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Abstract

Data integrated from multiple sources may contain inconsistencies
that violate integrity constraints. The constraint repair problem at-
tempts to find “low cost” changes that, when applied, will cause the
constraints to be satisfied. While in most previous work repair cost
is stated in terms of tuple insertions and deletions, we follow recent
work to define a database repair as a set of value modifications. In
this context, we introduce a novel cost framework that allows for
the application of techniques from record-linkage to the search for
good repairs. We prove that finding minimal-cost repairs in this
model is NP-complete in the size of the database, and introduce
an approach to heuristic repair-construction based on equivalence
classes of attribute values. Following this approach, we define two
greedy algorithms. While these simple algorithms take time cu-
bic in the size of the database, we develop optimizations inspired
by algorithms for duplicate-record detection that greatly improve
scalability. We evaluate our framework and algorithms on synthetic
and real data, and show that our proposed optimizations greatly im-
prove performance at little or no cost in repair quality.

1. Introduction

When overlapping or redundant information from multiple
sources is integrated, inconsistencies or conflicts in the data may
emerge as violations of integrity constraints on the integrated data
(see, e.g., [1,3,4,5,7, 10, 13, 27]). One important example of this
situation is in the enterprise, where different departments such as
sales, billing, and order- or service-fulfillment often have separate
applications storing overlapping data. Conflicts in this data may be
introduced for many reasons [24], including misspellings or differ-
ing conventions used during data entry (e.g., a person’s name may
appear as “John Smith” and “J. Smith”), different processes and
time-scales for performing updates (e.g., address changes may take
a few days to a few months to propagate), and so on. This problem
becomes particularly evident with data warehousing or other inte-
gration scenarios because combining data makes conflicts visible:
errors in a single database can seldom be detected without inspec-
tion of the real world or other manual effort. Yet the consequences
of poor enterprise data can be severe—for telecommunication ser-
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vice providers, for instance, errors routinely lead to problems like
failure to bill for provisioned services, delay in repairing network
problems, unnecessary leasing of equipment, and so on [22]. As
a result, data sources may be integrated in order to reconcile and
correct the source data. For example, revenue recovery applica-
tions [18, 19] compare billing and service databases to ensure that
all services are billed (and presumably vice-versa). We now intro-
duce our running example to illustrate these issues.

Example 1: Consider a hypothetical provider of network services
to residential users (e.g., a phone or cable company). Customer
and equipment information is maintained by separate databases in
the Billing and Maintenance departments. Data from these two
databases is merged according to the following target schema with
two tables, cust and equip:

cust(phno, name, street, city, state, zip)
equip(phno, serno, eqmfct, eqmodel, instdate)

The cust table contains address information on customers with
phone number as a key, while the equip table catalogs equipment
installed at the customer’s location and includes manufacturer,
model number, install date and the serial number which serves as
the key. Figure 1 depicts an example instance, D, of the cust and
equip tables. Tuples are labeled as to, t1, ... for ease of reference,
and tuples to, t1, t5, te are from the Billing database.

Figure 1 also shows the set C of Inclusion Dependencies (re-
ferred to as IND (¢)) and Functional Dependencies (referred to
as FD (#)) on D. For example, IND (1) ensures that every piece
of equipment is associated with a valid customer in cust, while
FDs (2) and (5) are key dependencies specifying that phone number
and serial number are keys for the customer and equipment tables,
respectively. FD (6) is not a traditional key dependency, but asserts
(perhaps somewhat arbitrarily) that a given customer will have only
one instance of a given piece of equipment.

The wt column in the figure does not appear in the original data,
and instead reflects the confidence placed by the user in the accu-
racy of the data. In this example, a greater confidence is placed in
records from Billing.

An example of a source database inconsistency is differing
spellings for “Alice Smith” in tuples to (from Billing) and t4 (from
Maintenance), which violates FD (2). Other constraint-violating
discrepancies include a) the tuples ¢1 and t2 for Bob Jones with
different phone numbers and states which violate FDs (3) and (4),
and b) the tuple 9 which violates the inclusion dependency IND (1)
between the equip and cust tables. O

While substantial previous work has explored query answering
and constraint repair in inconsistent databases, the bulk of that
work [1, 3, 4, 5, 7, 13, 14] restricts repair actions to inserting and
deleting tuples. However, in these models, repairs of inclusion de-



cust

phno name street city state zip wt

to | 949-1212 | Alice Smith 17 bridge midville az 05211 2

t1 | 555-8145 | Bob Jones 5 valley rd centre ny 10012 2

ta | 555-8195 | Bob Jones 5 valley rd centre nj 10012 1

tg | 212-6040 | Carol Blake | 9 mountain davis ca 07912 1

ta | 949-1212 Ali Stith 27 bridge midville az 05211 1

Inclusion Dependencies:
equip (1) equip[phno] C cust[phno]
phno serno eqmfct | egmodel | instdate [[ wr Functional Dependencies:

ts | 949-1212 | ACI3006 AC XES000 | Mar-02 2 (2) cust[phno] — cust[name, street, city, state, zip|
te | 555-8145 L55001 LU ze400 Jan-03 2 (3) cust|zip] — cust[city, state]
t7 | 5558195 | L55011 | LU 2e400 | Mar03 || 7 (4) cust|name, street, zip] —» cust[phno]
ts | 555-8195 | AC22350 AC XE5000 | Feb-99 1 (5) equip[serno] — equip[phno, eqmfct, eqmodel, instdate]
to | 949-2212 | 132400 LU 7400 Oct-01 1 (6) equip[phno, eqmfct, eqmodel] — equip[serno]

Figure 1: Customer Equipment Example Data D, and Dependencies C.

pendencies may lose important information. For example, deletion
of tuple tg to repair the violation of inclusion dependency ID (1) in
Figure 1 would lose information about a piece of equipment, and
inserting a new tuple in the cust table would not help the user re-
solve the location of that equipment accurately. Recent work [10,
27] has introduced repairs in which attribute values are modified to
restore the database to a consistent state, allowing more satisfying
resolution of common constraint violations.

Record linkage is a broad field (see, e.g., [9, 20, 28]), also known
as “duplicate removal” or “merge-purge”’, and refers to the task of
linking pairs of records that refer to the same entity in different data
sets. This is commonly applied to household information in census
data, mailing lists or medical records as well as many other uses.
While to our knowledge not observed by prior work, there are in
fact strong connections between record linkage and constraint re-
pair. First, individual repairs of Inclusion and Functional Depen-
dencies involve entity matching. Consider IND (1) in the above
example: repairing this constraint requires matching customer en-
tities, in this case represented by their phone numbers. If this con-
straint were specified on several attributes including name and ad-
dress information, the task of finding the appropriate repair for an
unmatched tuple in the equipment table would exactly correspond
to a record linkage task. Second, specific record linkage tasks for a
set of tables can be accomplished by specifying inclusion and func-
tional dependencies and then invoking constraint repair. Consider
the task of removing approximate duplicates between tables R and
S. This may be accomplished by specifying a pair of inclusion con-
straints from R to .S and back on the set of attributes which should
match (perhaps all the attributes).

While there is a compelling need to help users correct conflict-
ing data, it may be difficult to see what sort of automatic support
will be helpful. Clearly, it would be helpful to a user to enumerate
constraint violations, but it may still be exceedingly onerous for the
user to manually correct all the problems. In this situation, it may
be more helpful to automatically propose a repair [1, 2, 7], which
can be informally thought of as a database that is “close” to the
original but which satisfies integrity constraints.

Our Contributions. The first contribution of this paper is a repair
framework that focuses, like [10, 27], on value modification, but
which improves on previous work in several ways. First, we offer a
general framework that deals with both FDs and INDs, unlike [10],
which focuses on the specific domain of census data, and [27], in
which cleaning is restricted to relatively simple constraints that can-
not express INDs, for example. Furthermore, we propose a novel
cost model for repairs based on two factors, accuracy and similar-
ity, which we now define. The accuracy of data is reflected in a
weight w(t) for each tuple and represents the confidence placed by

the user in the values therein. For example, the tuples in Fig. 1
from the Billing department are given weight 2, reflecting greater
confidence in their accuracy than records from the Maintenance de-
partment, which are given a weight 1. In this work, we assume that
the weights default to 1 but may be given by the user, and leave to
future work the development of techniques for automatically set-
ting them. A variety of similarity of data is available at the attribute
or tuple level, for example, string-edit distance. While we use a
relatively simple similarity function in our experiments, our goal is
to allow a variety of attribute-similarity metrics (see [8, 28]) from
the data linkage community to be applied.

