
Path Constraints on Semistructured and Structured Data

Peter Buneman�

University of Pennsylvania

peter@central.cis.upenn.edu

Wenfei Fany

University of Pennsylvania

wfan@saul.cis.upenn.edu

Scott Weinsteinz

University of Pennsylvania

weinstein@linc.cis.upenn.edu

Abstract

We present a class of path constraints of interest in con-
nection with both structured and semistructured databases,
and investigate their associated implication problems. These
path constraints are capable of expressing natural integrity
constraints that are not only a fundamental part of the se-
mantics of the data, but are also important in query opti-
mization. We show that in semistructured databases, de-
spite the simple syntax of the constraints, their associated
implication problem is r.e. complete and �nite implication
problem is co-r.e. complete. However, we establish the de-
cidability of the implication problems for several fragments
of the path constraint language, and demonstrate that these
fragments su�ce to express important semantic information
such as inverse relationships and local database constraints
commonly found in object-oriented databases. We also show
that in the presence of types, the analysis of path constraint
implication becomes more delicate. We demonstrate some
simple decidability results for two practical object-oriented
data models.

1 Introduction

Path inclusion constraints have been studied in [3] in the
context of semistructured data.

Consider the following object-oriented schema:

class studentf
Name: string;
Taking: set(course);

g

class coursef
CName: string;
Enrolled: set(student);

g

Students: set(student);
Courses: set(course);

�This work was partly supported by the Army Research O�ce
(DAAH04-95-1-0169) and NSF Grant CCR92-16122.

ySupported by an IRCS graduate fellowship.
zSupported by NSF Grant CCR-9403447.

Name

C1 S2S1 C2

Students Courses Students Courses

"Phil4""Smith" "Chem3" "Jones"

CName CNameName

Taking

Enrolled

Taking

Enrolled

Taking

Enrolled

r

Figure 1: Representation of a school database

in which we assume that the declarations Students and
Courses de�ne (persistent) entry points into the database.
As it stands, this declaration does not provide full informa-
tion about the intended structure. Given such a database
one would often expect the following informally stated con-
straints to hold:

(a) 8 s 2 Students 8 c 2 s:Taking (c 2 Courses)
(b) 8 c 2 Courses 8 s 2 c:Enrolled (s 2 Students)

That is, any course taken by a student must be a course
that occurs in the database extent of courses, and any stu-
dent enrolled in a course must be a student that similarly
occurs in the database. We shall call such constraints ex-
tent constraints. It should be noted that there is a natural
analogy between extent constraints and (unary) inclusion
dependencies developed for relational databases.

We might also expect an inverse relationship to hold between
Taking and Enrolled. Object-oriented databases di�er in
the ways they enable one to state and enforce extent con-
straints and inverse relationships. Compare, for example, O2

[4] and ObjectStore [13]. The presence of such constraints
is important both for database and for query optimization.

Let us develop a more formal notation for describing such
constraints. To do this we borrow an idea that has been
exploited in semistructured data models (e.g., [2, 7]) of re-
garding semistructured data as an edge-labeled graph. The
database consists of two sets, and we express this by a root
node r with edges emanating from it that are labeled ei-
ther Students or Courses. These connect to nodes that re-
spectively represent students and courses which have edges
emanating from them that respectively describe the struc-
ture of students and courses. For example a student has a
single Name edge connected to a string node, and multiple
Taking edges connected to course nodes. See Figure 1 for
an example of such a graph.

Using this representation of data we can examine certain
kinds of constraints.

Extent Constraints. By taking edge labels as binary pred-
icates, constraints of the form (a) and (b) above can be
stated as:

8 c (9 s (Students(r; s) ^ Taking(s; c))! Courses(r; c))
8 s (9 c (Courses(r; c) ^Enrolled(c; s))! Students(r; s))

These constraints are examples of \word constraints" stud-
ied in [3]; the implication problems for word constraints were
shown to be decidable in semistructured databases there.

Inverse Constraints. These are common in object-oriented
databases [11]. With respect to our student/course schema,
the inverse between Taking and Enrolled is expressed as:

8 s c (Students(r; s) ^ Taking(s; c)! Enrolled(c; s))
8 c s (Courses(r; c) ^Enrolled(c; s)! Taking(s; c))

Such constraints cannot be expressed as word constraints or
even by the more general path constraints given in [3].

Local Database Constraints. In database integration it
is sometimes desirable to make one database a component
of another database, or to build a \database of databases".
Suppose, for example, we wanted to bring together a number
of student/course databases as described above. We might
write something like:

class School-DBf
DB-identifier: string;
Students: set(student); // as defined above
Courses: set(course); // as defined above

g

Schools: set(School-DB);

Now we may want certain constraints to hold on components
of this database. For example, the \extent constraints" de-
scribed above now hold on each member of the Schools set.
Here we refer to a component database such as a member
of the set Schools as a local database and its constraints as
local database constraints. Extending our graph representa-
tion by adding Schools edges from the new root node to the
roots of local databases, the local extent constraints are:

8d c (Schools(r; d) ^ 9 s (Students(d; s) ^ Taking(s; c))
! Courses(d; c))

8d s (Schools(r; d) ^ 9 c (Courses(d; c) ^Enrolled(c; s))
! Students(d; s))

Again, these cannot be stated as word constraints.

These considerations give rise to the question whether there
is a natural generalization of the constraints of [3] which
will capture these slightly more complicated forms. Here we
consider a class of path constraints of either the form

8xy (�(r; x) ^ �(x; y)!
(x; y));

or the form

8xy (�(r; x) ^ �(x; y)!
(y; x));

where �(x; y) (�(x; y),
(x; y)) represents a path from node
x to node y.

This class of path constraints can be used to express all
the constraints we have so far encountered. These path
constraints are useful not only for optimizing queries, but

also for describing structure, in the context of structured
data or semistructured data. Surprisingly, the implication
problem for this mild generalization of word constraints is
undecidable in semistructured databases. However, certain
restricted cases are decidable, and these cases are su�cient
to express at least the constraints we have described above.

