
Interaction between Path and Type Constraints

Peter Buneman
�

University of Pennsylvania

peter@central.cis.upenn.edu

Wenfei Fan
y

University of Pennsylvania

wfan@saul.cis.upenn.edu

Scott Weinstein
z

University of Pennsylvania

weinstein@linc.cis.upenn.edu

Abstract

XML [7], which is emerging as an important standard for
data exchange on the World-Wide Web, highlights the im-
portance of semistructured data. Although the XML stan-
dard itself does not require any schema or type system, a
number of proposals [6, 17, 19] have been developed that
roughly correspond to data de�nition languages. These al-
low one to constrain the structure of XML data by imposing
a schema on it. These and other proposals also advocate the
need for integrity constraints, another form of constraints
that should, for example, be capable of expressing inclu-
sion constraints and inverse relationships. The latter have
recently been studied as path constraints in the context of
semistructured data [4, 9]. It is likely that future XML
proposals will involve both forms of constraints, and it is
therefore appropriate to understand the interaction between
them.

This paper investigates that interaction. In particular
it studies constraint implication problems, which are impor-
tant both in understanding the semantics of type/constraint
systems and in query optimization. A number of results on
path constraint implication are established in the presence
and absence of type systems. These results demonstrate that
adding a type system may in some cases simplify reasoning
about path constraints and in other cases make it harder.
For example, it is shown that there is a path constraint im-
plication problem that is decidable in PTIME in the untyped
context, but that becomes undecidable when a type system
is added. On the other hand, there is an implication problem
that is undecidable in the untyped context, but becomes not
only decidable in cubic time but also �nitely axiomatizable
when a type system is imposed.

1 Introduction

Among the numerous proposals for adding structure or se-
mantics to XML documents [7], several [6, 17, 18, 19] ad-
vocate the need for integrity constraints. However, concrete
proposals for constraint systems have yet to be developed.
Whether such constraints will be speci�ed as extensions to
existing type systems such as XML-Data [19], SOX [17],

�This work was partly supported by the Army Research O�ce
(DAAH04-95-1-0169) and NSF Grant CCR92-16122.

ySupported by a graduate fellowship from the Institute for Re-
search in Cognitive Science, University of Pennsylvania.

zSupported by NSF Grant CCR-9403447.

DCD [6], or whether they will be added as independent con-
structs, is not yet clear, and, in all probability, they will be
added in both ways. XLink [21], for example, is independent
of any type system and can express simple co-reference con-
straints. It is therefore appropriate to study constraints and
type systems separately and to understand their interaction.

Integrity constraints for semistructured data were orig-
inally studied as path constraints in [4]. While these con-
straints could specify inclusions between paths, they were
not expressive enough to capture, say, inverse constraints.
Extensions were studied in [9] to overcome this limitation.
The central technical problem investigated in these papers
has been the question of constraint implication: given that
certain constraints are known to hold, does it follow that
some other constraint is necessarily satis�ed? A number
of decidability and undecidability results were established
in these papers for semistructured data, i.e., data uncon-
strained by any type system or schema. In this paper, we
extend the work reported in [9] by investigating the inter-
action between type systems and constraint systems. An
interesting result presented here is that adding a type sys-
tem may in some cases simplify the analysis of path con-
straint implication and in other cases make it harder. On
the one hand, we exhibit an implication problem associated
with path constraints that is undecidable in the context of
semistructured data, but that becomes decidable in cubic-
time when a (restricted) type system is added. On the other
hand, we give an example of a constraint implication prob-
lem that is decidable in PTIME in the untyped context, but
that becomes undecidable when a (generic) type system is
imposed. The practical interest of these implication prob-
lems is addressed in Section 2.

An example. To cast the problem concretely, the structure
represented in Figure 1 describes an XML document. It is an
example of semistructured data and could be expressed in a
number of other data formats. In semistructured data mod-
els, data is represented as a rooted, edge-labeled, directed
graph [1, 8]. In Figure 1, vertices denote XML elements,
and edges emanating from those nodes indicate attributes
and relationships with other elements. For example, an edge
labeled book from the root node r connects to a node rep-
resenting a book element. This book node may have several
author edges connected to person nodes, and ref edges con-
nected to other book nodes. It may also have edges labeled
with ISBN, title and year.

Typical path constraints on this graph describe an in-
verse relationship between author and wrote. This can be
expressed as:

8x (book(r; x)! 8 y (author(x; y)! wrote(y; x)))
8x (person(r; x)! 8 y (wrote(x; y)! author(y; x)))

Here r is a constant denoting the root of the graph, variables
x and y range over vertices, and the predicates denote edge

author author author author

ref

yearname SSN age

book

title ISBN ISBN

person book person

wrote wrote wrote wrote

book

ISBNSSN titlename

r

title

Figure 1: Representation of an XML document

labels. A path in the graph is a sequence of edge labels,
which can be expressed as a formula �(x; y) denoting that �
is a sequence of edge labels from vertex x to y. For example,
book � author(r; x) is a path from root r to some vertex x in
Figure 1. The �rst constraint above states that for any book
node x and any y, if x has an author edge connected to y,
then y must have a wrote edge connected to x. Similarly,
the second constraint states that for any person node x and
any y, if x has a wrote edge connected to y, then y must
have an author edge connected to x.

Note that we have introduced these constraints before
any mention of a type system. These are the kind of con-
straints that have been studied in [4, 9].

In addition we may also want to impose a type on the
document. For example, a type speci�ed in XML-Data [19]
would be:

<elementType id = "book">
<attribute name="author" range="#person"/>
<attribute name="ref" range="#book"/>
<element type="#ISBN"/>
<element type="#title"/>
<element type="#year" occurs="optional"/>

</elementType>

<elementType id = "person">
<attribute name="wrote" range= "#book"/>
<element type="#SSN"/>
<element type="#name"/>
<element type="#age" occurs="optional"/>

</elementType>

<elementType id = "title">
<string/>

</elementType>
...

This type speci�es that a book node must have a title edge
connected to a string node, its author and ref edges must
connect to person and book nodes respectively, etc.

Types also constrain the data, but in a very di�erent
fashion. We are therefore interested in the interaction be-
tween these two forms of constraints.

Word and path constraints. A class of constraints, called
word constraints, was introduced and studied in [4]. Refer-
ring to Figure 1, typical word constraints are:

8x (book � author(r; x)! person(r; x))
8x (person � wrote(r; x)! book(r; x))
8x (book � ref(r; x)! book(r; x))

Suppose Figure 1 represents a bibliography database at Uni-
versity of Pennsylvania. Let us refer to this database as
Penn-bib. Abusing object-oriented database terms, the word
constraints above assert that an author of a book in Penn-
bib must be in the database \extent" of person in Penn-
bib, a book written by a person in Penn-bib must occur in
Penn-bib \extent" of book, etc. These are typical integrity
constraints and were called extent constraints in [9]. It was
shown in [4] that in the context of semistructured data, the
implication and �nite implication problems for word con-
straints are decidable in PTIME.

The class of path constraints studied in [9], Pc, is a mild
generalization of word constraints. The inverse constraints
above are in Pc but are not word constraints. As another
example, consider Penn-bib again. This database may have
links to external resources, such as bibliography databases at
MIT and Warner. Call them MIT-bib and Warner-bib, re-
spectively. These databases can be viewed as components of
Penn-bib, and therefore, are called local databases of Penn-
bib. In our graph representation, this can be depicted by
adding two edges emanating from the root r of Penn-bib
that are labeled with MIT, Warner, and lead to MIT-bib and
Warner-bib, respectively. It is natural to expect the con-
straints given above to hold on these local databases. For
example, the inverse constraints on MIT-bib include:

8x (MIT � book(r; x)! 8 y (author(x; y)! wrote(y;x)))
8x (MIT � person(r; x)! 8 y (wrote(x; y)! author(y; x)))

Constraints on local databases are called local database con-
straints. Again, these are Pc constraints but are not ex-
amples of word constraints. As demonstrated in [9], Pc
constraints are capable of expressing natural integrity con-
straints that are not only a fundamental part of the seman-
tics of the data, but are also important in query optimiza-
tion. They are useful for, among other things, specifying
and querying XML documents.