Our second contribution consists of complexity results for
minimum-cost constraint repair based on value-modification. We
show that value-modification complicates the analysis of the prob-
lem: it becomes NP-complete in the size of the data, even with a
small, constant number of either FDs or INDs. In contrast, the cor-
responding problems in which a database is repaired by deleting a
minimal set of tuples is in PTIME; the problem only becomes in-
tractable if arbitrary FDs and INDs are both present [3, 7]. In this
context, we find that simple heuristic repair approaches based on
repairing one constraint at a time suffer from a number of problems
including a failure to terminate.

In light of the intractability results and problems with simple
heuristics, our third contribution is an approach to repair construc-
tion based on equivalence classes of (tuple, attribute) pairs that are
assigned identical values in the repair. The introduction of equiva-
lence classes has three benefits. First, it is fundamental to ensuring
termination of the algorithm, even when tuple inserts are allowed.
Second, it separates the relationship among attribute values (rep-
resented by the equivalence classes) from the choice of value as-
signed to each attribute in the suggested repair (dictated by a cost
metric). This separation has the potential to improve value selec-
tion by delaying it until a larger group of related values is known—
for example, the phone number “555-8145” is the highest weighted
value of all the numbers for Bob Jones, while locally in the equip
table “555-8195” may look like a better choice. Third, equivalence
classes potentially ease user interaction by illustrating the relation-
ships between parts of a proposed repair and allowing the user to
validate updates one equivalence-class at a time.

In this framework, we first consider straightforward use of the
greedy method. In the example of Figure 1, our repair procedure
will group the phone-number attributes of ¢ and t2 in a single
equivalence class, and pick one of the values as the value proposed
in the repair. We consider different cost models for the greedy step,
as well as a variant of the greedy method which resolves FDs ag-
gressively. While naive implementations of our greedy methods
require time cubic in the size of the data in practical cases, we



introduce two optimizations, one relaxing the greedy method by
sometimes taking a step which is not locally optimal, and another
inspired by optimizations for duplicate elimination [15]. Together
and under reasonable assumptions, these optimizations improve
our algorithm’s running time to O(nlg®n - |C|?), where n is the
size of the database including inserted tuples, and C is the set of
constraints to be enforced.

Our fourth and final contribution is an experimental study of our
heuristic constraint repair methods. We evaluate the quality and
scalability of our methods with both synthetic data from the TPC-H
benchmark and real-world data scraped from Web pages. We fur-
ther evaluate the effectiveness of our two optimizations on running
time and result quality. We find that the optimizations seldom de-
grade quality, but improve the performance significantly and hence
allow the approach to be applied to real-world size problems. Based
on these results, we contend that heuristic constraint repair based
on tuple-attribute equivalence classes is a promising tool for con-
straint repair in data integration and reconciliation scenarios.

Organization. In the next section, we introduce our repair
model. We prove intractability results in Section 3 and introduce
our heuristic approach in Section 4, giving detailed algorithms in
Section 5. We present our experimental results in Section 6, discuss
related work in Section 7 and conclude in Section 8.

2. System Model and Problem Formulation

In this section, we present our cost-based constraint repair prob-
lem formulation. In our model, each database instance D (equiva-
lently “database”) contains a fixed set of tables Ry, ... , R, where
table R; is defined over a set of attributes attr(R;). Each tuple ¢
is associated with a table R; and a weight w(t) > 0. Note that
weights are assigned at the tuple level to simplify the presenta-
tion, but in practice attribute-level weights may be preferable. To
simplify the discussion we assume that one can keep track of a
given tuple ¢ in R; during the constraint repair process despite ar-
bitrary attribute value changes (using a temporary unique id, for
example). We use D(¢, A) to denote the value of a given attribute
A € attr(R;) of t in some database D. This value is drawn from
dom(A), the domain of A, plus the special value null. Further, for a
subset X of attributes from attr(R;), we use D(¢, X) to represent
the projection of ¢ on attributes in X.

Constraints. We consider the following two types of constraints:

1. FUNCTIONAL DEPENDENCIES (FDs). Each functional de-
pendency has the form R[X] — R[Y], where X and Y are
subsets of attributes from attr(R). A database D is said
to satisfy the FD R[X] — R[Y] if for every pair of tuples
t1,t2 € R such that D(t1,X) = D(t2, X), it is the case
that D(tl, Y) = D(tz, Y)

2. INCLUSION DEPENDENCIES (INDs). Inclusion dependen-
cies have the form R1[X] C Ry[Y], where X and Y are lists
of attributes (with the same cardinality) from attr(R:) and
attr(Ry2), respectively. A database D is said to satisfy the
IND Ri1[X] C Ro[Y] if for every tuple 1 € R; there exists a
tuple t2 € Ry such that D(t2,Y) = D(t1, X).

A database D satisfies a constraint set C of FDs and INDs if it
satisfies every constraint in C.

Database Repairs. = We now formally define the notion of a
database repair introduced above. A repair of a database D is a
database D’ such that 1) tuples appearing in D are carried over to
D’ (identified by, e.g., id), possibly with modified attribute values,
2) zero or more inserted tuples appear in D’ but not in D, and 3) D’

satisfies the constraint set C. For convenience, we refer to the in-
serted tuples appearing in table R; in D’ as new(R;).

Intuitively, an inconsistent database may be neither sound nor
complete [3], and thus our model supports both value modifications
and tuple insertions. We modify the values of tuples in D rather
than simply deleting them as in other models (e.g., [7]) in order to
minimize loss of information.

Repair Cost. The cost of an attribute-level modification in a repair
is essentially the weight w(t) > 0 of the changed tuple times the
distance according to a similarity metric between the original value
of the attribute and its value in the repaired database. Similarity
measurement for strings and other structured values is itself a broad
field (see, e.g., [8]), and our setting does not depend on a particular
approach. Rather, we assume that for two values v, v’ from the
same domain, a distance function dis(v, v') is available, with lower
values indicating greater similarity. A common distance function
for strings (the Damerau-Levenshtein or D-L metric [12]) is defined
as the minimum number of single-character insertions, deletions
and substitutions required to transform v to v’. We use this metric
in the examples below and a similar metric in the experiments.

Finally, we assume that a cost inscost(R;) > 0 is associated
with each table R;, which is the cost of inserting tuples into R;
in D'. This cost is a user-defined parameter closely related to the
threshold set for a good match by the similarity metric. We find that
an effective setting for inscost is a value slightly higher than the
distance between two “similar” strings (see Section 6.1 for details).

In our examples, the cost of a repair is the sum of the cost of the
tuples in the repair. To summarize

inscost(R;)

’U)(t) : ZAeattr(R,-) dIS(D(t, A), 24 (ta A)))
otherwise

ift € new(R;)
cost(t) =

For instance, consider ¢ in the repair described at the end of
Example 1. Given w(t2) = 1 and string edit distances of 1
both from*“555-8145” to “555-9145” and from “nj” to “ny” we get
cost(tz) = 1- (1 + 1) = 2, while if ¢;’s phone number and state
had been modified instead, we would have had 2- (1+1) = 4 since
w(t1) = 2. The cost of the repair D’ of database D is defined as
cost(D') = 37, pr cost(t).

We are now ready to formally state our database cleaning prob-
lem in terms of computing a minimum-cost repair.

Problem Statement. Given a database D comprising tables
Ry,..., R, and a set of constraints C defined on them, find the
repair D’ of D for which cost(D’) is minimum. O

3. Constraint Repair Approach Overview

In this section, we investigate solutions to the constraint repair
problem defined in the last section. We begin by outlining our ap-
proach to repairing individual constraint violations. We then con-
sider the problem of finding minimum-cost repairs, but show that
optimal solutions are generally intractable to find.

3.1 Constraint Repairs

In general, it is useful to think of a database repair D’ as the result
of some modifications to database D as illustrated by the following
example.

Example 2: We present a set of modifications that together con-
stitute a possible repair of the constraint violations discussed in Ex-
ample 1.

1. Tuple t2: Modify phone number to “555-8145” repairing



FD (4) and state to “ny” (repairing FD (3)), in both cases
by matching ¢;.

2. Tuple t4: Modify name to “Alice Smith” and street to “17
bridge” (repairs FD (1) by matching ¢1).

3. Tuple t7: Modify phone number to “555-8145” (repairs
IND (1)), serial number to “L55001” (repairs FD (6)) and
installation date to “Jan-03" (repairs FD (5)).

