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Abstract
We propose a framework for integrating data from multiple
relational sources into an XML document that both con-
forms to a given DTD and satis�es prede�ned XML con-
straints. The framework is based on a speci�cation lan-
guage, AIG, that extends a DTD by (1) associating element
types with semantic attributes (inherited and synthesized,
inspired by the corresponding notions from Attribute Gram-
mars), (2) computing these attributes via parameterized
SQL queries over multiple data sources, and (3) incorporat-
ing XML keys and inclusion constraints. The novelty of AIG
consists in semantic attributes and their dependency rela-
tions for controlling context-dependent, DTD-directed con-
struction of XML documents, as well as for checking XML
constraints in parallel with document-generation. We also
present cost-based optimization techniques for eÆciently eval-
uating AIGs, including algorithms for merging queries and
for scheduling queries on multiple data sources. This pro-
vides a new grammar-based approach for data integration
under both syntactic and semantic constraints.

1. Introduction
Data exchange applications frequently require enterprises

to integrate data from di�erent relational sources for ex-
port as an XML document. The integrated XML document
is typically required to conform to a prede�ned \schema".
Typically a schema consists of two parts: a type speci�-
cation and a set of integrity constraints, e.g., a speci�ca-
tion in XML Schema [28]; thus, the integrated data should
both conform to the type and satis�es the constraints. Here
we consider DTDs for XML types, and keys and inclusion
constraints (a generalization of foreign keys) for XML con-
straints, which represent the schema features most common
in current practice.

Example 1.1: Let us consider data exchange between an
insurance company and a hospital. The hospital maintains
four relational databases: one containing patient informa-
tion, one indicating whether a treatment is covered by an
insurance policy, one storing billing information, and one de-
scribing treatment procedures { a treatment may require a
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procedure consisting of other treatments. The databases are
speci�ed by the following schemas (with keys underlined):

DB1: patient information
patient(SSN, pname, policy), visitInfo(SSN, trId, date)

DB2: insurance coverage
cover(policy, trId)

DB3: billing information
billing(trId, price)

DB4: treatment procedure hierarchy
treatment(trId, tname), procedure(trId1, trId2)

The hospital sends a daily report to the insurance company
that includes information on patients and their treatments
for that day. The insurance company requires the report to
be in an XML format conforming to a �xed DTD D (here
we omit the de�nition of elements whose type is PCDATA):

<!ELEMENT report (patient*)>
<!ELEMENT patient (SSN, pname, treatments, bill)>

<!ELEMENT treatments (treatment*)>
<!ELEMENT treatment (trId, tname, procedure)>
<!ELEMENT procedure (treatment*)>

<!ELEMENT bill (item*)>
<!ELEMENT item (trId, price)>

An XML report conforming to D is depicted in Fig. 1. It
contains information from the databaseDB1 about patients
treated on the day. For each patient, the treatments sub-
tree describes the treatments covered by the patient's in-
surance policy as well as the procedure hierarchy of each of
these treatment, using the data in DB1; DB2 and DB4; the
bill subtree collects the price for each treatment appearing
in the treatments subtree, using DB3, for the reference of
the insurance company.
Observe the following. First, the integration requiresmulti-

source queries, i.e., queries on multiple databases. For ex-
ample, to �nd the treatments of a patient covered by in-
surance, one needs a query on both DB1 and DB2. Sec-
ond, treatment is de�ned recursively , i.e., in terms of it-
self. Thus, a treatment subtree may have an unbounded
depth that cannot be determined at compile-time but is
rather data-driven, i.e., determined by the data in DB4.
Third, the construction of the bill subtree of a patient is
context-dependent : it is determined by the trIds collected
in the treatments subtree of the patient. In fact in many
XML-based information integration tasks the natural ow of
tree construction is not strictly top-down, but may rather
require pushing information calculated during construction
of one part of the tree over to another part. The arrows in
Fig. 1 indicate the information ow for this example.
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Figure 1: Example of XML report

Furthermore, the insurance company imposes the follow-
ing constraints on the XML reports:

Key: patient (item.trId ! item)
IC: patient (treatment.trId � item.trId)

The �rst constraint asserts that in each subtree rooted at
a patient, trId is a key of item elements: for any two
items, if their trId subelements have the same value, then
the two must be the same element. That is, each treatment
is charged only once for each patient. The second one is an
inclusion constraint ; it states that under each patient, for
any treatment element there must be an item such that the
values of their trId subelements are equal. This speci�es
an inter-database constraint: each treatment in DB4 must
have a corresponding price entry in DB3. 2

One goal of this work is to develop a language with which,
given a collection R of relational databases (sources), a DTD
D and a set � of XML constraints, one can specify an inte-
gration (mapping) � such that �(R) is an XML document
that both conforms to D and satis�es �. Furthermore, the
language should be capable of specifying integration tasks
commonly found in practice, such as those involving recur-
sive DTDs, multi-source queries and the context-dependent
constructions illustrated by the example.
To this end we propose a formalism, called Attribute In-

tegration Grammar (AIG), to specify data integration in
XML. An AIG consists of two parts: a grammar and a set
� of XML constraints. Inspired by attribute grammars [13],
the grammar extends a DTD D by associating semantic at-
tributes and semantic rules with element types. The seman-
tic attributes, which can be either synthesized (evaluated
bottom-up) or inherited (evaluated top-down), are used to
pass data and control during AIG evaluation. The seman-
tic rules compute the values of the attributes by extract-
ing data from databases via multi-source SQL queries. A
query for computing an attribute may take other attributes
as parameters. This introduces a dependency relation on at-
tributes, and thus the power to specify sophisticated control
ow within the AIG evaluation as well as context-dependent
construction of elements. The constraints � are compiled
into relations on synthesized attributes and their satisfac-
tion checking is embedded into the attribute evaluation. As
a result, the XML document is constructed via a controlled
derivation from the grammar and constraints, and is thus

guaranteed to both conform to D and satisfy �.
As an example, Fig. 2 gives an AIG, �0, specifying the

data integration described in Example 1.1. We defer the ex-
planation of �0 to Section 3 where we formally de�ne AIGs.
Based on AIGs, we develop a middleware system to in-

tegrate relational data. The system implements a variety
of optimization techniques to evaluate AIGs eÆciently. At
compile time, it converts XML constraints into relations on
synthesized attributes, reduces attribute dependencies to
a minimum, and rewrites multi-source queries into single-
source ones while remaining in the AIG framework. At
run time, using basic database statistics, it generates execu-
tion plans that involve scheduling and merging single-source
queries to maximize parallelism among underlying relational
engines and to reduce response time.

Contributions. We propose a grammar-based approach
to integrating relational data in XML under syntactic and
semantic constraints.

� We introduce a speci�cation language AIG, which pro-
vides a systematic method for supporting DTD confor-
mant and context-dependent integration.

� We show that XML constraints can be captured in the
same framework via constraint compilation.

� We show how to support multi-source queries within
our speci�cation and optimization framework.

� We adapt query scheduling and merging techniques for
eÆciently evaluating AIGs.