In [9], it was shown that in the context of semistructured
data, the implication and �nite implication problems for Pc
are undecidable. However, several decidable fragments of Pc
were identi�ed. Each of these fragments properly contains
the class of word constraints, and is capable of expressing
extent, inverse and local database constraints.

Also considered in [4] was a class of constraints in which
paths are represented by regular expressions. The decid-
ability of the implication problems for this general constraint
language was established in [4] for semistructured data. This
constraint language di�ers from the constraint language Pc
of [9] in expressive power. On the one hand, the language

of [4] allows a more general form of path expressions than
Pc. On the other hand, it cannot capture inverse and local
database constraints, whereas these constraints are express-
ible in Pc. Indeed, the language of [4] is contained in L21!,
the two variable fragment of the in�nitary language L1!,
whereas Pc expresses constraints which are not L21! de�n-
able, as observed in [9]. Since the constraint language Pc is
neither included in L21! nor categorized as a quanti�er pre-
�x fragment of �rst-order logic, our results concerning the
implication problems for Pc are orthogonal to classical work
on the decision problem for fragments of �rst-order logic
(cf. [5]). In comparing the current work to [4], it should
also be noted that [4] does not consider the question of logi-
cal implication in the context of typed data. The aim of this
paper is to explore the interaction between type systems and
simple integrity constraints of Pc. We do not consider here
constraints de�ned in terms of regular expressions.

Type systems. In this paper, we consider two object-
oriented data models. One is a generic type system, referred
to as M+. This model supports classes, sets, records and
recursive data structures. It is similar to those studied in
[2, 3, 11]. The other model, M, is a restriction of M+.
It supports classes, records and recursive data structures,
but does not allow sets. Databases of M are comparable to
feature structures studied in feature logics [23].

We use these models to demonstrate the impact of di�er-
ent type constructs such as record and set on path constraint
implication. One may want to study the interaction between
path constraints and richer type systems such as those stud-
ied in [6, 17, 19]. However, by the results established in this
paper, path constraint implication will be undecidable in the
context of these more general type systems.

Constraints in object-oriented databases { a retro-
spective. While there has been considerable recent activ-
ity [12, 13, 16, 22] in optimizing object-oriented queries in
the presence of constraints, there has, to our knowledge,
been almost no work on the formulation of constraints, let
alone the study of the implication problem. In [22] a rather
general approach is taken: constraints are represented as
queries that are true, and a general framework for program
optimization is used to deal with both the optimization and
the implication problem. In this setting, constraints are at
least as expressive as �rst-order logic, and the issue of what
classes of constraints have decidable implication problems is
not separated from the general optimization problem.

Given the semistructured representation that we have
adopted, we can cleanly separate typing issues from other
constraints. Consider the following ODL [11] speci�cation
(loosely related to our previous example) which de�nesBook
and Person classes:

interface Book
(extent book) (B1)
f attribute String title;

relationship set<Person> author (B2)
inverse Person::wrote; (B3)

g

interface Person
(extent person) (P1)
f attribute String name;

relationship set<Book> wrote (P2)
inverse Book::author ; (P3)

g

Strike out the extent and inverse declarations at lines B1,

B3, P1, P3, and change relationship to attribute on lines
B2 and P2. One is now left with a standard object-oriented
class/type declaration. In fact it is a declaration that can
be expressed directly in a language such as C++ with type
templates.

We can consider the extent and inverse declarations as
added constraints:

� Extent constraints. For any book b, b:author is a sub-
set of the extent person. Similarly, for any person p,
p:wrote is a subset of extent book.

� Inverse constraints. For any book b and for any p in
b:author, b is a member of p:wrote. Similarly, for any
person p and for any b in p:wrote, p is a member of
b:author.

Thus, if we consider a database instance to be a graph (such
as Figure 1 suitably modi�ed) we can understand an ODL
schema as imposing two kinds of constraints: (a) type con-
straints, which dictate the general structure of the graph,
and (b) path constraints which dictate inclusions among cer-
tain sets of objects. We should remark that type constraints
cannot be expressed as path constraints and vice versa.

From recent work [4, 9] on path constraints we have
developed a reasonable understanding { in the context of
semistructured (i.e. untyped) data { of the interesting de-
cision problems for such constraints. There are useful re-
strictions of path constraints with a decidable implication
problem. One might be tempted to think that the imposi-
tion of a type system, which imposes some regularity on the
data, would be to generate new classes of path constraints
with decidable implication problems. This may be the case.
However one of the main results of this paper is to estab-
lish the possibly surprising result that the presence of types
actually complicates the implication problem for path con-
straints: there are decidable path constraint problems that
become undecidable in the presence of types. Moreover the
type used in the construction of this result is not particularly
\pathological".

Interaction. In Sections 4 and 5, we will show how im-
posing a schema on the data can alter the computational
complexity of the path constraint implication problem in
unexpected ways. For orientation, we provide intuitive back-
ground here. An implication problem for a logical language
L is determined by a collection of structures S which inter-
pret that language. We say that a �nite set � of L sentences
S-implies an L sentence ' just in case for every structure
G 2 S, if G j= �, then G j= '. Suppose we are given
two classes of structures S 0 � S, each interpreting L. In
general, the computational complexity of the S-implication
problem for L may bear no obvious connection to the com-
plexity of the S 0-implication problem for L. A justly famous
example of this is given by the case where L is the collec-
tion of all �rst-order sentences with a single binary relation
and S and S 0 are the classes of all relational structures and
all �nite relational structures respectively. Then, the com-
pleteness theorem for �rst-order logic and Church's Theorem
together tell us that the S-implication problem for L is r.e.-
complete, while Trahktenbrot's Theorem tells us that the
S 0-implication problem for L is co-r.e.-complete (see, e.g.,
[5]). Note that in this example, S 0 is not �rst order de�n-
able over S.

In Sections 4 and 5 we will study implication problems
for collections of path constraints which can be represented
as proper fragments L� of �rst-order logic. Again, let S

be the collection of all structures. When we consider the
S-implication problem for L� in the context of a type con-
straint �, what we really mean is the S 00-implication prob-
lem for L� where S 00 is the collection of structures in S which
satisfy the type constraint �. In Section 4, we will give ex-
amples where the S-implication problem for L� is undecid-
able, but the S 00-implication problem for L� is decidable.
This sort of situation is quite familiar. For example, the
S-implication problem for �rst-order logic is undecidable,
but the S 00-implication problem for �rst-order logic is decid-
able when S 00 is the collection of linear orderings (and this
collection is determined by a �rst order \constraint"). On
the other hand, in Section 5, we exhibit situations in which
the S-implication problem for L� is decidable, but the S 00-
implication problem for L� is undecidable. This possibility
is perhaps a bit less familiar, namely the possibility that
by imposing a restriction on a collection of structures we
can turn a decidable implication problem into an undecid-
able implication problem. Indeed, in the context where L is
the collection of all �rst-order sentences and the restriction
itself is �rst order, this is clearly impossible, since in this
case, the implication problem for the restricted class is sim-
ply a special case of the unrestricted implication problem.
But in the context of the interaction between path and type
constraints, this is precisely not the case. Namely, the type
constraints we consider cannot be expressed in the path con-
straint languages in question. We hope this observation will
clarify the results of Section 5, which exhibit a path con-
straint implication problem which is decidable with respect
to a collection of structures S, but is undecidable with re-
spect to the collection of structures G 2 S which satisfy a
given type constraint �.

