming to D and satisfying

� such that for every restricted node x in T 0, jScope(x)j � 22
p(jD� j)

, where � is the type of x. Notice that
T 0 satis�es all the keys in �, since it locally satis�es these constraints, for the set of nodes in the scope of a
restricted node, and every time that we copy a subtree to T 0 we use di�erent values for the attributes. It also
satis�es all the foreign keys in � since each of them is applicable only to the scope of some restricted node. 2

Proof of Theorem 4.4

It is convenient to reformulate the notion of d-locality using the DTDs D� , for � a context type of a � constraint,
introduced in the proof of Theorem 4.3. Namely, (D;�) is d-local, if

1. Depth(Dr) � d.

2. For each � 2 E, if � is the context type of some constraint in �, then Depth(D�) � d.

Now the membership in PSPACE is a consequence of lemma 11. We establish the PSPACE-hardness of
SAT(2-HRCK ;FK) by reduction from the QBF-CNF problem: Given a quanti�ed boolean formula � in prenex
conjunctive normal form, determine whether � is valid. It is a known result that QBF-CNF is PSPACE-complete.

Let � be a formula of the form

Q1x1 � � �Qmxm ; (9)

where eachQi 2 f8; 9g (1 � i � m) and is a propositional formula in conjunctive normal form, say C1^� � �^Cn,
that mentions only variables x1; : : : ; xm. We construct a DTD D = (E;A; P;R; r) representing this formula as
follows.

� E = fr; Cg [
m[
i=1

fxi; �xi; 1xi ; 0xi ; Nxi ; Pxi ; Axi ; Bxig

� A = fvg.

� In order to de�ne the function P , �rstly we consider the quanti�ers of �. Thus, we consider Q1 in order
to de�ne P on the root r:

P (r) =

�
Nx1 jPx1 Q1 = 9

Nx1 ; Px1 Q1 = 8

In general, for each 1 � i � m� 1, we consider quanti�er Qi+1 in order to de�ne P (Nxi) and P (Pxi):

P (Nxi) = P (Pxi) =

�
Nxi+1 jPxi+1 Qi+1 = 9

Nxi+1 ; Pxi+1 Qi+1 = 8

We need to represent the formula as a regular expression, in order to de�ne P on the type elements Nxm

and Pxm . Given a clause Cj =
Wp
i=1 yi _

Wq
i=1 :zi, t(Cj) is de�ned as the regular expression y1j � � � jypj�z1j

� � � j�zq . We use t to de�ne P (Nxm) and P (Pxm):

P (Nxm) = P (xxm) = C; (0x1 ; Ax1 ; Ax1 j 1x1 ; Bx1 ; Bx1); : : : ;

(0xm ; Axm ; Axm j 1xm ; Bxm ; Bxm); t(C1); : : : ; t(Cn):

Finally, for the rest of the elements in E, we de�ne P as follows:

P (C) = �
P (0xi) = P (1xi) = P (�xi) = P (xi) = P (Axi) = P (Bxi) = � 1 � i � m

� We de�ne the function R as:

R(r) = ;
R(Pxi) = R(Nxi) = ; 1 � i � m
R(C) = fvg
R(0xi) = R(1xi) = R(�xi) = R(xi) = R(Axi) = R(Bxi) = fvg 1 � i � m.

It is also necessary to de�ne a set of constraints � such that (D;�) is hierarchical and 2-local. In this case, �
contains the following constraints:

Nxi(Bxi :v ! Bxi) 1 � i � m
Pxi(Axi :v ! Axi) 1 � i � m
Nxm(xi:v � 1xi :v) Nxm(1xi :v ! 1xi) 1 � i � m
Nxm(�xi:v � 0xi :v) Nxm(0xi :v ! 0xi) 1 � i � m
Nxm(Ai:v � C:v) Nxm(C:v ! C) 1 � i � m
Nxm(Bi:v � C:v) Nxm(C:v ! C) 1 � i � m
Pxm(xi:v � 1xi :v) Pxm(1xi :v ! 1xi) 1 � i � m
Pxm(�xi:v � 0xi :v) Pxm(0xi :v ! 0xi) 1 � i � m
Pxm(Ai:v � C:v) Pxm(C:v ! C) 1 � i � m
Pxm(Bi:v � C:v) Pxm(C:v ! C) 1 � i � m

For instance, for the formula 8x19x28x3(x1 _x2 _:x3), an XML tree conforming to D is shown in �gure 12. In
this tree, a node of type Nxi represents a negative value (0) for the variable xi and a node of type Pxi represents
a positive value (1) for this variable. Thus, given that the root has two children of types Nx1 and Px1 , the
values 0 and 1 are assigned to x1 (representing the quanti�er 8x1). Nodes of type Nx1 has one child of type
either Nx2 or Px2 , and, therefore, either 0 or 1 is assigned to x2 (representing the quanti�er 9x2). The same
holds for nodes of type Px2 . The fourth level of the tree represents the quanti�er 8x3.