Another issue is the interaction between constraints and the
type system. The type system or schema de�nition may also
be viewed as imposing a constraint on the data. In general
we can no longer expect results developed for semistructured
data to hold when a type is imposed on the data. Indeed,
the proof of the decidability of word constraint implication
given in [3] breaks down in the presence of type constraints
and again, only in restricted type systems do we have de-
cidability results on word constraint implication.

The rest of the paper is organized as follows. Section 2 for-
mally presents our path constraint language, P , and estab-
lishes the undecidability of its associated implication prob-
lems in the context of semistructured databases. Section 3
identi�es several fragments of P , and shows that the im-
plication and �nite implication problems for each of these
fragments are decidable in semistructured databases. Sec-
tion 4 studies the interaction between type constraints and
path constraints, and establishes some simple decidability
results for two speci�c type systems: a \generic" object-
oriented type system and a type system based on ACeDB
[14], which is a database management system popular with
biologists. Section 5 summarizes our results and identi�es
directions for further work.

2 Path constraints on untyped data

In this section, we investigate the path constraint language
and its associated implication problems in the context of
semistructured data, by which we mean data whose struc-
ture is not constrained by a schema. We �rst present an ab-
straction of semistructured databases, and de�ne the path
constraint language, P , in terms of �rst-order logic. We
then show that, despite the simple syntax of the language
P , its associated implication problem is r.e. complete and
its �nite implication problem is co-r.e. complete.

We assume the standard notations used in �rst-order logic.

2.1 Path constraint language P

Semistructured data is usually represented as an edge-labeled
(rooted) directed graph, e.g., in UnQL [7] and in OEM [2].
See [1] for a survey of semistructured data models. Along
the same lines, here we use an abstraction of semistructured
databases as (�nite) �rst-order logic structures of signature

� = (r; E);

where r is a constant denoting the root and E is a �nite set
of binary relations denoting the edge labels.

A path, i.e., a sequence of labels, can be represented as a
logic formula with two free variables. More speci�cally, a
path is a formula �(x; y) of one of the following forms:

� x = y, denoted �(x; y) and called an empty path;

� K(x; y), where K 2 E; or

� 9z(K(x; z) ^ �(z; y)), where K 2 E and �(z; y) is a
path.

Here the free variables x and y denote the tail and head
nodes of the path, respectively. We write �(x; y) as � when
the parameters x and y are clear from the context.

The path constraint language P is formalized as follows.

De�nition 2.1: A path constraint ' is an expression of
either the forward form

8xy (�(r; x) ^ �(x; y)!
(x; y));

or the backward form

8xy (�(r; x) ^ �(x; y)!
(y; x));

where �; �;
 are paths. The path � is called the pre�x of '.
The paths �, � and
 are denoted pf('), lt(') and rt('),
respectively.

The set of all path constraints is denoted P .

For example, all the path constraints presented in the last
section are constraints in the set P .

Next, we identify several special subclasses of P .

We call a path constraint ' of P a simple path constraint if
pf(') = �. That is, ' is of either the form

8 y (�(r; y)!
(r; y));

or the form
8 y (�(r; y)!
(y; r)):

The set of all simple path constraints is denoted Ps.

A proper subclass of simple path constraints, called word
constraints and denoted Pw, was introduced and investi-
gated in [3]. A word constraint can be represented as

8 y (�(r; y)!
(r; y));

where � and
 are paths.

As observed by [3], every word constraint (in fact, every
simple path constraint) can be expressed by a sentence in
two-variable �rst-order logic (FO2), the fragment of �rst-
order logic consisting of all relational sentences with at most
two distinct variables. Recently, [12] has shown that the
satis�ability problem for FO2 is NEXPTIME-complete by
establishing that any satis�able FO2 sentence has a model
of size exponential in the length of the sentence. The de-
cidability of the implication and �nite implication problems
for word constraints follows immediately. In fact, [3] directly
established (without reference to the embedding into FO2)
that the implication problems for word constraints are in
PTIME.

In contrast to word constraints, many path constraints in P
are not expressible in FO2.

Example 2.1: Consider the structures G and G0 given in
Figure 2. It is easy to verify, using the 2-pebble Ehrenfeucht-
Fra��ss�e style game [5], that G and G0 are equivalent in FO2.
However, G and G0 are distinguished by the path constraint

' = 8xy (K(r; x) ^K(x; y)! 9z(K(x; z) ^K(z; y)));

because G j= ' but G0 6j= '. This shows that ' is not
expressible in FO2.

G

K

KK

G’

K

r r

K

K K

K

K K

K K

K K KK KKK K

Figure 2: Structures distinguishable by P

2.2 Implication problems for P

The (�nite) implication problem for P is the problem of
determining, given any �nite set � [f'g of sentences in
P , whether all the (�nite) �-structures satisfying � are also
models of '.

Theorem 2.1: The implication problem for P is r.e. com-
plete, and the �nite implication problem for P is co-r.e. com-
plete.

In fact, this result also holds for two proper subclasses of P .
One of the subclasses, Pf , is the set of all the constraints of
the forward form in P . The other, P+, is the set

f' j ' 2 P; lt(') 6= �; rt(') 6= �g:

For P+ and Pf we have the following theorems, from which
Theorem 2.1 follows immediately.

Theorem 2.2: The implication problem for P+ is r.e. com-
plete, and the �nite implication problem for P+ is co-r.e.
complete.

Theorem 2.3: The implication problem for Pf is r.e. com-
plete, and the �nite implication problem for Pf is co-r.e.
complete.

