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✦

Abstract—This paper investigates incremental detection of errors in
distributed data. Given a distributed database D, a set Σ of conditional
functional dependencies (CFDs), the set V of violations of the CFDs
in D, and updates ∆D to D, it is to find, with minimum data shipment,
changes ∆V to V in response to ∆D. The need for the study is evident
since real-life data is often dirty, distributed and frequently updated. It
is often prohibitively expensive to recompute the entire set of violations
when D is updated. We show that the incremental detection problem
is NP-complete for database D that is partitioned either vertically or
horizontally, even when Σ and D are fixed. Nevertheless, we show that
it is bounded: there exist algorithms to detect errors such that their
computational cost and data shipment are both linear in the size of ∆D

and ∆V, independent of the size of the database D. We provide such
incremental algorithms for vertically partitioned data and horizontally
partitioned data, and show that the algorithms are optimal. We further
propose optimization techniques for the incremental algorithm over
vertical partitions to reduce data shipment. We verify experimentally,
using real-life data on Amazon Elastic Compute Cloud (EC2), that our
algorithms substantially outperform their batch counterparts.

Index Terms–Incremental Algorithms; Distributed Data;
Conditional Functional Dependencies; Error Detection.

1 INTRODUCTION

Real-life data is often dirty. To clean the data, efficient
algorithms for detecting errors have to be in place.
Errors in the data are typically detected as violations of
constraints (data quality rules), such as functional de-
pendencies (FDs), denial constraints [3], and conditional
functional dependencies (CFDs) [9]. When the data is in
a centralized database, it is known that two SQL queries
suffice to detect its violations of a set of CFDs [9].
It is increasingly common to find data partitioned verti-

cally (e.g., [29]) or horizontally (e.g., [18]), and distributed
across different sites. This is highlighted by the recent
interests in SaaS and Cloud computing, MapReduce [7],
[24] and columnar DBMS [29]. In the distributed settings,
however, it is much harder to detect errors in the data.

Example 1: Consider an employee relation D0 shown in
Fig. 2, which consists of tuples t1–t5 (ignore t6 for the
moment), and is specified by the following schema:

EMP(id, name, sex, grade, street, city, zip, CC, AC, phn, salary, hd)

Each EMP tuple specifies the id, name, sex, salary grade

level, address (street, city, zip code), phone number

CFDs Violations

φ1 : ([CC = 44, zip] → [street]) t1, t3, t4, t5
φ2 : ([CC = 44, AC = 131] → [city = ‘EDI’]) t1

Fig. 1. Example CFDs and their violations

(country code CC, area code AC, phone phn), salary and
the date hired (hd). Here the employee id is a key of EMP.

To detect errors, a set of CFDs is defined on the EMP

relation, as shown in Fig. 1. Here φ1 asserts that for
employees in the UK (i.e., CC = 44), zip code uniquely
determines street. CFD φ2 assures that for any UK em-
ployee, if the area code is 131 then the city must be EDI.

Errors in D0 emerge as violations of the CFDs, i.e.,
those tuples in D0 that violate at least one CFD in Σ0,
as shown in Fig. 1. For instance, t1 and t5 violate φ1:
they represent UK employees with the same zip, but have
different street’s. Moreover, t1 alone violates φ2: t1[CC] =
44 and t1[AC] = 131, but t1[city] = ‘NYC’ 6= ‘EDI’. When D0

is in a centralized database, the violations can be easily
caught by using SQL-based techniques [9].

Now consider distributed settings. As depicted in
Fig. 2, D0 is partitioned either (1) vertically into three
fragments DV1

, DV2
(grey columns) and DV3

, all with
attribute id; or (2) horizontally into DH1

(t1–t2), DH2

(t3–t4) and DH3
(t5), for employees with salary grade

‘A’ (junior level), ‘B’ and ‘C’ (senior), respectively. The
fragments are distributed over different sites.

To find violations in both settings, it is necessary to
ship data from one site to another. For instance, to find the
violations of φ1 in the vertical partitions, one has to send
tuples with CC = 44 from the site of DV3

to the site of DV2
,

or the other way around to ship attributes (street, zip);
similarly for the horizontal partitions. 2

It is NP-complete to find violations of CFDs, with
minimum data shipment, in a distributed relation that
is partitioned either horizontally or vertically [10]. A
heuristic algorithm was developed in [10] to compute
the violations of CFDs in horizontally partitioned data,
which takes 80 seconds to find violations of one CFD in
8 fragments (i.e., 8 sites) of 1.6 million tuples.

Distributed data is also typically dynamic, i.e., fre-
quently updated [25]. It is often prohibitively expen-
sive to recompute the entire violations in a distributed
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DV1
DV2

(with id replica) DV3
(with id replica) Updates

id name sex grade street city zip CC AC phn salary hd

DH1

t1 : 1 Mike M A Mayfield NYC EH4 8LE 44 131 8693784 65k 01/10/2005
t2 : 2 Sam M A Preston EDI EH2 4HF 44 131 8765432 65k 01/05/2009

DH2

t3 : 3 Molina F B Mayfield EDI EH4 8LE 44 131 3456789 80k 01/03/2010
t4 : 4 Philip M B Mayfield EDI EH4 8LE 44 131 2909209 85k 01/05/2010 delete

DH3
t5 : 5 Adam M C Crichton EDI EH4 8LE 44 131 7478626 120k 01/05/1995

t6 : 6 George M C Mayfield EDI EH4 8LE 44 131 9595858 120k 01/07/1993 insert

Fig. 2. An EMP relation D0

database D when D is updated. This motivates us to
study incremental detection of errors. In a nutshell, let V

denote the violations of a set Σ of CFDs in D, ∆D be
updates to D, and D⊕∆D denote the database updated
by ∆D. In contrast to batch algorithms that compute
violations of Σ in D starting from scratch, incremental
detection is to find changes ∆V to V, which aims to
minimize unnecessary recomputation. Indeed, when ∆D

is small, ∆V is often small as well, though ∆V may
include tuples from ∆D and D. It is more efficient to
compute ∆V than the entire violations of Σ in D ⊕ ∆D.

Example 2: Consider φ1 of Fig. 1, relation D0 and its
partitions given in Fig. 2, and the updates below.

(1) Insertions. Assume that t6 is inserted into D0, as
shown in Fig. 2. Then the new violation ∆V is {t6}.

(a) Batch computation. In the vertical partitions, one needs
to ship either tuples with the same (zip, street) as t6
(in DV2

) or 6 tuples with CC = 44 (DV3
), as shown

in Example 1. In the horizontal partition, we have to
compare all tuples with CC = 44, which requires the
shipment of 4 (partial) tuples.

(b) Incremental computation. Since t5 is already a violation
of φ1 in V and (t5, t6) together violate φ1, we can
conclude that t6 is the only new violation of φ1, i.e.,
∆V = {t6} for φ1. Indeed, for any tuple t, if (t, t6) violate
φ1, then either (t, t5) violate φ1 or t[CC, zip, street] =
t5[CC, zip, street]. In both cases, t is already in V (i.e., a
violation). Hence to find ∆V for φ1, one needs to ship a
single tuple id in the vertical partition (Section 4), and
no data to be shipped in the horizontal case (Section 6).

(2) Deletions. Assume that t4 is deleted after the insertion
of t6. One can verify that only t4 has to be removed from
the violations of φ1, i.e., ∆V = {t4} for φ1.

(a) Batch computation. To find violations of φ1 in D0⊕∆D,
one has to ship the same amount of data as in (1)(a).

