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Abstract
It is common to find graphs with millions of nodes and bil-
lions of edges in, e.g., social networks. Queries on such
graphs are often prohibitively expensive. These motivate
us to propose query preserving graph compression, to com-
press graphs relative to a class Q of queries of users’ choice.
We compute a small Gr from a graph G such that (a) for
any query Q ∈ Q, Q(G) = Q′(Gr), where Q′ ∈ Q can be
efficiently computed from Q; and (b) any algorithm for com-
puting Q(G) can be directly applied to evaluating Q′ on Gr

as is. That is, while we cannot lower the complexity of evalu-
ating graph queries, we reduce data graphs while preserving
the answers to all the queries in Q. To verify the effective-
ness of this approach, (1) we develop compression strategies
for two classes of queries: reachability and graph pattern
queries via (bounded) simulation. We show that graphs can
be efficiently compressed via a reachability equivalence rela-
tion and graph bisimulation, respectively, while preserving
query answers. (2) We provide techniques for maintaining
compressed graph Gr in response to changes ∆G to the orig-
inal graph G. We show that the incremental maintenance
problems are unbounded for the two classes of queries, i.e.,
their costs are not a function of the size of ∆G and changes
in Gr. Nevertheless, we develop incremental algorithms that
depend only on ∆G and Gr, independent of G, i.e., we do
not have to decompress Gr to propagate the changes. (3)
Using real-life data, we experimentally verify that our com-
pression techniques could reduce graphs in average by 95%
for reachability and 57% for graph pattern matching, and
that our incremental maintenance algorithms are efficient.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—graph compression
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1. Introduction
It is increasingly common to find large graphs in, e.g.,

social networks [16], Web graphs [29] and recommendation
networks [25]. For example, Facebook currently has more
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Figure 1: Compressing a real-life P2P network

than 800 million users with 104 billion links1. It is costly to
query such large graphs. Indeed, graph pattern matching
takes quadratic time (by simulation [12]) or cubic time (via
bounded simulation [9]) to determine whether there exists
a match in a data graph for a graph pattern. Worse still,
it is np-complete when matching is defined in terms of sub-
graph isomorphism. Even for reachability queries that are
to decide whether there exists a path connecting a pair of
nodes in a graph G = (V, E), it takes O(|V | + |E|) time via
DFS/BFS search. Although one may use indexes to speed
up the evaluation, indexes incur extra cost, e.g., a reachabil-
ity matrix takes O(|V |(|V |+ |E|)) time to build and O(|V |2)
space to maintain (see [35] for a survey). Hence it is often
prohibitively expensive to evaluate queries on graphs with
millions of nodes and billions of edges, and it is unlikely
that we can lower its computational complexity.

Not all is lost. Observe that users typically adopt a class
Q of queries when querying data graphs G. We propose
graph compression preserving queries of Q: given G, we find
a smaller graph Gr via an efficient compression function R,
such that for all queries Q ∈ Q, Q(G) = Q′(Gr), where Q′

is a query in the same class Q, computed from Q via an
efficient query rewriting function. In other words, while we
may not change the complexity functions of graph queries,
we reduce the size of their parameters, i.e., the data graphs.

In contrast to previous lossless compressions (e.g., [3, 5,
11]), query preserving compression is relative to a class Q of
queries of users’ choice, i.e., it generates small graphs that
preserve the information only relevant to queries in Q rather
than the entire original graphs, and hence, achieves a better
compression ratio. Furthermore, any algorithm available for
evaluating Q can be directly used to query the compressed
graphs Gr as is, without decompressing Gr.

We find that this approach is effective when querying large
graphs. For instance, a real-life P2P network can be reduced
94% and 51% for reachability and graph pattern queries, re-
spectively, as depicted in Fig. 1. These reduce query evalu-
ation time by 93% and 77%, respectively.

To illustrate the idea, let us consider an example.

1
http://www.facebook.com/press/info.php?statistics; visited Jan. 2012



Figure 2: Recommendation Network

Example 1: Graph G in Fig. 2 is a fraction of a multi-agent
recommendation network. Each node denotes a customer
(C), a book server agent (BSA), a music shop agent (MSA),
or a facilitator agent (FA) assisting customers to find BSAs

and MSAs. Each edge indicates a recommendation.
To locate potential buyers, a bookstore owner issues a

pattern query Qp depicted in Fig. 2. It is to find a set of BSAs

such that they can reach a set of customers C who interact
with a set of FAs, and moreover, the customers should be
within 2 hops from the BSAs. One may verify that the match
of Qp in G is a relation S = {(X, Xi)} for X ∈ {BSA,FA,C}
and i ∈ [1, 2]. It is expensive to compute S when G is
large. Among other things, one has to check the connectivity
between all the k customers and all the BSAs in G.

We can do better. Observe that BSA1 and BSA2 are of
the same type of nodes (BSA), and both make recommen-
dations to MSA and FA. Since they “simulate” the behavior
of each other in the recommendation network G, they could
be considered equivalent when evaluating Qp. Similarly, the
pairs (FA1, FA2), (C1, C2), and any pair (Ci, Cj) of nodes for
i, j ∈ [3, k] can also be considered equivalent, among others.

This suggests that we build a compressed graph Gr of
G, also shown in Fig. 2. Graph Gr consists of hypernodes
Xr for X ∈ {MSA,BSA,FA,FA’,C,C’}, each denoting a class of
equivalent nodes. Observe that (1) Gr has less nodes and
edges than G, (2) Qp can be directly evaluated on Gr; its
result Sr = {(X,Xr)} can be converted to the original result
S by simply replacing Xr with the set of nodes represented
by Xr; and (3) the evaluation of Qp in Gr is more efficient
than in G since, among other things, it only needs to check
Cr and C′

r in Gr to identify matches for the query node C.
One can verify that Gr preserves the result for all pattern

queries defined in terms of (bounded) simulation, not limited
to Qp. That is, for any such pattern query Q on G, we can
directly evaluate Q on the much smaller Gr instead. 2

Contributions. Our main contributions are as follows.

(1) We propose query preserving compression for querying
large real-life graphs (Section 2). As opposed to previous
graph compression strategies, it only preserves information
needed for answering queries in a particular class Q of users’
interest, and hences, achieves a better compression ratio. It
is not yet another algorithm for evaluating graph queries;
instead, any algorithms for evaluating queries of Q on the
original graphs can be directly applied to computing query
answers in the compressed graphs, without decompression.

To verify the effectiveness of this approach, we develop
query preserving compression strategies for two classes of
queries commonly used in practice, namely, reachability
queries and graph pattern queries via (bounded) simulation.

(2) For reachability queries, we introduce reachability pre-
serving compression (Section 3). We propose a notion of

reachability equivalence relations, and based on this, we pro-
vide a compression function R that, given a graph G, com-
putes a small graph Gr = R(G) in O(|V ||E|) time, where
|V | and |E| are the number of the nodes and edges in G,
respectively. We show that Gr is reachability preserving:
for any reachability query Q, one can find in constant time
another reachability query Q′ such that Q(G) = Q′(Gr).

(3) For graph pattern queries defined in terms of (bounded)
simulation [9, 12], we define graph pattern preserving com-
pression in terms of a bisimulation equivalence relation [8]
(Section 4). We show that graphs G can be compressed into
a smaller Gr in O(|E| log |V |) time. We also show that the
compression preserves pattern queries: for any graph pat-
tern Q, G matches Q if and only if Gr matches the same Q,
and moreover, the match of Q in G can be computed in Gr.

(4) Real-life graphs constantly change [16]. This highlights
the need for studying incremental query preserving compres-
sion. Given a graph G, its compression Gr via function R,
and updates ∆G to G, it is to compute changes ∆Gr to Gr

such that R(G⊕∆G) = Gr⊕∆Gr, where G⊕∆G denotes G
updated by ∆G. When ∆G is small as commonly found in
practice, ∆Gr tends to be small as well and hence, is more
efficient to find than recomputing R(G⊕∆G) starting from
scratch. This allows us to compute compression Gr once,
and incrementally maintain it in response to changes to G.

We study this issue for reachability queries and graph pat-
tern queries (Section 5). (a) We provide a complexity anal-
ysis for the problem, in terms of the size of the changes in
the input (∆G) and output (∆Gr) characterized by affected
area (AFF). We show that the problem is unbounded for both
classes of queries, i.e., its cost is not a function of |AFF|.
(b) Nevertheless, we develop incremental maintenance algo-
rithms: (i) for reachability preserving compression, we show
that compressed graphs can be maintained in O(|AFF||Gr|)
time; and (ii) for graph pattern queries, we incrementally
compress graphs in O(|AFF|2 + |Gr|) time. In both cases
the algorithms are independent of the original graph G, and
propagate changes without decompressing Gr.