Organization. The remainder of the paper is organized as
follows. Section 2 reviews the formal de�nition of Pc con-
straints, and describes two (�nite) implication problems as-
sociated with Pc constraints, namely, the (�nite) implication
problem for Pc and the (�nite) implication problem for local
extent constraints. Section 3 presents a semistructured data
model and the two object-oriented models M+ and M. It
also describes type constraints of M+ andM. Section 4 in-
vestigates the (�nite) implication problem for Pc in the con-
text of semistructured data and in the object-oriented model
M. It �rst strengthens the undecidability result reported in
[9] by showing that this problem is also undecidable on un-
typed data for a \small" fragment of Pc. It then shows that
the undecidability result breaks down when the type system
M is added. More precisely, it shows that in the context of
M, the implication and �nite implication problems for Pc
are not only decidable in cubic-time but also �nitely axiom-
atizable. Section 5 demonstrates that adding a type system
does not necessarily \help" in constraint implication prob-
lems. More speci�cally, it shows that on untyped data, the
(�nite) implication problem for local extent constraints is
decidable in PTIME. However, when a type of M+ is im-
posed, this problem becomes undecidable. Finally, Section 6
brie
y describes other results established in the full paper
[10], and identi�es directions for further work.

2 Path constraints

We �rst review the path constraint language Pc introduced
in [9], and then describe two implication problems associated
with Pc constraints. In Sections 4 and 5, we shall show
that these problems have wildly di�erent complexities in the
context of untyped data as opposed to typed data.

2.1 Path constraint language Pc

The vocabulary of the constraint language is speci�ed by a
relational signature

� = (r; E);

where r is a constant and E is a �nite set of binary relation
symbols. A �-structure (jGj; rG; EG) can be depicted as an
edge-labeled, rooted, directed graph, in which jGj is the set
of vertices, rG the root, and EG the set of labeled edges.
For example, the graph in Figure 1 can be viewed as such a
structure (referred to as G0).

A path is a �nite sequence of labels of E. Following [9],
we de�ne a path to be a formula �(x; y) which has one of
the following forms:

� x = y, denoted by �(x; y) and called the empty path;

� 9z(K(x; z) ^ �(z; y)), where K 2 E and �(z; y) is a
path.

Here the free variables x and y denote the tail and head
nodes of the path, respectively. Intuitively, if x and y are
vertices in a �-structure G, �(x; y) is true in G just when y
is reachable from x by following a sequence of labeled edges
�. We write �(x; y) as � when the parameters x and y are
clear from the context.

The concatenation of paths �(x; z) and �(z; y), denoted
by �(x; z) � �(z; y) or simply � � �, is the path

� �(x; y), if � = �;

� 9u (K(x; u) ^ (�0(u; z) � �(z; y))), if �(x; z) is of the
form 9u (K(x; u) ^ �0(u; z)).

A path � is said to be a pre�x of �, denoted by � �p �,
if there exists
, such that � = � �
.

Referring to G0 given in Figure 1, there is node x such
that person � wrote � ref(r; x) is true in G0. In �rst-order
logic, this path can be expressed as

9 y (person(r; y) ^ 9 z (wrote(y; z) ^ ref(z; x))):

The pre�xes of this path are �, person, person � wrote and
itself.

Formally, Pc constraints can be de�ned as follows.

De�nition 2.1 [9]: A path constraint ' is an expression of
either the forward form

8x (�(r; x)! 8 y (�(x; y)!
(x; y)));

or the backward form

8x (�(r; x)! 8 y (�(x; y)!
(y; x))):

Here �; �;
 are paths. The path � is called the pre�x of ',
denoted by pf(').

The set of all path constraints is denoted by Pc.

A forward constraint of Pc asserts that for any vertex x
that is reached from the root r by following path � and for
any vertex y that is reached from x by following path �, y
is also reachable from x by following path
. Similarly, a
backward Pc constraint states that for any x that is reached
from r by following � and for any y that is reached from x
by following �, x is also reachable from y by following
.

For example, all the integrity constraints encountered in
Section 1 are in Pc. These include extent, inverse and local
database constraints.

A proper subclass of Pc was introduced and investigated
in [4]:

De�nition 2.2 [4]: A word constraint is an expression of
the form

8x (�(r; x)!
(r; x));

where � and
 are paths. The set of all word constraints is
denoted by Pw.

In other words, a word constraint is a forward constraint
of Pc with its pre�x being the empty path �. For exam-
ple, the extent constraints given in Section 1 are word con-
straints, whereas the inverse and local database constraints
are not.

2.2 Implication problems

To take advantage of path constraints, it is important to be
able to reason about them. This gives rise to the question of
logical implication of path constraints. In general, we may
know that a set of path constraints is satis�ed by a database.
The question of logical implication is: what other path con-
straints are necessarily satis�ed by the database? As shown
in [9], path constraint implication is useful for, among other
things, query optimization and constraint checking.

Below we describe implication and �nite implication of
Pc constraints. These notions will be re�ned in di�erent
database contexts in Section 3.

We assume the standard notions of model and implica-
tion from �rst-order logic [15]. Let G be a structure and '
be a Pc constraint. We use G j= ' to denote that G satis�es
' (i.e., G is a model of '). Let � be a �nite set of Pc con-
straints. We use G j= � to denote that G satis�es � (i.e.,
G is a model of �). That is, for every � 2 �, G j= �.

The implication problem for Pc is the problem to deter-
mine, given any �nite subset � [f'g of Pc, whether every
model of � also satis�es '. Similarly, the �nite implication
problem for Pc is the problem to determine whether every
�nite model of � also satis�es '.

For example, let � be the set consisting of all the Pc
constraints given in Section 1, and '0 be the constraint

8x (MIT (r; x)! 8 y (book � ref(x; y)! book(x; y))):

The question whether every (�nite) model of � also satis�es
'0 is an instance of the (�nite) implication problem for Pc.

In Section 4, we shall show that the implication and �nite
implication problems for Pc are undecidable in the context
of untyped data. In contrast, these problems are not only
decidable in cubic-time but also �nitely axiomatizable in the
context of an object-oriented model.

In light of this undecidability result on untyped data,
we next consider a special case of Pc constraint implica-
tion, namely, (�nite) implication of local extent constraints.
To illustrate this, consider the database Penn-bib described
in Section 1. This database has local databases MIT-bib,
Warner-bib, etc. Extent constraints on these local databases
are called local extent constraints. For example, the follow-
ing are extent constraints on MIT-bib, and thus are local
extent constraints of Penn-bib:

8x (MIT (r; x)! 8 y (book � author(x; y)! person(x; y)))
8x (MIT (r; x)! 8 y (person � wrote(x; y)! book(x; y)))

Suppose we want to know whether every model of these con-
straints also satis�es the constraint '0 given above, which is
also a local extent constraint on MIT-bib. In addition, we
consider this implication in the presence of constraints on
other local databases, such as the following on Warner-bib:

8x (Warner � book(r; x)! 8 y (author(x; y)
! wrote(y; x)))

8x (Warner � person(r; x)! 8 y (wrote(x; y)
! author(y; x)))

More precisely, let �0 be the set consisting of the two lo-
cal extent constraints on MIT-bib and the constraints on
Warner-bib given above. We are interested in whether ev-
ery (�nite) model of �0 also satis�es '0.

In general, when represented in a global environment,
constraints on a local database are augmented with a com-
mon pre�x. For example, the constraints on MIT-bib are
represented with common pre�xMIT in Penn-bib. Thus we
use the following notion to describe local extent constraints.

De�nition 2.3: Let � be a path and K a binary relation
symbol. A constraint ' of Pc is said to be bounded by � and
K if it is of the form

8x (� �K(r; x)! 8 y (�(x; y)!
(x; y)));

where � 6= � and K 6�p � (i.e., K is not a pre�x of �).
A subset � of Pc with pre�x bounded by � and K is a

�nite subset of Pc such that for each ' 2 �, either ' is
bounded by � and K, or for some path �0, pf(') = � � �0

and K 6�p �
0. In addition, if �0 = �, then ' is of the form

8x (�(r; x) ! 8 y (�(x; y) ! K(x; y))). Here pf(') denotes
the pre�x of ', as described in De�nition 2.1.