(b) Incremental computation. In contrast, since t3, t4 are
both in V and t3[street, zip]=t4[street, zip], one can verify
that only t4 should be removed from V. Indeed, for any
t, if (t, t4) violate φ1, so do (t, t3). Since t3 remains in V,
so does t. Again, one needs to ship a single tuple id in
vertical partitions, and no data in the horizontal case. 2

It has been verified in a number of applications that in-
cremental algorithms are more efficient than their batch
counterparts when updates are small [26]. This example
shows that this holds for distributed error detection.

Contributions. This paper establishes the complexity
bounds and provides efficient algorithms for incremen-

tally detecting the violations of CFDs in fragmented and
distributed data, either vertically or horizontally.

(1) We formulate incremental detection as an optimiza-
tion problem, and establish its complexity bounds (Sec-
tion 3). We show that the problem is NP-complete even
when both D and CFDs are fixed, i.e., when only the
size |∆D| of updates varies. Nevertheless, we show
that the problem is bounded [27]: there exist algorithms
for incremental detection such that their communication
costs and computational costs are functions in the size
of the changes in the input and output (i.e., |∆D| and
|∆V|), independent of the size of database D. This tells us
that incremental detection can be carried out efficiently,
since in practice, ∆D and ∆V are typically small.

(2) We develop an algorithm for incrementally detecting
violations of CFDs for vertical partitions (Section 4).
We show that the algorithm is optimal [27]: both its
communication costs and computational costs are linear
in |∆D| and |∆V|. Indeed, |∆D| and |∆V| characterize
the amount of work that is absolutely necessary to perform
for incremental detection [27].

(3) We develop optimization methods (Section 5) to
further reduce data shipment for error detection in ver-
tical partitions. The idea is to identify and maximally
share indices among CFDs such that when multiple CFDs

demand the shipment of the same tuples, only a single
copy of the data is shipped. We show that the problem
for building optimal indices is NP-complete, but provide
an efficient heuristic algorithm.

(4) We also provide an incremental detection algorithm
for horizontal partitions (Section 6). We show that the
algorithm is also optimal, as for its vertical counterpart.

(5) Using TPCH for large scale data and DBLP for real-life
data, we conduct experiments on Amazon EC2. We find
that our incremental algorithms outperform their batch
counterparts by two orders of magnitude, for fairly large
updates (up to 10GB for TPCH). Moreover, our methods
scale well with both the size of data and the number of
CFDs. We also find the optimization strategies effective.
This work provides fundamental results and a prac-

tical solution for error detection in distributed data.
We focus on CFDs because they carry constant patterns
and are difficult to handle, and moreover, as shown
in [9], they capture inconsistencies that traditional de-
pendencies fail to catch. The techniques developed here,
nonetheless, can be readily used to incrementally detect
violations of other dependencies used in data cleaning,
such as functional dependencies and denial constraints.
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We discuss related work below, review error detection in
distributed data in Section 2, and conclude in Section 8.

Related work. This work extends [11] by including (1)
detailed proofs of the fundamental problems in connec-
tion with incremental error detection (Section 3); (2) a
proof of the intractability of the optimization problem for
vertical partitions (Section 4); (3) an optimal algorithm
for horizontal partitions (Section 6); and (4) its experi-
mental study (Section 7). Neither (3) nor (4) was studied
in [11]. Proofs of (1) and (2) were not presented in [11].
Methods for (incrementally) detecting CFD violations

are studied in [9] for centralized data, based on SQL

techniques. There has been work on constraint enforce-
ment in distributed databases (e.g., [2], [16], [17]). As
observed in [16], [17], constraint checking is hard in
distributed settings, and hence, certain conditions are
imposed there so that their constraints can be checked
locally at individual site, without data shipment. As
shown by the examples above, however, to find CFD

violations it is often necessary to ship data. Detecting
constraint violations has been studied in [2] for mon-
itoring distributed systems, which differs substantially
from this work in that their constraints are defined
on system states and cannot express CFDs. In contrast,
CFDs are to detect errors in data, which is typically
much larger than system states. Closer to this work is
[10], which studies CFD violation detection in horizontal
partitions, but considers neither incremental detection
nor algorithms for detecting errors in vertical partitions.
Incremental algorithms have proved useful in a va-

riety of areas (see [26] for a survey). In particular, in-
cremental view maintenance has been extensively stud-
ied [14], notably for distributed data [4], [6], [15], [28].
Various auxiliary structures have been proposed to re-
duce data shipment, e.g., counters [6], [15], pointer [28]
and tags in base relations [4]. While these could
be incorporated into our solution, they do not yield
bounded/optimal incremental detection algorithms.
There has also been a host of work on query pro-

cessing [20] and multi-query optimization [19] for dis-
tributed data. The former typically aims to generate
distributed query plans, to reduce data shipment or
response time (see [20] for a survey). Optimization strate-
gies, e.g., semiJoins [5], bloomJoins [22], and recently [8],
[21], [23], [30], have proved useful in main-memory dis-
tributed databases (e.g., MonetDB [12] and H-Store [18]),
and in cloud computing and MapReduce [7], [24]. Our
algorithms leverage the techniques of [19] to reduce data
shipment when validating multiple CFDs, in particular.

2 ERROR DETECTION IN DISTRIBUTED DATA

In this section we review CFDs [9], data fragmenta-
tion [25] and error detection in distributed data [10].

2.1 Conditional Functional Dependencies

A CFD φ on relation R is a pair (X → Y , tp), where (1)
X → Y is a standard functional dependency (FD) on R;

and (2) tp is the pattern tuple of φ with attributes in X

and Y , where for each attribute A in X∪Y , tp[A] is either
a constant in the domain dom(A) of A, or an unnamed
variable ‘ ’ that draws values from dom(A) [25].

Example 3: The CFDs in Fig. 1 can be expressed as:

φ1: ([CC, zip] → [street], tp1
= (44, , ))

φ2: ([CC, AC] → [city], tp2
= (44, 131, EDI))

Note that FDs are a special case of CFDs in which the
pattern tuple consists of ‘ ’ only. 2

To give the semantics of CFDs, we use an operator ≍
defined on constants and ‘ ’: v1 ≍ v2 if either v1 = v2, or
one of v1, v2 is ‘ ’. The operator extends to tuples, e.g.,
(131, EDI) ≍ ( , EDI) but (131, EDI) 6≍ ( , NYC).
An instance D of R satisfies a CFD φ, denoted by D |=

φ, iff for all tuples t and t′ in D, if t[X ] = t′[X ] ≍ tp[X ],
then t[Y ] = t′[Y ] ≍ tp[Y ]. Intuitively, φ is defined on
those tuples t in D such that t[X ] matches the pattern
tp[X ], and moreover, it enforces the pattern tp[Y ] on t[Y ].

Example 4: Consider D0 in Fig. 2 and the CFDs in Fig. 1.
Then D0 does not satisfy φ1, since t1[CC, zip]= t5[CC, zip]
≍ (44, ) but t1[street] 6= t5[street], violating φ1. 2

A set of CFDs of the form (X→Y, tpi
) (i∈ [1, n]) can be

converted to an equivalent form (X → Y, Tp), where Tp

is a pattern tableau that contains n tuples tp1
, · · · , tpn

[9].
This is what we used in our implementation.
We call (X → B, tp) a constant CFD if tp[B] is a

constant, and a variable CFD if tp[B] is ‘ ’. For instance,
φ2 in Fig. 1 is a constant CFD, while φ1 is a variable CFD.

2.2 Data Fragmentation

We consider relations D of schema R that are partitioned
into fragments, either vertically or horizontally.