(5) We experimentally verify the effectiveness and efficiency
of our (incremental) compression techniques using synthetic
data and real-life data. We find that query preserving com-
pression reduces the size of real-life graphs by 95% and 57%
in average for reachability and pattern queries, respectively,
and by 98% and 59%, respectively, for social networks.
These lead to a reduction of 94% and 70% in query
evaluation time, respectively. In addition, our incremental
compression algorithms for reachability queries outper-
form their batch counterparts when changes are up to 20%.

We contend that query preserving compression yields a
promising approach to querying real-life graphs. This work
is among the first efforts to provide a complete package for
query preserving compression, from complexity bounds to
compression algorithms to incremental maintenance.

Related work. We categorize related work as follows.

General graph compression. Graph compression has been
studied for e.g., Web graphs and social networks [2, 5, 27].
The idea is to encode a graph or its transitive closure into
compact data structures via node ordering determined by,
e.g., lexicographic URL and hosts [27], linkage similarity [3],
and document similarity [5]. These general methods pre-
serve the information of the entire graph, and highly depend



on extrinsic information, coding mechanisms and applica-
tion domains [2]. To overcome the limitations, [2] proposes
a compression-friendly node ordering but stops short of giv-
ing a compression strategy. Our work differs from these in
the following: (a) our compression techniques rely only on
intrinsic graph information that is relevant to a specific class
of queries; (b) our compressed graphs can be directly queried
without decompression; in contrast, even to answer simple
queries, previous work requires the original graph to be re-
stored from compact structures [5], as observed in [2]; and
(c) we provide efficient incremental maintenance algorithms.

Query-friendly compression. Closer to our work are com-
pression methods developed for specific classes of queries.

(1) Neighborhood queries [18,22,27], to find nodes connected
to a designated node in a graph. The idea of query-able com-
pression (querying without decompression) for such queries
is advocated in [18], which adopts compressed data struc-
tures by exploiting Eulerian paths and multi-position lin-
earization. A S-node representation is introduced in [27]
for answering neighborhood queries on Web graphs. Graph
summarization [22] aims to sketch graphs with small sub-
graphs and construct hypergraph abstraction. These meth-
ods construct compact data structures that have to be (par-
tially) decompressed to answer the queries [2]. Moreover,
the query evaluation algorithms on original graphs have to
be modified to answer queries in their compact structures.

(2) Reachability queries [1, 10, 21, 32]. To answer such
queries, [21] computes the minimum subgraphs with the
same transitive closure as the original graphs, and [1] re-
duces graphs by substituting a simple cycle for each strongly
connected component. These methods allow reachability
queries to be evaluated on compressed graphs without de-
compression. We show in Section 3 (and verify in Section 6)
that our method achieves a better compression ratio, be-
cause (1) our compressed graphs do not have to be subgraphs
of the original graphs, and (2) by merging nodes into hy-
pernodes, we can further reduce edges. Bipartite compres-
sion [10] reduces graphs by introducing dummy nodes and
compressing bicliques. However, (1) its compression is a bi-
jection between graphs and their compressed graphs, such
that they can be converted to each other. In contrast, we
do not require that the original graphs can be restored; and
(2) algorithms for reachability queries have to be modified
before they can be applied to their compressed graphs [10].
[32] computes a compressed bit vector to encode the transi-
tive closure of a graph. In contrast, we compute compressed
graphs on which reachability algorithms and the compres-
sion scheme in [32] can be directly applied. The incremental
maintenance of the bit vectors is not addressed in [32].

(3) Path queries [4]. There has also been work on compress-
ing XML trees via bisimulation, to evaluate XPath queries.
It is shown there that this may lead to exponential reduc-
tion, an observation that carries over to our setting. In
contrast to [4], we consider compressing general graphs, to
answer graph-structured queries rather than XPath. More-
over, we develop incremental techniques to maintain com-
pressed graphs, which are not studied in [4].

We are not aware of any previous work on compressing
graphs for answering graph pattern queries.

Graph indexing. There has been a host of work on building
indexes on graphs to improve the query time [6,11,13–15,19,

26,34]. (1) 2-hop [6], PathTree [14], 3-hop [13], GRAIL [34]
and HLSS [11] are developed for answering reachability
queries. However, (a) these indexes come with high costs.
For example, the construction time is biquadratic for 2-hop
and 3-hop, cubic for HLSS, and quadratic for GRAIL and
PathTree; the space costs of these indexes are all (near)
quadratic [11, 32, 34, 34, 35]; and maintenance for 2-hop in-
dex easily degrades into recomputation [35]. (b) The algo-
rithms for reachability queries on original graphs often do
not run on these indexes. For example, it requires extra
search or auxiliary data structures to answer the queries in-
volving nodes that are not covered by PathTree [14, 32]. In
contrast, all these algorithms can be directly applied to our
compressed graphs. (2) 1-index [19], A(k)-index [15] and
their generalization D(k)-index [26] yield index graphs as
structure summarizations based on (parameterized) graph
bisimulation. However, (a) only rooted graphs are consid-
ered for those indexes; and (b) those indexes are for regu-
lar path queries, instead of graph patterns and reachabil-
ity queries. Indeed, none of these indexes preserves query
results for reachability queries (shown in Section 3), and
neither A(k)-index nor D(k)-index preserves query results
for graph pattern queries (shown in Section 4); (c) those
indexes are only accurate for those queries satisfying cer-
tain query load constraints (e.g., query templates [19], path
lengths [15,26]); in contrast, we compute compressed graphs
that preserve results for all queries in a given query class;
and (d) Incremental maintenance is not studied for 1-index
and A(k)-index [15, 19]. The issue is addressed in [26], but
the technique there depends on the query load constraints.

Incremental bisimulation. We use graph bisimulation to
compress graphs for pattern queries. A bisimulation com-
putation algorithm is given in [8]. Incremental computation
of bisimulation for single edge insertions is studied in [7,30].
Our work differs from these in (1) that we give complexity
bounds (boundedness and unboundedness results) of incre-
mental pattern preserving compression, of which incremen-
tal bisimulation is a subproblem, and (2) that we propose
algorithms for batch updates instead of single updates.

2. Graph, Queries and Graph Compression
Below we first review graphs and graph queries. We then

introduce the notion of query preserving graph compression.

2.1 Data Graphs and Graph Queries

Graphs. A labeled (directed) graph G = (V, E, L) consists
of (1) a set V of nodes; (2) a set of edges E ⊆ V ×V , where
(v, w) ∈ E denotes a directed edge from node v to w; and
(3) a function L defined on V such that for each node v in V ,
L(v) is a label from a set Σ of labels. Intuitively, the node
labels may present e.g., keywords, social roles, ratings [16].

We use the following notations. A path ρ from node v to
w in G is a sequence of nodes (v = v0, v1, . . . , vn = w) such
that for every i ∈ [1, n], (vi−1, vi) ∈ E. The length of path
ρ, denoted by len(ρ), is n, i.e., the number of edges in ρ. A
path ρ is said to be nonempty if len(ρ) ≥ 1. A node v can
reach w (or w is reachable from v) if and only if (iff) there
exists a path from v to w in G. The distance between node
v and w is the length of the shortest paths from v to w.

Graph queries. In general, a graph query is a computable
function from a graph to another object, e.g., a Boolean
value, a graph, a relation, etc. It is independent of how
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Figure 3: Query preserving compression

the input data graphs are represented and therefore, ask for
certain intrinsic properties of the graphs. In this paper, we
consider two classes of queries commonly used in practice.

Reachability queries. A reachability query on a graph G,
denoted by QR(v, w), is a Boolean query that asks whether
node v can reach node w in G. For instance, QR(BSA1, FA2)
is a reachability query on graph G of Fig. 2; the answer to
the query is true, as there is a path from BSA1 to FA2 in G.

Graph patterns. We define graph pattern matching in terms
of bounded simulation [9]. A graph pattern query is defined
as Qp = (Vp, Ep, fv, fe), where (1) (Vp, Ep, fv) is a directed
graph as defined above; and (2) fe is a function defined
on Ep such that for each edge (u, u′), fe(u, u′) is either a
positive integer k or a symbol ∗, called the bound of (u, u′).

A graph G = (V, E, L) matches Qp, denoted by Qp E G,
if there exists a binary relation S ⊆ Vp × V such that: (1)
for each u ∈ Vp, there exists v ∈ V such that (u, v) ∈ S; (2)
for each (u, v) ∈ S, (a) fv(u) = L(v), and (b) for each edge
(u, u′) in Ep, there exists a nonempty path ρ from v to v′

in G such that (u′, v′) ∈ S, and len(ρ) ≤ k if fe(u, u′) is a
constant k. We refer to S as a match for P in G.