Related work. Little previous work has addressed the
issue of DTD conformance and constraint satisfaction for
XML-based data integration. Clio [23] derives schema and
data mappings from inter-schema constraints; it is unclear
how it can ensure DTD conformance automatically. Results
on the existence of mappings satisfying those constraints
are explored in [14]; this is inspired by Clio, but deals only
with the relational setting. MIX [2] addresses DTD check-
ing/inference for XML integration, but the inference process
is expensive, and does not provide any guidance for how to
de�ne a mapping that type checks [22]; moreover, it does
not consider constraints. XML publishing systems such as
SilkRoute [15] and XPERANTO [27] consider only a sin-
gle relational source and do not take DTDs and constraints
into account. Earlier rule-based systems [10, 12, 20] rely on
object identi�ers to model recursive data structures; it is
unclear how they can handle recursive DTDs and context-
dependent integration of multiple databases. Data integra-
tion mappings can be speci�ed in Turing Complete transfor-
mation languages such as XQuery [7] and XSLT [9]; but op-
timization for these languages still remains to be explored,
and their complexity makes it desirable to work within a
more limited formalism. Our contribution is complementary
to work on schema mapping (see [24] for a survey), which
focuses on schema translation rather than providing support
for explicit speci�cation and evaluation of data integration.
Closest to our work is [3], which presents a formalism for

publishing relational data in XML with respect to a �xed
DTD. AIGs extends the formalism of [3] in several nontrivial
aspects. First, AIGs support multiple data sources. Second,
AIGs support both synthesized and inherited attributes;
this introduces the expressive power necessary for dealing



Semantic attributes:
Inh(report) = (date)
Inh(patient) = (date, SSN, pname, policy)

Inh(treatments) = (date, SSN, policy)
Syn(treatments) = Syn(treatment)

= Syn(procedure) = (set(trIdS))
Inh(treatment) = (trId, tname)
Inh(procedure) = (trId)

Inh(bill) = (set(trIdS))
Inh(item) = (trId, price)
Inh(SSN) = Inh(pname) = Inh(trId) = Inh(price)

= Inh(tname) = Inh(S) = Syn(trId) = (val)

Semantic rules:
report ! patient*
Inh(patient).date = Inh(report).date
Inh(patient).(SSN,pname,policy)  Q1(Inh(report))
where Q1(v):

select p.SSN, p.pname, p.policy
from DB1:patient p, DB1:visitInfo i
where p.SSN = i.SSN and i.date = v.date

patient ! SSN, pname, treatments, bill
Inh(SSN).val = Inh(patient).SSN,
Inh(pname).val = Inh(patient).pname,
Inh(treatments) = Inh(patient)(date,SSN,policy)
Inh(bill).trIdS = Syn(treatments).trIdS

/* The treatments subtree of a patient */
treatments ! treatment*
Inh(treatment).(trId,tname)  Q2(Inh(treatments))
where Q2(v):
select t.trId, t.tname
from DB1:visitInfo i, DB2:cover c,

DB4:treatment t
where i.SSN = v.SSN and i.date = v.date and

t.trId = i.trId and c.trId = i.trId
and c.policy = v.policy

Syn(treatments).trIdS =
S
Syn(treatment).trIdS

treatment ! trId, tname, procedure
Inh(trId).val = Inh(treatment).trId
Inh(tname).val = Inh(treatment).tname
Inh(procedure).trId = Inh(treatment).trId
Syn(treatment).trIdS = Syn(procedure).trIdS

[ fSyn(trId).valg

procedure ! treatment*
Inh(treatment).(trId, tname)  Q3(Inh(procedure))
Syn(procedure).trIdS =

S
Syn(treatment).trIdS

where Q3(v):
select p.trId2, t.tname
from DB4:procedure p, DB4:treatment t
where p.trId1 = v.trId and t.trId = p.trId2

trId ! S
Syn(trId).val = Inh(trId).val
Inh(S).val = Inh(trId).val

/* The bill subtree of a patient */
bill ! item*:
Inh(item).(trId, price)  Q4(Inh(bill).trIdS)
where Q4(V ):

select trId, price
from DB3:billing
where trId in V

item ! trId, price:
Inh(trId).val = Inh(item).trId,
Inh(price).val = Inh(item).tname

XML constraints:
patient (item.trId ! item)
patient (treatment.trId � item.trId)

Figure 2: Example AIG �0

with XML constraints and context-dependent information-
passing during document generation. Third, AIG incorpo-
rates into the integration process XML constraints on the
target document, which are not considered in [3]. Due to
the increased expressiveness, the evaluation of AIGs de-
mands techniques far beyond those reported in [3]: it re-
quires the analysis of inter-query dependencies, constraint
compilation, rewriting of multi-source queries into single-
source ones, grouping and scheduling of queries based on
the data sources; the top-down evaluation strategy of [3] no
longer works in this context.

Organization. Section 2 reviews DTDs and XML con-
straints. Section 3 de�nes AIGs, followed by static analyses
of AIGs in Section 4. Section 5 presents evaluation tech-
niques for AIGs. Section 6 presents experimental results;
and Section 7 identi�es future research topics.

2. Schema Specification
Schema speci�cations for XML data normally make use

of DTDs and XML constraints.

DTDs. A DTD (Document Type De�nition [4]) can be
represented as a tuple D = (Ele; P; r), where Ele is a �nite
set of element types; r is a distinguished type in Ele, called
the root type; P de�nes the element types: for each A in
Ele, P (A) is a regular expression and A ! P (A) is called
the production of A. To simplify the discussion we consider
P (A) of the form:

� ::= S j � j B1; : : : ; Bn j B1 + : : :+Bn j B
�

where S denotes the string (PCDATA) type, � is the empty
word, B is a type in Ele (referred to as a subelement type of
A), and \+", \;" and \�" denote disjunction, concatenation
and the Kleene star, respectively (here we use \+" instead
of \j" to avoid confusion).
Recall that an XML document (tree) T conforms to a

DTD D if the following conditions are met: (1) there is a
unique node, the root , in T labeled with r; (2) each node
in T is labeled either with an Ele type A, called an A ele-
ment , or with S, called a text node; (3) each A element has
a list of children of elements and text nodes such that they
are ordered and their labels are in the regular language de-
�ned by P (A); and (4) each text node carries a string value
(PCDATA) and is a leaf of the tree.
The simpli�cation of the P (A)'s above does not lose gen-

erality because of the following facts, which are straightfor-
ward to verify: (1) by introducing entities [4] (macros of a
regular expression), a DTD D1 with general regular expres-
sions can be converted to D2 of the form given above in
linear time; and (2) any XML document conforming to D2

can be converted to one conforming to D1 in linear time (by
eliminating entities), and vice versa (by labeling entities).
To avoid overloading the notions used in AIGs, we do not

consider DTD attributes in this paper; but it is trivial to
extend our framework to incorporate them.

XML constraints. We consider XML keys and inclusion
constraints of [1], de�ned in the presence of a DTD D as
follows:
(1) Key: C(A:l! A), where C;A and l are element types

such that inD, l is a unique string-subelement type of A, i.e.,
P (l) = S and l is unique in P (A). An XML tree T satis�es
the key i� in any subtree Tc of T rooted at a C element, for



any two A elements x; y in Tc, if the string values of their
l subelements are equal, then x and y are the same node.
That is, the l-subelement value of an A element a uniquely
identi�es a among all the A elements in Tc. We say that l
is a key of A elements relative to C elements.
(2) Inclusion constraint (IC): C(B:lB � A:lA), where

C;A;B; lA and lB are element types of D such that lA and
lB are of string type in P (A) and P (B), respectively. An
XML tree T satis�es the IC i� in any subtree Tc of T rooted
at a C element, for any B element b there exists an A ele-
ment a in Tc such that the value of any lB subelement of b
equals the value of an lA subelement of a.
We have seen XML keys and inclusion constraints in Ex-

ample 1.1. A cursory examination of existing XML speci�ca-
tions reveals that most XML constraints are of this form. In
particular, foreign keys are supported: a foreign key is a pair
consisting of a key C(A:lA ! A) and an IC C(B:lB � A:lA).
To simplify the discussion we consider XML constraints

de�ned with single subelement. The same framework can
be used to handle constraints in XML Schema [28].