4. Tuple ts: Modify phone number to “555-8145” (repairs
IND (1)).

5. Tuple t9: Modify phone number to “949-1212” (repairs
IND (1) by matching t4). O

For a functional dependency F' = R[A] — R[B] over attributes
A and B of table R, consider a pair of tuples (¢,¢') in R that vio-
late F, that is, D(¢, A) = D(t', A), but D(t, B) # D', B). In
this case, we can resolve this constraint violation by setting the B-
attribute value of ¢ to be equal to ¢’ (or vice versa) in the repair D’.
This is illustrated in step 1 of Example 2, where ¢» is modified to
match t1. Note that it is also possible to fix the FD by setting the
value of attribute A in tuple ¢; to be different from the A-attribute
value in tuple ¢2. We do not consider this option for FD repair be-
cause it is unclear as to what (different) value should be assigned
to tuple t1’s A attribute, and moreover, when the FDs are keys, it
may lead to insertions of entities that are not meaningful. For ex-
ample, to repair the violation of FD (3) in the first step, we could
have made up a new zip code for either ¢1 or ¢2, but there does not
exist a small reasonable set of candidates from which to choose.

Similarly, INDs can be repaired by modifying attribute values.
For example, if a tuple t; € Ry does not satisfy IND I = Ry[A] C
R2[B], then we can modify ¢1’s A-attribute value so that it is equal
to the B-attribute value for some tuple in table R». Alternately,
we can consider modifying the B-attribute value for some tuple
in Ry so that it is equal to t1’s A-attribute value. Step 4 above
illustrates such a correction. Here, when the phone numbers in t4
and tg are similar, it is likely that one or the other is correct. It also
seems clear from this example that an attribute-modification cost
model is preferable to one based on tuple insertion and deletion:
the violation of IND (1) can be repaired with the deletion of ¢g,
presumably with minimal cost in a tuple-cost model. However, this
seems to lose important information in this situation.

Finally, note that if no similar R»[B] value exists for some un-
matched tuple ¢ from Ry, inserting a tuple ¢**% in Ry (in D’) may
be preferable to modifying ¢. In this case, the B attribute(s) of ¢*"
are set to match ¢1’s A attribute(s) (in D’), and all other attribute
values are set to the special value null.

A subtle issue arises from the null value. The SQL standard [16]
supports three different semantics for comparing the values of
D(t1,X1) and D(t2, X2) which may involve null, where X1, X»
are sequences of attributes. (1) The simple semantics defines
D(t1,X1) = D(t2,X2) to be true if either one of them contains
null. (2) The partial semantics evaluates D(t1, X1) = D(t2, X2)
to true if each non-null value in D(t1, X1) equals its corresponding
value in D(t2, X2) and vice versa. (3) The full semantics evaluates
D(t1,X1) = D(t2, X2) to false if either one of them contains
null. While the SQL standard does not explicitly support arbitrary
FDs and INDs, it allows one to use any of the three semantics when
dealing with unique and referential constraints, which are (special
cases of) FDs and INDs, respectively. In the sequel we assume the
partial semantics when null is involved. Note that this semantics
allows null to participate in comparisons of attribute values.

3.2 Minimum-Cost Repair (Intractability Results)

We present two intractability results for min-cost database repair,
showing that the problem is NP-complete even for a small, fixed
number of only FD or only IND constraints.

Theorem 1: Let C be a set of only FD or only IND constraints
defined on database D. Then, for a constant W, the problem of
determining if there exists a repair of D whose cost is at most W is
NP-complete. O

Proof Sketch: The proofs are by reductions from the vertex
cover problem (even when C contains only FDs), and from the 3-
dimensional matching problem (even when C contains only INDs).
Each reduction uses only a constant number of constraints (either
FDs or INDs). Proofs are omitted due to space constraints, and can
be found in the full version of the paper. O

Interestingly, the corresponding repair problems (when C con-
tains only FDs or only INDs) are shown to be tractable for a delete-
only repair model by [7]. This demonstrates that the repair problem
becomes much more difficult when we consider value modifica-
tions.

4. Using Equivalence Classes for Constraint
Repair

In light of Theorem 1, we necessarily consider heuristic ap-
proaches to constraint repair. A particular heuristic algorithm will
take as input a database D and a set C of constraints defined on D,
and find a repair D' of D. It should be able to find D’ efficiently,
with the tradeoff that cost(D") is not necessarily minimum. In fact,
we found it non-trivial to develop such a heuristic. The key diffi-
culty, of course, is that repairing one constraint can break another,
and most simple heuristics we considered could fail to terminate in
the presence of complex, inter-related dependencies.

4.1 Equivalence Classes

To overcome these problems, our approach to constraint repair
for FDs and INDs is built around the notion of equivalence classes
of attribute value coordinates (¢, A), where t identifies a tuple in a
table R in which A is an attribute. The semantics of an equiv-
alence class of (¢, A) pairs is that the tuple attributes contained
in the class are assigned the same value in D’. (We assume that
all such attributes in an equivalence class have the same domain).
Our motivation for considering equivalence classes is that both FD
and IND constraints can be seen as specifying equivalence be-
tween certain sets of attribute coordinates. For example, an FD
R[X] — R[Y] essentially specifies that if a pair of tuples ¢1,t2
in R matches on the attribute set X, then (1, A) and (t2, A) must
be in the same equivalence class for all A € Y. Similarly, for an
IND R:[X] C R»[Y], we require that each tuple t; € R; is cov-
ered by some tuple t2 € Rp, or alternately, (¢1, A) and (t2, B)
are in the same equivalence class for each attribute A in X and the
corresponding attribute B in Y.

A key observation here is that it is useful to separate the decision
of which attribute values need to be equivalent from the decision of
exactly what value should be assigned to the eventually-produced
equivalent set. Delaying value assignment allows poor local deci-
sions to be improved—for example, consider a name that is some-
times spelled correctly and sometimes incorrectly. If the correct
spelling is more frequent and/or has higher weight, then the accu-
mulation of versions of the name in an equivalence class over time
will allow the correct spelling to be chosen in many cases. Further,
we believe that the equivalence class abstraction will be valuable



Procedure FD-RESOLVE-TUP (S, F)

Input: Set of tuples .S that match on attribute set X,
FD F = R[X] — R[Y].

begin

1. for each attribute A inY do {

2. ega = Ueseq(t, A);

3. ) E:=(E& —{eq(t,A):t € S})U{ega};

4.

end

Figure 2: Resolving Set of Tuples S for FD F'.

to a user who needs to check or modify a repair. The classes help
expose the structure of data relationships, and if the user wants to
override a value chosen by the repair algorithm, it can be accom-
plished on the whole equivalence class in one step.

An equivalence class eq is a set of tuple, attribute pairs (t, A)
Our repair algorithm maintains a global set of equivalence classes
£ that covers D’ (that is, the tuples in the original database D plus
insertions). For a given pair (¢, A), eq(t, A) returns the current
equivalence class containing (¢, A) in £. Associated with each
class eq is a “target value” v = targ(eq). The target value is funda-
mental to the construction of the database repair D’, since D’ (¢, A)
is defined as targ(eq(t, A)). Thus, all attributes in a class eq are
assigned the value of targ(eq) in the repair.

Equivalence Class Cost. The cost of the equivalence class for
a particular target value v is defined as the contribution of ele-
ments in the equivalence class to the cost of D’ (ignoring the cost
of inserts); that s, cost(eq, v) = 32, 4)eq w(t)-dis(v, D(t, A)).
Consistent with the goal of finding a low-cost repair, v = targ(eq)
is chosen to minimize the cost of eq, and unless specified other-
wise, cost(eq) is simply the minimum cost(eq, v) over some uni-
verse of potential v values, such as the values taken by elements
of eq in D. As an example, in the database shown in Fig. 1, for
eq = {(t1, phno), (2, phno) }, cost(eq, “555 — 8145") =11
while cost(eq, “555 — 8195"") = 2 - 1. Thus, the value targ(eq) is
“555-8145”, and cost(eq) = 1.

Merging Equivalence Classes. Whenever two equivalence
classes are merged, this may result in additional attribute modifi-
cations in D', increasing its cost. For a subset E of equivalence
classes from £, we formalize this increase in cost as mgcost(E) =
cost(Uege E€q) — 3_ 4 p COSt(eq); that is, the difference between
the cost of the merged class and the sum of the costs of the in-
dividual classes. For instance, referring back to Fig. 1, the cost
of merging classes eq1 = {(t1, phno), (t2,phno)} and eq2 =
{(t7,phno)} to form eqs = {(t1, phno), (t2, phno), (¢, phno)}
is given by mgcost({eqi,eq2}) = cost(egs) — (cost(eqi) +
cost(eqz)) =2—(1+40) =1.