Intuitively, (u, v) ∈ S if (1) node v in G satisfies the search
condition specified by fv(u) in Qp, and (2) each edge (u, u′)
in Qp is mapped to a nonempty path ρ = (v, . . . , v′) in G,
such that (u′, v′) is also in the match S, and moreover, len(ρ)
is bounded by k if fe(u, u′) = k. If fe(u, u′) = ∗, len(ρ) is
not bounded. Observe that the child u′ of u is mapped to
a descendant v′ of v via S. For instance, relation S given in
Example 1 is a match in graph G for pattern P of Fig. 2.

It has been shown [9] that there exists a unique maximum
match SM in G for Qp if Qp E G; i.e., for any match S in
G for P , S ⊆ SM . The answer to Qp in G is defined as the
maximum match SM if Qp E G, and as ∅ otherwise.

Lemma 1 [9]: For any graph G and pattern Qp, if Qp E G,
then there is a unique maximum match in G for P . 2

There are two special cases of graph pattern queries. (1)
A Boolean pattern query Qp returns true if Qp E G, and false

otherwise. (2) A pattern query Qp via graph simulation [12]
is a query in which fe(u, u′) = 1 for each edge (u, u′) ∈ Ep

of Qp, i.e., it maps edges in Qp to edges in a data graph.

2.2 Query Preserving Graph Compression

For a class Q of queries, a query preserving graph com-
pression is a triple <R, F, P>, where R is a compression
function, F : Q → Q is a query rewriting function, and P is
a post-processing function. For any graph G, Gr = R(G) is a
graph computed from G by R, referred to as the compressed
graph of G, such that |Gr| ≤ |G|, and for any query Q ∈ Q,

◦ Q(G) = P (Q′(Gr)), and
◦ any algorithm for evaluating Q queries can be directly

used to compute Q′(Gr), without decompressing Gr.
Here Q′ = F (Q), Q(G) is the answer to Q in G, Q′(Gr)
is the answer to Q′ in G′, and P (Q′(Gr)) is the result of
post-processing the answer to Q′ in the compressed Gr; and

As shown in Fig. 3(a), (1) for any query Q ∈ Q, the
answer Q(G) to Q in G can be computed by evaluating
Q′ in the (smaller) compressed graph Gr of G; (2) the
compression is generic: any data structures and indexing
techniques for the original graph can be directly applied to
Gr (e.g., the 2-hop techniques of [6], see Section 6); (3) the
post-processing function finds the answer in the original G
by only accessing the query answer Q′(Gr) and an index on
the inverse of node mappings of R; (4) in contrast to generic
lossless compression schemes (e.g., [10]), we do not need to
restore the original graph G from Gr, and moreover, the
compressed graph Gr is not necessarily a subgraph of G.

For instance, a query preserving compression for graph
pattern queries is described in Example 1, where the com-
pression function R groups nodes into hypernodes based on
graph bisimulation; the query rewriting function F is the
identity mapping: for any pattern query Q, F (Q) = Q; and
the post-processing function P simply replaces each hyper-
node with the set of equivalent nodes it represents.

In Sections 3 and 4, we show that there exist query pre-
serving compressions with efficient R, F and P functions.

(1) For reachability queries, R reduces graph G by 95% in
average, in O(|V ||E|) time; and F is in O(1) time. Moreover,
as shown in Fig. 3(b), post-processing P is not needed at all.

(2) For pattern queries, R reduces the size of G by 57% in
average, in O(|E| log |V |) time; F is the identity mapping,
and P is in linear time in the size of the query answer, a cost
necessary for any evaluation algorithm (see Fig. 3(c)). Bet-
ter still, for Boolean pattern queries, P is no longer needed.

We remark that for each graph G, its compression Gr =
R(G) is computed once for all queries in Q, and is incremen-
tally maintained in response to updates to G (Section 5).

3. Reachability Preserving Compression
In this section we study query preserving compression for

reachability queries, referred to as reachability preserving
compression. The main result of the section is as follows.

Theorem 2: There exists a reachability preserving com-
pression <R, F>, where R is in quadratic time, and F is in
constant time, while no post-processing P is required. 2

As a proof of the theorem, we first define the compression
<R, F> in Section 3.1. We then provide an algorithm for
implementing the compression function R in Section 3.2.

3.1 Reachability Equivalence Relations

Our compression is based on the following notion.

Reachability equivalence relations. We first define a
reachability relation on a graph G = (V, E, L) to be a binary
relation Re ⊆ V × V such that for each (u, v) ∈ Re and any
node x ∈ V , (1) x can reach u iff x can reach v; and (2) u
can reach x iff v can reach x. Intuitively, (u, v) ∈ Re if and
only if they have the same set of ancestors and the same set
of descendants. One can readily verify the following.



Figure 4: Reachability equivalence

Lemma 3: For any graph G, (1) there is a unique maximum
reachability relation Re on G, and (2) Re is an equivalence
relation, i.e., it is reflexive, symmetric and transitive. 2

The reachability equivalence relation of G is the maximum
reachability relation of G, denoted by Re(G) or simply Re.
We denote by [v]Re the equivalence class containing node v.

Example 2: Consider graph G given in Fig. 2. One
can verify that (BSA1,BSA2) ∈ Re(G). Indeed, BSA1 and
BSA2 share the same ancestors and descendants. Similarly,
(MSA1,MSA2) ∈ Re(G). In contrast, (FA3, FA4) /∈ Re(G)
since FA3 can reach C3, while FA4 cannot. 2

Reachability preserving compression. Based on reach-
ability equivalence relations we define <R, F> as follows.

(1) Compression function R. Given G = (V, E, L), we define
R(G) = Gr = (Vr, Er, Lr), where (a) Vr = {[v]Re | v ∈ V };
(b) Er consists of all edges ([v]Re , [w]Re) if there exist nodes
v′ ∈ [v]Re and w′ ∈ [w]Re such that (v′, w′) ∈ E, and (c) for
each u ∈ Vr, Lr(u) = σ, where σ is a fixed label in Σ. Here
Re is the reachability equivalence relation of G.

Intuitively, (a) for each node v ∈ V , there exists a node
[v]Re in Vr; abusing R, we use R(v) to denote [v]Re ; (b) for
each edge (v, w) ∈ E, (R(v), R(w)) is an edge in Er; and (c)
all the node labels in Gr are fixed to be a symbol σ in Σ
since node labels are irrelevant to reachability queries.

(2) Query rewriting function F . We define F such that for
any reachability query QR(v, w) on G, F (QR(v, w)) = Q′,
where Q′ = QR(R(v), R(w)) is a reachability query on Gr.
It simply asks whether there is a path from [v]Re to [w]Re

in Gr. Using index structures for the equivalence classes of
Re, Q′ can be computed from QR(v, w) in constant time.

Correctness. One can easily verify that <R, F> is a reach-
ability preserving compression. Indeed, |Gr| ≤ |G| since
|Vr| ≤ |V | and |Er| ≤ |E|. Moreover, for any reachability
query QR(v, w) posed on G, one can show by contradiction
that there exists a path from v to w in G if and only if R(v)
can reach R(w) in Gr. Hence, given QR(v, w) on G, one can
find its answer in G by evaluating QR(R(v), R(w)) in the
smaller compressed graph Gr of G, as shown in Fig. 3(b).

Example 3: Recall graph G of Fig. 2. Using the reachabil-
ity preserving compression <R, F> given above, one can get
Gr = R(G) shown in Fig. 4, in which, e.g., R(C1) = R(C2) =
R(FA2) = CFAr. Given a reachability query QR(BSA1,C2) on
G, F (QR) = QR(MBr,CFAr) on the smaller Gr. As another
example, Gr1

and Gr2
in Fig. 4 are the compressed graphs

generated by R for G1 and G2 of Fig. 4, respectively. 2

As remarked earlier, there has been work on index graphs
based on bisimulation [15, 19, 26]. However, such indexes
do not preserve reachability. To see this, consider the in-
dex graph G′

r2
of G2 shown in Fig. 4, where {C1, C2} and

{E1, E2} are bisimilar and thus merged [19]. However, G′

r2

cannot be directly queried to answer e.g., QR(C1, E2) posed
on G2, i.e., one cannot find its equivalent reachability query

Input: A graph G = (V, E, L).
Output: A compressed graph Gr = R(G) = (Vr, Er, Lr).

1. set Vr := ∅, Er := ∅;
2. compute reachability preserving relation Re;
3. compute the partition Par := V/Re of G;
4. for each S ∈ Par do

5. create a node vS ; Lr(vS) := σ; Vr := Vr ∪ {vS};
6. for each vS , vS′ ∈ Vr do

7. if there exist u ∈ S, v ∈ S′ such that
(u, v) ∈ E but vS does not reach vS′

8. then Er := Er ∪ {(vS , vS′ )};
9. return Gr = (Vr, Er, Lr);

Figure 5: Algorithm compressR for reachability

on G′

r2
. Indeed, C2 can reach E2 in G2 but C1 does not,

while in G′

r2
, C1 and C2 are merged into a single node.