Proof sketch: Theorem 2.2 is proved by reduction from the
halting problem for two-register machines [6]. More speci�-
cally, the idea of the proof is to show that the set

S(P+) = f
^

� ^ :' j ' 2 P+; � � P+; � is �niteg

is a conservative reduction class [6]. That is, we show that
there is a recursive function f from the set of all �rst-order
sentences, FO, to S(P+), such that for all 2 FO,

� is satis�able, i.e., has a model, i� f() is satis�-
able; and

� is �nitely satis�able, i.e., has a �nite model, i�
f() is �nitely satis�able.

To show that S(P+) is a conservative reduction class, we
prove the existence of a semi-conservative reduction from
FO to S(P+). That is, there is a recursive function h :
FO ! S(P+), such that for all 2 FO,

� if is not satis�able, then h() is not satis�able; and

� if is �nitely satis�able, then h() is �nitely satis�-
able.

This su�ces, since [6] establishes that if there is a semi-
conservative reduction from FO to a recursive subclass of
FO, then the subclass is a conservative reduction class.

To establish the existence of a semi-conservative reduction
from FO to S(P+), we encode the following two-register
machineM by a sentence of S(P+). The machineM has two
halting states: state 1 and 2. Given any sentence in FO,
M halts at state 1 if and only if is not satis�able, and halts
at state 2 if and only if is �nitely satis�able. The existence
of such a two-register machine was established in [15] (see
also [6]). See [8] for the detailed proof of Theorem 2.2.

The proof of Theorem 2.3 is similar and can also be found
in [8].

3 Restricted path constraint implication in untyped data

The undecidability results given in the last section suggest
that we search for fragments of P whose implication prob-
lems are decidable, and yet retain su�cient expressive power
of the full language. In this section, we identify several frag-
ments of P which share the following properties. First, they
each properly contain the set of word constraints. Second,
each of them is not included in two-variable �rst-order logic.
Third, they allow the formulation of many semantic rela-
tions which are of interest from the point of view of database
theory, such as extent constraints, inverse relationships and
local database constraints. And �nally, they each possess
decidable implication problems in the context of semistruc-
tured databases.

Before we present these fragments, we �rst de�ne some basic
notations.

The concatenation of paths �(x; z) and �(z; y), denoted
�(x; z) � �(z; y) or simply � � �, is the path

� �(x; y), if � = �;

� 9 z (K(x; z) ^ �(z; y)), if � = K for some K 2 E;

� 9u (K(x; u) ^ (�0(u; z) � �(z; y))), if �(x; z) is of the
form 9u (K(x; u)^�0(u; z)), where K 2 E and �0 is a
path.

The length of path �, j�j, is de�ned by:

j�j =

(
0 if � = �
1 if � = K
1 + j�j if � = K � �

Next, we introduce several fragments of P , demonstrate
their expressive power, and establish the decidability of their
associated implication problems. We also present a mild
generalization of P , P c, and show that the decidability re-
sults for the fragments of P investigated in this section also
hold for the analogous fragments of P c.

3.1 Pre�x restricted implication

The implication problems for simple path constraints, which
are known to be decidable, can be viewed as a restricted form
of the implication problems for P . More speci�cally, the
implication problems for Ps are the implication problems

for P under the following restriction: for any given �nite
subset of P in the implication problems, the pre�x of each
constraint in the subset is the empty path.

By replacing this pre�x restriction with a weaker one, we
de�ne the pre�x restricted implication problems for P as
follows.

De�nition 3.1: A �nite subset of P is called a pre�x re-
stricted subset of P if the pre�xes of all the constraints in
the set have the same length.

The pre�x restricted (�nite) implication problem for P is the
problem of determining, given any pre�x restricted subset
� [f'g of P , whether all the (�nite) models of � are also
models of '.

Obviously, the implication problems for word constraints are
special cases of the pre�x restricted implication problems
for P . Moreover, in contrast to word constraint implica-
tion, pre�x restricted implications cannot be stated in two-
variable �rst-order logic. A convenient argument for this is
that f'g, where ' is the constraint given in Example 2.1, is
a pre�x restricted subset of P .

Many cases of integrity constraint implication commonly
found in databases are examples of the pre�x restricted im-
plication problem for P . Among these are some implications
for inverse constraints and local database constraints. As an
example, consider the set consisting of the two local inverse
constraints on School-DB databases given in Section 1:

8 s c (9d (Schools(r; d) ^ Students(d; s)) ^ Taking(s; c)
! Enrolled(c; s))

8 c s (9d (Schools(r; d) ^ Courses(d; c)) ^Enrolled(c; s)
! Taking(s; c))

and the constraint

8 s1 s2 (9 d (Schools(r; d) ^ Students(d; s1)) ^ �(s1; s2)
! 9 c (Taking(s1; c) ^Enrolled(c; s2))):

This set is a pre�x restricted subset of P .

Another example of pre�x restricted implication is the im-
plication of the constraint

8x y (cities(r; x)^ 9 z (connect(x; z) ^ connect(z; y))
! connect(y; x))

from the constraints:

8x y (cities(r; x)^ 9 z (connect(x; z) ^ connect(z; y))
! connect(x; y))

8x y (cities(r; x) ^ connect(x; y)! connect(y; x))

Theorem 3.1: The pre�x restricted implication and �nite
implication problems for P are decidable in semistructured
databases.

Proof sketch: The idea of the proof is to establish the small
model property [6] for the satis�ability corresponding to the
pre�x restricted implications. More speci�cally, let Sp be

f
^

� ^ :' j � [f'g is a pre�x restricted subset of Pg:

We show that there is a recursive function s such that for
each 2 Sp, if is satis�able, then has a model of size
at most s(j j), where j j stands for the length of .

To establish the small model property for Sp, we use a path
label criterion to characterize whether a �-structure satis�es
a sentence of Sp. More speci�cally, given a model G of a
satis�able sentence of Sp, we label each node of G with
paths in . The path label of G, LB(G;), is the collection
of the labels of all the nodes in G. This path label has the
following properties:

� for any structure H, if LB(H;) = LB(G;), then
H j= i� G j= ; and

� there is a structure H of size at most 2 2 2 j j , such that
LB(H;) = LB(G;).