4.2 Repairing Violations
We next discuss how individual constraint violations are repaired
by resolving tuples.

Repairing an FD Violation. = We say that a tuple ¢ is resolved
w.rt.an FD F = R[X] — R[Y] if, for all other tuples t' € R,
either D' (t, A) # D'(t', A) for some A € X, or forevery B € Y,
eq(t, B) = eq(t’, B). Note that if ¢ is resolved, it is not part of
a violation in D’, but the converse need not hold since for some
B €Y, (t, B) might have the same target value as (¢', B) without
(t, B) and (¥, B) being in the same equivalence class. Clearly, a
tuple t € R can become unresolved w.r.t. F' due to a change in the
target value of an attribute in X for some other tuple in R, a fact
which we refer to as the collision property of FD resolution. This
might happen, for example, due to changes in target values when

Procedure IND-RESOLVE-TUP (¢, target, I)
Input: Tuple ¢ € R, to resolve, a target target which is either a
tuple ¢ € Ry or new, IND I = R1[X] C Ra[Y].
begin
. if (target = new) then {
t' := new null tuple in R with 0 weight;
E=EU{{(t',;A)}: A€ attr(R2)};

. for each attribute A in X and corresponding B in Y do

1
2
3
4.}
5
6 &= (E - {eq(t’ A)aeq(tlzB)}) u {eq(tz A) U eq(t’aB)};

end

Figure 3: Resolving Tuple ¢ for IND I.

equivalence classes merge.

While a violation can be explained in terms of pairs of tuples,
we define the act of resolving a tuple ¢ w.r.t. F' in terms of a set
S of tuples from R. Here S includes ¢ and all other tuples that
agree with ¢ on (target values of) attributes in X. The proce-
dure FD-RESOLVE-TUP shown in Fig. 2 shows how to resolve
such a set S by merging, for each attribute A in Y, the equiv-
alence classes eq(t, A) for t € S. Accordingly, rescost(S, F'),
the merge cost of resolving S w.r.t. F, is the sum, for each at-
tribute A in Y, of mgcost({eq(t, A) : t € S}). For example, in
Fig. 1, the tuple set {t1,t2} is resolved w.r.t. FD (4) by merging
the classes eq1 = {(t1, phno)} and eqa = {(t2, phno)}. Thus,
rescost({t1,t2},4) = mgcost({eq1,eq2}) = 1.

Repairing an IND Violation. For an IND I = R;[X] C Rs[Y],
a tuple ¢ is said to be resolved with respect to I if there is some
tuple t' € Rs such that (¢, A) and (¢', B) are in the same equiva-
lence class for every pair of corresponding attributes A € X and
B € Y. Itis easy to see that, in contrast to FDs, a tuple resolved
w.r.t. an IND I will not become unresolved, a fact we refer to as
the permanency property of IND resolution. Thus, by resolving all
tuples w.r.t. INDs, we can ensure that no INDs are violated.

Tuple ¢ is resolved by “covering” it with either a new or ex-
isting tuple ¥ € R,. Here a new tuple ' consists of null,
ie, D'(t,A) = null for each attribute A of t'. This is ac-
complished by procedure IND-RESOLVE-TUP shown in Fig. 3.
This procedure creates t' if required, and merges eq(t, A) with
eq(t', B) for corresponding attributes A and B from X and Y
respectively. Accordingly, the cost of resolving t w.rt. I us-
ing t', rescost(t,t’,I), is the sum of the attribute-wise costs,
mgcost({eq(t, A), eq(t', B)}) for corresponding attributes A and
B, plus the insert cost of ¢ if it is new. (Note that if ¢
is new, then rescost(¢,t',I) is simply inscost(Rz) since ¢’ is
assigned 0 weight.) For example, in Fig. 1, tuple tr can
be resolved w.rt. IND (1) by merging the classes eqn =
{(t1, phno)} and eq> = {(t7, phno)}. Thus, rescost(tz,t1,1) =
mgcost({eq1,eq2}) = 1.

5. Repair Algorithms

In this section, provide detailed descriptions of equivalence-
class-based constraint repair. We present a general heuristic frame-
work that guarantees termination, and develop two specific heuris-
tic methods GREEDY-REPAIR and GREEDY-REPAIR-FDFIRST.
Finally, we discuss optimizations and extensions.

At a high level, our repair algorithm begins by putting each
tuple, attribute pair in its own equivalence class. It then greed-
ily merges the equivalence classes of (t, A) pairs until all con-
straints in C are satisfied. To illustrate, consider tuples ¢1 and ¢2
for Bob Jones in Fig. 1. In order to satisfy FD (4), we group
tuples ¢; and t2 on phone number to form the equivalence class



Procedure GEN-REPAIR (D, C)
Input: Database D, constraint set C.
Output: Database repair D’.
begin
1. £:={{(t,A)}:t € R, A € attr(R)};
2. Initialize unResolved sets for FDs and INDs;
3. while (unResolved is not empty) {
(t, target, C) := PICKNEXT ();
if (C is an FD) then
FD-RESOLVE-TUP (target, C);
else
IND-RESOLVE-TUP (¢, target, C);
Process unResolved sets affected by resolution step for C';

O XN R

10.}

11.return D’; /* Obtained by inserting new tuples into D and assigning
each (t, A) the value for eq(¢, A), i.e., targ(eq(t, A)) */

end

Figure 4: Generic Equivalence-Class Based Repair Procedure.

{(t1, phno), (t2, phno)}. Next, to ensure that IND (1) holds, we
form two equivalence classes:

e eq = {(t1, phno), (t2, phno), (ts, phno)}. This ensures that
tuple £5 in equip is covered by ¢; and ¢ in cust.

® ¢eq = {(tl,phno),(tz,phno),(tﬁ,phno),(t7,phno),
(ts, phno)}. This ensures that tuples ¢7 and tg are also
covered by £; and ta.

Thus, in the final repaired database, all tuples for Bob Jones:
t1,t2,t6 — ts will have identical phone number values; as a result,
these tuples will satisfy constraints FD (4) and IND (1). (Additional
equivalence classes involving the other attributes will be needed to
satisfy the remaining constraints — we list these in Example 3 ). We
now present our heuristic algorithms in detail.

Tracking Unresolved Tuples. Our overall approach is to resolve
(unresolved) tuples one at a time, until no unresolved tuples remain.
While not strictly required for correctness, an important efficiency
optimization is to keep track of potentially unresolved tuples for
each dependency in C. To accomplish this, we maintain a data
structure unResolved(C') which maps each constraint C € C to
a set of tuples. Our repair algorithms ensure that the maintained
unResolved sets satisfy the following two invariants: (1) If ¢ is un-
resolved w.rt. I = R;i[X] C Rp[Y], t € unResolved(I), and
(2) If ¢ is unresolved w.r.t. F = R[X]| — R[Y], then some tu-
ple t' which matches t on attributes in X is guaranteed to be in
unResolved(F'); here t' serves as a proxy for ¢, and when it is re-
solved, ¢ will also be resolved.

Our maintenance algorithms perform the following actions on
the unResolved sets that can be shown to preserve the above-
mentioned invariants:

e [nitialization: For each IND I = R;[X] C R»[Y],
unResolved([I) is initially set to {¢ : ¢ € R:}. For each
FD F = R[X] — R[Y], unResolved(F’) is initialized to
contain all the tuples in R.

o After each resolution step: When a tuple ¢ is resolved w.r.t. a
constraint C, the following actions are taken: 1) £ is removed
from unResolved(C'), 2) a newly inserted tuple into table
R is added to unResolved(C) if C is an FD on table R or
an IND of the form R[] C _[], and 3) if resolution causes
equivalence class merging, such that targ(¢, A) changes due
to the merge, then we add (¢, A) to unResolved(F') for any
F = R[X] — R[Y] wheret € Rand A € X.

Procedure PICKGREEDY ()
Output: The constraint to repair next, and the tuples to resolve
for the constraint.

begin

1. bestCost := 0o

2. foreach FD F' = R[X] — R[Y],t € unResolved(F') do {
3. S:={eR: D, X)=D'(t,X)};

4. ifrescost (S, F) < bestCost then

5. bestFix := (¢, S, F'); bestCost := rescost(S, F');

6.

7. /* if (FDFirst and bestCost < oo) then return bestFix; */
8. for each IND I = R1[X] C R3[Y],t € unResolved(I) do {
9. Lett* bet' € Ry with minimum c := rescost(¢,t', I);
10. if (¢ < bestCost) then

11. bestFix := (¢, t*, I); bestCost := ¢;

12.  if (inscost(R2) < bestCost) then

13. bestFix:= (¢, new, I); bestCost := inscost(R2);

14.

15. leturn bestFix;

end

Figure 5: Greedy Selection of the Lowest-Cost Resolution.

It is easy to see that (1-3) above preserve the two invariants on
unResolved sets, since this follows directly from the permanency
and collision properties of INDs and FDs, respectively.