3. Attribute Integration Grammars
This section de�nes the syntax and semantics of AIGs.

3.1 De�nition of AIGs

De�nition 3.1: Given a DTD D = (Ele; P; r), a set � of
XML constraints and a collection R of relational schemas,
an attribute integration grammar (AIG) � from R to D,
denoted by � : R! D, is de�ned to be a triple of:

1. Attributes: two disjoint tuples of attributes are associ-
ated with each A 2 Ele[fSg, called the inherited and
synthesized attributes of A and denoted by Inh(A) and
Syn(A), respectively. We use Inh(A):x (resp. Syn(A):y)
to denote a member of Inh(A) (resp. Syn(A)).

Each attribute member has either a tuple type (tuple of
strings) (a1; : : : ; ak) where the ai's are distinct names,
or a set type set(a1; : : : ; ak) denoting a set of tuples
with components ai's.

2. Rules: a set of semantic rules, rule(p), is associated
with each production p = A! � in P . In rule(p), (1)
there is a rule for computing the values of Syn(A) by
combining the values of Syn(Bi) for each Bi in �. and
(2) for each element type B that occurs in �, there is a
rule for computing Inh(B) by means of an SQL query
on multi-databases of R and using Inh(A) and Syn(Bi)
as parameters. Here Bi's are the element types other
than B mentioned in �.

The dependency relation of p is the transitive closure
of the following relation: for any B;B0 in �, B de-
pends on B0 i� Inh(B) is de�ned using Syn(B0). The
dependency relation is said to be acyclic i� for any B
in �, (B;B) is not in the dependency relation.

3. Constraints: XML keys and inclusion constraints of �
are speci�ed.

The AIG requires that the dependency relation of every pro-
duction of D is acyclic. 2

As an example, Fig. 2 gives an AIG �0. Observe that
the dependency relations of all the productions of �0 are
acyclic. In particular, although Inh(bill) is de�ned using

Syn(treatments) in the production for patient, the depen-
dency relation is not cyclic since Inh(treatments) is not
de�ned using Syn(bill) directly or indirectly.
Roughly speaking, given a database instance I of R, an

AIG extracts data from I using the SQL queries in the rules
for inherited attributes, constructs an XML tree with the
data directed by the productions of its DTD, and checks
whether the XML tree satis�es its constraints. The syn-
thesized attributes collect data computed at each stage and
pass it to SQL queries as parameters such that the XML
tree can be constructed in a context-dependent and data-
driven way. The dependency relations specify an ordering
on the data and control ow, which are acyclic to assure
that the computation can be carried out. The inherited
attribute Inh(r) of the root, referred to as the attribute of
the AIG, is a global parameter that enables us to compute
di�erent XML trees for di�erent input values. Thus an AIG
is a mapping: it takes I and Inh(r) as parameters, inte-
grates the data of I following D, and produces an XML
tree that both conforms to D and satis�es �. For exam-
ple, given a date and DB1; DB2; DB3 and DB4 described
in Example 1.1, the AIG �0 generates an XML report for
the particular date by integrating the relational data.
We next de�ne in detail the semantic rules in an AIG

� : R ! D. Consider a production p = A ! � in D

with element types B1; : : : ; Bn in �. We use the notation
\Syn(B) to denote the vector containing all the synthesized

attributes Syn(Bi), and \Syn(Bi) to denote the vector of all
except Syn(Bi) for �xed i. We use two types of functions g
and f for computing the synthesized attribute Syn(A) and
the inherited attributes Inh(Bi), respectively:

g(Inh(A);\Syn(B)) ::= (x1; : : : ; xk) j fxg j
[

x jx1 [ : : : [ xk

f(Inh(A);\Syn(Bi)) ::= (x1; : : : ; xk) j Q(x1; : : : ; xk)

where x; x1; : : : ; xm are members of Syn(Bj) for some j (j 6=
i in the second case) and Inh(A), (:) and f:g construct a tu-
ple and a set of tuples, respectively; [ denotes set union,S
x builds a set by collecting all the tuples in x, and Q is an

multi-source SQL query over databases of R, which treats
members of Inh(A) and Syn(Bj) as parameters (a tempo-
rary relation is created in the database if some member is a
set). Type compatibility is required: the type of Syn(A) must
match that of g, i.e., if Syn(A) is of a tuple type (a1; : : : ; ak)
then g must be de�ned using (:) and returns tuples of arity
k, and if Syn(A) is of type set(a1 : : : ak) then g is de�ned
using f:g;[ or

S
and returns a set of tuples of arity k. Sim-

ilarly for Inh(Bi) and f ; in particular, Inh(Bi) is of a set
type i� f is de�ned with a query. It is easy to verify that
type compatibility can be checked statically in linear time.
Also note that while Inh(Bi) can be de�ned with queries
to extract data from the underlying databases, Syn(A) uses
simple tuple and set constructors to combine data computed
previously.
More speci�cally, with these functions we describe rule(p)

associated with each production p = A! �.

(1) If � is S then rule(p) is de�ned as

Syn(A) = g(Inh(A)); Inh(S) = f(Inh(A));

where f; g are as de�ned above such that f must return a
tuple of a single member, i.e., a string, which is treated as
the PCDATA. This is one of the two cases where Syn(A) can



be de�ned using Inh(A). An example of rules of this form is
the one for trId ! S in the AIG �0.

(2) If � is B1; : : : ; Bn, then rule(p) consists of

Syn(A) = g(\Syn(B))

Inh(B1) = f1(Inh(A);\Syn(B1))

: : :

Inh(Bn) = fn(Inh(A);\Syn(Bn))

where g; fi are as de�ned above, \Syn(Bi) is a list of Syn(Bj)'s,

which does not include Syn(Bi), and \Syn(B) is a list of all
Syn(Bj)'s. This is the only case where the inherited at-
tribute of Bi can be de�ned with synthesized attributes of
Bi's siblings. For an example see the rules for the patient
production in �0.

(3) If � is B1 + : : :+Bn then rule(p) is de�ned as:

Syn(A) = case Qc(Inh(A)) of
1: g1(Syn(B1)); : : : ; n: gn(Syn(Bn))

(Inh(B1), : : : , Inh(Bn)) = case Qc(Inh(A)) of
1: f1(Inh(A)); : : : ; n: fn(Inh(A))

where Qc is a query that returns a value in [1; n], referred to
as the condition query of the rule, and fj ; gi are as above. If
Qc(Inh(A)) = i, then Syn(A) and Inh(Bi) are computed with
gi(Syn(Bi)) and fi(Inh(A)), respectively, otherwise they are
assigned with null (or empty set depending on their types).
These capture the semantics of the nondeterministic pro-
duction in a data-driven fashion.

(4) If � is B�, then rule(p) is de�ned as follows:

Syn(A) =
[

Syn(B); Inh(B) Q(Inh(A));

where Q is a query. The rule for Syn(A) collects all the
synthesized attributes of its children into a set. The rule for
Inh(B) introduces an iteration, which creates a B child for
each tuple in the output of Q(Inh(A)) such that the child
carries the tuple as the value of its inherited attribute. See
the rules for the treatments production for an example.

(5) If � is �, then rule(p) is de�ned by

Syn(A) = g(Inh(A));

where g is as de�ned above. This is the other case where
Syn(A) can be de�ned using Inh(A).

Several subtleties are worth mentioning. First, we restrict
data sources to be relational just to simplify the discussion.
The same framework can be extended to integrate object-
oriented, XML and other formats of data, by expressing
queries in, e.g., OQL [6] or fragments of XQuery [7]. Second,
AIGs are not a mild variation of attribute grammars (see,
e.g., [13]) or their typical applications [21]; they are quite
di�erent in semantic de�nitions and evaluation strategies.