Vertical partitions. In some applications (e.g., [29]) one
wants to partition D into (D1, . . . , Dn) [25] such that

Di = πXi
(D), D = 1i∈[1,n] Di,

where Xi is a set of attributes of R on which D is
projected, including a key attribute of R. Relation D can
be reconstructed by join operations on the key attribute.
Each vertical fragment Di has its own schema Ri with

attributes Xi. The set of attributes of R is
⋃

i∈[1,n] Xi.
As shown in Fig. 2, D0 can be partitioned vertically

into DV1
, DV2

and DV3
, where the schema of DV1

is R1(id,
name, sex and grade); similarly for DV2

and DV3
.

Horizontal partitions. Relation D may also be parti-
tioned (fragmented) into (D1, . . ., Dn) [18], [25] such that

Di = σFi
(D), D =

⋃
i∈[1,n]Di,

where Fi is a Boolean predicate and selection σFi
(D)

identifies fragment Di. These fragments are disjoint, i.e.,
no tuple t appears in distinct fragments Di and Dj (i 6=
j). They have the same schema R. The original relation
D can be reconstructed by the union of these fragments.
For example, D0 is horizontally partitioned into DH1

,
DH2

and DH3
in Fig. 2, with the selection predicate as

grade = ‘A’, grade = ‘B’ and grade = ‘C’, respectively.
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2.3 Detecting CFD Violations in Distributed Data

When CFDs are used as data quality rules, errors in the
data are captured as violations of CFDs [9], [10].

Violations. For a CFD φ = (X → Y, tp) and an instance D

of R, we use V(φ, D) to denote the set of all tuples in D

that violate φ, called the violations of φ in D. Here a tuple
t ∈ V(φ, D) iff there exists t′ ∈ D such that t[X ] = t′[X ] ≍
tp[X ] but either t[Y ] 6= t′[Y ] or t[Y ] = t′[Y ] 6≍ tp[Y ]. For
a set Σ of CFDs, we define V(Σ, D) =

⋃
φ∈Σ V(φ, D).

For instance, Fig. 1 lists violations of φ1 and φ2 in D0.
When D is a centralized database, two SQL queries

suffice to find V(Σ, D), no matter how many CFDs are in
Σ. The SQL queries can be automatically generated [9].

Error detection in distributed data. Now consider a re-
lation D that is partitioned into fragments (D1, . . . , Dn),
either vertically or horizontally. Assume w.l.o.g. that Di’s
are distributed across distinct sites, i.e., Di resides at site
Si for i ∈ [1, n], and Si and Sj are distinct if i 6= j.
It becomes nontrivial to find V(Σ, D) when D is

fragmented and distributed. As shown in Example 1, to
detect the violations in distributed D0, it is necessary
to ship data from one site to another. Hence a natural
question concerns how to find V(Σ, D) with minimum
amount of data shipment. That is, we want to reduce
communication cost and network traffic.
To characterize the communication cost, we use

M(i, j) to denote the set of tuples shipped from Si to Sj ,
and M the total data shipment, i.e.,

⋃
i,j∈[1,n],i6=j M(i, j).

For each j ∈ [1, n], we use Dj(M) to denote fragment
Dj augmented by data shipped in M , i.e., Dj(M) in-
cludes data in Dj and all the tuples in M that are shipped
to site Sj . More specifically, for vertical partitions,

Dj(M) = Dj 1i∈[1,n]∧M(i,j) 6=∅ M(i, j);

while for horizontal partitions,

Dj(M) = Dj ∪
⋃

i∈[1,n]∧M(i,j) 6=∅M(i, j).

We say that a CFD φ can be checked locally after data
shipments M if V(φ, D)=

⋃
i∈[1,n] V(φ, Di(M)). As a special

case, we say that φ can be checked locally if V(φ, D) =⋃
i∈[1,n] V(φ, Di), i.e., all violations of φ in D can be found

at individual site without data shipment (i.e., M=∅).
A set Σ of CFDs can be checked locally after M if each φ

in Σ can be checked locally after M .
The distributed CFD detection problem with minimum com-

munication cost is to determine, given a positive number
K , a set Σ of CFDs and a partitioned and distributed re-
lation D, whether there exists a set M of data shipments
such that (1) Σ can be checked locally after M , and (2)
the size |M | of M is no larger than K , i.e., |M | ≤ K .
In contrast to the error detection problem in cen-

tralized data, it is beyond reach in practice to find an
efficient algorithm to detect errors in distributed data
with minimum network traffic [10].

Theorem 1 [10]: The distributed CFD detection problem with
minimum communication cost is NP-complete, when data is
either vertically or horizontally partitioned. 2

In light of the intractability, a heuristic algorithms
was developed in [10] to compute V(Σ, D) when D

is horizontally partitioned. We are not aware of any
algorithm for detecting CFD violations for data that is
vertically partitioned.

3 INCREMENTAL DETECTION: COMPLEXITY

We formulate the incremental detection problem and
study its complexity. We start with notations for updates.

Updates. We consider a batch update ∆D to a database
D, which is a list of tuple insertions and deletions. A
modification is treated as an insertion after a deletion.
We use ∆D+ to denote the sub-list of all tuple insertions
in ∆D, and ∆D− the sub-list of deletions in ∆D. We use
D⊕∆D to denote the updated database of D with ∆D.
In a vertical partition D = (D1, . . . , Dn) (see Section 2),

we write ∆Di = πXi
(∆D) for updates in ∆D to fragment

Di. For a horizontal partition, we denote the updates to
Di as ∆Di = σFi

(∆D); similarly for ∆D+
i and ∆D−

i .

Problem statement. Given D, ∆D and a set Σ of CFDs,
we want to find V(Σ, D⊕∆D), i.e., all violations of CFDs

of Σ in the updated database D ⊕ ∆D.
As remarked earlier, we want to minimize unnecessary

recomputation by incrementally computing V(Σ, D⊕∆D).
More specifically, suppose that the old output V(Σ, D) is
also provided. Incremental detection is to find the changes
∆V to V(Σ, D) such that V(Σ, D⊕∆D) = V(Σ, D)⊕∆V.
We refer to this as the incremental detection problem.
In practice, when ∆D is small, ∆V is often small as

well. Hence it is more efficient to find ∆V rather than
batch detection that recomputes V(Σ, D ⊕ ∆D) starting
from scratch. That is, we maximally reuse the old output
V(Σ, D) when computing the new output V(Σ, D⊕∆D).
We use ∆V+ to denote V(Σ, D ⊕ ∆D) \ V(Σ, D), i.e.,

violations added, and ∆V− for V(Σ, D) \V(Σ, D ⊕∆D),
i.e., violations removed. Then ∆V = ∆V+∪∆V−. Observe
that ∆D+ only incurs ∆V+, and ∆D− only leads to ∆V−.
When D is partitioned into (D1, . . . , Dn) and dis-

tributed, we say that ∆V can be computed locally after
data shipments M of tuples from D ⊕ ∆D if ∆V =⋃

i∈[1,n] ∆Vi(M), where ∆Vi(M) denotes the differences
between V (Σ, Di(M) ⊕ ∆Di) and V (Σ, Di) at site Si.
The incremental distributed CFD detection problem

with minimum communication cost is to find, given D,
Σ, ∆D, V(Σ, D) as input, ∆V with minimum data ship-
ments M such that ∆V is locally computable after M .
Its decision problem is to determine, given D, Σ,

∆D, V(Σ, D) and a positive number K , whether there
exists a set M of data shipments such that (1) ∆V can be
computed locally after M , and (2) |M | ≤ K . We refer to
the problem as IMVD for vertically partitioned data, and
as IMHD for horizontally partitioned data.
In practice, the set Σ of CFDs is typically predefined

and is rarely changed, although D is frequently updated.
Thus in the sequel we consider fixed Σ.

Intractability results. Unfortunately, incremental detec-
tion is no easier than its batch counterpart (Theorem 1).
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Below we shall first study the case for vertical partitions,
then analyze its horizontal counterpart.