For example, �0 given above is a subset of Pc with pre-
�x bounded by the empty path � and binary relation symbol
MIT . In �0, the extent constraints on MIT-bib are bounded
by � and MIT , whereas the constraints on Warner-bib are
not. Intuitively, let DB be a database and DBK be a lo-
cal database connected to DB by path � � K. Constraints
bounded by � and K can be viewed as local extent con-
straints on DBK . A subset of Pc with pre�x bounded by
� and K consists of such local extent constraints and con-
straints on other local databases connected to DB by some
path ���0, where K 6�p �

0. It can be partitioned into �1 and
�2, where �1 consists of local extent constraints on DBK ,
and �2 contains constraints on other local databases.

De�nition 2.4: The (�nite) implication problem for local
extent constraints is the problem of determining, given any
�nite subset � [f'g of Pc with pre�x bounded by � and
K, where ' is a constraint bounded by � and K, whether
every (�nite) model of � also satis�es '.

For example, the question whether every (�nite) model of
�0 also satis�es '0 is an instance of the (�nite) implication
problem for local extent constraints. Note that '0 is also
bounded by � and MIT .

In Section 5, we shall show that in the untyped context,
constraints on other local databases (e.g., constraints in �2)
do not interact with implication and �nite implication of
local extent constraints on DBK (e.g., constraints in �1).
As a result, the implication and �nite implication problems
for local extent constraints are decidable in PTIME in the
context of semistructured data. However, this may no longer
be true in the typed context. Indeed, these problems become
undecidable in the context of an object-oriented model.

3 Semistructured data vs structured data

In this section, we consider semistructured data versus struc-
tured data. More speci�cally, we investigate three models:
a semistructured data model and two object-oriented mod-
els. For each of these models, we present an abstraction of

databases in terms of �rst-order logic. In Sections 4 and 5,
we use these abstractions to study path constraint implica-
tion in these models.

3.1 Semistructured data model

Semistructured data is characterized as having no type con-
straints, irregular structure and missing schema [1, 8]. That
is, data whose structure is not constrained by a schema.
Semistructured data is commonly found on the World-Wide
Web, in biological databases and after data integration. In
particular, documents of XML [7] are usually viewed as
semistructured data [14].

As observed by [1, 8], semistructured data is best mod-
eled as a rooted edge-labeled directed graph, unconstrained
by any type system or schema. Along the same lines, we
use an abstraction of semistructured databases as (�nite)
�-structures. Here � is a signature of the form (r; E) as
described in Section 2, in which r denotes the root and E
denotes the edge labels.

Below we re�ne the notion of path constraint implication
in the context of semistructured data. We use � j= ' to
denote that � implies '. That is, for every �-structure G,
if G j= �, then G j= '. Similarly, we use � j=f ' to denote
that � �nitely implies '. That is, for every �nite �-structure
G, if G j= �, then G j= '.

In the context of semistructured data, the (�nite) impli-
cation problem for Pc is the problem to determine, given
any �nite subset � [f'g of Pc, whether � j= ' (� j=f ').
Similarly, the (�nite) implication problem for local extent
constraints can be formalized in the context of semistruc-
tured data.

3.2 Object-oriented model M+

Next, we consider structured data, by which we mean data
constrained by a schema, such as data found for instance
in object-oriented databases. In addition, as mentioned in
Section 1, there are applications in which data usually con-
sidered to be semistructured, such as XML data, is further
constrained by a schema.

We �rst study databases in a generic object-oriented
model,M+. Similar to the models studied in [2, 3, 11], M+

supports classes, records, sets and recursive structures. We
characterize schemas inM+ in terms of type constraints. In
Section 5, we investigate the interaction between these type
constraints and path constraints.

3.2.1 Schemas and instances

We describe schemas and instances of M+ as follows. As-
sume a �xed countable set of labels, L, and a �xed �nite set
of atomic types, B. Examples of atomic types include int
and string.

Let C be some �nite set of classes. The set of types over
C, TypesC, is de�ned by the syntax:

� ::= b j C j f�g j [l1 : �1; : : : ; ln : �n]

where b 2 B, C 2 C, and li 2 L. The notations f�g and
[l1 : �1; : : : ; ln : �n] represent set type and record type, re-
spectively.

A schema � in M+ is a triple (C; �; DBtype), where

� C is a �nite set of classes,

� � is a mapping: C ! TypesC such that for each C 2 C,
�(C) 62 B [C, and

� DBtype 2 TypesC n (B [C).

Here we assume that every database of a schema has a
unique (persistent) entry point, and DBtype in the schema
speci�es the type of the entry point.

Example 3.1: The XML document given in Figure 1 can
be speci�ed by a schema (C; �; DBtype) in M+ as follows
(optional sub-elements are speci�ed as sets):

� C consists of Book and Person;

� � maps Book and Person to record types:

Person 7! [name : string; SSN : string; age : fintg;
wrote : fBookg]

Book 7! [title : string; ISBN : string; year : fintg;
ref : fBookg; author : fPersong]

� DBtype is [person : fPersong; book : fBookg].

A database instance of schema � = (C; �; DBtype) is a
triple I = (�; �; d), where

� � is an oid (object identity) assignment that maps
each C 2 C to a �nite set of oids, �(C), such that for
all C;C0 2 C, �(C) \ �(C0) = ; if C 6= C0;

� for each C 2 C, � maps each oid in �(C) to a value in
[[�(C)]]� , where

[[b]]� = Db,
[[C]]� = �(C),
[[f�g]]� = fV j V � [[�]]�g,
[[[l1 : �1; :::; ln : �n]]]� = f[l1 : v1; :::; ln : vn] j

vi 2 [[�i]]� ; i 2 [1; n]g;

here Db denotes the domain of atomic type b;

� d is a value in [[DBtype]]� , which represents the (per-
sistent) entry point into the database instance.

The set of all database instances of � is denoted by I(�).

3.2.2 Type constraints

We next present an abstraction of databases in M+. Struc-
tured data can be viewed as semistructured data further
constrained by a schema. Along the same lines of the ab-
straction of semistructured data given above, we represent
a structured database as a �rst-order logic structure satisfy-
ing a certain type constraint. Such a structure can also be
depicted as an edge-labeled, rooted, directed graph, which
has a certain \shape" speci�ed by the type constraint. This
abstraction simpli�es the analysis of the interaction between
path constraints and the type system.

To do this, we �rst de�ne the �rst-order signature deter-
mined by a schema.

Given a schema � = (C; �; DBtype), we de�ne the set of
binary relation symbols, E(�), and the set of unary relation
symbols, T (�), as follows:

� DBtype 2 T (�) and C � T (�);

� For each � 2 T (�),

{ if � = f� 0g (or for some C 2 C, �(C) = f� 0g),
then � 0 is in T (�) and � is in E(�);

{ if � = [l1 : �1; : : : ; ln : �n] (or for some class
C 2 C, �(C) = [l1 : �1; : : : ; ln : �n]), then for
each i 2 [1; n], �i is in T (�) and li is in E(�).

Note here we use the distinguished binary relation � to de-
note the set membership relation.

The signature determined by schema � is

�(�) = (r; E(�); T (�));

where r is a constant symbol (denoting the root), E(�) is
the �nite set of binary relation symbols (denoting the edge
labels) and T (�) is the �nite set of unary relation symbols
(denoting the sorts or types) de�ned above.

As an example, the signature determined by the schema
given in Example 3.1 is (r; E; T), where

� r is a constant, which in each instance (�; �; d) of the
schema intends to name d;

� E includes person, book, name, SSN , wrote, age,
title, ISBN , year, ref , author and �;

� T includes Person, Book, string, fintg, fstringg,
fBookg, fPersong and DBtype.