3.2 Compression Method for Reachability Queries

We next present an algorithm that, given a graph G =
(V, E, L), computes its compressed graph Gr = R(G) based
on the compression function R given earlier. The algorithm,
denoted as compressR, is shown in Fig. 5.

Given a graph G, the algorithm first computes its reacha-
bility equivalence relation Re and the induced partition Par

by Re over the node set V (lines 2-3). Here Re is found as
follows (details omitted): for each node in V , it computes
its ancestors and descendants, via forward (resp. backward)
BFS traversals, respectively; it identifies those nodes with
the same ancestors and descendants. After this, for each
equivalence class S ∈ Par, it creates a node vS representing
S, assigns a fixed label σ to vS , and adds vS to Vr (lines 4-5).
It constructs the edge set Er by connecting nodes (vS , vS′)
in Vr if (1) there exists an edge (v, w) ∈ E of G, where v and
w are in the equivalence classes represented by S and S′, re-
spectively, and (2) vS does not reach vS′ via Er (lines 6-8).
Condition (2) assures that compressR inserts no redundant
edges, e.g., if (vS , vS′) and (vS′ , vS′′) are already in Er, then
(vS , vS′′) is not added to Er. While it is a departure from
the reachability equivalence relation Re, it is an optimization
without losing reachability information, as noted for tran-
sitivity equivalent graphs [1] (lines 6-8). The compressed
graph Gr is then constructed and returned (line 9).

Correctness & Complexity. One can verify that the al-
gorithm correctly computes Gr by the definition of R given
above. In addition, compressR is in O(|V |2+|V ||E|) time. In-
deed, Re and Par can be computed in O(|V |(|V |+ |E|)) time
(lines 2-3). The construction of Gr is in O(|Vr|(|Vr| + Er|))
time (lines 4-8). This completes the proof of Theorem 2.

Optimizations. Instead of compressing G directly, we first
compute its SCC graph Gscc, which collapses each strongly
connected component into a single node without losing
reachability information. We then apply compressR to Gscc,
which is often much smaller than |G| (see Section 6).

Note that |Gr| is much smaller than reachability matri-
ces [35], which take O(|V |2) space. Further, Gr takes sub-
stantially less construction time (quadratic) and space (lin-
ear) as opposed to 2-hop indexing [6], which is biquadratic.

4. Graph Pattern Preserving Compression
We next present a query preserving compression for graph

pattern queries, referred to as graph pattern preserving com-



Figure 6: Examples of bisimulation relations

pression. The main result of the section is as follows.

Theorem 4: There exists a graph pattern preserving com-
pression <R, F, P> in which for any graph G = (V, E, L),
R is in O(|E| log |V |) time, F is the identity mapping, and
P is in linear time in the size of the query answer. 2

To show the result above, we first define the compression
<R, F, P> in Section 4.1. We then provide an algorithm to
implement the compression function R in Section 4.2.

4.1 Compressing Graphs via Bisimilarity

We construct a graph pattern preserving compression in
terms of bisimulation relations, which are defined as follows.

Bisimulation relations [8]. A bisimulation relation on a
graph G = (V, E, L) is a binary relation B ⊆ V × V , such
that for each (u, v) ∈ B, (1) L(u) = L(v); (2) for each
edge (u, u′) ∈ E, there exists an edge (v, v′) ∈ E, such that
(u′, v′) ∈ B; and (3) for each edge (v, v′) ∈ E, there exists
an edge (u, u′) ∈ E such that (u′, v′) ∈ B.

Intuitively, (u, v) ∈ B if and only if for each child u′ of u,
there exists an child v′ of v such that (u′, v′) ∈ B, and vice
versa. Similar to Lemma 3, one can verify the following.

Lemma 5: For any graph G, (1) there is a unique maximum
bisimulation relation Rb on G, and (2) Rb is an equivalence
relation, i.e., it is reflexive, symmetric and transitive. 2

We define the bisimulation equivalence relation of G to be
the maximum bisimulation relation of G, denoted by Rb(G)
or simply Rb. We denote by [v]Rb

the equivalence class con-
taining node v. We say that nodes u and v are bisimilar if
(u, v) ∈ Rb. Since for any nodes v and v′ in [v]Rb

, L(v) =
L(v′), we simply call L(v) the label of [v]Rb

.

Example 4: Recall the graph G given in Fig. 2. One can
verify that FA3 and FA4 are bisimilar. In contrast, FA2 and
FA3 are not bisimilar; indeed, FA2 has a child C2, which is
not bisimilar to any C child of FA3.

Consider graphs given in Fig. 6. Note that A1 and A2 in
G1 are not bisimilar, as there is no child of A1 bisimilar to
child B2 or B3 of A2. Similarly, A1 and A3 in G1 are not
bisimilar. In contrast, A5 and A6 in G2 are bisimilar.

Note that A4 and A5 in G2 are not bisimilar, but they are
in the same reachability equivalence class; while A5 and A6

are bisimilar, they are not reachability equivalent. This il-
lustrates the difference between the reachability equivalence
relation and the bisimulation equivalence relation. 2

Graph pattern preserving compression. Based on
bisimulation equivalence relations, we define <R, F, P>.

(1) Compression function R. Given G = (V, E, L), we define
R(G) = Gr = (Vr, Er, Lr), where (a) Vr = {[v]Rb

| v ∈ V };
(b) an edge ([v]Rb

, [w]Rb
) is in Er as long as there exist nodes

v′ ∈ [v]Rb
and w′ ∈ [w]Rb

such that (v′, w′) ∈ E, and (c) for
each [v]Rb

∈ Vr, Lr([v]Rb
) is its label L(v). Intuitively, (a)

for each node v ∈ V , there exists a node [v]Rb
in Vr; (b) for

each edge (v, w) ∈ E, ([v]Rb
, [w]Rb

) is an edge in Er; and

Input: A graph G = (V, E, L).
Output: A compressed graph Gr = R(G) = (Vr, Er, Lr).

1. Vr := ∅; Er := ∅;
2. compute the maximum bisimulation relation Rb of G;
3. compute the partition Par := V/Rb;
4. for each S ∈ Par do

5. create a node vS and set Lr(vS) := L(v) where v ∈ S;
6. Vr := Vr ∪ {vS};
7. for each vS , vS′ ∈ Vr do

8. if there exist u ∈ S and v ∈ S′ such that (u, v) ∈ E
9. then Er := Er ∪ {(vS , vS′ )};
10. return Gr = (Vr, Er, Lr);

Figure 7: Algorithm compressB for pattern queries

(c) each [v]Rb
has the same label as L(v).

(2) Query rewriting function F is simply the identity map-
ping, i.e., F (Qp) = Qp.

(3) Post processing function P . Recall that Qp(G) is the
maximum match in G for pattern Qp. We define P such
that P (Qp(Gr)) = Qp(G) as follows. For each (vp, [v]Rb

) ∈
Qp(Gr) and each v′ ∈ [v]Rb

, (vp, v′) ∈ Qp(G). Intuitively,
if [v]Rb

simulates vp in Gr, then so does each v′ ∈ [v]Rb
in

G. Hence, P expands Qp(Gr) by replacing [v]Rb
with all the

nodes v′ in the class [v]Rb
, in O(|Qp(G)|) time via an index

structure for the inverse node mapping of R. When Qp is a
Boolean pattern query, P is not needed.

Example 5: Recall the graph G of Fig. 2. Using the graph
pattern preserving compression <R, F, P>, one can get the
compressed graph Gr of G shown in Fig. 2, in which e.g.,
R(FA1) = R(FA2) = FAr, where FAr is the equivalence class
containing FA1 and FA2. For the graph G2 of Fig. 6, its
compressed graph R(G2) is G2r , as shown in Fig. 6. 2

Correctness. We show that <R, F, P> given above is in-
deed a graph pattern preserving compression. (1) |Gr| ≤
|G|, as |Vr| ≤ |V | and |Er| ≤ |E|. (2) For any pattern query
Qp, Qp(G) = P (Qp(Gr)). To see this, it suffices to verify
that (u, v) ∈ Qp(G) if and only if (u, [v]Rb

) ∈ Qp(Gr). If
(u, [v]Rb

) ∈ Qp(Gr), then for any child u′ of u, there is a
node [v′]Rb

such that (u′, [v′]Rb
) ∈ Qp(Gr), and there is a

bounded path ρ from [v]Rb
to [v′]Rb

. By the definition of R,
we can show that for each node w ∈ [v]Rb

, there is a node
w′ ∈ [v′]Rb

, to which there is a path ρ′ from w such that
len(ρ) = len(ρ′), (u, w) ∈ Qp(G) and (u′, w′) ∈ Qp(G). Con-
versely, if (u, v) ∈ Qp(G), then one can show that for any
node w bisimilar to v in G, (u, w) ∈ Qp(G), and moreover,
for each query edge (u, u′), [v]Rb

has a bounded path to a
node [v′]Rb

in Gr with (u′, v′) ∈ Qp(G). Hence (u, [v]Rb
) ∈

Qp(Gr). From these it also follows that P (Qp(Gr)) is indeed
the unique maximum match in G for Qp. In light of this,
as shown in Fig. 3(c), we can find the match of Qp in G by
computing P (Qp(Gr)) via any algorithm for answering Qp.