3.2 Conceptual Evaluation

We next give the semantics of an AIG � by presenting
a conceptual evaluation strategy. Here we focus on DTD-
directed integration, deferring the discussion of the support
for constraints and multi-source queries to Sections 3.3 and
3.4. Optimization techniques for eÆcient evaluation of AIGs
will be discussed in Section 5.
Given database instances I of the schema R and a value

v of the attribute Inh(r) of the AIG, � is evaluated depth-
�rst, directed by its DTD and controlled by its dependency

relation, using a stack. The root node r is �rst created and
pushed onto the stack. For each node lv at the top of the
stack, we compute the inherited attribute value ~a of lv, �nd
the production p = A ! P (A) in the DTD for the element
type A of lv, and evaluate rule(p) using ~a as follows:

(1) If p = A ! S, recall Syn(A) = g(Inh(A)) and Inh(S) =
f(Inh(A)). A text node is created as the only child of lv
with f(~a) as its PCDATA. Then, g(~a) is computed as the
synthesized attribute of lv.

(2) If p = A ! B1; : : : ; Bk, recall Syn(A) = g(\Syn(B)) and

Inh(Bi) = fi(Inh(A);\Syn(Bi)). We create a node tagged
with Bi for each i 2 [1; n]. These nodes are treated as the
children of lv, in the order speci�ed by the production. Since
the dependency relation of p is acyclic, there is a topolog-
ical order on B1; : : : ; Bk such that each Bi needs only the
synthesized attributes of those preceding it in the order to
compute its inherited attribute, while the �rst one needs
Inh(A) only. We push these nodes onto the stack in reverse-
topological order, and proceed to evaluate them substituting
~a for Inh(A). After all these nodes are evaluated and popped
o� the stack, we compute Syn(A) of lv using the function g
and the synthesized attributes of these nodes.

(3) If p = A! B1+ : : :+Bk, we �rst evaluate the condition
query, which takes Inh(A), i.e., ~a, as a parameter. Based
on its value, a particular Bi is selected and the function for
computing Inh(Bi) is evaluated, a function depending on ~a
only. A single Bi node is created as the only child of the
node lv, and pushed onto the stack. We then proceed to
evaluate the node. After the node is popped o� the stack,
Syn(A) is computed by applying gi to ~a and Syn(Bi).

(4) If p = A! B�, recall Inh(B) Q(Inh(A)) and Syn(A) =S
Syn(B). We �rst compute Inh(B). If Inh(B) is empty,

then lv has no children and Syn(A) is empty; otherwise m
nodes tagged with B are created as the children of lv, such
that each B node carries a tuple from the set Inh(B) as
its inherited attribute. The newly-created nodes are pushed
onto the stack and evaluated in the same way. After all these
nodes have been evaluated and popped o� the stack, we
compute Syn(A) of lv by collecting the synthesized attributes
of these nodes into a set.

(5) If p = A ! �, recall Syn(A) = g(Inh(A)). We simply
compute g(~a) as the synthesized attribute of lv.

After Syn(A) of lv is computed, we pop lv o� the stack, and
proceed to evaluate other nodes until no more nodes are in
the stack. At the end of the evaluation, an XML tree is
created, denoted by �(I; v).
The following should be remarked. First, each node is

visited only twice: it is created and pushed onto the stack,
and popped o� the stack after its subtree is created and
evaluated; it will not be on the stack afterward. Thus the
evaluation takes one-sweep: it proceeds depth-�rst, follow-
ing an order controlled by the dependency relations instead
of left-right or right-left derivation. At each node, its inher-
ited attribute is evaluated �rst, then its subtree, and �nally,
its synthesized attributes. Second, the evaluation is data-
driven: the choice of a production in the nondeterministic
case and the expansion of the XML tree in the recursive
case are determined by queries on the underlying relational
data. Third, context-dependent construction of XML trees
is supported: synthesized attributes allow us to control the
derivation of a subtree with data from other subtrees. Fi-



nally, each step of the evaluation expands the tree strictly
following the DTD D. It is easy to show that if the AIG
evaluation terminates, then it generates an XML tree that
conforms to D. This yields a systematic method for DTD-
directed integration.

Example 3.1: Consider again the AIG �0 of Fig. 2. Given
databases DB1; DB2; DB3; DB4 described in Example 1.1,
and a value v of of Inh(report).date, the evaluation of �0
generates an XML tree T of the form depicted in Fig 1 as
follows. It �rst creates the root of T , tagged with report.
Following the rules for the report production, it computes
Inh(patient) by extracting data from DB1 via queryQ1(v),
which treats v as a constant. For each tuple in the output
of Q1(v), it creates a patient element as a child of report,
carrying the tuple as the value of its inherited attribute. For
each patient node pt, it creates SSN, pname, treatments and
bill subelements. The �rst two have their S subelements
carrying the corresponding PCDATA from the Inh(Patient)
value v0 of pt. Now the dependency relation of the patient
production decides that the bill subtree cannot be con-
structed before the treatments subtree. Thus it �rst evalu-
ates the treatments child of pt by computing Q2(v

0), which
is a multi-source query over three databases: DB1; DB2 and
DB4. Again for each tuple in the output of Q2(v

0) it cre-
ates a treatment subelement. The subtree rooted at each
treatment node is generated similarly, using the rules for
the treatment and procedure productions. Observe that
treatment is recursively de�ned; thus, its subtree is ex-
panded until it reaches treatment nodes whose procedures
do not consist of other treatments, i.e., when Q3 returns the
empty set over DB4 at procedure nodes. That is, AIGs
handle recursion in a data-driven fashion. At this point
Syn(procedure); Syn(treatment) and Syn(treatments) are
computed bottom-up by collecting trIds from their chil-
dren's synthesized attributes. Observe that the value vs of
Syn(treatments) cannot be computed before the construc-
tion of the treatments subtree is completed since the sub-
tree has an unbounded depth. Next, vs is passed to the
bill child of the patient node pt, and the evaluation pro-
ceeds to generate the bill subtree using the data in DB3

and vs as Inh(bill). The integration is completed when all
the patient subtrees are generated. 2

3.3 Constraint Compilation

An AIG is pre-processed so that (1) enforcement of its
XML constraints is done in parallel with document genera-
tion, and (2) multi-source queries are rewritten into single-
source ones to be executed directly by underlying relational
engines. The output of this step produces a specialized AIG,
an AIG that may have extra semantic rules and internal
computation states. The generation of specialized AIGs is
automatic: no user intervention is needed.
We now describe how to pre-process constraints in an

AIG � to get a specialized AIG �0. The AIG �0 extends �
with additional synthesized attributes, semantic rules and a
guard construct. The synthesized attributes may have a bag
type (set with duplicates), along with bag union operators
\];
U
" analogous to set operators \[;

S
". A guard captures

a constraint with a boolean condition on these attributes: if
the condition holds then the evaluation proceeds, otherwise
it aborts, i.e., it is terminated without success. The pre-
processing step, referred to as constraint compilation, does
the following:

Semantic attributes:
Syn(patient) = Syn(bill) = ... =

(bag(B),set(S1),set(S2), ...)
Semantic rules:
patient ! SSN, pname, treatments, bill
Syn(patient).B = Syn(SSN).B ] Syn(pname).B

] Syn(treatments).B ] Syn(bill).B
Syn(patient).S1 = Syn(SSN).S1 [ Syn(pname).S1

[ Syn(treatments).S1 [ Syn(bill).S1
Syn(patient).S2 = ...

guard: unique(Syn(patient).B)
guard: subset(Syn(patient).S1, Syn(patient).S2)

treatments ! treatment*
Inh(treatments).B =

U
Syn(treatment).B

Inh(treatments).S1 =
S
Syn(treatment).S1

Inh(treatments).S2 = ...

item ! trId, tname
Syn(item).B = Syn(trId).val
Syn(item).S1 = f g
Syn(item).S2 = Syn(trId).val
. . .