5.1 Repair with Equivalence Classes

In Fig. 4, we present GEN-REPAIR, the overall driver for all of
our constraint repair procedures. It is abstracted in terms of a func-
tion PICKNEXT, which selects the next tuple ¢ to be resolved w.r.t. a
constraint C. If C is an FD R[X] — RJ[Y], then PICKNEXT also
returns the target set of tuples to resolve—this set essentially con-
sists of tuples in R that agree with ¢ on attributes in X. On the
other hand, if C' is an IND, then the target returned by PICKNEXT
is either another tuple ¢’ or new to indicate that ¢ should be cov-
ered by a newly-created tuple. Note that at line 9 of GEN-REPAIR,
unResolved is maintained as described earlier. The proposed repair
D’ is produced by inserting new tuples and replacing (¢, A) values
in D with targ(eq(t, A)). The arbitrary selection of what tuple and
constraint to address represents the degree of freedom for designing
an equivalence-class-based technique, and we present two intuitive
greedy approaches in the next subsection.

Correctness. Clearly, the same tuple may enter and leave
unResolved(F’) for an FD F many times. Nevertheless, we now ar-
gue that PICKNEXT selects a tuple from unResolved to resolve next
and returns only a bounded number of new tuples to fix IND con-
straints, and that consequently GEN-REPAIR terminates and pro-
duces a repair D’ of D.

Theorem 2: The number of tuple inserts is bounded for PICK-
NEXT, and GEN-REPAIR terminates and produces a repair D’ of
D that satisfies the constraints in C. O

Proof Sketch: The number of inserts by PICKNEXT is bounded
because (1) the number of equivalence classes determined by the
original database D is bounded by |D|- e, where « is the maximum
number of attributes in any table, (2) for each unique pattern of such
equivalence classes at most one new tuple is inserted, (3) for each
attribute A in a table no new atomic value (resp. new equivalence
class) is added, at any time, and (4) an inserted tuple consists of
only data from D and null. From these it follows that the number
of equivalent classes containing data from D and newly inserted
tuples is bounded by O(|D| - ) at any time, and thus the number
of newly inserted tuples is bounded.



Termination of GEN-REPAIR follows from the following points.
(1) Every iteration removes at least one tuple from unResolved.
(2) Tuples are only added to unResolved when tuples are inserted
(whose number is bounded) or equivalence classes are merged.
(3) The number of merge events is bounded by the number of equiv-
alence classes, which is at most O(|D| - ). Thus GEN-REPAIR in-
vokes PICKNEXT at most 1 - « times, where m is the number of tu-
ples in the database (including new tuples). The correctness follows
from the fact that unResolved is empty when GEN-REPAIR termi-
nates, and thus, due to the invariants maintained on unResolved, all
tuples are resolved w.r.t. constraints in C at termination. O

5.2 Two Flavors of Greedy Repair

In this subsection, we build our two proposed algorithms for
constraint repair in this paper, GREEDY-REPAIR and GREEDY-
REPAIR-FDFIRST by making simple changes to PICKNEXT. Our
first algorithm, GREEDY-REPAIR, is built from GEN-REPAIR by
replacing PICKNEXT with PICKGREEDY shown in Fig. 5. This
routine picks and returns an unresolved tuple to repair with the min-
imum rescost. In the case of an IND constraint, it also returns the
lowest cost target of the resolution, which may be a tuple or new
if an insert in the target relation is the lowest cost step.

To motivate our next algorithm, GREEDY-REPAIR-FDFIRST,
we observe that there is a fundamental difference in the manner
in which FDs and INDs are repaired in our framework. FD re-
pair, in many respects, is more rigid than IND repair. For an FD
F = R[X] — R[Y], and a pair of tuples ¢,# that violate the
FD, repair involves modifying tuple attribute values so that ¢ and
t' match on Y. While we have some flexibility in the tuples we
choose to modify (¢ or t') for each non-matching attribute A in Y,
the only choice we have is between the values appearing in ¢ and
t', which may or may not be similar. In contrast, IND repair is
much more flexible. For an IND I = R;[X] C R»[Y], and a tuple
t € R, that violates the IND, repair can be achieved by considering
any tuple t' in R», and modifying attribute values so that ¢ and ¢’
match on the corresponding attributes in X and Y. Essentially, any
tuple ¢’ in Ry can be considered as the covering tuple for ¢ in order
to repair the IND.

Due to the rigidity of FD repair, we consider the FDFirst variant
which gives precedence to fixing FDs. This is accomplished by
uncommenting line 7 of PICKGREEDY, so that an unresolved tuple
for an FD will be returned if available. If not, the lowest cost tuple
for an IND repair is returned.

Example 3: Consider the cust and equip tables depicted in Fig. 1.
We trace the sequence of resolution steps performed by the FDFirst
variant of our greedy heuristic when it is run on tuples ¢1, t2, ts —ts
for Bob Jones. In the following, the “target value” of an attribute A
of tuple ¢ refers to D’ (¢, A) = targ(eq(t, A)). We only list below
the steps that result in new classes due to merges.

1. Resolve tuples t1,t2 w.r.t. FD (4), since these two tuples
match on name, street, and zip (rescost({t1,t2},4) = 1). This
results in the equivalence class {(¢1, phno), (t2, phno)} with target
value “555-8145”. Also, since the phone number in ¢2 changes, it
is added to unResolved(2).

2. Resolve tuples t1,t2 w.r.t. FD (2) since ¢1 and 2 now match
on phno (rescost({¢1,t2},1) = 1). This causes classes for ¢; and
to to be merged for every cust attribute, and ¢2’s target state value
to be updated to “ny”.

3. Resolve tuples 1 and tg w.r.t. IND (1) (rescost(t1,ts,1) =
0). This yields the class {(¢1, phno), (¢2, phno), (t¢, phno)} with
value “555-8145”.

4. Resolve tuples t2 and t7 w.r.t. IND (1) (rescost(t2,t7,1) =

1). This causes the phone numbers of tuples ¢1,%2,%6 and ¢7 to
be merged into the same equivalence class with value “555-8145”.
Since the target value of the phone number attribute for ¢7 changes
to “555-8145”, it is added to unResolved(6).

5. Resolve tuples tg and t7 w.r.t. FD (6) since their target values
now match on phno, (rescost({ts, t7},6) = 1). This results in the
equivalence class {(ts,serno), (t7,serno)} with value “L55001”.
Since the target value of the serial number attribute for ¢7 changes
to “L550017, it is added to unResolved(5).

6. Resolve tuples tg and t7 w.r.t. FD (5) since they now match
on serno (rescost({ts,t7},5) = 2). This causes classes for ¢; and
t2 to be merged for every equip attribute, and ¢7’s install date value
to be updated to “Jan-03".

7. Resolve tuples t2 and tg w.r.t. IND (1). The phone num-
bers for tuples t1, t2, te, t7, ts are merged into the same class with
value “555-8145”. The value of the phone number attribute for s
is changed to *“555-8145”.

Thus, in the final repair, all of Bob Jones’ tuples have identical
phone number values of “555-8145”. Further, the state in tuple
t2 is modified to “ny”, and the serial number and installation date
in t7 are modified to “L55001” and “Jan-03”, respectively. Thus,
the tuples t1,t2,t6 — tg satisfy all the FD and IND constraints.
Similarly, for Alice Smith’s tuples, our heuristic will correct the
name and street in tuple ¢4, and the phone number in tuple t9. O

Looking Ahead for FD Costs. In the algorithm GREEDY-
REPAIR-FDFIRST, we perform FD repair first to limit the effect
of cross-tuple merging on the larger equivalence classes created by
IND repair. Another approach to minimizing undue effects from
IND repairs is to attempt to avoid bad repairs (that cause many FD
violations) by adding some degree of lookahead to the cost model.
In order to do this, we modify the rescost of tuples to include an ap-
proximation of the cost of resolving tuples added to the unResolved
set of Functional Dependencies. Note that this is similar in spirit to
the idea of preferring 1-1 entity matching [17].

5.3 Improving Performance

We now analyze the running time of GREEDY-REPAIR and
GREEDY-REPAIR-FDFIRST in an attempt to predict their practical
behavior, and introduce three important heuristic optimizations.

Running Time. With very complicated overlapping constraints,
a finite but exponential number of new tuples could be inserted in
the course of a constraint repair. However, our experiments (which
will be presented in the next section) demonstrate that when inscost
is correctly set, the number of tuples inserted is far fewer than the
number of tuples in the original database. Accordingly, we assume
below that the number of inserts is linear in the original database
size, and for simplicity we use the parameter n as the number of
original tuples in the database plus all the inserts.