As remarked earlier, A(k)-index and D(k)-index [15, 26]
may not preserve the answers to graph pattern queries. To
see this, consider graph G1 of Fig. 6 and its index graph G′

2r

of A(k)-index when k = 1, also shown in Fig. 6. Although
A1, A2 and A3 are not bisimilar, they all have and only
have B children; as such, they are 1-bisimilar [26], and are
merged into a single node in G′

2r
. However, G′

2r
cannot be

directly queried by e.g., a Qp consisting of two query edges
{(B, C), (B, D)}, both with bound 1. Indeed, for Qp, G′

2r

returns all the B nodes in G as matches for query node B
in Qp, while only B1 and B5 are the true matches in G1.



4.2 Compression Algorithm for Graph Pattens

We next present an algorithm that computes the com-
pressed graph Gr = R(G) for a given graph G = (V, E, L),
where R is the compression function given earlier.

The algorithm, denoted as compressB, is shown in Fig. 7.
Given a graph G = (V, E, L), compressB first computes the
maximum bisimulation relation Rb of G, and finds the in-
duced partition Par by Rb over the node set V (lines 2-3). To
do this, it follows [8]: it first partitions V into {S1, . . . , Sk},
where each set Si consists of nodes with the same label; the
algorithm then iteratively refines Par by splitting Si if it does
not represents an equivalence class of Rb, until a fixpoint is
reached (details omitted). For each class S ∈ Par, compressB

then creates a node vS , assigns the label of a node v ∈ S to
vS , and adds vS to Vr (lines 4-6). For each edge (u, v) ∈ E, it
adds an edge (vS , vS′), where u and v are in the equivalence
classes represented by vS and vS′ , respectively (lines 7-9).
Finally Gr = (Vr, Er, Lr) is returned (lines 10).

Correctness & Complexity. Algorithm compressB indeed
computes the compressed graph Gr by the definition of R
(Section 4.1). In addition, compressB is in O(|E| log |V |)
time: Rb and Par can be computed in O(|E| log |V |) time [8]
(lines 2-3), and Gr can be constructed in O(|Vr|+ |E|) time
(lines 4-9). This completes the proof of Theorem 4.

5. Incremental Graph Compression
To cope with the dynamic nature of social networks and

Web graphs, incremental techniques have to be developed
to maintain compressed graphs. Given a query preserving
compression <R, F, P> for a class Q of queries, a graph G,
a compressed graph Gr = R(G) of G, and batch updates
∆G (a list of edge deletions and insertions) to G, the incre-
mental query preserving compression problem is to compute
changes ∆Gr to Gr such that Gr ⊕∆Gr = R(G⊕∆G), i.e.,
the updated compressed graph Gr ⊕∆Gr is the compressed
graph of the updated graph G⊕∆G. It is known that while
real-life graphs are constantly updated, the changes are typ-
ically minor [23]. As remarked earlier, when ∆G is small,
∆Gr is often small as well. It is thus often more efficient
to compute ∆Gr than compressing G ⊕ ∆G starting from
scratch, by minimizing unnecessary recomputation.

As observed in [28], it is no longer adequate to measure
the complexity of incremental algorithms by using the tra-
ditional complexity analysis for batch algorithms. Follow-
ing [28], we characterize the complexity of an incremental
compression algorithm in terms of the size of the affected
area (AFF), which indicates the changes in the input ∆G and
the output ∆Gr, i.e., |AFF| = |∆G| + |∆Gr|. An incremen-
tal algorithm is said to be bounded if its time complexity can
be expressed as a function f(|AFF|), i.e., it depends only on
|∆G| + |∆Gr| rather than the entire input G. An incremen-
tal problem is bounded if there exists a bounded incremental
algorithm for it, and is unbounded otherwise.

5.1 Incremental Maintenance for Reachability

We first study the incremental graph compression prob-
lem for reachability queries, referred to as incremental reach-
ability compression and denoted as RCM. One may want to
develop a bounded algorithm for incremental reachability
compression. The problem is, however, nontrivial.

Theorem 6: RCM is unbounded even for unit update, i.e.,
a single edge insertion or deletion. 2

Proof sketch: We verify this by reduction from the single
source reachability problem (SSR). Given a graph Gs, a fixed
source node s and updates ∆Gs, SSR is to decide whether
for all u ∈ Gs, s reaches u in Gs ⊕ ∆Gs. It is known that
SSR is unbounded [28]. We show that SSR is bounded iff
RCM with unit update is bounded. 2

Incremental algorithm. Despite the unbounded result,
we present an incremental algorithm for RCM that is in
O(|AFF||Gr|) time, i.e., it only depends on |AFF| and |Gr|
instead of |G|, and solves RCM without decompressing Gr.

To present the algorithm, we need the following notations.
(1) A strongly connected component (SCC) graph Gscc =
(Vscc, Escc) merges each strongly connected component into
a single node without self cycle. We use vscc to denote an
SCC node containing v, and Escc the edges between SCC

nodes. (2) The topological rank r(s) of a node s in G is de-
fined as follows: (a) r(s) = 0 if s has no child in G, i.e., sscc

has no child in Gscc, (b) r(s) = r(s′) if s and s′ are in the
same SCC, and otherwise, (c) r(s) = max(r(s′))+1 when s′

ranges over the children of s. We also define r(e) = r(s) for
an edge update e = (s, v). One can verify the lemma below,
which reveals the connection between topological ranks and
the reachability equivalence relation Re in a graph.

Lemma 7: In any graph G, r(u) = r(v) if (u, v) ∈ Re. 2

Leveraging Lemma 7, we present the algorithm, denoted
as incRCM and shown in Fig. 8. It has three steps.

(1) Preprocessing. The algorithm first preprocesses updates
∆G and compressed graph Gr (lines 1–2). (a) It first re-
moves redundant updates in ∆G that have no impact on
reachability (line 1). More specifically, it removes (i) edge
insertions (u, u′) where [u]Re 6= [u′]Re , and [u]Re can reach
[u′]Re in Gr; and (ii) edge deletions (u, u′) if either [u]Re

reaches [u′]Re via a path of length no less than 2 in Gr,
or if [u]Re = [u′]Re , and there is a child u′′ of u such that
(u, u′′) /∈ ∆G and [u]Re = [u′′]Re . (b) It then identifies a set
of nodes u with r(u) changed in Gr, for each edge update
(u, u′) ∈ ∆G; it updates the rank of u in Gr accordingly.

(2) Updating. The algorithm then updates Gr based on r
(line 3). It first splits those nodes [u]Re of Gr in which there
exist nodes with different ranks. By Lemma 7, these nodes
are not in the same equivalence class, thus [u]Re must be
split. Then it finds all the newly formed SCCs in G, and
introduce a new node for each of them in Gr. These two
steps identify an initial area affected by updates ∆G.

(3) Propagation. The algorithm then locates ∆Gr by prop-
agating changes from the initial affected area identified in
step (2). It processes updates e = (u, u′) in the ascend-
ing topological rank (line 4). It first finds [u]Re and [u′]Re ,
the (revised) equivalence classes of u and u′ in the current
compressed graph Gr. It then invokes procedure incRCM+

(resp. incRCM−) to update Gr when e is to be inserted
(resp. deleted) (lines 5–8). Updating Gr may make some
updates in ∆G redundant, which are removed from ∆G
(line 9). After all updates in ∆G are processed, the up-
dated compressed graph Gr is returned (line 10).

Given an edge e = (u, u′) to be inserted into G and
their corresponding nodes [u]Re and [u′]Re in Gr, proce-
dure incRCM+ updates Gr as follows. First, note that since
(u, u′) is not redundant (by lines 1 and 9 of incRCM), u can-
not reach u′ in G, but after the insertion of e, u′ becomes
a child of u. Moreover, no nodes in [u]Re \ {u} can reach



Input: A graph G, its compressed graph Gr, batch updates ∆G.
Output: New compressed graph Gr ⊕ ∆Gr.

1. reduce ∆G;
2. update the topological rank r of the nodes in Gr w.r.t. ∆G;
3. update Gr w.r.t. the updated r;
4. for each update e = (u, u′) ∈ ∆G

following the ascending topological rank do

5. if e is an edge insertion
6. then incRCM+(e, [u]Re

, [u′]Re
, Gr);

7. else if e is an edge deletion
8. then incRCM−(e, [u]Re

, [u′]Re
, Gr);

9. reduce ∆G;
10. return Gr;

Procedure incRCM+

Input: Compressed graph Gr = (Vr, Er), edge insertion (u, u′),
and node [u]Re

, [u′]Re
in Gr.