To establish the existence of the \small" model H, the re-
striction on pre�xes described in De�nition 3.1 is used.

See [9] for the detailed proof.

3.2 Sub-language P�

Some cases of path constraint implication are not examples
of the pre�x restricted implication. For instance, the set
consisting of the two extent constraints and the two inverse
constraints on student/course databases given in Section 1
is not a pre�x restricted subset of P .

The constraints in the last example, however, are in the
sub-language P� de�ned below.

De�nition 3.2: A �-restricted path constraint ' is a con-
straint of P with jlt(')j � 1. That is, either lt(') = �, or
lt(') = K for some K 2 E.

The set of all simple path constraints and all �-restricted
path constraints is denoted by P�.

Note that the class of word constraints is a proper subset of
P� . In addition, not all constraints in P� are expressible in
two-variable �rst-order logic. Indeed, the constraint ' given
in Example 2.1 is in P� , but is not in FO

2.

Theorem 3.2: The implication and �nite implication prob-
lems for P� are decidable in semistructured databases.

Proof sketch: In the same way as in the proof of Theo-
rem 3.1, we establish the small model property for satis�a-
bility of the following set of sentences:

S(P�) = f
^

� ^ :' j ' 2 P�; � � P�; � is �niteg:

To do so, we use a path labeling mechanism similar to the
one employed in the proof of Theorem 3.1. Given a model G
of a satis�able sentence in S(P�), we apply the mechanism
to label each node ofG with paths in , and therefore, obtain
the label of G with respect to . In addition, we show that
there is a model H of such that each node of H has a
unique path label. The size of H is, therefore, bounded by
the cardinality of the label ofH with respect to , which is at

most 2 2 j j 2 . Thus the small model property is established.

The detailed proof can be found in [9].

Example 3.1: The decidability of the implication and �-
nite implication problems for P� is useful for, among other
things, query optimization. To illustrate this, consider the
student/course databases given in Section 1 as semistruc-
tured databases, i.e., in the absence of schema. Suppose we
want to �nd the names of all the courses enrolled by students

who are taking course \Chem3". In the syntax of Lorel [2],
which is a language for querying semistructured data, this
query can be expressed as Q1:

Q1: select C.CName
from r.Courses C,

C.Enrolled.Taking.CName N
where N = "Chem3"

Given the two extent constraints and the two inverse con-
straints described in Section 1, it can be shown that Q1 is
equivalent to Q2 expressed below:

Q2: select N
from r.Courses C',

C'.Enrolled.Taking.CName N
where C'.CName = "Chem3"

To show this, the following constraints are also used:

8 s c (9 c1 (Courses(r; c1) ^Enrolled(c1; s)) ^
Taking(s; c)! Enrolled(c; s))

8 c (9 c1 (Courses(r; c1) ^ 9 s (Enrolled(c1; s) ^
Taking(s; c)))! Courses(r; c))

There are several things to note about these two constraints.
First, they are in the language P�. Second, they are implied
by the extent and inverse constraints given in Section 1,
which, as mentioned earlier, are in P� themselves. Finally,
the decidability of the implication problems for P� forms the
basis on which we can determine this implication.

It should also be noted that Q2 is in most cases more e�-
cient than Q1. Indeed, Q2 complies with the familiar opti-
mization principle originating in relational database theory:
performing selections as early as possible.

3.3 Extended implications for P�

Consider the set consisting of the local extent constraints
and the local inverse constraints of School-DB databases.
This set is neither a pre�x restricted subset of P nor a sub-
set of P� . However, the constraints in this set share the fol-
lowing property: they all are constraints of student/course
databases augmented with a common pre�x Schools. In
general, when represented in a global environment, path
constraints of a local database are augmented with a com-
mon pre�x.

This example motivates the following extension of P� .

De�nition 3.3: Let � be a path and ' a constraint in P�.
The extension of ' with pre�x �, denoted �('; �), is the
constraint de�ned either by

8xy (� � pf(')(r; x) ^ lt(')(x; y)! rt(')(x; y))

when ' is of the forward form, or by

8xy (� � pf(')(r; x) ^ lt(')(x; y)! rt(')(y; x))

when ' is of the backward form, where � is the path con-
catenation operator, and pf , lt and rt are de�ned in De�ni-
tion 2.1.

Let � be a path and � a �nite subset of P� . The extension
of � with pre�x � is the subset of P de�ned by

f�('; �) j ' 2 �g:

Such a set is called a pre�x extended subset of P�.

The extended (�nite) implication problem for P� is the prob-
lem of determining, given any pre�x extended subset � [
f'g of P�, whether all the (�nite) models of � are also mod-
els of '.

For instance, the set described in the last example is a pre�x
extended subset of P�.

Note that the (�nite) implication problem for P� is a special
case of the extended (�nite) implication problem for P�. As
an immediate result, the implications of word constraints are
special cases of the extended implications of P� . Moreover,
extended implications of P� cannot be stated in two-variable
�rst-order logic.

Theorem 3.3: The extended implication and �nite im-
plication problems for P� are decidable in semistructured
databases.

Proof sketch: We prove the theorem by reduction to the im-
plication problems for P�, whose decidability is established
by Theorem 3.2.

Let Paths denote the set of all paths, and Se(P�) be the set

f
^

� ^ :' j � [f'g is a pre�x extended subset of P�g:

Recall the set S(P�) de�ned in the proof of Theorem 3.2.
We de�ne a surjective mapping

f : S(P�)� Paths! Se(P�);

such that f(
V
� ^ :�; �) =

V
� ^ :' i� � [f'g is the

extension of � [f�g with pre�x �. We then show that for
each 2 S(P�) and path �,

� is satis�able i� f(; �) is satis�able; and

� is �nitely satis�able i� f(; �) is �nitely satis�able.
In addition, if has a �nite model of size N then
f(; �) has a model of size N + j�j.