Theorem 2: The incremental distributed CFD detection prob-
lem with minimum data shipment is NP-complete for vertical
partitions (IMVD). It remains NP-hard for fixed CFDs when
(a) update consists of insertions only, for a fixed database with
fixed partitions, or (b) update consists of deletions only. 2

Proof. Upper bound. To show that IMVD is in NP, we
provide an NP algorithm for incremental detection of
violations in vertical partitions. It works as follows: first
guess a set M of data shipments such that |M | ≤ K ,
and then inspect whether ∆V =

⋃
i∈[1,n] ∆Vi(M). The

checking can be done in PTIME.

Lower bound. We show that IMVD is NP-hard even when
(1) ∆D consists of insertions only, or (2) ∆D consists of
deletions only. We use fixed CFDs in both cases.

(1) When ∆D consists of insertions only. We verify the
NP-hardness of IMVD by reduction from the minimum
vertical detection problem (MVD). Given a set Σ of
CFDs, a vertically partitioned database D and a positive
number K , MVD is to decide whether there exists a set
M of data shipments such that Σ can be checked locally
after M , and |M | ≤ K . It is known that MVD is NP-
complete for a fixed set Σ defined on a fixed schema [10].
Given an instance (Σ, D, K) of MVD, we construct

an instance (Σ, D′, V(Σ, D), ∆D+, K) of IMVD by letting
D′ = ∅, ∆D+ = D′ and V(Σ, D) = ∅. One can verify that
there is M such that |M | ≤ K and Σ can be checked
locally after M iff there exists a set M ′ of data shipments
such that |M ′| ≤ K and ∆V can be computed locally
after M ′. Note that D′ = ∅ is independent of input
(Σ, D, K). In other words, IMVD is NP-hard when the
CFDs, the database and its partition are all fixed.

(2) When ∆D consists of deletions only. We show the NP-
hardness of IMVD also by reduction from MVD. Given an
instance (Σ, D, K) of MVD, we define an IMVD instance
as follows. Assume that Σ is defined on schema R.

(a) We define a new schema R′ = R ∪ {B1, B2}, where
B1 and B2 are distinct attributes not appearing in R.

(b) We define the set of Σ′ = Σ ∪ {ϕ}, where ϕ is an FD

B1 → B2. Assume w.l.o.g. that there exist two distinct
values v1 and v2 in the domains of B1 and B2.

(c) We define D′ such that for each ti ∈ D, D′ includes
two tuples tai and tbi, where tai[R] = tbi[R] = t[R],
tai[B1B2] = (v1, v1), and tbi[B1B2] = (v1, v2). That is,
if D consists of n tuples. D′ consists of 2 ∗ n tuples. The
relations D and D′ have the same partitions for all the
attributes in R. In addition, a new fragment of D′ is
added, consisting of new attributes B1, B2 and the key
attribute key of D. Obviously, V(Σ, D′) = D′, since every
tuple of D′ violates ϕ with another tuple in D′.

(d) We define the set ∆D− of deletions to be {tbi | i ∈
[1, n]}, i.e., it is to remove all tuples tbi.

To see that these make a reduction, observe the fol-

lowing. Before D is updated by ∆D−, V(Σ, D′) = D′.
After D is updated, V(Σ, D′ ⊕ ∆D−) = V(Σ, D). From
this it follows that a solution (a set of data shipments) to
(Σ, D, K) iff it is a solution to (Σ, D′, V(Σ, D), ∆D−, K).
Moreover, since MVD is NP-complete when Σ and frag-
mentation are fixed, so is IMVD when ∆D consists of
deletions only, since the newly added ϕ and the refined
fragmentation are also independent of the input. 2

We next analyze the case for horizontal partitions.

Theorem 3: The incremental distributed CFD detection prob-
lem with minimum data shipment is NP-complete for horizon-
tally partitioned data (IMHD). It remains NP-hard for fixed
CFDs and for (a) insertions only, with a fixed database with
fixed partitions, or (b) for deletions only. 2

Proof. Upper bound. We show that IMHD is in NP by
providing an NP algorithm for IMHD. It works as follows:
first guess a set M of data shipments such that |M | ≤ K ,
and then inspect whether ∆V =

⋃
i∈[1,n] ∆Vi(M). The

latter can be done in PTIME.

Lower bound. We show that IMHD is NP-hard for fixed
CFDs even when (1) ∆D consists of insertions only with
a fixed D, or (2) ∆D consists of deletions only.

(1) When ∆D consists of insertions only. We show that
IMHD is NP-hard by reduction from the minimum set
cover problem (MSC). Given a finite set X of elements,
a collection C of subsets of X and a positive number K ,
MSC is to decide whether there exists a cover for X of
size K or less, i.e., a subset C′ ⊆ C such that |C′| ≤ K

and every element of X belongs to at least one member
of C′. It is known that MSC is NP-complete even when
each subset in C has three elements (cf. [13]).
Given an instance (X, C, K) of MSC, we construct an

instance (Σ, D, V(Σ, D), ∆D+, K ′) of IMHD such that the
IMHD problem has a solution iff the MSC problem has
a solution. Assume w.l.o.g. that X = {xj | j ∈ [1, m]},
C = {Ci | i ∈ [1, n]}, each Ci consists of three elements
of X , and that X =

⋃
i∈[1,n] Ci (i.e., there exists a cover).

(a) We define schema R = (A1, A2, A3, B, N, L). Intu-
itively, A1, A2, A3 are to encode the three elements in a
subset Ci of C, B for type (i.e., a subset or an element), N
is a partition key, and L is a tuple id within the fragment.

(b) The set Σ consists of three fixed FDs: Ai→B, i∈ [1, 3].

(c) We construct an instance D of R that is horizontally
partitioned into 2 fragments Du and Dv, residing at sites
Su and Sv, respectively. Assume an arbitrary topological
order ≺ on the elements of X , and four fixed distinct
values b1, b2, u and v. Tuples in D are partitioned into
Du and Dv with the selection predicate as N = u and
N = v, respectively. Initially, D is empty, and hence, both
Du and Dv are empty. Thus so are V(Σ,Du) and V(Σ,Dv).

(d) We define insertions ∆D+ as follows.

• ∆D+
u consists of (n + m) tuples. For each i ∈ [1, n],

there exists a tuple tci
in ∆D+

u such that tci
= (a1,

a2, a3, b1, u, i), where a1, a2, a3 are the elements in
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Ci ∈C, such sorted that a1 ≺ a2≺ a3. For each i in
[1, m], there exists a tuple txi

in ∆D+
u , such that txi

=
(xi, xi, xi, b2, u, i + n). Intuitively, each tci

encodes a
subset Ci, and each txi

encodes an element of X .

• ∆D+
v consists of m∗(n+1) tuples. For each i∈ [1, m],

there exist (n + 1) tuples txi1, txi2 . . . , txi(n+1) in
∆D+

v , such that txij = (xi, xi, xi, b2, v, (i − 1) ∗ (n +
1)+ j), for j∈ [1, n+1]. Intuitively, for each i∈ [1, m],
there exist (n + 1) tuples that encode xi.

Assume w.l.o.g. that tuples in ∆D+ have the same size l.

(e) We define K ′ to be K ∗ l.

Observe that schema R, database D and CFDs Σ are all
fixed, i.e., they are independent of the MSC instance.
Intuitively, for all tuples t ∈ ∆D+, if t[B] = b1, then t

encodes a subset Ci ∈ C; and if t[B] = b2, then t encodes
an element xi in X . In addition, t1 and t2 in ∆D+

violate a CFD of Σ if one of them is a tuple encoding a
subset Ci, the other encodes an element xi, and xi ∈ Ci.
All the tuples in ∆D+

u and ∆D+
v violate some CFDs of Σ.