Figure 3: Constraint compilation in �00

(1) For each key k : C(A:l ! A), create an additional
member of type bag(lk) in Syn(X) for every element type
X. Add semantic rules such that (i) Syn(A):lk is given the
value of the l subelement of A elements, (ii) for any X not
equal to A, Syn(X):lk collects Syn(A):lk's below it in its sub-
tree, excluding the l subelement value of X; and (iii) add a
guard unique(Syn(C):lk) for the context type C, which re-
turns true i� Syn(C):lk contains no duplicates, i.e., the val-
ues of all the l subelements of A elements are unique within
each C subtree. This automatically generates code in �0 for
checking the key.

(2) Inclusion constraint C(B:lB � A:lA) is treated simi-
larly: create two additional members la; lb of set type in
Syn(X) and add associated rules using set operators. For the
type C, a guard subset(Syn(C):la; Syn(C):lb) returns true i�
Syn(C):la is contained in Syn(C):lb, i.e., the inclusion rela-
tion holds within each C subtree.
The evaluation of the AIG is aborted i� any of these

guards is evaluated to false, i.e., any constraint is violated.
For example, the constraints of the AIG �0 are compiled

into synthesized attributes and rules shown in Fig. 3.
Several remarks are worth mentioning. First, the seman-

tic rules associated with constraints can be simpli�ed stat-
ically. For example, the rule for Syn(patient):B in Fig. 3
can be rewritten to Syn(patient):B = Syn(bill):B. These
rules need not be necessarily evaluated bottom-up: the re-
lation on attributes imposed by constraints can be used to
optimize the evaluation. Indeed, if at some point during
generation, a bag-valued attribute (key) is found to have
duplicates, evaluation is aborted immediately. Similarly, an
inclusion constraint C(B:lB � A:lA) suggests that B:lB is
passed to the rules for A such that one can check whether
there is a value of B:lB that is not in A:lA during the com-
putation of A:lA, and vice versa. This avoids unnecessary
computation. Constraint repairing [19] can be incorporated
into the framework, but to simplify the discussion, we focus
on constraint checking in this paper.

3.4 Multi-source Query Decomposition

We next show how to decompose multi-source SQL queries
by introducing internal states into specialized AIGs.



Semantic attributes:
Inh(St) = (date, SSN, policy)
Inh(St1) = (set(trId, policy))
Inh(St2) = Syn(St1) = (set(trId))
Syn(St) = Syn(St2) = (set(trId, tname)), ...

Semantic rules:
treatments ! St, treatment*
Inh(St) = Q2(Inh(treatments)),
Inh(treatment).(trId,tname)  Syn(St), ...
where Q2(v):
select i.trId, v.policy
from DB1:visitInfo i
where i.SSN = v.SSN and i.date = v.date

St ! St1, St2
Inh(St1) = Q0

2
(Inh(St)), Inh(St2) = Q00

2
(Syn(St1))

Syn(St) = Syn(St2)
where Q0

2
(v1):

select c.trId
from DB2:cover c, v1 T1
where c.trId = T1.trId and c.policy = T1.policy
where Q00

2
(v2):

select t.trId, t.tname
from DB4:treatment t, v2 T2
where t.trId = T2.trId

St1 ! �
Syn(St1) = Inh(St1) /* similarly for St2 */
. . .

Figure 4: Multi-source query decomposition in �00

Recall that the query Q2 in the AIG �0 is de�ned on
multiple databases: DB1; DB2 and DB3, which may have
di�erent systems and may even reside in di�erent sites. It
is desirable to shift work from the middleware to the source
relational engine as much as possible; thus one wants to
rewrite the query into sub-queries such that each of them can
be sent to and executed at the underlying relational system.
For this reason a specialized AIG supports a set of states,
ST , to supplement the set Ele in the DTD. A state in ST

behaves like a type in Ele: it has associated attributes and
semantic rules, which are evaluated in the same way. The
di�erence is that after the integration process terminates
the nodes labeled with states in ST are removed from the
resulting XML tree T . That is, these ST nodes only serve
for computation purpose. As an example, Fig. 4 shows how
the specialized AIG �00 rewrites Q2 by means of internal
states St; St1 and St2.
A specialized AIG can be viewed as a two-way tree au-

tomaton [11] that can issue queries. It should be mentioned
that multi-source query decomposition is conducted auto-
matically. A left-deep query plan tree is �rst generated by
means of an underlying relational optimizer, under the as-
sumption that all the data lie on the same source. Internal
states are introduced to represent the output of each node in
the plan tree. The parent-child relationship follows the tree
structure of the plan, the inherited attribute and semantic
rule for a given state correspond to the output attributes
and operator of the associated node in the query plan.

4. Static analyses of AIGs
An advantage of using a limited speci�cation language

is the ability to infer powerful static guarantees, and per-
form advanced program analyses. In contrast, expressive
languages such as XQuery and XSLT can not allow such
analyses: indeed XQuery and XSLT are Turing-complete,

and hence termination issues and output guarantees are out
of reach. Since a key goal of integrating data towards a tar-
get XML DTD is to ensure conformance of the output to a
standard interface, static correctness assurance should be a
central design goal.
The following results give a sample of the correctness

checks that can be done statically on AIGs:

� Given an AIG � without constraints and de�ned with
conjunctive queries, one can decide whether � will nec-
essarily terminate on all instances.

� Given an AIG � as above, one can decide whether �
will terminate on some instances.

� Given an AIG � as above and an element type E in the
DTD of �, one can decide whether E can be reached,
and whether E must be reached on any instance.

All of the above are proved by symbolic execution of �,
tracking along each path the conjunctive queries that are
guaranteed to hold down that path. One can show that
even in the case of recursive DTDs, one need only simulate
execution down to a �xed depth to detect non-termination.
Of course, some limits of static analysis follow from the

corresponding limits on relational queries:

� The above problems are undecidable for AIGs de�ned
with arbitrary SQL queries, even when the underlying
DTD is non-recursive.

� It is undecidable whether an AIG with inclusion and
key constraints necessarily terminates (on some in-
stance) even when the underlying DTD is non-recursive
and the queries involved are conjunctive.

The �rst result follows directly from the undecidability of
equivalence problem for SQL, while the second result makes
use of undecidability results for the consistency of DTDs
and (relative unary) XML constraints [1].
The restricted form of AIGs also allows certain kinds of

optimizations to be done easily at compile time. An example
is copy elimination. A semantic rule in a (specialized) AIG
is classi�ed as a copy rule (CSR) if its righthand side makes
use only of functions of the form xk or

S
x; it is referred to

as a query rule (QSR) otherwise. For example, the semantic
rule \Inh(treatments).trIdS =

S
Syn(treatment).trIdS" is

a CSR. A copy chain is a maximal sequence of dependent
CSRs A1 = f1(A0); : : : ; An = fn(An�1) followed by a QSR
Q that references �elds of An. In copy elimination, we re-
place any reference to �elds of An in Q by the correspond-
ing attributes of A0. Note that in the resulting AIG, the
semantic rule for the attributes of an element type E may
now have parameters that are far away from E in the DTD.
Copy-elimination is a kind of inlining { we will see a more
general version of this in the merging algorithm of Section 5.
It reduces dependencies among queries and thus allows more
queries on di�erent data sources to be executed parallelly.