Since f is surjective, by the proof of Theorem 3.2 and the
argument above, the satis�ability of Se(P�) has the small
model property. In particular, for each � 2 Se(P�), if � is

satis�able, then it has a model of size at most 2 2 j�j 2 .

See [9] for the detailed proof.

3.4 Conjunctive path constraints

We next show that the decidability results given above also
hold for an extension of path constraints. This extension is
de�ned as follows.

De�nition 3.4: A conjunctive path constraint � is an ex-
pression of either the forward form

8xy (
^
�2A

�(r; x) ^
^
�2B

�(x; y)!
(x; y));

or the backward form

8xy (
^
�2A

�(r; x) ^
^
�2B

�(x; y)!
(y; x));

where A;B are non-empty �nite sets of paths, and are de-
noted pf(�) and lt(�), respectively. The path
 is denoted
by rt(�).

The set of all conjunctive path constraints is denoted by P c.

Conjunctive path constraints are useful for, among other
things, describing structure of semistructured data. To il-
lustrate this, consider the following conjunctive path con-
straints, which, in the context of structured databases, would
be inclusion constraints on database extents:

8x y (dept(r; x) ^ ta(x; y) ! student(x; y))
8x y (dept(r; x) ^ ta(x; y) ! employee(x; y))
8x y (dept(r; x) ^ (student(x; y) ^ employee(x; y))

! ta(x; y))

Abusing object-oriented database terms, these constraints
indicate that

� TA of a department is a \subclass" of both Student
and Employee of the department; and

� the \extent" of TA is the intersection of the \extents"
of Student and Employee.

Below we de�ne fragments of P c analogous to the fragments
of P discussed above.

De�nition 3.5: A �nite subset � of P c is called a pre�x
restricted subset of P i� for all �, in �, all the paths in
pf(�) [pf() have the same length.

The pre�x restricted (�nite) implication problem for P c is
the problem of determining, given any pre�x restricted sub-
set � [f�g of P c, whether all the (�nite) models of � are
also models of �.

De�nition 3.6: A simple conjunctive path constraint � is
a constraint of P c with pf(�) = f�g.

A �-restricted conjunctive path constraint � is a constraint
of P c such that for each � 2 lt(�), j�j � 1.

The set of all simple conjunctive path constraints and all
�-restricted conjunctive path constraints is denoted by P c� .

De�nition 3.7: Let � be a path and � a constraint in
P c� . The extension of � with pre�x �, denoted �(�; �), is the
constraint in P c de�ned either by

8x y (
^

�2 pf(�)

� � �(r; x) ^
^

� 2 lt(�)

�(x; y)! rt(�)(x; y))

when � is of the forward form, or by

8x y (
^

�2 pf(�)

� � �(r; x) ^
^

� 2 lt(�)

�(x; y)! rt(�)(y; x))

when � is of the backward form.

Let � be a path and � a �nite subset of P c� . The extension
of � with pre�x � is the subset of P c de�ned by

f�(�; �) j � 2 �g:

Such a set is called a pre�x extended subset of P c� .

The extended (�nite) implication problem for P c� is the prob-
lem of determining, given any pre�x extended subset � [

f�g of P c� , whether all the (�nite) models of � are also mod-
els of �.

The following decidability results can be veri�ed analogously
to Theorem 3.1, 3.2 and 3.3, respectively.

Theorem 3.4: The pre�x restricted implication and �nite
implication problems for P c are decidable in semistructured
databases.

Theorem 3.5: The implication and �nite implication prob-
lems for P c� are decidable in semistructured databases.

Theorem 3.6: The extended implication and �nite im-
plication problems for P c� are decidable in semistructured
databases.

4 Path constraints on typed data

In this section, we investigate path constraints on structured
data, by which we mean data constrained by a schema.
We �rst show that there is interaction between path con-
straints and type constraints. In other words, results on
path constraint implication in the context of semistructured
databases may no longer hold in the typed context. We
then investigate the class of word constraints for databases
of two particular models. One of the models is a strictly
typed object-oriented data model. The other is an object-
oriented model based on ACeDB [14] which, while it is often
considered a semistructured model [7], has in fact a separate
type system that allows more
exibility than object-oriented
types. We present an abstraction of the databases in these
models in terms of �rst-order logic, and establish the decid-
ability of word constraint implication in these models.

4.1 Impact of type constraints

In structured databases, path constraint implication is re-
stricted by a schema. More speci�cally, the implication
problem for path constraints over a schema � is the problem
of determining, given a �nite set �[f'g of path constraints,
whether all the database instances of � that satisfy � are
also models of '. Here an instance of the schema � has
a particular structure speci�ed by �. In other words, an
instance of � must satisfy certain type constraints imposed
by �. In contrast, a semistructured database is free of type
constraints.

Here we address the question whether there is interaction be-
tween type constraints and path constraints. We show that
some results on path constraint implication in semistruc-
tured databases no longer hold in the presence of types.
For example, consider the implication problems for the path
constraint language P . In the context of semistructured
databases, as established by Theorem 2.1, the implication
problems are undecidable. In the typed context, however,
the implication problem for P over a schema is decidable as
long as the schema does not contain recursive types, i.e., self-
referential data structures. This is because in any instance
of such a schema, there are only �nitely many navigation
paths. In other words, the language P over the schema has
only �nitely many sentences up to equivalence, and there-
fore, its associated implication problem is decidable.

As another example to illustrate the impact of type con-
straints, consider word constraint implication. A proof of

the decidability of word constraint implication in semistruc-
tured databases was presented in [3]. However, we will show
that the proof breaks down in an object-oriented data model.

Because of the interaction between type constraints and
path constraints, there is need to investigate path constraint
implication in the typed context. Below we focus on the
class of word constraints, which is properly contained in ev-
ery fragment of the path constraint language studied in the
last section.