We represent an instance I of a schema � in M+ as
a �(�)-structure G that satis�es a certain type constraint.
More speci�cally, let � = (C; �; DBtype), I = (�; �; d) and
G = (jGj; rG; EG; TG). We use jGj, rG, EG and TG to rep-
resent data entities, the entry point d, record labels and set
membership, and the types of the data entities, respectively.
This structure must satisfy the type constraint imposed by
�, �(�), which speci�es restrictions on the edges going out
of vertices of di�erent types.

Based on the de�nition of database instances in M+, we
give �(�) as follows.

� Every element of jGj has a unique type in T (�). In
particular, rG has DBtype.

� If an element a of jGj has type � , then a must satisfy
the constraint imposed by � :

{ If � is an atomic type b, then a has no outgoing
edge.

{ If � = f� 0g, or � is a class type C and �(C) is
f� 0g, then all the outgoing edges of a are labeled
with � and lead to elements of type � 0.

In addition, if � = f� 0g, then for each b 2 jGj such
that b also has type � , a = b i� for any c 2 jGj,
G j= �(a; c)$ �(b; c).

{ If � = [l1 : �1; : : : ; ln : �n], or � is a class type
C and �(C) = [l1 : �1; : : : ; ln : �n], then a has
exactly n outgoing edges. These edges are labeled
with l1, ..., ln, respectively. In addition, for each
i 2 [1; n], if G j= li(a; o) for some o 2 jGj, then o
has type �i.

Moreover, if � = [l1 : �1; : : : ; ln : �n], then for
each b 2 jGj having type � , a = b i� for any
i 2 [1; n] and c 2 jGj, G j= li(a; c)$ li(b; c).

In general, for any node a in a graph representing a �(�)-
structure, �(�) places restrictions on the number of the
edges going out of a, on the labels of these edges, and on
the types of the nodes to which these edges connect.

An abstract database of a schema � is a �nite �(�)-
structure G such that G j= �(�). We denote the set of all
abstract databases of � by Uf(�). We use U(�) to denote
the set of all �(�)-structures satisfying �(�).

Because of the type constraint �(�), some sequences of
labels in E(�) are not paths in any structure of U(�). We

are not interested in these edge label sequences. We will
use Paths(�) to denote the set of paths over �. That is,
for any sequence � of edge labels, � 2 Paths(�) i� there
is G 2 U(�) such that G j= 9x �(r; x). In addition, we
assume that over any schema � in M+, Pc constraints are
de�ned in terms of paths in Paths(�).

Path constraints of Pc can be naturally interpreted in
database instances of a schema � in M+. That is, the
notion \I j= '" can be de�ned for an instance I of � and
a constraint ' of Pc (see [10] for detailed discussions of this
notion). Using this notion, the lemma below justi�es the
abstraction of databases of M+ de�ned above.

Lemma 3.1: Let � be any schema in M+. For each I in
I(�), there is G 2 Uf (�), such that

for any ' 2 Pc, I j= ' i� G j= '. (y)

Similarly, for each G 2 Uf (�), there is I 2 I(�), such that
(y) holds.

In the typed context, path constraint implication is re-
stricted by a schema. More speci�cally, let � be a schema
inM+ and �[f'g be a �nite subset of Pc. We use � j=� '
to denote that � implies ' over �. That is, for every
G 2 U(�), if G j= � then G j= '. Similarly, we use
� j=(f;�) ' to denote that � �nitely implies ' over �.
That is, for every G 2 Uf (�), if G j= � then G j= '.

In the context of M+, the (�nite) implication problem
for Pc is the problem of determining, given any �nite subset
� [f'g of Pc and any schema � in M+, whether � j=� '
(� j=(f;�) '). Similarly, the (�nite) implication problem for
local extent constraints can also be formalized in the context
of M+.

3.3 Object-oriented model M

We also consider a restriction of M+, denoted by M. The
modelM supports classes, records and recursive structures.
However, it does not allow sets. In addition, a record in
M consists of values of atomic types and oids only. More
speci�cally, let C be some �nite set of classes. The set of
types over C in M is de�ned by:

t ::= b j C

� ::= t j [l1 : t1; : : : ; ln : tn]

where b 2 B, C 2 C, and li 2 L.
The notions of schemas and instances in M can be de-

�ned in the same way as in M+. Databases of M are com-
parable to feature structures [23], which have proven useful
for representing linguistic data.

Given an M schema �, we de�ne E(�), T (�), �(�),
and type constraint �(�) in the same way as inM+, except
that set types are not considered here. Similarly, the notions
of Uf (�), U(�) and Paths(�) can also be de�ned. Using
Uf (�) and U(�), we can de�ne the implication and �nite
implication problems for Pc and for local extent constraints
in the context of M in the same way as in M+.

4 Implication of Pc constraints

This section shows that an undecidability result on path
constraint implication established for semistructured data
collapses when a type of M is imposed on the data. More
speci�cally, we prove the following:

Theorem 4.1: In the context of semistructured data, the
implication and �nite implication problems for Pc are unde-
cidable.

Theorem 4.2: In the context of the object-oriented model
M, the implication and �nite implication problems for Pc
are decidable in cubic-time and are �nitely axiomatizable.

These theorems show that in some cases, adding a type
system may simplify reasoning about path constraints.

4.1 Undecidability on untyped data

Theorem 4.1 was �rst shown in [9]. Here we strengthen the
result by identifying an undecidable fragment of Pc. This
\small" fragment of Pc is an even milder generalization of
Pw, the class of word constraints introduced in [4] and de-
scribed in Section 2.

We present the fragment as follows. Recall E, the �nite
set of binary relation symbols (edge labels) in signature �
de�ned in Section 2. Let K be a binary relation symbol in
E. For each 2 Pw, where = 8x (�(r; x)!
(r; x)), let

�(; K) = 8x (K(r; x)! 8 y (�(x; y)!
(x; y))):

The fragment is de�ned by

Pw(K) = Pw [f�(; K) j 2 Pwg:

In the context of semistructured data, the (�nite) im-
plication problem for Pw(K) is the problem to determine,
given any �nite subset � [f'g of Pw(K), whether � j= '
(� j=f '). The theorem below establishes the undecidability
of these problems, from which Theorem 4.1 follows immedi-
ately.

Theorem 4.3: In the context of semistructured data, both
the implication and �nite implication problems for Pw(K)
are undecidable.

These undecidability results are rather surprising since
Pw(K) generalizes Pw in such a mild way. As shown by [4],
the implication and �nite implication problems for Pw are
decidable in PTIME.

We prove Theorem 4.3 by reduction from the word prob-
lem for (�nite) monoids. Before we give the proof, we �rst
review the word problem for (�nite) monoids.

4.1.1 The word problem for (�nite) monoids

Recall the following notions from [2, 20].
Let � be a �nite alphabet and (��; �; �) the free monoid

generated by �. An equation (over �) is a pair (�; �) of
strings in ��.

Let � = f(�i; �i) j �i; �i 2 ��; i 2 [1; n]g and a test
equation � be (�; �). We use � j= � (� j=f �) to denote
that for every (�nite) monoid (M; �; id) and every homo-
morphism h : �� ! M , if h(�i) = h(�i) for each i 2 [1; n],
then h(�) = h(�).

The word problem for (�nite) monoids is the problem of
determining, given � and �, whether � j= � (� j=f �).

The following result is well-known (e.g., see [2, 20]).

Theorem 4.4: Both the word problem for monoids and the
word problem for �nite monoids are undecidable.

4.1.2 Reduction from the word problem

We encode the word problem for (�nite) monoids in terms
of the (�nite) implication problem for Pw(K). Let �0 be a
�nite alphabet and �0 be a �nite set of equations (over �0).
Assume

�0 = flj j j 2 [1; m]g;

�0 = f(�i; �i) j �i; �i 2 ��0; i 2 [1; n]g;

and a �rst-order logic signature

�0 = (r; �0 [fKg);

where K 62 �0, r is a constant symbol, and �0 [fKg is a
set of binary relation symbols. Note here that each letter
in �0 is a binary relation symbol in �0. Thus every � 2 ��0
can be represented as a path formula, also denoted by �. In
addition, we use � to denote the concatenation operator for
both paths and strings.