Note that only violations incurred by tuples txi
and tcj

in ∆D+
u can be detected locally, without requiring data

shipment. Tuples in ∆D+
v do not cause local violations;

but for each tuple txij there exists a tuple tck
in ∆D+

u

such that txij and tck
violate a CFD, where xi is an

element of Ck, i ∈ [1, m], j ∈ [1, n + 1], and k ∈ [1, n].
Intuitively, to detect violations in ∆D+

v locally, a “cover”
C′ ⊆ C of X must be shipped from site Su to Sv .

We now show that (Σ, D, V(Σ, D), ∆D+, K ′) is indeed
a reduction from MSC to IMHD. First, assume that the
MSC instance has a cover C′ of size no larger than K . We
define a set M of tuple shipments M = {tci

| Ci ∈ C′}.
We ship M from site Su to Sv. Note that the size of M

is no larger than K ′. Since C′ is a cover, at site Sv, all
tuples t ∈ Dv(M) ⊕ ∆D+

v can be detected as violations
locally. Hence, ∆Vu(M) ∪ ∆Vv(M) = ∆Vu ∪ ∆Vv(M) =
∆D+

u ∪ ∆D+
v ∪ M = ∆D+

u ∪ ∆D+
v = ∆V.

Conversely, assume that there exists a set M of tuple
shipments such that |M | ≤ K ′ = K ∗ l, and after M , ∆V

can be computed locally. (a) If K ′ = n ∗ l, then the set C
consisting of all subsets is a cover and |C| ≤ n ≤ K . (b)
When K ′ < n ∗ l, let M = Mu→v ∪ Mv→u, where Mu→v

(resp. Mv→u) denotes the part of M shipped from Su

(resp. Sv) to Sv (resp. Su). Since |Mv→u| ≤ |M | ≤ K ′,
there are no more than n tuples in Mv→u. Thus for
any element xi ∈ X , there exists at least one tuple
txij ∈ ∆D+

v \Mv→u. Since each txij is detected as a local
violation, each xi has to be covered by tuple tck

in Mu→v,
which encodes a subset Ck. Let C′ = {Ck | tck

∈ Mu→v}.
Then C′ is indeed a cover of X , and |C′| ≤ K .

(2) When ∆D consists of deletions only. We show that
IMHD is NP-hard also by reduction from MSC.
Given an instance (X, C, K) of MSC, we construct an

instance (Σ, D′, V(Σ, D′), ∆D−, K ′) such that the IMHD

problem has a solution iff MSC has a solution.
We use the same R, Σ and K ′ as defined in (1) above.

An instance D′ is also partitioned into D′
u and D′

v with

the same predicates given in (1). More specifically,

• D′
u =∆D+

u , consisting of (n+m) tuples given in (1);

• D′
v consists of (m ∗ (n + 1)+ n) tuples, in which m ∗

(n + 1) tuples are from ∆D+
v given in (1). The other

n tuples are given as follows. For each i ∈ [1, n], D′
v

includes a tuple t′ci
= (a1, a2, a3, b1, v, m∗(n+1)+ i),

where a1, a2, a3 are the elements in Ci ∈ C, such
sorted that a1 ≺ a2 ≺ a3 for some order ≺.

We define deletions ∆D− to be {t′ci
| i ∈ [1, n]}, i.e., it is to

remove all those tuples t′ci
from D′

v. Here V(Σ, D′) = D′,
i.e., every tuple in D′ is a violation of some CFD in Σ.
Note that schema R and CFDs Σ are both fixed, i.e.,

they are independent of the MSC instance.
Observe that before D′ is updated by ∆D−, all the

violations can be detected locally in D′
u and D′

v. After
D′ is updated, D′⊕∆D− became the relation D given in
(1) above, and V(Σ, D′ ⊕ ∆D−) = V(Σ, D). Hence along
the same lines as the proof for (1), one can verify that
(Σ, D′, V(Σ, D′), ∆D−, K ′) is a reduction from MSC. 2

From the proofs of Theorem 2 and 3, it follows:

Corollary 4: The incremental distributed CFD detection prob-
lems IMVD and IMHD with minimum data shipment remains
NP-complete even for fixed FDs only. 2

The boundedness result. Not all is lost. As observed
in [27], the cost of an incremental algorithm should be
analyzed in terms of the size of the changes in both input
and output, denoted as |∆C|, rather than the size of
the entire input. Indeed, |∆C| characterizes the updating
costs inherent to the incremental problem itself.
An incremental problem is said to be bounded if its cost

can be expressed as a function of |∆C|. An incremental
algorithm is optimal if its cost is in O(|∆C|); i.e., it only
does the amount of work that is necessary to be per-
formed by any incremental algorithm for the problem.
In other words, it is the best one can hope for.
For incremental violation detection, |∆C| = |∆D| +

|∆V|. It is bounded if its communication and computa-
tional costs are both functions of |∆C|, independent of |D|.
Although the distributed incremental detection prob-

lem is NP-complete w.r.t. minimum data shipment (The-
orems 2 and 3), the good news is that it is bounded w.r.t.
the changes in both input and output.

Theorem 5: The incremental distributed CFD detection prob-
lem is bounded for data partitioned vertically or horizontally.
There are optimal incremental detection algorithms with com-
munication and computational costs in O(|∆C|). 2

In the rest of the paper, we prove Theorem 5 by
providing optimal algorithms for data that is partitioned
vertically (Section 4) or horizontally (Sections 6).

4 ALGORITHMS FOR VERTICAL PARTITIONS

We start with an optimal incremental detection algo-
rithm for vertical partitions D = (D1, . . . , Dn). Here for
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i ∈ [1, n], Di resides at site Si and Di = πXi
(D) (see

Section 2). The main result of this section is as follows.

Proposition 6: There exists an algorithm that incrementally
detects CFD violations in vertical partitions with communica-
tion and computational costs in O(|∆D| + |∆V|). 2

It is nontrivial to develop an incremental detection
algorithm bounded by O(|∆D| + |∆V|). To find ∆V, not
only tuples in ∆D but also data in D may be needed
and hence shipped. Indeed, as in Example 2, to validate
φ1 after t6 is inserted into D0 of Fig. 1, t5[street, city] in
DV2

and t5[CC] in DV3
are necessarily involved.

Below we shall first identify when the data in D

is not needed in incremental detection. For the cases
when the involvement of D is inevitable, we propose
index structures to avoid shipping data in D. Based on
the auxiliary structures, we then develop an optimal
algorithm for vertically partitioned databases.

Cases independent of D. To validate a CFD φ = (X →
B, tp) in response to the insertion or deletion of a tuple
t, data in D is not needed in the following two cases.

(1) When φ is a constant CFD. Indeed, φ can be violated
by a single tuple t alone. Hence to find ∆V incurred by
t, there is no need to consult other tuples in D.

(2) When φ is a variable CFD with X ∪{B} ⊆ Xi. In this
case, φ can be locally checked at site Si in which Di =
πXi

(D) resides. There is no need to ship data.

Index structures. Below we focus on validation of vari-
able CFD φ = (X → B, tp), i.e., tp[B] = ‘ ’.
Observe that for a tuple t to make a violation of a CFD

φ, there must exist some tuple t′ such that t[X ] = t′[X ],
and moreover, either (a) t[B] = t′[B] and t is already a
violation of the CFD φ, or (b) t[B] 6= t′[B], i.e., (t, t′) 6|= φ.
To capture this, we define an equivalence relation w.r.t.
a set Y of attributes.