4.2 An object-oriented model

In this section, we investigate word constraint implication
in an object-oriented data model.

4.2.1 The data model

We �rst present the data model.

Assume a �xed countable set of labels, L, and a �xed �nite
set of base types, B. Let C be some �nite set of classes. The
set of Types over C, TypesC , is de�ned by the syntax:

t ::= b j C

� ::= t j ftg j [l1 : t1; : : : ; ln : tn]

where b 2 B, C 2 C, and li 2 L. The notations ftg and
[l1 : t1; : : : ; ln : tn] represent set type and record type, re-
spectively. We reserve � to range over TypesC.

A schema is a triple � = (C; �; DBtype), where C is a �nite
set of classes, DBtype 2 TypesCn(B[C), and � is a mapping:
C ! TypesC such that for each C 2 C, �(C) 62 B [C.

Example 4.1: An example of schema is (C; �; DBtype),
where C consists of a single class Person, � maps Person
to a record type [name : string; spouse : Person], and
DBtype is fPersong.

A database instance of schema (C; �; DBtype) is a triple
I = (�; �; d), where

(1) � is an oid assignment that maps each C 2 C to a �nite
set of oids, �(C), such that for all C;C0 2 C,

�(C) \ �(C0) = ; if C 6= C
0;

(2) for each C 2 C, � maps each oid in �(C) to a value in
[[�(C)]]� , where

[[b]]� = Db;

[[C]]� = �(C);

[[f�g]]� = fV j V � [[�]]� ; V is �niteg;

[[[l1 : �1; :::; ln : �n]]]� = f[l1 : v1; :::; ln : vn] j

vi 2 [[�i]]� ; i 2 [1; n]g;

here Db denotes the domain of base type b;

(3) d is a value in [[DBtype]]�, which represents a (persistent)
entry point into the database.

We denote the set of all database instances of schema � by
I(�).

4.2.2 Abstraction of databases

We next present an abstraction of databases in the object-
oriented model. Since structured data can be viewed as

semistructured data further constrained by a schema, along
the same lines of the abstraction of semistructured databases
given in Section 2, we represent a structured database as a
�rst-order logic structure satisfying certain type constraints
determined by its schema. Such a structure can be depicted
as an edge-labeled rooted directed graph, which has partic-
ular structural properties determined by the schema.

Below we de�ne the �rst-order signature determined by a
schema. Two components of the signature are described as
follows.

Let � = (C; �; DBtype) be a schema. We de�ne the set
of binary relations and the set of types determined by �,
denoted E(�) and T (�), respectively, as the smallest sets
having the following properties:

� DBtype 2 T (�) and C � T (�);

� if DBtype = ftg (or for some C 2 C, �(C) = ftg),
then t is in T (�) and � is in E(�);

� if DBtype = [l1 : t1; : : : ; ln : tn] (or for some C 2 C,
�(C) = [l1 : t1; : : : ; ln : tn]), then for i 2 [1; n], ti is in
T (�) and li is in E(�).

Note here, for ease of presenting type constraints below, we
use the distinguished binary relation � to denote the set
membership relation. This di�ers slightly from the presen-
tation in Section 1.

The signature determined by schema �, �(�), is a triple

(r; E(�); R(�));

where r is a constant (denoting the root), E(�) is the �nite
set of binary relations (denoting the labels) de�ned above,
and R(�) is the �nite set of unary relations (denoting the
sorts) de�ned by fR� j � 2 T (�)g.

For example, the signature determined by the schema given
in Example 4.1 is (r; E; R), where

� r is a constant, which in each instance (�; �; d) of the
schema intends to name d;

� E = f�; name; spouseg; and

� R = fRDBtype; RPerson; Rstringg.

The type constraints determined by a schema can be for-
mulated as sentences in two-variable logic with counting [6],
the extension of FO2 with counting quanti�ers. In particu-
lar, below we use the counting quanti�er 9 !, whose seman-
tics is described as follows: structure G satis�es 9 !x (x) if
and only if there exists a unique element a of G such that
G j= (a).

We present type constraints as follows. For each � in T (�),
the constraint imposed by � is the sentence �� de�ned as
follows:

(1) if � = b, then �� is

8x (R� (x)! 8 y (
^

l2E(�)

:l(x; y)));

(2) if for some C 2 C, � = C and �(C) = ftg (or � =
DBtype = ftg), then �� is

8x (R� (x) ! 8 y (
^

l2E(�)nf�g

:l(x; y)) ^

8 y (�(x; y)! Rt(y)));

(3) if for some C 2 C, � = C and �(C) = [l1 : t1; : : : ; ln : tn]
(or � = DBtype = [l1 : t1; : : : ; ln : tn]), then �� is

8x (R� (x)! 8 y (
^

l2E(�)nfl1;:::;lng

:l(x; y)) ^

^
i2[1;n]

(9 ! y li(x; y) ^ 8 y (li(x; y)! Rti(y)))).

The type constraint imposed by schema � is the sentence

�(�) = RDBtype(r) ^
^

�2T (�)

�� ^ 8x (
_

�2T (�)

R� (x) ^

^
�2T (�)

(R� (x)!
^

� 02T (�)nf�g

:R� 0(x))):

Accordingly, we present an abstraction of databases in the
object-oriented model as follows. Its justi�cation will be
given later in the paper.

An abstract database of a schema � is a �nite structure G
of the signature �(�) such that G j= �(�). We denote the
set of all abstract databases of a schema � by Uf (�).

We use U(�) to denote the set of all the structures of sig-
nature �(�) satisfying the following conditions: For each
G 2 U(�), G j= �(�); and for each set type � 2 T (�) and
each o 2 RG� , there are only �nitely many o0 in G such that
G j= �(o; o0). Here RG� denotes the unary relation R� in G.

4.2.3 Word constraints

We next present word constraints in the presence of types.
To do so, we �rst de�ne paths and types of paths over a
schema.