5. Evaluating AIGs
In this section, we present a mediator system for evaluat-

ing AIGs whose goal is to generate the DTD-conforming
XML document as fast as possible. Compared to tradi-
tional distributed query processing [18], the optimization
and evaluation of AIGs present additional challenges. In
AIGs, evaluation involves a set of queries that are related
by inter-query dependencies (see the de�nition of query de-
pendency graph below). Furthermore, since the output of



output

scheduling

AIG specification

data sources

execution

query plan

API
SQL

queriesstatistics results
query

plan

cost estimate

XML document

specialized AIG

tagging 

phase

optimization execution

tagging
plan

plan
query

dependency graph

optimizer

optimizer

merging

pre−processing

relations

Figure 5: AIG Middleware Architecture

these queries is used to drive the generation of the XML doc-
ument, as queries are transformed during optimization, this
relationship must be dynamically maintained. The task to
manipulate and combine queries is thus heavily constrained
by both inter-query and query-to-data-source dependencies,
leading to a novel optimization problem.

5.1 Overview

The architecture of the middleware system is shown in
Fig. 5. The system takes an AIG speci�cation � as input
and evaluates it in four phases to produce an XML doc-
ument that conforms to the DTD and satis�es the con-
straints embedded in �. In the pre-processing phase, it
rewrites � into a specialized AIG with single-source param-
eterized queries and relations encoding the constraints (see
Sections 3.3 and 3.4); and performs copy elimination. The
optimization phase produces a customized application, con-
sisting of 1) a set of non-parameterized queries for each
source, along with their input and output schemas; 2) a
query plan giving an ordering for the queries among the var-
ious data sources; and 3) a tagging plan for generating the
�nal document tree. The execution phase performs the run-
time evaluation of the AIG. The query plan is executed to
produce a set of output relations { a relational representation
of the XML document. More speci�cally, at each source,
the unprocessed query that is lowest in the plan's ordering
is selected for execution as soon as its inputs are available.
When the query is completely evaluated, its results are then
shipped (via the mediator) to every dependent site. Finally,
in the tagging phase, the tagging plan is applied to these
relations to produce the �nal output document. Note that
while query plan evaluation involves both processing on the
sources and shipping of data over the network, tagging is
done completely within the middleware.
To simplify the discussion, in the bulk of this section we

will focus on the case of non-recursive AIGs. As an example,
we use a variation of the AIG �0 of Fig. 2, by unfolding
the recursion only once and assuming that the procedure
leaf has no children. For non-recursive AIGs, the �rst three
phases can be done entirely at compile time. We discuss how
our proposed techniques can be extended to handle recursive
AIGs in Section 5.5.
The pre-processing of the AIG yields a specialized AIG

�00 by decomposing multi-source queries, as illustrated in
Fig 4 (to simplify the discussion we ignore the rules for con-
straints). The graph representation of �00 after copy elimina-
tion is shown in Fig. 6. In this graph, edge labels represent
queries for computing inherited attributes (e.g., Q2, Q2');
node labels represent queries for computing synthesized at-
tributes (e.g., ST , ST1); and the dashed edges indicate the
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ow of information. The results of the queries that compute
inherited attributes are shipped to the mediator (viewed as
a special data source Mediator), cached in temporary tables,
and used to construct the �nal XML document in the tag-
ging phase. The synthesized attributes are computed at the
mediator using the cached tables. Observe that copy elim-
ination removes the queries and attributes that are de�ned
via copy rules (with simple projections) and are not refer-
enced by other attributes. In the tagging phase, the values
of these attributes are simply extracted from the cached ta-
bles when they are needed.
To construct the �nal XML tree, the queries in an AIG

need to be rewritten such that the output relation of each
query contains information that can uniquely identify the
position of a node in the XML tree, i.e., a coding of the
path from the root to the node. Furthermore, as opposed
to the conceptual evaluation strategy, for each query Q that
takes a single tuple of the output tmp of another query Q0

as an input, we convert Q to one that takes the entire set
tmp of tuples as an input. This is done by replacing the
tuple parameter inQ with the temporary table that contains
the output of Q0. In our example, the parameterized query
Q2(v) in Fig. 4, where v is a single tuple in Inh(patient)
(the result of the query Q1):

select i.trId, v.policy
from DB1:visitInfo i
where i.SSN = v.SSN and i.date = v.date

is transformed into Q2(Tpatient):

select i.trId, v.policy, v.SSN
from DB1:visitInfo i, Tpatient:v

where i.SSN = v.SSN and i.date = v.date

where Tpatient is a temporary table storing Inh(patient).

Observe that Q2(Tpatient) is executed once when Tpatient is
available, instead of being executed for each tuple in Tpatient.

Note that the output of Q2(Tpatient) includes an extra �eld
SSN, which encodes a path from the root to a patient node;
this, together with the trId �eld, uniquely identi�es the po-
sition of the ST nodes (in fact, treatment nodes) in the �nal
document. Given this, the �nal XML document can be gen-
erated by simply sort-merging the cached temporary tables.
This query rewriting process is done in the optimization
phase via an iterative process in which the scalar parameters
of query Q are replaced by temporary tables, one per output
of each query that Q depends upon. The optimization phase
also generates the tagging plan, which will produce the tree
in a top-down fashion, associating each node of element type
E with a key path in the table for Inh(E) | internal states
(e.g., ST;ST1; ST2) in the specialized AIG are eliminated in
the tagging phase.



To capture the producer-consumer dependencies among
the queries generated by the process above, we de�ne the
query dependency graph G of the AIG. The graph G con-
tains a node for each query, and a directed edge from a node
Q1 to node Q2 i� the result of Q1 is used in Q2, denoted
by Q1!G Q2. The query dependency graph for the AIG of
Fig. 6 is shown in Fig. 7(a). In this graph, each query is
associated with the data source where it is evaluated. Note
that G is a DAG (directed acyclic graph): the DAG struc-
ture reects the fact that an AIG generally speci�es sharing
of a query output among multiple further queries. This is
in sharp contrast both to traditional distributed query pro-
cessing and to XML publishing formalisms such as [15, 3].
We next consider query plan generation in the optimiza-

tion phase. Di�erent factors contribute to the total execu-
tion time of an AIG speci�cation, most notably: communi-
cation costs { data must be transferred between data sources
as well as between the mediator and data sources; query
execution overheads { in addition to the cost of sending
queries to data sources (i.e., opening a connection, parsing
and preparing the statement, etc.), temporary tables may
have to be created and populated with inputs to a query;
query execution costs { the total execution time of a query
in a given data source; parallel execution { queries in di�er-
ent sources may be executed in parallel. Consequently, the
main goal of the AIG optimizer is to minimize these costs
and overheads by exploiting inter-query parallelism. In the
remainder of this section, we discuss optimization in detail.
The AIG optimizer reduces the number of queries issued

to data sources by merging queries that are processed at
the same source into a single, larger query. Query merging
can help decrease the communication costs between the me-
diator and data sources, while also potentially diminishing
query processing time and execution overheads. However,
query merging may involve outer-joins or outer-unions which
increase the arity of the query's result table and hence the
output size. Furthermore, injudicious query merging may
increase processing time and lead to unnecessary delay of
further query executions. Section 5.4 outlines a cost-based
query merging algorithm that iteratively applies a greedy
heuristic to select pairs of queries to merge, where the cost
function estimates the best query schedule (i.e., with the
smallest total execution time) for the merged query graph.
The interaction of scheduling and merging is one of the most
delicate points of the optimization algorithm. The problem
of scheduling queries in the presence of DAG-like query de-
pendencies, such as those considered here, is NP-hard, and
thus an approximate scheduling algorithm is an essential
component of our solution.
The various steps of the optimization algorithm are illus-

trated in Fig. 7. The optimization algorithm proceeds as fol-
lows. Given the AIG query dependency graph G, invoke the
algorithm Merge (see Section 5.4) to merge nodes (queries)
in G that lead to reduction in query evaluation cost. This in-
volves a function for estimating the cost of a query plan (see
Section 5.2), and an algorithm, Schedule (see Section 5.3)
for computing a good query execution ordering for G { an
approximation to the optimal schedule for G. At the end
of this merging phase, the �nal schedule is generated and
submitted to the runtime engine of the middleware for use
in the execution phase. Note that, while the AIG remains
�xed during optimization, the query dependency graph G is
updated in each stage of the iterative optimization.