Recall that « is the maximum number of attributes of any table
in D, and that |C| is the number of constraints. Another impor-
tant parameter is meq, the largest size of any equivalence class en-
countered during a run. Of course, this is O(n) in the worst case,
but is practically much smaller. Given these parameters, the while
loop of GEN-REPAIR (Figure 4) repeats at most « - n times, since
one equivalence class is removed by each pass. In the worst case,
in PICKGREEDY, finding the lowest cost target for each tuple in
unResolved(C) for an IND C can take O(n) steps, where each
step takes O(a - meq) time to compute the cost of the new equiva-
lence classes. There are potentially n - |C| unresolved tuples. The
cost of resolving the tuple is not trivial since it includes the cost
of adding any new tuples to unResolved, but is not excessive since
an index can be maintained on the set of attributes involved in the



LHS of each FD. Thus, the time complexity of PICKGREEDY is
O(n® - |C|? - meq), and the overall running time of GEN-REPAIR,
in the worst case, is O(n® - |C|* - meq) (a is omitted since it is a
constant when the schema is fixed).

This clearly indicates that, while technically tractable, neither
GREEDY-REPAIR nor GREEDY-REPAIR-FDFIRST will scale well
to large data sets. We now introduce three optimizations which, as
will be shown in the next section, make a substantial improvement
in scalability without greatly affecting quality.

Redundant Computation. As mentioned above, the most expen-
sive part of PickGreedy is the search for covering tuples for INDs
in lines 8-13 of Fig. 5, since the computation of S at line 3 can be
assisted by a hash table. We observe that most cost evaluations be-
tween one execution of PICKGREEDY and the next are redundant;
this optimization seeks to avoid this redundant computation. We
now define some notation: Let ts be a global timestamp which is
incremented before any equivalence class change. Let best (¢, I) be
the bestFix value computed for a tuple ¢ with respect to IND I in
PICKGREEDY. Assume that lastcompute(t) represents the times-
tamp at which the last evaluation of PICKGREEDY for this tuple
took place. Let changed(s) be the set of tuples for which the equiv-
alence class of some attribute has changed at a timestamp greater
than s.

Now consider how to find the new bestFix for ¢ with respect
to constraint I on the next call to PICKGREEDY. When neither
t or best(t, I) has changed since lastcompute(t), we argue that
the new bestFix for ¢ with respect to 4 is either best(t, I), or it
inolves a tuple from changed(lastcompute(t)). This follows di-
rectly from the definitions, since best(¢,I) was optimal at time
lastcompute(t) and no other costs have changed. If an equivalence
class of t or best(#, I') has changed, however, then we must scan the
entire target table. This optimization does not affect quality, and is
always used.

For a given tuple ¢, the equivalence class of ¢ can only change
meq times, potentially reducing the n® term to n?meq. How-
ever, extreme cases can be constructed in which for every step,
1) some tuple t' appears as best(t, I) for every unresolved tu-
ple t and IND 7, and 2) t' is modified at that step entering
changed(lastcompute(t)). Thus, though the optimization is prac-
tically important, the worst-case running time is unchanged.

Nearby Tuples. To further improve running time, when trying to
satisfy inclusion dependencies, we limit the number of target tuples
considered for each source tuple, based on techniques from dupli-
cate elimination [11, 15, 21]. For each attribute A in relation R
appearing on the right-hand side of some IND, we produce a set
of indexes of R based on different features abstracted from the at-
tribute [15]. In particular, we keep one list sorted by attribute value;
and we create another list by first sorting the characters in the at-
tribute and then using this attribute to sort the list. When looking
for target tuples with which to resolve ¢ w.r.t. IND I = R;[X] C
R»[Y], we probe values from ¢’s X attributes to access each sorted
list for each attribute in Y. We then examine tuples, starting with
the best-matching attribute according to the attribute-level similar-
ity metric employed. This produces a candidate set of tuples, which
we then order on our tuple-cost metric, and return the first k. We
refer to the resulting optimization as NEARBY (k). When combined
with the last optimization, we intersect the NEARBY list with the
recently changed list. This optimization improves the worst-case
running time to O(n? - |C|* - meq - k - g n).

Relaxing Greedy. Our third optimization is to relax the PICK-
GREEDY routine so that it is much more efficient, but does not al-
ways choose the lowest cost merge to do next. To this end, we ini-

tially create a queue of triples, (¢,t*, I), where t € unResolved(I)
for some IND I, and ¢* is the best fix found by PICKGREEDY (i.e.
t* is either new or an existing potentially covering tuple). The
tuples in the queue are sorted by the cost of resolving ¢ with £*.
Whenever the GEN-REPAIR calls PickNext, the lowest-cost un-
resolved tuple ¢ in the queue is considered, and the following steps
are taken: 1) t’s best repair and repair cost with respect to I is re-
computed, using NEARBY if this option is in force. 2) If ¢’s cost is
unchanged or reduced, it is chosen without examining other tuples.
3) If ¢’s cost has increased, it is resorted into the queue, and the
process continues with the next tuple. This technique is referred
to as QUEUE. Since at step 2 there may be some entry later in the
queue with a better cost, the lowest cost greedy step is not always
found. However, QUEUE does ensure that when resolving a tuple ¢
w.r.t. an IND I, the currently-lowest cost tuple from the target table
with which to cover ¢ is used.

Construction of the queue takes at most O(n-1g n-|C|?) time. As
with the first optimization, if every tuple’s best match is the same
tuple, and that tuple changes on each step, this optimization does
not improve running time. However, if we limit each step to resort-
ing a constant number of tuples, then in conjunction with NEARBY
the worst case running time is in O(n - |C|* - meq - 1gZn). As we
will see in the next section, this optimization is also practically very
important.

6. Experimental Evaluation

In this section, we present an experimental study of our con-
straint repair techniques. We investigate the utility, scalability and
sensitivity to noise of our low-cost constraint repair heuristics on
synthetic TPC-H data and a collection of real datasets.

6.1 Experimental Setting

We perform our experiments with 1) artificial datasets generated
by the TPC-H [26] benchmark and 2) real-life datasets containing
DVD information. All the experiments are run on similar machines,
powered by either 933 MHz or 1 GHz Pentium 3 processors.

TPC Data. For TPC data, we create a clean TPC-H instance D+
by using the TPC dbgen program with different scaling factors. We
refer to this dataset by its size. For example, using a scaling fac-
tor of .0002, yielding approximately 2,000 tuples, is referred to as
“TPC.2k”. We then introduce noise to each attribute involved in an
IND or appearing on the left-hand side of an FD with probability
Proise to produce D. When noise is introduced, with probability
pes (the confusion metric) the value of the attribute is replaced with
another value found in the same column. Otherwise, the noise in-
troduced is a textual error guaranteed not to cause a collision (in-
sertion of a “!” at a random location in the string). Note that noise
may only be applied to those attributes that may cause constraint
violations in D. Finally, one of our algorithms is used to repair
constraint violations in D, producing a proposed repair D’.

The TPC model includes 10 FDs and 5 INDs generalizing the
keys and foreign keys in the dataset. An FD on the supplier table
is, e.g., the supplier key — name, address, phone number, region.

DVD Data. For DVD datasets, we scrape information from three
e-commerce web sites, AMAZON, DVD EMPIRE and DIGITAL
EYES. Each dataset is obtained by searching each site for a sin-
gle keyword, and filling in a table of information about the DVDs
found. We consider 19 arbitrary search words to generate 19 dif-
ferent datasets. Each generated table has the following columns:
title, DVD release year, theatrical release year, aspect ratio, length,
rating, anamorphic (’y’ or ’n’), and a unique ID where possible
(AMAZON and DVD EMPIRE). The Title and DVD year columns
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form the key. Because there were many natural discrepancies be-
tween the three sites, no artificial errors were introduced.

For each table we define an FD from its key to all of its other
fields. Furthermore, we define an IND from the two key fields in
each table to another table, such that the only way to satisfy all of
the dependencies is for each table to have an identical set of movies.

Algorithms.  We have implemented prototypes in Java of the
GREEDY-REPAIR (GR) and GREEDY-REPAIR-FDFIRST (GF) al-
gorithms, with the redundant computation optimizations mentioned
in Section 5.3. We also implemented the NEARBY and QUEUE op-
timizations, which can be used independently or together, as well
as LOOKAHEAD FOR FD CosTts (FDL).