Given schema � = (C; �; DBtype), the set of paths over �,
Paths(�), and the type of path � in Paths(�), type(�), are
de�ned inductively as follows:

(1) the empty path � is in Paths(�) and type(�) = DBtype;

(2) for any � 2 Paths(�), where type(�) = � ,

� if for some C 2 C, � = C and �(C) = ftg (or � =
DBtype = ftg), then � � � is a path in Paths(�) and
type(� � �) = t;

� if for some C 2 C, � = C and �(C) = [l1 : t1; : : : ; ln :
tn] (or � = DBtype = [l1 : t1; : : : ; ln : tn]), then for
i 2 [1; n], � � li is in Paths(�) and type(� � li) = ti.

As in the untyped context, a path can be represented as a
formula �(x; y) with two free variables x and y denoting the
tail and head nodes of the path, respectively.

A word constraint ' over schema � is an expression of the
form

8x (�(r; x)! �(r; x));

where � and � are in Paths(�) and type(�) = type(�).

We denote the set of all word constraints over schema � as
Pw(�), or simply as Pw when � is understood.

Example 4.2: The sentences

� = 8x (�(r; x)! 9 y (�(r; y) ^ spouse(y; x)))

' = 8x (9 y (�(r; y) ^ spouse(y; x))! �(r; x))

are word constraints over the schema given in Example 4.1.
In any instance (�; �; d) of the schema, � and ' are inter-
preted as

8x (x 2 d! 9 y (y 2 d ^ y:spouse = x));

8x (9 y (y 2 d ^ y:spouse = x)! x 2 d);

respectively. Here y:spouse stands for the projection of
record y at attribute spouse, and d is a subset of �(Person).
The constraint � says \each person in the set d is the spouse
of someone in d", and ' says \if a person is the spouse of
someone in d, then the person is in d".

As illustrated by the example above, word constraints over a
schema � can be naturally interpreted in database instances
of �. Likewise, the notion \I j= '" can be de�ned for
instance I of � and constraint ' of Pw(�).

The agreement between databases and their abstraction with
respect to word constraints is revealed by the lemma below,
which justi�es the abstraction de�ned above. The proof of
the lemma is straightforward and can be found in [10].

Lemma 4.1: Let � be a schema. For each I 2 I(�), there
is G 2 Uf(�), such that

(y) for all ' 2 Pw(�), I j= ' i� G j= ':

Similarly, for each G 2 Uf (�), there is I 2 I(�), such that
(y) holds.

4.2.4 Word constraint implication

The (�nite) implication problem for Pw(�) over schema �
is the problem of determining, given a �nite subset �[f'g of
Pw(�), whether each G 2 U(�) (G 2 Uf (�)) that satis�es
� is also a model of '.

The decidability of word constraint implication in the con-
text of semistructured databases was established in [3] by
showing that a particular set of inference rules is sound and
complete for the implication. This set consists of three rules:
re
exivity, transitivity and right congruence. However, this
set of rules is no longer complete for word constraint im-
plication in the object-oriented model, and as a result, the
proof given in [3] no longer holds in this typed context. To
see this, consider the constraints � and ' given in Exam-
ple 4.2. It is not hard to see that using the set of inference
rules above, ' is not provable from �. More speci�cally, it
can be shown that if ' were provable from � using this set
of rules, then the length of lt(') would be strictly less than
the length of rt('). However, by the type constraint im-
posed by the schema given in Example 4.1, f�g j= ' indeed
holds. More speci�cally, let I = (�; �; d) be any instance
of the schema satisfying �, s = fx:spouse j x 2 dg, and jdj,
jsj denote the cardinalities of d and s, respectively. By the
type constraint imposed by record type, jsj � jdj. By I j= �,
d � s. Hence d = s, and consequently, I j= '.

Next, we show that in the object-oriented model, word con-
straint implication is indeed decidable.

Proposition 4.2: Over arbitrary schema in the object-
oriented model, the implication and �nite implication prob-
lems for word constraints are decidable.

Proof sketch: The decidability of the �nite implication fol-
lows from the decidability of �nite satis�ability problem
of two-variable logic with counting [6], since the type con-
straints are expressible in two-variable logic with counting
and all the word constraints are in FO2.

By this result, for the decidability of the implication it suf-
�ces to show that the implication and �nite implication co-
incide. That is, over arbitrary schema � and for each �nite
subset �[f'g of Pw(�), if

V
�^:' has a model in U(�),

then it has a model in Uf (�). See [10] for the detailed proof.

In two special cases, word constraint implication is decidable
in PTIME. One is word constraint implication over record
schema, by which we mean a schema that does not con-
tain any set type. The other, referred to as �-form (�nite)
implication, is implication � j= ' where each constraint in
� [f'g is of the form

8x (�(r; x)! � � �(r; x)):

Here � is the path concatenation operator de�ned in the last
section.

The proofs of the next three propositions follow closely the
argument in [3] for the PTIME decidability of word con-
straint implication in semistructured databases, and can be
found in [10].

Proposition 4.3: Over arbitrary record schema in the
object-oriented model, the implication and �nite implica-
tion problems for word constraints are decidable in PTIME
in the size of the implication and the size of the schema.

Proof sketch: The set of inference rules consisting of re-

exivity, transitivity, right congruence and commutativity
is sound and complete for the �nite implication over record
schema.

Proposition 4.4: Over arbitrary schema in the object-
oriented model, the �-form implication and �nite implica-
tion problems for word constraints are decidable in PTIME
in the size of the implication and the size of the schema.

4.3 The ACeDB model

We next consider word constraint implication in an object-
oriented model based on ACeDB [14]. This model does not
have an explicit set construct, and in addition, it does not
interpret a record type as a function from attributes to cor-
responding domains. More speci�cally, a value of a record
type [l1 : t1; : : : ; ln : tn] is a �nite subset of

(fl1g � [[t1]]) [: : : [(flng � [[tn]]);

where [[ti]] denotes the domain of ti.