The query dependency graph and query plan that might
be generated for the example are shown in Figs. 7(a) and
7(b). At runtime, the middleware issues queries to each data
source according to the query plan, and ships output tables
produced by queries to sources that are dependent on these
results as soon as they become available. At the end of this
process, the middleware applies the tagging plan to produce
the �nal XML tree.

5.2 Cost Evaluation

In order to estimate the cost of an AIG, information is
needed about the cost of executing individual queries, ship-
ping data, and the degree of inter-query parallelism. In our
current implementation, we assume that data sources pro-
vide a query costing API, i.e., for a given a query Q to be
executed on a data source S, S provides estimates for both
the processing time of evaluating Q (in seconds), denoted by
eval cost(Q), as well as the output size (number of tuples
and tuple width in bytes) of Q, denoted by size(Q). In par-
ticular, if Q references the results of another query Q0, the
API is able to accept cost estimates of Q0 (e.g., cardinality
information) as inputs in the computation of eval cost(Q).
The mediator also maintains information about the costs

for communicating with the various data sources. This in-
formation is used to estimate the communication time (in
seconds) to ship results to/from data sources. We denote by
trans cost(S1; S2; B) the cost of transferring data of size B
bytes from source S1 to S2. Note that if neither S1 nor S2
refers to the mediator, then the data is shipped from S1 to
S2 via the mediator; and if S1 and S2 are the same source,
trans cost(S1; S2; B) = 0.
Given the evaluation costs of each individual query, and

the cost of shipping data across data sources, the total ex-
ecution time can be derived from the execution plan pro-
duced by the scheduling algorithm (see Section 5.3). An
execution plan P contains a schedule for each data source
Si which consists of a sequence of queries �i = < Qi;1; Qi;2,
� � � ; Qi;m > to be executed (in the given order) at Si. Note
that the schedules in P have to be consistent with the par-
tial ordering in the query dependency graph G; i.e., if Qi;k is
reachable from Qi;j in G, then j < k. Let comp time(Qi;j )
denote the completion time of the evaluation of query Qi;j

on data source Si. Then the response time of evaluating the
execution plan P , denoted by cost(P ), is simply the maxi-
mum of comp time(Qi;j ) over all the queries Qi;j in P . The
completion time of a query Q at source Si can be computed
recursively as follows:

comp time(Qi;m ) = eval cost(Qi;m) +maxfTg;
where T = fcomp time(Qi;m�1 )g [ fcomp time(Qj ;n)+

trans cost(Sj ; Si; size(Qj;n)) j Qj;n!G Qi;mg

Thus cost(P ) = maxfcomp time(Qi;j ) j Qi;j 2 �i; �i 2 Pg,
and can be computed in at most quadratic time using dy-
namic programming.

5.3 Scheduling Algorithm

Given a query dependency graph G, the goal of scheduling
is to produce an execution plan P that is consistent with G
and that minimizes the response time. Unfortunately, for
any reasonable cost function on query plans, including the
cost function given in Section 5.2, the problem of �nding the
optimal execution plan is NP-hard, even when there is only
one data source (by reduction from the problem for sequenc-
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Algorithm Schedule(G)

1. Let L denote the sequence of queries in G sorted
in reverse topological order;

2. for each Q 2 L do
3. `evel(Q) = 0;
4. for each Q!G Q0 do
5. `evel(Q) =maxftrans cost(S; S0; size(Q)) + `evel(Q0);

`evel(Q)g, where Q and Q0 are
evaluated at S and S0, resp.;

6. `evel(Q) = `evel(Q) + eval cost(Q);
7. for each data source Si do
8. Let �i be the set of queries in G evaluated at Si;
9. Sort �i such that Q precedes Q0 in �i if

`evel(Q) > `evel(Q0);
10. return execution plan P = f�i j Si is a sourceg;

Figure 8: Algorithm Schedule

ing to minimize completion time [16]). We thus present a
heuristic that gives an approximate solution.
Similarly to the list-scheduling heuristic [25], we assign a

priority value to each query in G to reect its \criticality",
and then sort the queries based on their priority values. The
basic idea is to optimize the critical paths of G, i.e., the
sequences of queries that a�ect the overall completion time.
For a queryQ on data source S, we de�ne a path cost of Q to
be the cost for evaluating all the queries along a path from
Q to a leaf query in the dependency graph G, and we adopt
the maximum path cost as the priority value of Q, denoted
by `evel(Q). Then, `evel(Q) can be computed recursively:

`evel(Q) = eval cost(Q) + maxf`evel(Q0)+
trans cost(S; S0; size(Q)) j Q!G Q0g

where S and S0 denote, respectively, the sources where Q
and Q0 are evaluated. Intuitively, Qi;j is given a higher
priority than Qi;k if `evel(Qi;j) > `evel(Qi;k), i.e., if the
evaluation of the queries dependent onQi;j takes longer time
than those depending on Qi;k. This motivates us to order
Qi;j before Qi;k on source Si.
Putting these together, we have Algorithm Schedule in

Fig. 8. First, steps 1 to 6 compute `evel(Q) for each query
Q, and then steps 7 to 9 create a schedule for each data
source by sorting the queries to be evaluated at the source
based on `evel(Q). It is easy to verify that the algorithm
takes at most quadratic time.

5.4 Merging Algorithm

We next present a merging algorithm that selects certain
queries at the same source based on cost estimates, and com-

Algorithm Merge(G)

1. P := Schedule(G); cost := cost(P );
2. repeat
3. bene�t := false; Gnew = G;
4. for each Q1; Q2 2 G scheduled for the same source do
5. G0 := mergePair(G;Q1; Q2);
6. if (G0 is acyclic)
7. then P 0 := Schedule(G0); c := cost(P 0);
8. if c < cost
9. then bene�t := true; cost := c; Gnew := G0;
10. G := Gnew;
11. until (bene�t = false);
12. return G;

Figure 9: Algorithm Merge

bines them into a single query. Query merging can reduce
the data communication overhead, and may also lead to a
more eÆcient query plan, since more optimization oppor-
tunities are o�ered for the data source's query optimizer.
However, injudicious merging could lead to less execution
parallelism since merging queries also result in their data
dependencies being \merged". Thus, query merging has to
be optimized jointly with query scheduling.
Algorithm Merge takes a query dependency graph G as

input and iteratively derives a new query dependency graph
G0 from G by determining the \best" pair of queries in G to
merge at each iteration. Two queries can be merged only if
they are executed at the same data source and the resultant
new query dependency graph from their merging remains
acyclic. The cost of the execution plan for a query depen-
dency graph G is computed using Schedule(G) as discussed
in the previous section. The iterative query merging process
continues until no pair of queries that can be merged would
lead to reduction of the execution cost.
The function mergePair derives a new dependency graph

G0 from an input dependency graph G by merging two of its
queries Q1 and Q2 into a single query Q