Equivalence classes. We say that tuples t and t′ are equiv-
alent w.r.t. Y if t[Y ] = t′[Y ]. We denote by [t]Y the
equivalence class of t, i.e., [t]Y = {t′ ∈ D | t′[Y ] = t[Y ]}.
We associate a unique identifier (eqid) id[tY ] with [t]Y .
We define a function eq() that takes as input the

eqid’s of equivalence classes [t]Yi
(i ∈ [1, m]), and re-

turns the eqid of [t]Y , where Y =
⋃

i∈[1,m] Ym, i.e.,
eq(id[tY1

], · · · , id[tYm
]) = id[tY ]. As will be seen shortly,

we send id[tY ] rather than data in [t]Yi
to reduce the

amount of data shipped.
Upon [t]Y ’s, we define the following index structures.

HEV-index. For each variable CFD φ = (X → B, tp),
each sites Si maintains a set of Hash-based Equivalence
class and Value indices (HEV’s), denoted by HEV

φ
i . Each

non-base HEV is a key/value store that given a tuple t

and a set of eqid’s id[tYj
] (j ∈ [1, m]) as the key, returns

id[tY1∪···∪Ym
] as the value. Base HEV’s are also maintained

to map distinct attribute values to their eqid’s. These are
special HEV’s that take single attribute values as the key,
and are shared by all CFDs. We write HEVi for HEV

φ
i

when φ is clear from the context.

t53 eq(c)

1

CC

44Preston

street eq(s)

3

Mayfield

Crichton

1
2

EH2 4HF

eq(z)
1
2

zip
EH4 8LE
EH2 4HF

eqidattribute eqideqid’s tidseq(s)
IDX

S2 S3

2 t2

1 t1,t3,t4 attribute eqid

HEVs on Site S2
HEV on Site S3

2

eq(z)eq(c)

11
2

1
1

eq(z,c)

Fig. 3. Example HEV-indices and an IDX for φ1

Intuitively, HEV’s help us identify id[tX ] and id[tB],
since all tuples that violate φ with t must be in [t]X , and
on attribute B, they have different values from t[B].
The HEV’s for CFD φ are organized as follows. We

build HEVX and HEVB for attributes X and B, respec-
tively. More specifically, we sort attributes of X into
(x1, . . . , xm), and for each i ∈ [1, m], we build an HEV for
the subset {xj | j ∈ [1, i]}. As will be seen in Example 5,
to identify id[tX ], we use the HEV’s for {x1}, {x1, x2}, . . .,
{x1, . . . , xm} one by one in this order. We shall present
the details of the strategy for building HEV’s in Section 5,
which aims to reduce eqid shipment when multiple CFDs

are taken together.

IDX. We group tuples that violate φ with t into [t′]X∪{B}

for each t′ in [t]X . The tuples are indexed by IDX, another
hash index that is only stored at the site where id[tX ]
is maintained. Given a tuple t, it returns a set(t[X ])
of distinct eqid’s of [t′]X∪{B}, where t[X ] = t′[X ], and
each eqid in turn identifies the set of all tuple ids in
the equivalence class [t′]X∪{B}. Intuitively, for each [t]X ,
an IDX stores distinct values of B attribute and their
associated tuple ids.

Example 5: Figure 3 depicts HEV’s for φ1 of Fig. 1 and
relation D0 of Fig. 2. HEV2 and HEV3 are the indices on
sites S2 and S3, respectively, and the IDX is stored at S2.
To compute id[t5{CC,zip}], we first find id[t5{CC}] = 1

from a base hash table of HEV3, since t5[CC] = 44, at site
S3. The eqid 1 (i.e., id[t5{CC}]) is then sent to S2. Using
the base hash table at site S2, we get id[t5{zip}] = 1 from
t5[zip] = EH4 8LE. Taking these together as the input for
HEV2, we get eq(1, 1) = 1, which is for id[t5{CC,zip}].
Moreover, as shown in Fig. 3, id[t5{CC,zip}] links to

two entries in IDX, where 1 represents Mayfield with
an equivalence class {t1, t3, t4}, and 3 indicates Crichton
with an equivalence class {t5}.
Observe that during the detection, we use HEV’s for

eqid’s of any tuple in this order: {CC} and {CC, zip}. 2

Example 5 tells us that to identify id[tX ], one only
needs to ship at most |X | − 1 eqid’s, to make the input
for HEVX , i.e., the index of X .

Algorithms. Leveraging the index structures, we de-
velop an incremental algorithm to detect violations in
vertical partitions. To simplify the discussion, we first
consider a single update for a single CFD. We then extend
the algorithm to multiple CFDs and batch updates.

Single update for one CFD. Given a CFD φ, a vertically
partitioned database D, violations V(φ, D) of Σ in D, and
a tuple t inserted into (resp. deleted from) D, the algo-
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Algorithm incVIns

Input: ∆D+={t}, a vertically partitioned D, a variable CFD φ
and the old violations V(φ, D).

Output: ∆V+.

/* φ = (X → B, tp) */
1. identify set(t[X]) using HEV’s and IDX’s;
2. if |set(t[X])| > 1 then ∆V+ := {t};
3. elseif |set(t[X])| = 1 (i.e., set(t[X]) = {t′}) then
4. if (t, t′) 6|= φ then ∆V+ := {t} ∪ [t′]X∪{B};
5. else ∆V+ := ∅;
6. else ∆V+ := ∅;
7. augment IDX by adding t; HEV-indices are also maintained;
8. return ∆V+;

Algorithm incVDel

Input: ∆D−={t}, a vertical partition D, a variable CFD φ and V(φ, D).
Output: ∆V−.

/* φ = (X → B, tp) */
1. identify set(t[X]) and [t]X∪{B} using HEV’s and IDX’s;
2. if |[t′]X∪{B}| > 1
3. if |set(t[X])| > 1 then ∆V− := {t};
4. else ∆V− := ∅;
5. else /* |[t′]X∪{B}| = 1 */
6. if |set(t[X])| > 2 then ∆V− := {t};
7. elseif |set(t[X])|=2 (i.e., {t, t′}) then ∆V−:={t} ∪ [t′]X∪{B};
8. else ∆V− := ∅;
9. maintain IDX by deleting t; HEV-indices are also maintained;
10. return ∆V−;

Fig. 4. Single Insertion/Deletion for Vertical Partitions

rithm identifies changes ∆V+(φ, D) (resp. ∆V−(φ, D)) to
V(φ, D). It first uses HEV to find the equivalence classes
[t]X and its associate sets in IDX. It then computes ∆V.

Insertions. The algorithm for single-tuple insertion is
shown in Fig. 4, referred to as incVIns. It first identifies
set(t[X ]) by capitalizing on HEV-indices as discussed
above (line 1). This requires to ship at most X eqid’s,
including the eqid of t[B]. When |set(t[X ])| > 1, all
tuples t′ such that (t′, t) violate φ must have been found.
Hence t is the only new violation (line 2; see Example 2).
When |set(t[X ])| = 1, there are two cases: (1) if set(t[X ])
contains the entry for tuple t′, where (t, t′) violate φ, then
t and all tuples in [t′]X∪{B} are new violations (line 4);
and (2) if set(t[X ]) only contains the entry for t, then no
violation arises (line 5). Otherwise, no tuple agrees with
t on X attributes, and there is no violation (line 6). The
new violations in ∆V+ are then returned (line 8).

The index IDX is maintained in the same process, by
inserting a tuple t into the set [t]X∪{B}, or adding an new
entry to set(t[X ]) and its associated set [t]X∪{B} = {t}.
In either case, it takes constant time. The HEV-indices
are updated together with id[tX ]. If such an eqid does
not exist, a new entry is generated and added to the
corresponding HEV-indices (line 7).