We encode �0 in terms of � � Pw(K), which consists of
the following: for every j 2 [1; m],

8x (�(r; x) ! K(r; x));

8x (K � lj(r; x) ! K(r; x));

and for each (�i; �i) 2 �0,

8x (K(r; x) ! 8 y (�i(x; y)! �i(x; y)));

8x (K(r; x) ! 8 y (�i(x; y)! �i(x; y))):

Let (�; �) be a test equation over �0. We encode (�; �)
as a pair of constraints in Pw:

'(�;�) = 8x (�(r; x)! �(r; x))

'(�;�) = 8x (�(r; x)! �(r; x))

The lemma below shows that the encoding above is in-
deed a reduction from the word problem for (�nite) monoids.
From this lemma and Theorem 4.4, Theorem 4.3 follows.

Lemma 4.5: In the context of semistructured data, for all
�; � 2 ��0,

�0 j= (�; �) i� � j= '(�;�) ^ '(�;�), (a)

�0 j=f (�; �) i� � j=f '(�;�) ^ '(�;�). (b)

Proof sketch: We give a proof sketch of (b). We omit the
details of the lengthy proof due to the lack of space, but we
encourage the reader to consult [10].
(if) Suppose that �0 6j=f (�; �). Then there exist a �nite
monoid M and a homomorphism h : ��0 !M such that for
any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�). We de�ne
an equivalence relation on ��0 by:

� � % i� h(�) = h(%):

For every string � 2 ��0, let b� be the equivalence class
of � with respect to �, and let o(b�) be a distinct node.
Then we de�ne a �0-structure G = (jGj; rG; EG), such
that jGj = fo(b�) j � 2 ��0g and the root rG = o(b�). The
binary relations are populated in G as follows: for each
� 2 ��0, let G j= K(o(b�); o(b�)), and for each j 2 [1; m], let

G j= lj(o(b�); o(d� � lj)). The structureG is shown in Figure 2.
It can be veri�ed that G is a �nite model of

V
�^:'(�;�).

(only if) Suppose that there is a �nite �0-structure G such
that G j=

V
�^(:'(�;�)_:'(�;�)). Then we de�ne another

equivalence relation on ��0 by:

� � % i� G j= 8x(K(r; x)! 8 y (�(x; y)! %(x; y))) ^

8x (K(r; x)! 8 y (%(x; y)! �(x; y))):

α

K

K

KK

K K

K

K

α

K

K

KK

K K

K

l1 ln

l1 ln

lnl1

r

Figure 2: The structure G in the proof of Lemma 4.5

For any � 2 ��0, let [�] be the equivalence class of � with
respect to �. Then we de�ne M = f[�] j � 2 ��0g, operator
� by [�] � [%] = [� � %], and h : ��0 ! M by h : � 7! [�].
It can be veri�ed that (M; �; [�]) is indeed a �nite monoid,
h is a homomorphism, and in addition, for every i 2 [1; n],
h(�i) = h(�i) but h(�) 6= h(�).

4.2 The collapse of the undecidability in M

We next show that in the context of the object-oriented
model M, the undecidability result established above no
longer holds.

The collapse of the undecidability is due to the following
lemma, which can be proved by a straightforward induction
on the length of � and by using �(�). On untyped data,
this lemma does not hold in general.

Lemma 4.6: Let � be an arbitrary schema in M, and
G 2 U(�). Then for every � in Paths(�), there is a unique
o 2 jGj, such that G j= �(rG; o).

Using Lemma 4.6, it is easy to verify the following.

Lemma 4.7: Let � be a schema in M, ' be a forward
constraint 8x (�(r; x)! 8 y (�(x; y)!
(x; y))), and be
a word constraint 8x (� � �(r; x) ! � �
(r; x)). Then for
any G 2 U(�), G j= ' i� G j= .

Lemma 4.8: Let � be a schema in M, ' be a backward
constraint 8x (�(r; x)! 8 y (�(x; y)!
(y; x))), and be
a word constraint 8x (�(r; x) ! � � � �
(r; x)). Then for
any G 2 U(�), G j= ' i� G j= .

Based on Lemmas 4.7 and 4.8, we give a �nite axioma-
tization Ir of Pc constraint implication as follows:

� Re
exivity:

8x (�(r; x)! �(r; x))

� Transitivity:

8x (�(r; x)! �(r; x)) 8x (�(r; x)!
(r; x))
8x (�(r; x)!
(r; x))

� Right-congruence:

8x (�(r; x)! �(r; x))
8x (� �
(r; x)! � �
(r; x))

� Commutativity:

8x (�(r; x)! �(r; x))
8x (�(r; x)! �(r; x))

� Forward-to-word:
8x (�(r; x)! 8y (�(x; y)!
(x; y)))

8x (� � �(r; x)! � �
(r; x))

� Word-to-forward:
8x (� � �(r; x)! � �
(r; x))

8x (�(r; x)! 8y (�(x; y)!
(x; y)))

� Backward-to-word:
8x (�(r; x)! 8y (�(x; y)!
(y; x)))

8x (�(r; x)! � � � �
(r; x))

� Word-to-backward:
8x (�(r; x)! � � � �
(r; x))

8x (�(r; x)! 8y (�(x; y)!
(y; x)))

The �rst three inference rules above were proposed in [4] and
were shown to be complete for word constraint implication
in the context of untyped data. In contrast, these three
rules are no longer complete for word constraint implication
in the context of M.

Let � [f'g be a �nite subset of Pc. We use � `Ir ' to
denote that ' is provable from � using Ir.

Theorem 4.9: Let � be any schema inM. For every �nite
subset � [f'g of Pc,

� j=� ' i� � `Ir ';

� j=(f;�) ' i� � `Ir ':

As an immediate result, in the context of M, the impli-
cation and �nite implication problems for Pc coincide and
are decidable.

A proof sketch of Theorem 4.9 is as follows. Soundness of
Ir can be veri�ed by induction on the lengths of Ir-proofs.
For the proof of completeness, it su�ces to show the exis-
tence of G 2 Uf (�) such that G j= � and in addition, if
G j= ' then � `Ir '. Owing to the space limit, we omit the
lengthy de�nition of G, but we recommend the interested
reader see [10] for a detailed proof.

Based on the axiomatization Ir, a cubic-time algorithm
can be given for testing implication and �nite implication of
Pc constraints in the context of M. By Lemma 4.6, every
constraint in � is applied at most once by the algorithm.
It is because of this property that the algorithm has low
complexity. Space limitations do not allow us to include the
algorithm. The interested reader should consult [10].

Theorem 4.2 follows from Theorem 4.9 and the existence
of the cubic-time algorithm.

5 Implication of local extent constraints

In light of Theorems 4.1 and 4.2, one is tempted to think
that adding structure will simplify reasoning about path
constraints. However, this is not always the case. This sec-
tion shows that a decidability result developed for untyped
data breaks down when a type of M+ is imposed on the
data.

Theorem 5.1: In the context of semistructured data, the
implication and �nite implication problems for local extent
constraints are decidable in PTIME.

Theorem 5.2: In the context of the object-oriented data
model M+, the implication and �nite implication problems
for local extent constraints are undecidable.

These theorems demonstrate that adding a type system
may also make the analysis of path constraint implication

more di�cult. This may seem counterintuitive since at �rst
glance, a type constraint appears to assert that the data
has a regular structure and therefore, simpli�es reasoning
about path constraints. This appearance can be dispelled by
noticing that the type constraint places restrictions on the
structures considered in implication problems in a di�erent
way to path constraints. More speci�cally, let � [f'g be a
�nite subset of Pc. In the untyped context, we may be able
to �nd in PTIME a structure G such that G j=

V
� ^ :'.