Cost Models. We now show the cost function used in these ex-
periments. We start with a string edit distance function SE from
Damerau-Levenshtein. For TPC data, we use a modified SE that
excludes character replacement operations, allowing only inserts
and deletes. The distance between *!3” and *93” therefore increases
from 1 to 2. We make this change because the key data in TPC con-
sists of densely populated integers. Without the change, an n-digit
string with a ’!” noise character inserted (e.g. *!3”) would have the
same edit distance of 1 to many (n + 1)-digit numbers (e.g. *13’,
’23°,°33’, etc.) as it would to the original string. Even with this
change, however, ’3’ is just as close to *13°, °23’, etc., as it is to
’13”, so errors are still often hard to correct.
We then define the attribute-level distance function dis as

SE(s1,s2) p)

max(10, min(|s1], [s2])

dis(s1, s2) = max (1,

where p = .1 when s1 # s2, p = 0 otherwise, to ensure that
different strings can never have a vanishingly small cost. Longer
strings with a 1-character difference are closer than shorter strings
with a 1-character difference, but a 1-character difference in short
strings does not cause a disproportionately high cost. The rescost
used in PICKGREEDY (shown in Fig. 5) is then defined to be the
sum of dis across all attributes being merged, multiplied by the
percentage of attributes being merged that are not exact matches.
Another parameter that must be set is the insert cost inscost. For
TPC, no entities are missing, so inscost for all tables is set to in-
finity. For the movie data, however, missing data is common. We
find that a generally good setting for inscost is slightly more than
dis(s1, s2), where s1 and s are short strings that differ by 1 char-
acter. We therefore use inscost = 0.225 for the DVD experiments.

Measuring Repair Quality. To measure repair quality, one ap-
proach is to consider the cost of the repair found by the algorithm,
and compare this cost to some reference, such as the optimal (mini-
mum cost) repair. Unfortunately, we know of no effective algorithm
to find the optimal repair for non-trivial data sizes. Furthermore,
since our cost metric is new, showing that a low cost solution is
found does not prove that a good solution is found.
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Figure 7: TPC Performance, p.; = 0.1.

Since the TPC-H data is synthetically generated, we have an
original correct instance D available (though it is not seen by the
algorithm, of course). Thus we can measure the number of errors
corrected as the errors (the number of attribute-level differences
between Dt and D) minus the errors remaining (the difference
between D’ and DT). The quality of a TPC solution refers to the
ratio of errors corrected to errors.

For movie data, measuring quality is more problematic. One
approach would be to hand-merge each data set to determine an
ideal merge. However, this is impractical for the larger data sets.
We chose to approximate the hand-merge by building a Perl script
to evaluate the merges done to reach D’. This script has a set
of “expert” rules (created by studying the evaluated movie data)
which determines if two movies are the same. Given a repair, this
script counts the number of bad merges between movies that are not
the same. It then calculates an “adjusted size” (ADJSZ), which is
mov—+penalty+bad, where mov is the number of movies, and bad
is the number of bad merges. Lower values of ADJSZ mean that the
repair created a more compact, accurate database. So, for example,
if a database should have 2 tuples, the correct result would have an
ADJSZ of 2, with 0 bad merges. But if a repair merged those two
tuples into one incorrectly, the ADJSZ would be 1 + penalty = 1.
In order for the bad repair to have a worse ADJSZ than the correct
repair, we have set penalty to be 2 in our experiments. We com-
pare our algorithms with a nasve repair, which simply merges any
two DVDs when the title and year are exact matches, and report the
quality as the improvement in ADJSZ of the given algorithm over
the naive repair.

6.2 Experimental Results

TPC Result Quality. These experiments quantify how much our
algorithms improve the quality of the data. For the TPC data, each
experiment was repeated 30 times with different random seeds for
error introduction (except for the scaling experiments, which were
done 3 times each). We test p.s with values ranging between 0%
and 40%. The results with p.s = 10% on TPC.2k are shown in
Fig. 6. We see that GREEDY-REPAIR performs worse than the
GREEDY-REPAIR-FDFIRST-based algorithms. We also find that
larger p.s increases the difference between GREEDY-REPAIR and
GREEDY-REPAIR-FDFIRST (not shown).

The large error bars show that GREEDY-REPAIR occasionally
makes very bad repairs. This happens when an expensive FD is de-
ferred while many mainly similar equivalence classes are merged
due to INDs, only for them all to ultimately be merged together.
(GREEDY-REPAIR-FDFIRST avoids this problem by never defer-
ring FDs.) Interestingly, as noise increases, this problem hap-
pens less frequently, as large merges of mainly similar equivalence
classes become less common.

Figure 6 also shows that the optimization techniques do not de-
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grade the quality of the results for this dataset and dependency
set. Meanwhile, Figure 7 shows that the optimization techniques
do have a significant effect on runtime (user-time).

DVD Result Quality. Figure 8 shows the percentage decrease in
ADIJSZ over naive for each algorithm for a subset of the databases
we test. Whereas GREEDY-REPAIR was inferior to GREEDY-
REPAIR-FDFIRST on TPC data with non-zero p.y, it is the same
on the DVD dataset, and is not shown.

In these results, once again the QUEUE and NEARBY optimiza-
tions do not degrade the results, compared to GREEDY-REPAIR-
FDFIRST (hollow bar). In fact, the NEARBY optimization im-
proves the results, because for matches at equal edit distances, it
prefers the match which is closer alphabetically. (This is consistent
with research [28] that it is beneficial to include the length of the
common prefix of two strings in a string matching score.)

For some movie datasets, our string matching function does
poorly matching titles in the generated database. For example, the
query “ball” generates many long similar titles that however refer to
different movies, such as “Dragon Ball Z: Garlic Jr. - Vanquished”
and “Dragon Ball Z: Garlic Jr. Saga”. On such a data set, the re-
sults are in general poor, as is shown in the figure. Adding the FD
lookahead heuristic, however, enables the algorithm to avoid many
of the bad merges, greatly improving the quality of the result.

Figure 9 shows the performance of the different algorithms.
NEARBY and QUEUE are needed to scale, and adding FD Looka-
head degrades performance, but not dramatically.

Furthermore, GF' + NEARBY/(20) is actually slower than GF by
itself. The reason for this is that the Redundant Computation opti-
mization is very effective when the set of changed tuples that needs
reevaluation is small. When only one or two tuples have changed,
the time needed to use NEARBY to determine if those tuples should
be considered is greater than the time needed to simply recompute
for those tuples. So, for small change sets, NEARBY actually de-
grades performance. For GREEDY-REPAIR-FDFIRST, when all tu-
ples are considered after each change, only one new equivalence
class can be created in a column between computations, and thus
the change set is limited by the size of an equivalence class. (With
the QUEUE optimization, multiple equivalence classes are created
between computations on a given tuple, and thus change sets are
bigger.) For DVD data, the equivalence classes are always small
and so GF+NEARBY(20) performs poorly.

Scalability. In Fig. 10 we vary the size of the TPC instance from
1000 to 44,000 tuples, and compare the running time of GREEDY-
REPAIR-FDFIRST alone with NEARBY, QUEUE, and with both
NEARBY and QUEUE. Because the equivalence classes are larger
than those in the DVD data, the NEARBY optimization is very ef-
fective, and is critical for the algorithm to scale with this dataset
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Impact of Constraint Sets. An advantage of the algorithms dis-
cussed in this paper is that they give the user flexibility in speci-
fying the integrity constraints that need to be met. There are of-
ten many constraint sets with equivalent semantics. In Figure 11,
using GREEDY-REPAIR-FDFIRST with QUEUE and NEARBY(20),
we compare two runs on the DVD data. In one run, we use a depen-
dency set that consists of INDs across all of the attributes of all of
the tables (instead of just the key fields). In the other run, for each
table we add FDs from the key fields to all the other fields. Either
dependency set could be reasonably used for matching up DVDs
between the different databases. As the figure shows, much more
consistent and better results are obtained with the FD presence.

Varying NEARBY. We also experiment with GREEDY-REPAIR-
FDFIRST and QUEUE with 2% noise, while varying NEARBY. The
results are shown in Fig. 12. (The right-hand Y-axis, used for the
two movie datasets, is inverted so that better, lower values of AD-
JSZ are higher.) It shows that for the DVD data, with real strings,
even a nearby of 4 is sufficient for good results. For the TPC data,
where the text data is actually integers, it shows that higher values
of NEARBY are needed. In fact, as is shown for Nearby < 8 in
TPC.4k, values of NEARBY that are too low may cause the algo-
rithm to fail dramatically, finding a repair with a very high cost. If
the nearby string set frequently fails to include the correct choice,
a good repair cannot be found. Moreover, because our NEARBY
sort orders do not perform well on the integer keys seen in TPC,
larger values of NEARBY are needed. For TPC.2k, NEARBY of ap-
proximately 8 is sufficient, whereas for TPC.4k, NEARBY of 20 is
required to get optimal results.