The ACeDB based model is de�ned in the same way as the
object-oriented model de�ned above, except the di�erence
aforementioned. Similarly, the abstraction of the databases
and word constraints in the model are de�ned as before,
except that the constraint imposed by a record type � =
[l1 : t1; : : : ; ln : tn] is now de�ned by

8x (R� (x)! 8y (
^

l2E(�)nfl1;:::;lng

:l(x; y)) ^

^
i2[1;n]

8y (li(x; y)! Rti(y))):

Proposition 4.5: Over arbitrary schema in the ACeDB
model, the implication and �nite implication problems for
word constraints are decidable in PTIME in the size of the
implication and the size of the schema.

5 Conclusions

We have presented a class of path constraints, P , and investi-
gated its associated implication problems. These constraints
are important in both structured and semistructured data
for specifying natural integrity constraints. They are not
only a fundamental part of the semantics of the data; they
are also important in query optimization. For example,
the familiar inverse constraints that occur in object-oriented
databases can be stated as path constraints of P .

In the context of semistructured data, we have shown that,
despite the simple syntax of the language P , its associated
implication problem is r.e. complete and its �nite implica-
tion problem is co-r.e. complete. In light of these undecid-
ability results, we have also identi�ed several fragments of P
which su�ce to express many interesting semantic relations
such as local database constraints and inverse constraints,
and we have established the decidability of the implication
and �nite implication problems associated with each of these
fragments.

In the context of structured data, we have shown that type
constraints interact with path constraints. Because of this
interaction, we have investigated word constraint implica-
tion in the context of two practical object-oriented models.
We have presented abstractions for the databases in these
models in terms of �rst-order logic, and we have established
the decidability of word constraint implication in each of
these models.

However, much work remains to be done.

Path constraint implication in general type systems.
Path constraint implication in the presence of types is a
rich source of questions. The diversity of the settings of
data models and constraint languages raises a great number
of implication problems. So far we have only investigated
word constraint implication in the contexts of two practical
yet restricted object-oriented type systems. Questions left
open include implication problems for other fragments of P ,
such as those identi�ed in Section 3, in the context of more
general data models.

The complexity of reasoning about path constraints.
The complexity of path constraint implication can probably
be improved. Currently we are investigating methodology
and automated tools for reasoning about path constraints
with satisfactory average-case performance in practice.

Incremental path constraint satisfaction. Satisfaction
checking is an essential issue in connection with path con-
straints. Equally important is incremental path constraint
satisfaction. Databases are dynamic in the sense that they
are subject to updates. Small updates to a large database
often causes small changes in the outcome. The challenge is
to check path constraint satisfaction incrementally by exam-
ining the parts of databases a�ected by updates, rather than
by re-checking the entire databases from scratch. Incremen-
tal satisfaction o�ers a promising approach to maintaining
path constraints e�ciently, and requires serious research.

Methodology for using constraints in optimization.
The use of path constraints in query optimization has been
brie
y addressed in this paper. The need for an in-depth
study of this comes from the quest for a query optimizer
based on both path constraints and algebraic rewrite rules.

Acknowledgements. The authors thank Victor Vianu,
Val Tannen and Susan Davidson for helpful discussions.

References

[1] S. Abiteboul. \Querying semi-structured data". In
Proc. ICDT , 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.
Weiner. \The lorel query language for semistructured
data". Journal of Digital Libraries, 1(1), 1997.

[3] S. Abiteboul and V. Vianu. \Regular path queries with
constraints", In Proc. ACM Symp. on Principles of
Database Systems, 1997.

[4] F. Bancilhon, C. Delobel, and P. Kanellakis, editors.
Building an object-oriented database system: the story
of O2 . Morgan Kaufmann, San Mateo, California, 1992.

[5] J. Barwise. \On Moschovakis closure ordinals". Journal
of Symbolic Logic, 42:292-296, 1977.

[6] E. B�orger, E. Gr�adel, and Y. Gurevich. The classical
decision problem. Springer, 1997.

[7] P. Buneman, S. Davidson, G. Hillebrand, and D. Su-
ciu. \A query language and optimization techniques
for unstructured data". In Proc. ACM SIGMOD Inter-
national Conf. on Management of Data, pp. 505-516,
1996.

[8] P. Buneman, W. Fan, and S. Weinstein. \Some undecid-
able implication problems for path constraints". Tech-
nical Report MS-CIS-97-14, Department of Computer
and Information Science, University of Pennsylvania,
1997.

[9] P. Buneman, W. Fan, and S. Weinstein. \The decid-
ability of some restricted implication problems for path
constraints". Technical Report MS-CIS-97-15, Depart-
ment of Computer and Information Science, University
of Pennsylvania, 1997.

[10] P. Buneman, W. Fan, and S. Weinstein. \Path con-
straints in the presence of types". Technical Report MS-
CIS-97-16, Department of Computer and Information
Science, University of Pennsylvania, 1997.

[11] R. G. G. Cattell (ed.). The object-oriented standard:
ODMG-93 (Release 1.2). Morgan Kaufmann, San Ma-
teo, California, 1996.

[12] E. Gr�adel, P. Kolaitis, and M. Vardi. \On the decision
problem for two-variable �rst-order logic". Bulletin of
Symbolic Logic, 3(1): 53-69, 1997.

[13] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
\The ObjectStore Database system". Comm. ACM ,
34(10): 51-63, October 1991.

[14] J. Thierry-Mieg and R. Durbin. \Syntactic de�nitions
for the ACEDB data base manager". Technical Report
MRC-LMB xx.92, MRC Laboratory for Molecular Bi-
ology, Cambridge, CB2 2QH, UK, 1992.

[15] H. Wang. \Dominoes and the 898-case of the decision
problem". In Proc. Symp. on Mathematical Theory of
Automata, Brooklyn Polytechnic Institute, pp. 23-55,
1962.