Output: An updated Gr.

1. Split (u, u′, [u]Re
, [u′]Re

);
2. if r([u]Re

) > r([u′]Re
) then

3. for each v ∈ B([u]Re
) do Merge ({u}, v);

4. for each v′ ∈ B([u′]Re
) do Merge ({u′}, v′);

5. else if r([u]Re
) = r([u′]Re

) then

6. for each v ∈ P ([u′]Re
) do Merge ({u}, v));

7. for each v′ ∈ C([u]Re
) do Merge ({u′}, v′));

8. return Gr;

Figure 8: Algorithm incRCM

u′ in G. Hence u and nodes in [u]Re \ {u} can no longer be
in the same equivalence class after the insertion of e. Thus
incRCM+ splits [u]Re into two nodes representing {u} and
[u]Re \ {u}, respectively; similarly for [u′]Re (line 1). This
is done by invoking procedure Split (omitted).

In addition, nodes may also have to be merged (lines 2–8).
We denote the set of children (resp. parents) of a node u as
C(u) (resp. P (u)), and use B(u) to denote the set of nodes
having the same parents as u. By Lemma 7, consider r(u)
and r(u′) in the updated G. Observe that r(u) ≥ r(u′)
since u′ is a child of u after the insertion of e. (1) If
r(u) > r(u′), i.e., u and u′ are not in the same SCC, then {u}
may only be merged with those nodes v′ ∈ B([u]Re) such
that C({u}) = C(v′); similarly for u′ (lines 2–4). Hence
we invoke procedure Merge (omitted) that works on Gr:
given nodes w and w′, it checks whether P (w) = P (w′)
and C(w) = C(w′); if so, it merges w and w′ into one that
shares the same parents and children as w and w′. (2) When
r(u) = r(u′), as e is non-redundant, u and u′ may not be in
the same SCC. Thus {u} (resp. {u′}) may only be merged
with a parent of [u′]Re (resp. a child of [u]Re ; lines 5–7).

Similarly, procedure incRCM− updates Gr by using Split

and Merge in response to the deletion of an edge (omitted).
Here when a node is split, its parents may need to be split
as well, i.e., the changes are propagated upward.

Example 6: Recall graph G of Fig 2. A subgraph Gs

(excluding e1 and e2) of G and its compressed graph Gr

are shown in Fig 9. (1) Suppose that edges e1 and e2 are
inserted into Gs. Algorithm incRCM first identifies e1 as a
redundant insertion, since FA1 can reach v in Gr (line 1). It
then updates the rank r of FA1 to be 0 due to the insertion
of e2 (line 2), by traversing Gr to identify a newly formed
SCC. It next invokes procedure incRCM+ (line 6), which
merges FA1 to the node v in Gr, and constructs G′

r as the
compressed graph, shown in Fig 9. The affected area AFF

includes nodes v, vr and edge (vr, vr). (2) Now suppose that
edges e3 and e4 are removed. The algorithm first identifies e3

as a redundant update, since FA1 has a child C2 in the nodes

FA1

C1

FA2 C2

Gs

vr'

C1 FA2 C2

FA1C1 FA2 C2

Gr

FA1

v

Gr'

C1

Gr''

FA2C2FA1
vr

e3

e1

e2

e4

Figure 9: Incremental compression: reachability

Vr. It then processes update e4 by updating the rank of FA2,
and splits the node vr in G′

r into FA2 and v′

r via incRCM−

(line 8). This yields G′′

r by updating G′

r (see Fig 9). The
AFF includes nodes vr, v′

r, C1 and their edges. 2

Correctness & Complexity. Algorithm incRCM correctly
maintains the compressed graph Gr. Indeed, one can verify
that the loop (lines 3-7) guarantees that for any nodes u and
u′ of G, u can reach u′ if and only if [u]Re reaches [u′]Re in
Gr when Gr is updated in response to ∆G. In particular,
procedure Merge is justified by the following: nodes can be
merged iff they share same parents and children after non-
redundant updates. This can be verified by contradiction.

For the complexity, one can show that the first two steps of
the algorithm (lines 1-3) are in O(|AFF||Gr|) time. Indeed,
(1) it takes O(|AFF||Gr|) time to identify redundant updates
by testing the reachability of the nodes in Gr, which accesses
R but does not search G; and (2) it takes O(|AFF||Gr|) time
to identify the nodes and their changed rank for each update
in ∆G, and updates Gr accordingly. Procedures incRCM+

and incRCM− are in O(|AFF||Gr|) time. Thus incRCM is in
O(|AFF||Gr|) time. As will be verified by our experimental
study, |Gr| and |AFF| are typically small in practice.

5.2 Incremental Maintenance for Graph Patterns

We next study the incremental graph compression prob-
lem for graph pattern queries, referred to as incremental
graph pattern preserving compression and denoted as PCM.
Like RCM, PCM is also unbounded and hard.

Theorem 8: PCM is unbounded even for unit update. 2

Proof sketch: We show that SSR is bounded iff PCM with
unit update is bounded, also by reduction from SSR. 2

Incremental algorithm. Despite this, we develop an in-
cremental algorithm for PCM that is in O(|AFF|2 + |Gr|)
time. Like incRCM, the complexity of the algorithm is inde-
pendent of |G|. It solves PCM without decompressing G.

We first define some notations. (1) A strongly connected
component graph Gscc is as defined in Section 5.1. (2) Fol-
lowing [8], we define the well founded set WF to be the set of
nodes that cannot reach any cycle in G, and the non-well-
founded set NWF to be V \ WF. (3) Based on (1) and (2), we
define the rank rb(v) of nodes v in G: (a) rb(v) = 0 if v has
no child; (b) rb(v) = −∞ if vscc has no child in Gscc but v has
children in G; and (c) rb(v) = max({rb(v

′) + 1} ∪ {rb(v
′′}),

where (vscc,v
′

scc) and (vscc,v
′′

scc) are in Escc, for all v′ ∈ WF

and all v′′ ∈ NWF. We also define rb([u]Rb
) = rb(u) for a

node [u]Rb
in Gr, and rb(e) = rb(v) for an update e = (u, v).

Analogous to Lemma 7, we show the lemma below.

Lemma 9: For any graph G and its compressed graph Gr,
(1) rb(u) = rb(v) if (u, v) ∈ Rb, and (2) each node u in Gr

can only be affected by updates e with rb(e) < rb(u). 2

For PCM, the affected area AFF includes (1) the nodes in
G with their ranks changed after G is modified, as well as the



Input: A graph G, a compressed graph Gr, batch updates ∆G;
Output: An updated Gr.

1. AFF:= ∅;
2. incR(G, Gr, ∆G); /* update rank and Gr */
3. for each i ∈ {−∞} ∪ [0, max(rb(v))] do

4. AFF := AFF.add {AFFi}, where AFFi is
the set of new nodes v with rb(v) = i;

5. for each AFFi of ascending rank order do

6. PT(AFFi); /*update compressed graph at rank i*/
7. minDelta(AFFi, Gr, ∆G); update AFF;
8. for each [u′]Rb

∈ AFFi and e = (u, u′) ∈ ∆G do

9. SplitMerge([u′]Rb
, Gr, e, AFF);

10. return Gr;

Procedure SplitMerge
Input: Compressed graph Gr = (Vr, Er, Lr), an update (u, u′),

node [u′]Rb
, AFF;

Output: An updated Gr.

1. Boolean flag := true; AFFp := ∅;
2. AFFp := AFFp ∪ {[u]Rb

} ∪ P ([u′]Rb
);

3. for each node [vp]Rb
∈ AFFp with r([vp]Rb

) > r([u′]Rb
) do

/* split [vp]Rb
w.r.t. v into [vp1

]Rb
and [vp2

]Rb
*/

4. flag := bSplit ([vp]Rb
, [u′]Rb

);
5. if flag then

6. AFFrb([vp]Rb
) := AFFrb([vp]Rb

) ∪{[vp]Rb
, [vp2

]Rb
};

7. for each v′ with rb(v
′) = rb([vp]Rb

) do

8. if mergeCon (v′, [vp]Rb
) then bMerge (v′, [vp]Rb

);
9. for each v′′ with rb(v

′′) = rb([vp2
]Rb

) do

10. if mergeCon (v′′, [vp2
]Rb

) then bMerge (v′′, [vp2
]Rb

);
11. update AFF; return Gr;

Figure 10: Algorithm incPCM

edges attached to them, and (2) the changes to Gr, including
the updated nodes and the edges attached to them.

Our incremental algorithm is based on Lemma 9, denoted
as incPCM and shown in Fig. 10. It has two steps.