This graph also shows that for the same amount of noise in TPC
data, a higher percentage of errors can be corrected in a larger
database. This is because a larger TPC database has more redun-
dant values, and hence more errors are correctable.
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Figure 11: Constraint choices

Figure 13 shows that excluding the failed repair, performance
scales linearly with NEARBY, as expected.

Summary. We have presented several results from our exper-
imental study of cost-based constraint repair. First, we find that
our equivalence-class-based constraint repair heuristics, in almost
all cases, substantially improve the quality of an inconsistent TPC
or DVD data set. Second, we compare several heuristics and find
that GREEDY-REPAIR-FDFIRST with NEARBY and QUEUE scales
much better than other combinations yet produces repairs of sim-
ilar quality. Finally, we note that the inclusion of FDs and FD
Lookahead can significantly improve repair quality. While our ex-
periments on the DVD dataset perform essentially a data-linkage
task, we do not compare ourselves with other data linkage systems.
These systems have rule-bases for matching and carefully tuned
comparison metrics, and will presumably achieve better results if
applied to matching movie titles. Instead, our goal is to show that a
general constraint-repair facility can reasonably perform this well-
known task, and that our cost-based model affords the opportunity
to integrate techniques from record linkage, like NEARBY, into a
practical constraint repair system. Finally, it is easy to see that
constraint repair generalizes data linkage, since constraint repair 1)
has the added burden of suggesting a repair once linkage is accom-
plished, and 2) handles complex data models and can generalize to
additional kinds of constraints.

7. Related Work

Data cleaning systems described in the research literature in-
clude the AJAX system [12] which provides users with a declar-
ative language for specifying data cleaning programs, and the Pot-
ter’s Wheel system [25] that extracts structure for attribute values
and uses these to flag discrepancies in the data. Most commercial
ETL tools for data warehouses have little built-in data cleaning ca-
pabilities covering mainly data transformation needs such as data
type conversions, string functions, etc. [24] presents a comprehen-
sive survey of commercial data cleaning tools, as well as a tax-
onomy of current approaches to data cleaning. While a constraint
repair facility will logically become part of the cleaning process
supported by these systems, we are not aware of analogous func-
tionality currently in any of the systems mentioned.

Most closely related to our work is the line of research on incon-
sistent databases (e.g., [1, 3, 4, 5, 7, 10, 13, 14, 27]), i.e., databases
that violate given integrity constraints. A semantic notion of mini-
mal repair was first introduced in [1] in terms of symmetric differ-
ence of the original database and its repair under set containment.
Consistent information is obtained from an inconsistent database
following two approaches: repair is to find another database that
is consistent and minimally differs from the original database [7,
10, 13, 14]; and consistent query answer, a notion also introduced
by [1], is to find an answer to a given query in every repair of the
original database [1, 3, 4, 5, 14, 27]. Most earlier work (except [10,
27]) either adopts tuple deletions as repair primitive and requires
that a repair is a subset of the original database [7], assuming that
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the database is complete yet not necessarily correct, or allows both
tuple insertions and deletions [1, 3, 4, 5, 13, 14], assuming that
the database is neither sound nor complete. Recently tuple modi-
fications were studied as repair actions for consistent conjunctive
query answer [27] and census data repair [10]. In these settings,
complexity results [1, 4, 7, 14, 27], algorithms [1, 4, 5, 7, 27],
constraint rewriting techniques [14], representations of all repairs
with logic programming [3, 10] or tableau [27], and constraint re-
pair based on techniques from model-based diagnosis [13] were
developed, for single database [1, 4, 7, 10, 13, 14, 27] and inte-
gration systems [3, 5, 14] (see recent surveys on consistent query
answer [2] and on constraint repair [6]).

While our work was inspired by prior work on constraint re-
pair, it differs from earlier approaches in the following. First, our
repair model allows attribute values to be modified for restoring
constraints and introduces a cost-based notion of minimal repairs.
While [10, 27] also allow value modifications, the applicability of
their techniques is restricted to specific databases or certain con-
straints. Indeed, in contrast to the generic setting of data clean-
ing in the presence of both FDs and INDs studied in this paper,
[10] considers detecting and solving conflicts for specific census
databases of a fixed schema, and [27] studies consistent answer of
(conjunctive) queries in the presence of universal (full) constraints,
which cannot express INDs. Furthermore, our model introduces
the novel and practical notion of minimality for repairs based on
costs measured by tuple weights and value similarity for each mod-
ification, which was not considered by any previous work. While
most of prior models focus on tuple deletions/insertions [1, 3, 4,
5, 7, 13] as repair actions, we would like to emphasize that an
attribute-modification cost model seems preferable as discussed in
Section 3.1. However, computing repair cost in terms of value
modification rather than tuple insertion and deletion significantly
complicates the repair problemin the presence of FDs and INDs.
For instance, with modifications, an uncovered tuple that violates
an IND can be covered by modifying any of the tuples in the cov-
ering table (In Example 1, tuple ¢o that violates IND (1) can be
covered by updating the phone number field in any of the tuples in
the customer table to “949-2212”.) Thus, with modifications, the
search space for repairing constraint violations explodes, making
the search techniques of the earlier work impractical. Second, our
NP-completeness results (Section 3) extend the complexity results
developed for constraint repair (and consistent query answer, due
to the connection between the complexity of these two issues es-
tablished in [7]: in the presence of foreign keys, the problem of
constraint repair is logspace-reducible to the complement of the
problem for consistent query answer). Indeed, our results show
that in the presence of attribute value modifications as legitimate
repair actions, the repair problem is intractable even when either
INDs alone or only FDs are allowed, while in contrast, [7] shows
that in a delete-only repair model, the corresponding problem is
tractable, and it becomes Co-NP hard if arbitrary FDs and INDs are
put together. Finally, to the best of our knowledge, our equivalence-
class-based approach yields the first effective heuristic algorithm



for restoring the database to a consistent state, and leads to a practi-
cal tool for data reconciliation and data cleaning. In contrast, earlier
approaches in the presence of value modifications require exponen-
tial time (combined complexity) for corrections [10], or expensive
tableau construction [27] (the termination problem for its chase-
based process is undecidable when it is generalized to deal with
both INDs and FDs).

A related topic of interest in data cleaning is the elimination
of approximate duplicates, also referred to as the object identity
or merge/purge problem; see, for example, [8, 11, 15, 20, 21,
28]. This problem frequently occurs during the integration of dis-
parate data sources, such as medical records, address lists or census
records. Previous work has focused on the statistical foundation of
feature matching [28], issues associated with string matching [8,
25] and the performance issues associated with avoiding pair-wise
comparisons of every tuple in a large table. In [11], the authors
present the AJAX system for cleaning which includes approximate
matching with an SQL-like syntax. For performance, [15] proposes
a method which considers multiple sorts of the database using dif-
ferent combinations of attributes, which inspires our NEARBY op-
timization. It should be mentioned that the algorithms developed
for detecting approximate duplicates [15, 20, 21] compute clus-
ters (transitive closures) of records, which can also be understood
as computing “equivalence classes” of “tuples”. Our algorithms
are more involved than theirs as we need to compute equivalence
classes of attribute and tuple pairs in order to repair FDs and INDs
across multiple tables of related entities, rather than to find approx-
imately duplicate records in one or two tables.

Finally, there has been a considerable amount of work in recent
years on schema matching (see, e.g., [23] for a survey) in the con-
text of schema integration. This, along with value reformatting, is
a necessary pre-step to database reconciliation by constraint repair.

8. Concluding Remarks

In this paper, we observe that an important use of data integra-
tion is database reconciliation, that is, to correct errors introduced
by source databases. We model this problem as one of finding low-
cost repairs of constraint violations in an integrated database. Hav-
ing shown the intractability of the problem, we introduce a heuristic
approach based on equivalence classes of (tuple, attribute) pairs. In
this context we consider specific algorithms and a number of per-
formance optimizations. We demonstrate the utility of the approach
and the scalability of our algorithms with experimental evaluation
on synthetic and real data. Not only does this approach help to
suggest reasonable repairs, but it allows the reuse of match metrics
developed for record linkage in the context of constraint repair.

For future work, we intend to investigate extensions within the
relational model, since SQL allows more general “NOT EXISTS”
style constraints. Second, we are looking to extend our results to
cover semi-structured data as well; specifically, we intend to de-
velop schemes for repairing constraint violations in the context of
XML data integration. Finally, we intend to more explicitly ad-
dress the interactive formulation of the problem since we believe
user involvement will be important in constraint repair, as in any
other area of data cleaning. This will involve giving the user appro-
priate control over the repair process as well as the development of
appropriate visualization tools for the proposed repairs.
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