In �gure 12, every path from the root r to a node of type either Nx3 or Px3 represents a truth assignment for
the variables x1, x2, x3. For example, the path from the root to the node u represents the truth assignment �u:
�u(x1) = 0, �u(x2) = 1 and �u(x3) = 0. It is necessary to verify that all these assignments satisfy the formula

Px2

Px3

Nx1

Nx2

Px1

Nx3 Px3Nx3

r

.

.

. .

.

. .

.

.

C; (0x1 ; Ax1 ; Ax1 j1x1 ; Bx1 ; Bx1); :::; (x1jx2j �x3)

u

Figure 12: An XML tree conforming to the DTD constructed from 8x19x28x3(x1 _ x2 _ :x3).

x1 _ x2 _ :x3. In order to do this, �rstly we use the set of constraint � to enforce that for every node n of
type Nx3 or Px3 , its children of type either 0xi or 1xi represents the truth assignment from the root to n. For
example, u must have a children of type 0x1 (�u(x1) = 0) and this is enforced by constraints Nx1(Bx1 :v ! Bx1),
Nx3(Bx1 :v � C:v). If u has a child of type 1x1 , then it has two children of type Bx1 , by de�nition of P (Nx3).
But, v is a key for the children of u of type Bx1 and it has only one child of type C, a contradiction. Secondly, we
use the constraints in � of the form Nx3(xi:v � 1xi :v), Nx3(�xi:v � 0xi :v), Px3(xi:v � 1xi :v), Px3(�xi:v � 0xi :v)
(1 � i � 3) to check whether the truth assignments de�ned by the tree satisfy x1 _ x2 _ :x3. For instance, �u
satis�es this formula if and only if it is possible to choose a child of u from (x1jx2j�x3) and it is possible to give
a value to the attribute v that satis�es constraints Nx3(xi:v � 1xi :v), Nx3(�xi:v � 0xi :v) (1 � i � 3). In this
case, we can choose either x2 or �x3 as child of u in order to satisfy these constraints.

In general, we need to prove that �, de�ned in (9), is valid if and only if there is an XML tree T such that
T j= D and T j= �. We will show only the \if" direction. The \only if" direction is similar.

Suppose that there is an XML tree T such that T j= D and T j= �. Let n1 be a node of T of type Nxi and n2
be a descendant of n1 of type Nxm or Pxm . Given that T j= �, v must be a key for all the descendants of n1
of type Bxi , since Nxi(Bxi :v ! Bxi) 2 �. In particular, v must be a key for the elements of type Bxi that are
children of n2. Thus, if 1xi is a child of n2, then n2 has two children of type Bxi , since T j= D, with di�erent
values in the attribute v. But, in this case T cannot satisfy the constraints Nxm(Bi:v � C:v), Pxm(Bi:v � C:v),
since n2 has only one child of type C, a contradiction. Therefore, n2 has a child of type 0xi .

By using an argument analogous to the previous one, it can be veri�ed that if n1 is a node of type Pxi and n2
is a descendant of n1 of type Nxm or Pxm , then n2 has a child of type 1xi . Thus, a path from the root to a
node n of type Nxm or Pxm represents a truth assignment for the variables x1, : : : , xm, say �. But, T j= �
and this set of constraints contains the formulas Nxm(xi:v � 1xi :v), Nxm(�xi:v � 0xi :v), Pxm(xi:v � 1xi :v),
Pxm(�xi:v � 0xi :v). Thus, � must satisfy , since T j= D and, therefore, for every clause in it is possible to
pick up a literal which is satis�ed by this truth assignment.

By the previous paragraph, we know that every path in T , from the root to a node of type Nxm or Pxm ,
represents a truth assignment for the variables x1, : : : , xm that satis�es . By de�nition of D, these paths
represent the quanti�ers of �: For every existential quanti�er Qi we choose either the value 0 (represented by
Nxi) or 1 (represented by Pxi) and for every universal quanti�er Qj we choose both values (Nxj and Pxj). Thus,
we can conclude that � is valid. 2