However, when a schema � is imposed on the data, we may
have that G 62 U(�). That is, G is excluded from the set of
structures considered in implication problems because of the
type constraint �(�) determined by �. Worse still, �(�)
may constrain the structure of the data in such a peculiar
way that it is undecidable whether there is H 2 U(�) such
that H j=

V
� ^ :'.

5.1 Decidability on untyped data

We �rst show Theorem 5.1. The idea of the proof is by re-
duction to word constraint implication. It has been shown in
[4] that in the context of untyped data, the implication and
�nite implication problems for Pw are decidable in PTIME.

We �rst de�ne a function f that is used in the further
construction of the reduction. Let � be a path and ' be a Pc
constraint. Then f(�; ') is de�ned to be the Pc constraint

� 8x (� � �(r; x) ! 8 y (�(x; y) !
(x; y))), if ' is of
the form 8x (�(r; x) ! 8 y (�(x; y) !
(x; y))) (i.e.,
a forward constraint); or

� 8x (� � �(r; x) ! 8 y (�(x; y) !
(y; x))), if ' is of
the form 8x (�(r; x) ! 8 y (�(x; y) !
(y; x))) (i.e.,
a backward constraint).

Recall the de�nition of the (�nite) implication problem
for local extent constraints from De�nition 2.4. Let �[f'g
be a �nite subset of Pc with pre�x bounded by path � and
binary relation symbol K, where ' is also bounded by � and
K. By De�nition 2.3, � can be partitioned into �K and �r :

�K = f� j � 2 �; � is bounded by � and Kg;

�r = � n �K :

In addition, for each � 2 �K [f'g, � is a forward constraint
and the pre�x of �, pf(�), is � �K. For each 2 �r , pf()
is of the form � � �0, where �0 is a path such that K 6�p �

0,
i.e., K is not a pre�x of �0.

The reduction is de�ned in two steps. First, using f and
�, we de�ne a function g1 such that for every � 2 � [f'g,
� = f(�; g1(�)). That is, g1 removes � from the pre�x of
�. Let '1 = g1(') and

�1
K = fg1(�) j � 2 �Kg;

�1
r = fg1() j 2 �rg:

Second, using f and K, we de�ne another function g2 such
that for any � 2 �1

K [f'1g, � = f(K; g2(�)). That is,
g2 further removes K from the pre�x of �. Now let '2 be
g2('

1) and �2
K = fg2(�) j � 2 �1

Kg. Clearly, �
2
K � Pw and

'2 2 Pw. The functions g1 and g2 establish a reduction:

Lemma 5.3: In the context of semistructured data,

� j= ' i� �1
K [�1

r j= '1 i� �2
K j= '2, (a)

� j=f ' i� �1
K [�1

r j=f '
1 i� �2

K j=f '
2. (b)

K

rH

K

Gr

G

Figure 3: The structure H in the proof of Lemma 5.3

This lemma su�ces to show Theorem 5.1. For if it holds,
then the (�nite) implication problem for local extent con-
straints is reduced to the (�nite) implication problem for
Pw. Note that given � and ', � and K can be determined
in linear-time. In addition, the functions g1 and g2 are com-
putable in linear-time. Therefore, the PTIME decidabil-
ity of the (�nite) implication problem for local extent con-
straints follows from the PTIME decidability of the (�nite)
implication problem for Pw .

Next, we give a proof sketch of Lemma 5.3 (b). We omit
the details of the proof due to the lack of space, but we
suggest the reader consult [10].

Proof sketch: We �rst show that � j=f ' if and only if
�1
K [�1

r j=f '
1. If

V
�1
K ^
V
�1
r ^ :'

1 has a �nite model
G1, then we construct a structure G by adding to G1 a
new root rG and a path � from rG to rG1 . It is easy to
verify that G is a �nite model of

V
� ^ :'. Conversely,

suppose that
V
� ^ :' has a �nite model G. Assume that

' is of the form 8x (� �K(r; x)! 8 y (�(x; y)!
(x; y))).
Thus by G j= :', there are vertices a; b; c in G such that
G j= �(rG; a) ^ K(a; b) ^ �(b; c) ^ :
(b; c). We construct
a structure G1 from G by letting a be the new root. It can
be veri�ed that G1 is a �nite model of

V
�1
K ^
V
�1
r ^:'

1.

We next proceed to show that �1
K [�1

r j=f '1 if and
only if �2

K j=f '2. The argument given above su�ces to
show that if �2

K j=f '
2 then �1

K [�1
r j=f '

1. Conversely,
assume that

V
�2
K ^ :'2 has a �nite model G. Based on

G, we construct a structure H as shown in Figure 3. More
speci�cally, let H be (jHj; rH ; EH), where jHj = jGj[frHg,
the root node rH is a new vertex which is not in jGj, and
EH = EG [fK(rH ; rH); K(rH ; rG)g. By De�nitions 2.3
and 2.4, it can be veri�ed that H is indeed a �nite model ofV
�1
K ^
V
�1
r ^ :'

1.

5.2 The breakdown of the decidability in M+

Next, we show that the decidability result established above
breaks down in the context of M+. More speci�cally, we
prove Theorem 5.2 by reduction from the word problem for
(�nite) monoids.

Recall �0 and �0 described in Section 4.1. Using �0, we
de�ne an M+ schema �1 = (C; �; DBtype), where

� C = fC;Cs; Clg,

� � is de�ned by:

C 7! [l1 : C; : : : ; lm : C]

Cs 7! fCg

Cl 7! [a : C; b : Cs; K : Cl]

where a; b;K 62 �0.

� DBtype = [l : Cl], where l 62 �0.

Note here that each letter in �0 is a record label of C, and
thus is in E(�1). Hence every � 2 ��0 can be represented as
a path formula, also denoted by �.

We encode �0 in terms of a �nite set �, which consists
of the following Pc constraints:

1. 8x (l �K(r; x)! 8 y (a(x; y)! b � �(x; y)));

2. for each j 2 [1; m],

8x (l �K(r; x)! 8 y (b � � � lj(x; y)! b � �(x; y)));

3. for each (�i; �i) 2 �0,

8x (l � b � �(r; x)! 8 y (�i(x; y)! �i(x; y)));

4. 8x (l(r; x)! 8 y (�(x; y)! K(x; y))).

We encode a test equation (�; �) over �0 by the constraint:

'(�;�) = 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))):

By De�nition 2.3, it is easy to see that � [f'(�;�)g
is a subset of Pc with pre�x bounded by l and K. More
speci�cally, this set can be partitioned into �r and �K :

� �K consists of '(�;�) as well as those de�ned in (1)
and (2). These constraints are bounded by l and K.

� �r consists of the constraints speci�ed in (3) and (4),
which are not bounded by l and K. In addition, for
any � 2 �r, the pre�x of �, pf(�), is either l � b � � or
l. In particular, if pf(�) = l, then � is the constraint
given in (4).

The lemma below shows that this encoding is a reduction
from the word problem for (�nite) monoids. Theorem 5.2
follows from this lemma and Theorem 4.4.

Lemma 5.4: In the context of M+, for all �; � 2 ��0,

�0 j= (�; �) i� � j=�1
'(�;�), (a)

�0 j=f (�; �) i� � j=(f;�1) '(�;�). (b)

The proof of this lemma uses the following property of
�1: For any G 2 U(�1), there are unique vertices ol; oK
in G such that G j= l(rG; ol) ^ K(ol; oK). In addition, if
G j= �, then ol = oK . This holds due to the type constraint
�(�1). A structure satisfying �(�1) and � must have the
form shown in Figure 4. Unlike in semistructured data, here
� j=�1

'(�;�) is no longer equivalent to �K j=�1
'(�;�).

That is, �r interacts with �K j=�1
'(�;�). We do not in-

clude the proof of this lemma due to the lack of space. The
interested reader should see [10] for a detailed proof.

It should be mentioned that the proof of Theorem 5.1
is not applicable here. Note that the structure H shown in
Figure 3 is not in U(�1), because of type constraint �(�1).