Deletions. The algorithm for single-tuple deletions, de-
noted as incVDel, is also shown in Fig. 4. It first finds both
[t]X∪{B} and set(t[X ]) using HEV (line 1). If no tuples are
in [t]X∪{B} after t is deleted (line 2), t is the only violation
removed (line 3); otherwise there is no change to V (φ, D)
(line 4). If t is the only tuple in [t]X∪{B} (line 5), i.e., the
entry of t in set(t[X ]) will be removed, there are three
cases to consider: (1) all violations w.r.t. t remain, and
only t is removed (line 6); (2) all violations w.r.t. t are

Algorithm incVer
Input: ∆D, D in n vertical partitions, a set Σ of CFDs and V(Σ, D).
Output: ∆V.
1. remove updates in ∆D with the same tuple id and canceling each other;
2. ∆V− := ∅; ∆V+ := ∅;
3. for each φ ∈ Σ do
4. if φ is a constant CFD then /* φ = (X → B, tp) */
5. Ti := {t | t ∈ ∆D and t[Xi ∩ X] ≍ tp[Xi ∩ X]} for i ∈ [1, n];
6. ship all Ti with their values on B attribute to one site;
7. merge Ti for i ∈ [1, n] based on the same tuple id, get T ;
8. for each t ∈ T do
9. if t[B] = tp[B] and t ∈ ∆D− then ∆V− := ∆V− ∪ {t};
10. elseif t[B] 6= tp[B] and t∈∆D+ then ∆V+:=∆V+∪{t};
11. elseif φ can be locally checked at Si then

12. derive ∆V+

i and ∆V−
i at Si use HEVi and IDX (Section 4);

13. ∆V− := ∆V− ∪ ∆V−
i
; ∆V+ := ∆V+ ∪ ∆V+

i
14. else /* a variable CFD that cannot be locally checked */

15. derive ∆V+

i and ∆V−
i (i ∈ [1, n]) (see Fig. 4);

16. ∆V− :=∆V− ∪ ∆V−
i and ∆V+ :=∆V+ ∪ ∆V+

i (i ∈ [1, n]);
17. return ∆V = ∆V− ∪ ∆V+;

Fig. 5. Batch Updates for Vertical Partitions

removed together with t when t is deleted (line 7); or
(3) t does not violate φ (line 8). HEV and IDX indices
are maintained similar to the case for insertions (line 9).
Finally, ∆V− is returned (line 10).

Example 6: Consider D0 (without t6) of Fig. 2, φ1 of
Fig. 1, and its indices given in Fig. 3. When t6 is inserted,
at site S3, it identifies eq(id[t6{CC}]) = 1 (t6[CC] = 44)
from HEV3 and ships this eqid (i.e., 1) to S2. At S2,
it identifies eq(id[t6{zip}]) = 1 (t6[CC] = EH8 4LE) and
eq(1, 1) = 1. This links to two entries in IDX as shown
in Fig. 3, indicating that t6 is the only new violation,
i.e., ∆V+ = {t6} (line 2). Indeed, {t5, t6}6|=φ1 and t5 is a
known violation. Only a single eqid (i.e., 1) is shipped
from site S3 to site S2.
Now suppose that tuple t4 is deleted. Algo-

rithm incVDel will find the eqid of [t4]{CC,zip} to be 1,
which links to two entries, following the same process
as above. After t4 is deleted, [t4]{CC,zip} is not empty, i.e.,
[t4]{CC,zip} = {t1, t3}. Hence ∆V− = {t4} (line 3). Again
only a single eqid (i.e., 1) is shipped. 2

Batch updates and multiple CFDs. We now present an
algorithm, denoted as incVer in Fig. 5, that takes batch
updates ∆D, a vertically partitioned D, a set Σ of CFDs,
and violations V(Σ, D) of Σ in D as input. It finds and
returns the changes ∆V of violations to V(Σ, D).
The algorithm works as follows. It first removes the

updates in ∆D that cancel each other (line 1), and
initializes the changes (line 2). It then detects the changes
of violations for multiple CFDs in parallel (lines 3-16).
It deals with three cases. (1) Constant CFDs (lines 4-
10). It first identifies at each site Si the tuple ids that
can possibly match the pattern tuple tp (line 5). These
identified (partial) tuples are shipped to a designated
coordinator site, together with corresponding B values
(line 6). These tuple ids are naturally sorted in ascend-
ing order (by indices). A sort merge of them is thus
conducted in linear time, and it generates a set T of
tuples in which each tuple matches the pattern tuple tp
on X attributes (line 7). It then examines these tuples’
B attributes, to decide whether they are violations to be
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removed (line 9), or violations newly incurred (line 10).
(2) Locally checked variable CFDs (lines 11-13). The changes
of violations can be detected using the same indices as
for a single CFD given above (lines 12-13). (3) General
variable CFDs (lines 14-16). The method used is exactly
what we have seen for a single CFD. The changes to
violations are then returned (line 17).
Violations are marked with those CFDs that they vio-

late when combining ∆V’s for multiple CFDs (see Fig. 1).

Complexity. For the communication cost, note that only
eqid’s are sent: for each tuple t ∈ ∆D and each CFD

φ ∈ Σ, its eqid’s are sent at most |X | times. As remarked
earlier, the set Σ of CFDs and the fragmentation are fixed
as commonly found in incremental integrity checking.
Hence the messages sent are bounded by O(|∆D|). The
computational cost is in O(|∆D|+ |∆V|), since checking
both hash-based HEV and IDX take constant time, as well
as their maintenance for each update.

5 OPTIMIZATION FOR VERTICAL PARTITIONS

We have seen that by leveraging HEV’s and IDX’s, for
vertical partition an incremental detection algorithm can
be developed that is bounded in the changes in the input
and output (i.e., ∆D and ∆V). We next study how to
build HEV’s such that eqid shipment is minimized.
Recall that HEV’s and IDX’s are used together to iden-

tify the equivalent classes of the input update (line 1
of both algorithms incVIns and incVDel in Fig. 4), whilst
for each variable CFD (X → B, tp[X ]), two IDX’s must
be built with the key eqidX and eqidX∪{B} respectively
for each input tuple , and HEV’s are built to efficiently
compute these keys for IDX’s. As remarked earlier, how
these HEV’s are built decides how eqid’s are shipped
for generating the keys of IDX’s. For multiple CFDs

that may have common attributes, different orders on
grouping attributes of HEV’s may affect the number of
eqid’s shipped for an single update, as shown below.

Example 7: Consider a relation Re with 11 attributes
A, B, · · · , K that is vertically partitioned and distributed
over 8 sites: S1(A), S2(B), S3(C), S4(D), S5(E, F ),
S6(G, H), S7(I), S8(J, K). Here S1(A) denotes that at-
tribute A is at site S1 (besides a key); similarly for
the other attributes. A set Σe of CFDs is imposed on
Re, including ϕ1 : (ABC → E), ϕ2 : (ACD → F ),
ϕ3 : (AG→H), and ϕ4 : (AIJ →K).
Consider different HEV’s for the CFDs in Fig. 6, in

which a rectangle indicates a site, a circle an attribute, a
triangle an HEV, an ellipse an IDX index, and a directed
edge indicates an eqid shipment from one site to another.
Note that one IDX is needed for each CFD. We omit those
base HEV’s that only used locally to simplify the figure.