(1) Preprocessing. The algorithm first finds an initial af-
fected area AFF (lines 1-4). It uses procedure incR (omit-
ted) to do the following (line 2) : (a) update the rank of
the nodes in the updated G; and (b) split those nodes [u]Rb

of Gr in which there exist nodes with different ranks. By
Lemma 9, these nodes are not bisimilar. It then initializes
AFF, consisting of AFFi for each rank i of G, where AFFi is
the set of newly formed nodes in Gr with rank i (lines 3–4).

(2) Propagating. It then identifies ∆Gr by processing each
AFFi in the ascending rank order (lines 5-9). At each itera-
tion of the loop (lines 5-9), it first computes the bisimulation
equivalence relation Rb of the subgraph induced by the new
nodes in AFFi (line 6), via procedure PT (omitted). Revis-
ing the Paige-Tarjan algorithm [24], PT performs a fixpoint
computation until each node of rank i in Gr finds its bisim-
ulation equivalence class. The algorithm then reduces those
updates that become redundant via procedure minDelta (see
optimization below), and reduces AFF accordingly (line 7).
It then propagates changes from AFFi towards the nodes
with higher ranks, by invoking procedure SplitMerge.

Given an affected node [u′]Rb
and an update e = (u, u′),

procedure SplitMerge identifies other nodes that are affected.
It starts with [u]Rb

and its parents P ([u]Rb
) (line 2). For

each [vp]Rb
of these nodes with a rank higher than [u′]Rb

,
SplitMerge splits it into [vp1

]Rb
and [vp2

]Rb
, denoting node

sets [v1]Rb
\ [u′]Rb

and [v1]Rb
∩ [v2]Rb

, respectively (line 4).
Indeed, no nodes vp1

∈ [vp1
]Rb

and vp2
∈ [vp2

]Rb
are bisimi-

lar. Here we call [u′]Rb
a splitter of [vp]Rb

, and conduct the
splitting via procedure bSplit (omitted). The changes are
propagated to AFFrb(vp) (line 6). SplitMerge then merges

G

FA1 FA2 FA3 FA4

C1 C2 C3 Ck

BSA1 BSA2

MSA1 MSA2

...-e1

+e 2 -e3

Gq

MSA 1 MSA 2 BSA 1 BSA2

 C 2

 C 1

FA3 FA4FA1FA2

 C 3  C k...

-e3

AFF

Figure 11: Incremental compression: graph pattern

[vp1
]Rb

with nodes having the same rank; similarly for
[vp2

]Rb
(lines 7-10). The merging takes place under condi-

tion mergeCon, specified and justified by the lemma below.

Lemma 10: Nodes v1 and v2 can be merged in Gr if and
only if (1) they have the same label, and (2) there exists no
node v3 that is a splitter of v1 but is not a splitter of v2. 2

Optimization. Procedure minDelta reduces redundant up-
dates based on rules. Consider a node [u′]Rb

in Gr up-
dated by incPCM (line 6). For a node [u]Rb

with rb([u]Rb
) ≥

rb([u
′]Rb

), we give some example rules used by minDelta (the
full set of rules is omitted). (1) Insertion: The insertion of
(u, w) is redundant if w ∈ [u′]Rb

and ([u]Rb
, [u′]Rb

) ∈ Er. (2)
Deletion: The deletion of (u, w) is redundant if w ∈ [u′]Rb

,
([u]Rb

, [u′]Rb
) ∈ Er, u has a child w′ in [u′]Rb

and w 6= w′.
(3) Cancellation: An insertion (u, u1) and a deletion (u, u2)
are both redundant if there is a node u3 such that {u1, u2,
u3} ⊆ [u′]Rb

, (u, u3) ∈ E and ([u]Rb
, [u′]Rb

) ∈ Er.

Example 7: Recall G and its compressed graph Gr from
Fig 2. Consider removing e1 and e3 from G, followed by
the insertion of e2, as indicated in Fig 11. When e1 is re-
moved, the algorithm incPCM first updates the rank of C1

(line 2), and adds C1 to AFF (line 4). Since C1 has a differ-
ent rank from C2, it is split from (C1,C2) at the same time
(line 4). The algorithm then invokes PT to merge C1 and
(C3,. . .,Ck) (line 6), and uses SplitMerge to (a) remove FA1

from (FA1,FA2), and (b) merges FA1 with (FA3,FA4) (line 9).
Observe that the deletion of e3 becomes redundant, as iden-
tified by minDelta (line 7). The updated compressed graph
Gq is shown in Fig 11, in which AFF is marked. 2

Correctness & Complexity. One can verify that incPCM

correctly maintains compressed graphs, by induction on the
rank of nodes in Gr processed by the algorithm. For its
complexity, note that procedure incR is in O(|AFF| log |AFF|)
time. Moreover, procedures minDelta, PT and SplitMerge

take O(|AFF|) time, O(|AFF| log |AFF|+|Gr|), and O(|AFF|2)
time in total. Hence incPCM is in O(|AFF|2 + |Gr|) time.
The algorithm accesses R and Gr, without searching G.

6. Experimental Evaluation
We next present an experimental study using both real-

life and synthetic data. For reachability and graph pattern
queries, we conducted four sets of experiments to evaluate:
(1) the effectiveness of the query preserving compressions
proposed, measured by compression ratio, i.e., the ratio of
the compressed graph size to the original graph size, (2)
query evaluation time over original and compressed graphs,
(3) the efficiency of the incremental compression algorithms,
and (4) the effectiveness of incremental compression.

Experimental setting. We used the following datasets.

(1) Real-life data. For graph pattern queries, we used the
following graphs with attributes and labels on the nodes:



dataset |G|(|V |, |E|) RCaho RCscc RCr

facebook 1.6M (64K, 1.5M) 13.19% 5.89% 0.028%
amazon 1.5M (262K, 1.2M) 35.09% 18.94% 0.18%
Youtube 931K(155K, 796K) 41.60% 17.02% 1.77%
wikiVote 111K(7K, 104K) 65.56% 8.33% 1.91%
wikiTalk 7.4M (2.4M , 5.0M) 48.21% 16.82% 3.27%

socEpinions 585K (76K, 509K) 29.53% 19.59% 2.88%

NotreDame 1.8M (326K, 1.5M) 43.27% 10.75% 2.61%
P2P 27K (6K, 21K) 73.24% 17.02% 5.97%

Internet 155K (52K, 103K) 88.32% 28.89% 16.08%

citHepTh 381K (28K, 353K) 71.32% 37.15% 14.70%

Table 1: Reachability preserving: compression ratio

(a) Youtube2 where nodes are videos labeled with their cat-
egory; (b) California3, a Web graph in which each node is
a host labeled with its domain; (c) Citation [31], a citation
network in which nodes represent papers, labeled with their
publishing information; and (d) Internet4 where a node rep-
resents an autonomous system labeled with its location.

For reachability queries, we used (a) six social networks: a
Wikipedia voting network wikiVote5, a Wikipedia communi-
cation network wikiTalk5, an online social network a product
co-purchasing network amazon5, socEpinions5, a fragment of
facebook [33], and Youtube2;(b) three Web graphs: a peer-to-
peer network P2P5, a Web graph NotreDame5, and Internet4;
and (c) a citation network citHepTh5.

The sizes of these graphs (the number |V | of nodes and
the number |E| of edges) are shown in Tables 1 and 2.

(2) Synthetic data. We designed a graph generator to pro-
duce synthetic graphs. Graph generation was controlled by
three parameters: the number of nodes |V |, the number of
edges |E|, and the size |L| of the node label set L.

(3) Pattern generator. We implemented a generator for
graph pattern queries controlled by four parameters: the
number of query nodes Vp, the number of edges Ep, label
set Lp along the same lines as their counterpart L for data
graphs, and an upper bound k for edge constraints.

(4) Implementation. We implemented the following algo-
rithms, in Java. (1) our compression algorithms compressR

(Section 3) and compressB (Section 4); (2) AHO [1] which,
as a comparison to compressR, computes transitive reduced
graphs; (3) our incremental compression algorithms incRCM

and incPCM for batch updates (Section 5); we also imple-
mented IncBsim, an algorithm that invokes the algorithm
of [30] (for a single update) multiple times when processing
batch updates; (4) query evaluation algorithms: for reach-
ability queries, the breadth-first (resp. bidirectional) search
algorithm BFS (resp. BIBFS); for pattern queries, algorithm
Match and its incremental version IncBMatch [9]; and (5)
algorithms for building 2-hop indexes [6].