6 Conclusion

Two forms of constraints have been proposed separately for
specifying semantics of XML data, namely, type constraints
[6, 17, 19] and path constraints [4, 9]. In this paper, we
have investigated their interaction. We have demonstrated
that adding a type system may in some cases simplify the
analysis of path constraint implication, and in other cases
make it harder. More speci�cally, we have studied how Pc
constraints introduced in [9] interact with two type systems.

*
*

*
*

*

K

r

a b

l

l1 ln

α

Figure 4: The structure G in the proof of Lemma 5.4

One of the type systems, M+, is an object-oriented model
similar to those studied in [2, 3, 11]. It supports classes,
records and sets. The other, M, is a restriction of M+. On
the one hand, we have shown that the implication and �nite
implication problems for Pc are undecidable in the context
of semistructured data, but they become not only decidable
in cubic-time but also �nitely axiomatizable when a type of
M is added. On the other hand, we have also shown that the
implication and �nite implication problems for local extent
constraints, which constitute a fragment of Pc, are decidable
in PTIME in the untyped context. However, when a type
of M+ is imposed, these problems become undecidable.

Other results established in the full paper. Due to
the lack of space, several results reported in [10] are not
included in this paper. Below we mention some of them.
We encourage the reader to consult [10].

Recall Pw(K) described in Section 4.1. Similarly, given
a path �, Pw(�) is de�ned to be a generalization of the class
of word constraints as follows. For each 2 Pw, where
 = 8x (�(r; x)!
(r; x)), let

�(; �) = 8x (�(r; x)! 8 y (�(x; y)!
(x; y))):

Then Pw(�) is de�ned by

Pw(�) = Pw [f�(; �) j 2 Pwg:

Theorem 6.1: In the context of M+, the implication and
�nite implication problems for Pw(�) and therefore, for Pc,
are undecidable.

Another object-oriented model, M+
f , was also studied in

[10]. This model is the same as M+ except that it supports
�nite sets instead of sets. The major di�erence betweenM+

and M+
f is described as follows. For any schema � in M+,

the set of structures satisfying the type constraint �(�),
U(�), is de�nable in �rst-order logic. In contrast, for a
schema � inM+

f , U(�) may not be �rst order de�nable. As
a result, the equivalence of the implication problem and the
�nite implication problem for path constraints in M+

f does
not necessarily lead to the decidability of these problems.

It was shown in [10] that the results developed for M+

also hold for M+
f . The proofs of some of these results, how-

ever, are quite di�erent from the analogous proofs for M+

for the reason mentioned above.

Theorem 6.2: In the context of M+
f , the implication and

�nite implication problems for Pw(�), for Pc, and for local
extent constraints are all undecidable.

The main results of [10] are summarized in Table 1.

(�nite) implication problem (�nite) implication problem (�nite) implication problem
for Pw(�) for local extent constraints for Pc

semistructured data model undecidable decidable (PTIME) undecidable

object-oriented model M decidable (cubic-time) decidable (cubic-time) decidable (cubic-time)

object-oriented model M+ undecidable undecidable undecidable

object-oriented model M+
f undecidable undecidable undecidable

Table 1: The main results of the paper

Further research. It would be interesting to study the in-
teraction between path constraints and less strict type sys-
tems such as the object relational data model.

To include path constraints in XML documents to specify
the semantics of the data, it is important to have a path
constraint syntax that conforms to XML and XML DTD
[7]. In [10], we o�ered a preliminary proposal. To describe
in this syntax external links such as those studied in [21],
much more remains to be done.

Acknowledgements. The authors thank Leonid Libkin,
Val Tannen and Victor Vianu for valuable comments and
discussions.

References

[1] S. Abiteboul. \Querying semistructured data". In Proc.
6th Int'l. Conf. on Database Theory (ICDT'97), 1997.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesly, 1995.

[3] S. Abiteboul and P. C. Kanellakis. \Object identity as a
query primitive". In Proc. ACM SIGMOD Int'l. Conf.
on Management of Data, 1989.

[4] S. Abiteboul and V. Vianu. \Regular path queries with
constraints". In Proc. 16th ACM Symp. on Principles
of Database Systems (PODS'97), 1997.

[5] E. B�orger, E. Gr�adel, and Y. Gurevich. The classical
decision problem. Springer, 1997.

[6] T. Bray, C. Frankston, and A. Malhotra. \Document
Content Description for XML". W3C Note NOTE-dcd-
19980731. See http://www.w3.org/TR/NOTE-dcd.

[7] T. Bray, J. Paoli and C. M. Sperberg-McQueen. \Ex-
tensible Markup Language (XML) 1.0". W3C Recom-
mendation REC-xml-19980210. Available as http://
www.w3.org/REC-xml.

[8] P. Buneman. \Semistructured data". Tutorial in Proc.
16th ACM Symp. on Principles of Database Systems
(PODS'97), 1997.

[9] P. Buneman, W. Fan, and S. Weinstein. \Path con-
straints on semistructured and structured data". In
Proc. 17th ACM Symp. on Principles of Database Sys-
tems (PODS'98), 1998.

[10] P. Buneman, W. Fan and S. Weinstein. \Interaction
between path and type constraints". Technical re-
port MS-CIS-98-16, Department of Computer and In-
formation Science, University of Pennsylvania, 1998.

Available as ftp://ftp.cis.upenn.edu/pub/papers/
db-research/tr9816.ps.gz.

[11] R. G. G. Cattell (ed.). The object-oriented standard:
ODMG-93 (Release 1.2). Morgan Kaufmann, San Ma-
teo, California, 1996.

[12] U. S. Chakravarthy, J. Grant, and J. Minker. \Foun-
dations of semantic query optimization for deductive
databases". In J. Minker, editor, Foundations of Deduc-
tive Databases and Logic Programming . Morgan Kauf-
mann, San Mateo, California, 1988.

[13] S. Cluet and C. Delobel. \A general framework for the
optimization of object-oriented queries". In Proc. ACM
SIGMOD Int'l. Conf. on Management of Data, 1992.

[14] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. \XML-QL: a query language for XML". W3C
Note NOTE-xml-ql-19980819. Available as http://
www.w3.org/TR/NOTE-xml-ql.

[15] H. B. Enderton. A mathematical introduction to logic.
Academic Press, 1972.

[16] D. Florescu, L. Raschid, and P. Valduriez. \A method-
ology for query reformulation in CIS using semantic
knowledge". Special issue on Formal Methods in Coop-
erative Information Systems, Vol. 5(4), 1996.

[17] M. Fuchs, M. Maloney, and A. Milowski. \Schema
for object-oriented XML". W3C Note NOTE-SOX-
19980930. See http://www.w3.org/TR/NOTE-SOX.

[18] O. Lassila and R. R. Swick. \Resource Description
Framework (RDF) model and syntax speci�cation".
W3C Working Draft WD-rdf-syntax-19981008. Avail-
able as http://www.w3.org/TR/WD-rdf-syntax.

[19] A. Layman, E. Jung, E. Maler, H. S. Thompson,
J. Paoli, J. Tigue, N. H. Mikula, and S. De Rose.
\XML-Data". W3C Note NOTE-XML-data-980105.
See http://www.w3.org/TR/1998/ NOTE-XML-data.

[20] H. R. Lewis and C. H. Papadimitriou. Elements of the
theory of computation. Prentice-Hall, 1981.

[21] E. Maler and S. De Rose. \XML Linking language
(XLink)". W3C Working Draft WD-xlink-19980303.
See http://www.w3.org/TR/WD-xlink.

[22] L. Popa and V. Tannen. \An equational chase for path-
conjunctive queries, constraints, and views". In Proc. of
7th Int.'l Conf. on Database Theory (ICDT'99), 1999.

[23] W. C. Rounds. \Feature logics". In J. van Benthem
and A. ter Meulen, editors, Handbook of Logic and Lan-
guage. Elsevier, 1997.