0. More speci�cally,
G0 is constructed from G as follows: for each query Q, if
Q!GQ1 or Q!GQ2, we add an edge Q!GQ

0; similarly,
if there is an edge Q1!GQ or Q2!GQ, we add an edge
Q0!GQ. Finally, we remove Q1; Q2 and all their edges from
G; the resulting graph is G0, as depicted in Fig. 7(c).
We next describe how a new query Q is generated from

the merging of two queries Q1 and Q2. For the simple case
where there are no data dependencies betweenQ1 and Q2, Q
is simply the outer-union of Q1 and Q2. We include an extra
\tagging" column in the output relation of Q to identify



whether the tuples are from Q1 or Q2 so as to facilitate the
extraction of the relevant tuples from Q at later stages. For
the case where the queries Q1 and Q2 are related by data
dependencies, e.g., Q1!GQ2, they are merged by inlining
Q1 in Q2 , combining the common key paths, as in the outer
join approach of [15, 3].
The extraction and shipping of relevant tuples is impor-

tant for reducing the communication costs. Consider the
example dependency graph in Fig. 7(c), which shows the
merging of two queries Q1 and Q2 into a new query Q. Each
directed edge in the �gure is labeled with the communica-
tion cost of shipping the output of one query to be used as
input for another query. Note that since Q4 needs only the
output of Q1 (similarly, Q5 needs only the output of Q2), the
relevant tuples from Q are extracted before shipping them
to the target query; consequently, the communication costs
in G and G0 remain the same.
One can verify that Algorithm Merge takes at most O(n5)

time where n is the size of the dependency graph G. This is
also the overhead of entire optimization phase, including the
costs of the function cost and Algorithms Schedule, Merge.

5.5 Discussion

We discuss here several extensions of the evaluation algo-
rithm described previously.
We �rst describe the modi�cations necessary for dealing

with recursion. In the presence of recursion in the DTD
embedded in an AIG �, the graph representation of � be-
comes cyclic. We begin with a user-supplied estimate d of
the maximum depth of the output tree, and calculate from
it a (partial) AIG by iteratively unfolding the recursive rules
until all nodes that are still expandable are of depth above d.
Optimization is performed at compile time on the resulting
AIG �0 as before, with the caveat that certain nodes in the
dependency graph may have queries with inputs depending
upon further expansion. If at runtime all queries can be eval-
uated, the computation of �0 terminates and the �nal output
relations of � can be produced. If there are nodes Q in the
dependency graph that are blocked waiting for tables that
require further processing for their materialization, then the
recursion is unrolled again starting from the element type in
�0 corresponding to Q: this process continues until all inputs
are available, with the value of d being updated to reect
the new depth information. It is worth mentioning that the
depth of recursive evaluation of XML documents found in
practice is generally fairly small [8]; hence a conservative es-
timate of the recursion depth will yield a non-recursive DTD
equivalent to the original in most cases. This allows us to
exploit the cost-based estimation used in the non-recursive
case, while avoiding as much as possible the need to iterate
the process at runtime.
We now describe several additional features of the mid-

dleware that can lead to signi�cant performance improve-
ments. The algorithm described here made use of static
query schedules for simplicity { signi�cant eÆciency gains
can accrue from using dynamic scheduling, in which a run-
time scheduler updates the query plans for each site in par-
allel with evaluation, taking advantage of knowledge about
workload on data sources. Additional gains come from en-
hancing the query-processing power of the middleware en-
gine. For our prototype, the middleware does not pos-
sess a relational engine: any middleware processing is per-
formed within application code. A simple extension would

small medium large
patient 2500 3300 5000
visitInfo 11371 14887 22496
cover 2224 3762 8996
billing 175 250 350
treatment 175 250 350
procedure 441 718 923

Table 1: Cardinalities of tables for di�erent datasets

be to provide a relational query-processor on the middle-
ware, whose optimizer can then be used to estimate the cost
of middleware processing.

Related work. Evaluation algorithms for middleware sys-
tems has been explored in relational integration systems
such as Garlic [17]. Garlic allows cost-based optimization
and processing of relational queries over multiple sources,
dealing with issues of scheduling and parallelization as we
do, while allowing for sources with limited query capabilities.
In the XML context the relational queries to be optimized
can be modi�ed at the cost of post-processing to reconstruct
the �nal output tree. The speci�cation of complex interde-
pendences in AIGs leads to the problem of optimizing a
set of queries with DAG-like dependencies, as opposed to a
single query tree in systems such as Garlic. Recent XML
publishing middleware such as [5, 15, 26] give evaluation al-
gorithms speci�cally geared to relational-to-XML mappings.
The formalisms there feature single data sources, and tem-
plates that correspond to �xed-depth top-down evaluation.

6. Experimental Results
In order to verify the e�ectiveness of our query schedul-

ing and query merging algorithms, we conducted a prelim-
inary experimental evaluation using the AIG described in
Example 1.1. The relational datasets were constructed in
two steps: �rst, we used the ToXgene data generator1 to
produce XML data that conforms to a canonical relational
DTD; we then used a simple parser that reads the XML data
and generates a comma-separated �le (which can be bulk-
loaded into the RDBMS). We generated datasets by varying
the sizes of the di�erent relations (see Table 1). Further vari-
ants were obtained by unfolding the recursive grammar rule
\procedure ! treatment�" multiple times to obtain non-
recursive DTDs with between 2 to 7 levels of trId elements.
Note that the main e�ect of unfolding is the increase in the
size of intermediate results. For example, for the Large data
set, the cardinality of a 3-way self join of the procedure table
is 4055, whereas the cardinality of a 4-way self join is 6837.
The query plans were run on DB2 v8.1 for Linux. The total
evaluation time was computed by simulating the transfer of
temporary tables among the distributed data sources, i.e.,
the mediator and di�erent databases, using di�erent band-
widths.
Fig. 10 demonstrates the impact of query merging on the

performance of AIG evaluation for datasets of di�erent sizes
and unfolding levels. The evaluation time includes both the
query evaluation and communication costs (for a bandwidth
of 1Mbps among data sources). Each entry in Fig. 10 shows
the ratio of the evaluation time without query merging to
that with query merging. The results clearly demonstrate
a signi�cant gain in performance (up to a factor of 2:2) when
query merging is enabled. As expected, the performance im-
provement increases with larger datasets and more complex

1http://www.cs.toronto.edu/tox/toxgene



Figure 10: Improvement due to query merging

DTDs.

7. Conclusion
We have proposed a new approach for integrating rela-

tional data from di�erent sources into an XML document
under both syntactic and semantic constraints. This is based
on a novel notion of AIGs. AIGs not only yield a uniform
framework for ensuring both DTD-conformance and XML-
constraint satisfaction in data integration, but also provide
the ability to support data-driven and context-dependent
generation of XML documents. We have also implemented
a prototype of a middleware system for evaluating AIGs ef-
�ciently. The system explores new optimization techniques
for merging and scheduling queries over multiple sources
in the presences of DAG-like inter-query dependencies; our
preliminary experimental results show that these techniques
yield substantial reductions in processing time.
Several extensions to the optimization framework are tar-

geted for future work. We intend to incorporate dynamic
scheduling algorithms, and to make use of selectivity esti-
mates within our cost function. In the optimization process,
we recognize the need to take into account both restrictions
on the capabilities of sources (as in [17]) and limitations on
processing power and cache memory size on the mediator.
We are also investigating methods for statically generating
query plans for AIGs based on recursive DTDs, utilizing
statistics on the depth of chains within source relations. Fi-
nally, we are studying extensions of AIGs which yield map-
pings that are guaranteed to be information-preserving.
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