All experiments were run on a machine powered by an
Intel Core(TM)2 Duo 3.00GHz CPU with 4GB of memory,
using scientific linux. Each experiment was run 5 times and
the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness: Compression ratio. We first
evaluate the compression ratios of our methods using real-
life data. We define the compression ratio of compressR to

2http://netsg.cs.sfu.ca/youtubedata/
3http://www.cs.cornell.edu/courses/cs685/2002fa/
4http://www.caida.org/data/overview/
5http://snap.stanford.edu/data/index.html

dataset |G|(|V |, |E|, |L|) PCr

California 26K (10K, 16K, 95) 45.9%
Internet 155K (52K, 103K, 247) 29.8%
Youtube 951K (155K, 796K, 16) 41.3%
Citation 1.2M (630K, 633K, 67) 48.2%

P2P 27K (6K, 21K, 1) 49.3%

Table 2: Pattern preserving: compression ratio

be RCr = |Gr|/|G|, where G is the original graph and Gr is
its compressed graph by compressR. Similarly, we define PCr

of compressB, and RCaho of AHO [1] in which Gr denotes the
transitive reduced graph. We also consider SCC graphs Gscc

(Section 3), and define RCscc as |Gr|/|Gscc| to evaluate the
effectiveness of compressR on SCC graphs.

Observe the following. (1) The smaller the compression
ratio is, the more effective the compressing scheme used is.
(2) We treat the compression ratio as a measurement for rep-
resentation compression, which differs from the ratio mea-
suring the memory cost reduction (to be discussed shortly).

The compression ratios of reachability preserving com-
pression compressR are reported in Table 1. We find the
following. (1) Real-life graphs can be highly compressed
for reachability queries. Indeed, RCr is in average 5% over
these datasets. In other words, it reduces real-life graphs by
95%. (2) Algorithm compressR performs significantly better
than AHO. It also reduces SCC graphs by 81% in average.
(3) The compression algorithms perform best on social net-
works e.g.,wikiVote, socEpinions, facebook and Youtube. The
average RCr is 2%, 8% and 14.7% for (six) social networks,
(three) Web graphs and the citation network, respectively.
This is because social networks have higher connectivity.

The effectiveness of compressB is reported in Table 2. We
find that (1) graphs can also be effectively compressed by
pattern preserving compression, with PCr of 43% in average,
i.e., it reduces graphs by 57%; (2) Internet can be better
compressed for graph pattern queries than social networks
(Youtube) and citation networks (Citation), since the lat-
ter two have more diverse topological structures than the
former, as observed in [22]; and (3) compressR performs bet-
ter than compressB over all the datasets. This is because
it is more difficult to merge nodes due to the requirements
on topological structures and label equivalence imposed by
pattern queries, compared to reachability queries.

Exp-2: Effectiveness: query processing. In this set
of experiments, we evaluated the performance of the algo-
rithms for reachability and pattern queries on original and
compressed graphs, respectively. We used exactly the same
algorithms in both settings, without decompressing graphs.

For a pair of randomly selected nodes, we queried their
reachability and evaluated the running time of BFS and
BIBFS on the original graph G and its compressed graph
Gr. As shown in Fig. 12(a), the evaluation time on the
compressed Gr is much less than that on G, when either
BFS or BIBFS is used. Indeed, for socEpinions the running
time of BFS on Gr is only 2% of the cost on G in average.

For graph pattern queries, Figure 12(b) shows the run-
ning time of Match on Youtube and Citation, and on their
compressed counterparts (Lp is the same as L; see Table 2).
In addition, we conducted the same experiments on syn-
thetic graphs with |V | = 50K, |E| = 435K while |L|=10
or |L|=20, and on compressed graphs. Fixing Lp = 10, we
varied (Vp, Ep, k) of these queries from (3, 3, 3) to (8, 8, 3),
as reported in Fig. 12(c). These results tell us the following:
(a) the running time of Match on compressed graphs is only
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Figure 12: Performance Evaluation

30% of that on their original graphs; and (b) when |L| is
changed from 10 to 20 on synthetic data, Match runs faster
as the compressed graphs contain more node labels.

As remarked earlier, the compression ratio of Table 1 only
measures graph representation. In Fig. 12(d) we compare
the memory cost of the original graph G, the compressed
graph Gr by reachability preserving compression, and their
2-hop indexes [6], for real-life datasets. The result tells us
the following: (a) at least 92% of the memory cost of G is
reduced by Gr; (b) the 2-hop indexes have higher space cost
than G and Gr; e.g., 2-hop on wikiVote took 234MB mem-
ory, while its original graph took 8.9MB and the compressed
graph took 0.2MB; and (c) 2-hop indexes can be built over
small compressed graphs, but may not be feasible over large
original graphs, e.g., facebook, due to its high cost.

The results of the same experiments on other real-life
graphs are consistent and hence, are not reported here.

Exp-3: Efficiency of incremental compression. We
next evaluate the efficiency of incRCM and incPCM. Fixing
the number of nodes in the social network socEpinions, we
varied the number of edges from 509K to 617K (resp. from
509K to 374K) by inserting (resp. deleting) edges in 12K
increments (resp. 15K decrements). The results in Fig-
ures 12(e) and 12(f) tell us that incRCM outperforms
compressR when insertions are up to 20% and deletions are
up to 22% of the original graph.

Figure 12(g) shows the performance of incPCM on Youtube

compared with compressB and IncBsim in response to mixed
updates, where we fixed the node size, and varied the size
of the updates |∆E| in 0.8K increments. The result shows
that incPCM is more efficient than compressB when the total
updates are up to 5K, and consistently outperforms IncBsim,
due to the removal of redundant updates by incPCM.

Figure 12(h) compares the performance of the following

two approaches, both for incrementally evaluating pattern
queries over Citation: (1) we used IncBMatch to incremen-
tally update the query result, and alternatively, (2) we first
used incPCM to update the compressed graph, and then ran
Match over the updated compressed graph to get the result.
The total running times, reported in Fig. 12(h), tell us that
once the updates are more than 8K, it is more efficient to
update and query the compressed graphs than to incremen-
tally update the query results.

We also conducted the same experiments on other real-life
datasets. The results are consistent and hence not reported.

Exp-4: Effectiveness of incremental compression. We
evaluated the effectiveness of incRCM and incPCM, in terms
of compression ratios RCr and PCr, respectively. (1) Fixing
|L| = 10 and starting with |V0| = 1M , we varied the size of
synthetic graphs G by simulating the densification law [17]:
for a synthetic graph Gi with |Vi| nodes and |Ei| = |Vi|

α

edges at iteration i, we increased its nodes to |Vi+1| = β|Vi|,
and edges to |Ei+1| = |Vi+1|

α in the next iteration. (2) We
varied the size of real-life graphs following power-law [20],
where the edge growth rate was fixed to be 5%, and an edge
was attached to the high degree nodes with 80% probability.

Figure 12(i) shows that for reachability queries, RCr varies
from 2.2% to 0.2% with α =1.05, and decreases from 1.4%
to 0.05% with α = 1.1, when β is fixed to be 1.2. This
shows that the more edges are inserted into dense graph, the
better the graph can be compressed for reachability queries.
Indeed, when edges are increased, more nodes may become
reachability equivalent, as expected (Section 3). The results
over real-life graphs in Fig. 12(j) also verify this observation.

The results in Fig. 12(k) tell us that for graph pattern
queries, PCr is not sensitive to the changes of the size of
graphs. On the other hand, Figure 12(l) shows the following.
(1) When more edges are inserted into the real-life graphs,



PCr increases; this is because when new edges are added, the
bisimilar nodes may have diverse topological structures and
hence are no longer bisimilar; and (2) PCr is more sensitive
to the changes of the size of Web graphs (e.g., California,
Internet) than social networks (e.g., Youtube), because the
high connectivity of social networks makes most of the in-
sertions redundant, i.e., having less impact on PCr.

Summary. From the experimental results we find the fol-
lowing. (1) Real-life graphs can be effectively and efficiently
compressed by reachability and graph pattern preserving
compressions. (2) Evaluating queries on compressed graphs
is far more efficient than on the original graphs, and is less
sensitive to the query sizes. Moreover, existing index tech-
niques can be directly applied to compressed graphs, e.g.,
2-hop index. (3) Compressed graphs by query preserving
compressions can be efficiently maintained in response to
batch updates. Better still, it is more efficient to evaluate
queries on incrementally updated compressed graphs than
incrementally evaluate queries on updated original graphs.

7. Conclusion
We have proposed query preserving graph compression for

querying large real-life graphs. For queries of users’ choice,
the compressed graphs can be directly queried without de-
compression, using any available evaluation algorithms for
the queries. As examples, we have developed efficient com-
pression schemes for reachability queries and graph pattern
queries. We have also provided incremental techniques for
maintaining the compressed graphs, from boundedness re-
sults to algorithms. Our experimental results have verified
that our methods are able to achieve high compression ra-
tios, and reduce both storage space and query processing
time; moreover, our compressed graphs can be efficiently
maintained in response to updates to the original graphs.

We are currently experimenting with real-life graphs in
various domains. We are also studying compression meth-
ods for other queries, e.g., pattern queries with embedded
regular expressions. We are also to extend our compression
and maintenance techniques to query distributed graphs.
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