(1) No sharing between the HEV’s of different CFDs. Fig-
ure 6(a) depicts a case when HEV’s are independently
built for the CFDs. These HEV’s determine how eqid’s are
shipped when validating the CFDs. For example, when a
tuple t is inserted into (or deleted from) Re, to detect the

violations of ϕ1 : (ABC → E), we need to (a) identify the
eqid of t[A] from HA at site S1, which is shipped to S2; (b)
determine the eqid of t[AB] from HAB upon receiving the
eqid of t[A], which is in turn shipped to S3; (c) detect the
new violations (resp. removed violations) for inserting
(resp. deleting) t by examining HABC and the IDX index
w.r.t. ϕ1 at site S3. Two eqid’s need to be shipped for ϕ1.
The process for the other CFDs is similar. In total, 9 eqid’s
(i.e., the number of directed edges in Fig. 6(a)) need to be
shipped to detect all violations of the CFDs in Σe. Note
that when the eqid of t[A] is shipped from S1 to S3, it is
used by both HAC (for ϕ2) and HABC (for ϕ1) at site S3;
hence this eqid is shipped only once.

(2) In the presence of replication. Replication is common in
distributed data management, to improve reliability and
accessibility. Suppose that attribute I is replicated at site
S6 besides residing at S7, as shown in Fig. 6(b). This
allows us to choose either site S6 or site S7 where we
build index HAI , as opposed to Fig. 6(a) in which HAI

has to be built at S7. Note that to detect the violations
of ϕ3 : (AG → H), the eqid for t[A] needs to be shipped
from S1 to S6 in both Fig. 6(a) and Fig. 6(b). If we build
HAI at S6, we may send the eqid of t[AI] from S6 to S8

(Fig. 6(b)), instead of from S7 to S8 (Fig. 6(a)) to validate
ϕ4 = (AIJ → K). This saves us one eqid shipment for
t[A] from S1 to S7 (Fig. 6(a)). In total, 8 eqid’s need to be
shipped in this case, instead of 9 in Fig. 6(a).

(3) Sharing HEV’s among CFDs. When I is replicated at
site S6, we can do better than Fig. 6(b), as depicted in
Fig. 6(c). The key observation is that attributes AC are
shared by CFDs ϕ1 and ϕ2. Hence, when a tuple t is
inserted or deleted, we can compute the eqid of t[AC]
by shipping the eqid of t[A] from S1 to S3. This allows
us to compute the eqid’s of t[ABC] (with the eqid of t[B]
from S2 to S3) and t[ACD] (with the eqid of t[D] from
S4 to S3) both at S3 (Fig. 6(c)). In contrast, in the setting
of Fig. 6(b) we have to compute eqid’s by following the
order of t[A] ⇒ t[AB] ⇒ t[ABC] for ϕ1 and t[A] ⇒
t[AC] ⇒ t[ACD] for ϕ2. In Fig. 6(c), only 7 eqid’s need
to be shipped as opposed to 8 eqid’s in Fig. 6(b). 2

Example 7 motivates us to find an optimal strategy
for building HEV’s, such that the keys of IDX’s could be
computed with minimum number of eqid shipments. It
also suggests that we reduce eqid shipment by sharing
HEV’s among multiple CFDs as much as possible (e.g.,
HAC at S3 for ϕ1 and ϕ2 in the case (3) above).

Below we first formalize this as an optimization prob-
lem, and show that it is NP-complete. We then provide
an effective heuristic algorithm for building HEV’s.

Optimization. A close look at the use of HEV in the
detection algorithms and their complexity analysis (Sec-
tion 4) reveals the following. To handle a unit update
(insertion or deletion of a tuple t), the number of eqid’s
shipped is independent of (a) the values in database D

and (b) the value of t. Indeed, eqid is shipped only when
a non-base HEV needs eqid’s generated from HEV’s at
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(a) No replication (b) With replication (c) Minimum eqid shipment

Fig. 6. Example of minimizing eqid shipment (base hash tables used only locally are omitted)

other sites, and hence, is decided by the dependencies
between HEV’s. Thus we can talk about eqid shipments
for a unit update regardless of the values of D and t.

We show that the problem of building HEV’s is already
challenging for unit updates. Consider a schema R, a
vertical partition scheme that partitions an instance D

of R into (D1, . . . , Dn) such that Di resides at site Si,
and attributes of R may be replicated, i.e., (D1, . . . , Dn)
may not be disjoint. Given a schema R, the partition
and replication scheme for R, a set Σ of CFDs, and a
positive number K , the minimum eqid shipment problem is
to decide whether there exists a set H of HEV’s such that
for any instance D of R and any single update with tuple
t, it needs no more than K eqid’s shipped to find changes
to V(Σ, D). Here for each ϕ = (X → B, tp[X ]) ∈ Σ, H has
to identify the keys eqidX and eqidX∪{B} of two IDX’s for
ϕ, and it needs no more than K eqid shipments to find
all such keys of IDX’s for all CFDs in Σ.

Theorem 7: The problem for minimum eqid shipment is NP-
complete. 2

Proof. Upper bound. We show that the problem is in NP

by giving an NP algorithm. It first guesses a set H of at
most Σ1≤i≤n|Ri|+n∗m hash tables with their locations,
where |Ri| is the number of attributes in partition Di.
Indeed, for each attribute in each Di, one base hash
table needs to be built (hence Σ1≤i≤n|Ri|), and for each
partition Di and each CFD ϕ in Σ, we need at most 1
non-base hash table that contains all attributes of ϕ in Di

(hence (m∗n) non-base hash tables). After H is in place,
we check (a) whether for any CFD (X → B, tp[X ]) ∈ Σ,
H can identify eqidX and eqidX∪{B}; and (b) whether we
need no more than K eqid’s shipped when validating all
CFDs in Σ for a single update with tuple t. As remarked
above, step (b) is independent of D and t. Steps (a) and
(b) can be done by leveraging the dependencies between
HEV’s, in PTIME when the HEV’s and their locations
are given. If the number of eqid shipments is no more

than K via H, then H provides the indices we need.
Otherwise we guess another H and repeat the process.
This algorithm is in NP, and hence so is the problem.

Lower bound. We next show that problem is NP-hard by
reduction from the minimum set cover problem (MSC;
see the proof of Theorem 3 for the statement of MSC).
Given an instance (X, C, K) of MSC, we construct

(R, Σ, K) such that the minimum eqid shipment problem
for (R, Σ, K) has a solution iff the MSC problem has
a solution. Assume w.l.o.g. that X = {xj | j ∈ [1, m]},
C = {Ci | i ∈ [1, n]}, each Ci has three elements of X ,
and that X=

⋃
i∈[1,n] Ci (i.e., there exists a cover for X).

(a) We define a schema R = (id, Y, Z, X1, X2, . . . Xm),
a partition and replication scheme that vertically par-
tition any instance D of R into n + 1 fragments
U, D1, D2, . . . , Dn, with schemas RU = (id, Y ) for U and
Ri = (id, Z, Xa1

, Xa2
, Xa3

) for Di. Here xa1
, xa2

and xa3

are elements in Ci ∈ C. Intuitively, each Di encodes a set
Ci. and attributes may be duplicated in different sites.

(b) The set Σ consists of m FDs: X1Y → Z , X2Y → Z ,
. . . , and XmY → Z . Intuitively, each XiY → Z encodes
the element xi in X . Thus the set Σ encodes the set X .

We show that (R, Σ, K) is a reduction from MSC. First,
assume that the MSC instance has a cover C′ of size no
larger than K . We define a set H as follows.

(a) On each site Si, where Ci = {xa1
, xa2

, xa3
} ∈ C′, H

has the following HEV’s: (i) (hi0 : Z → eqidZ); (ii) (hi1 :
Xa1

→ eqidXa1

), (hi2 : Xa2
→ eqidXa2

), and (hi3 : Xa1
→

eqidXa3

); (iii) (h′
i1 : eqidXa1

, eqidY → eqidXa1
Y ), (h′

i2 :

eqidXa2

, eqidY → eqidXa2
Y ), and (h′

i3 : eqidXa3

, eqidY →
eqidXa3

Y ); (iv) (h′′
i1 : eqidXa1

, eqidY , eqidZ → eqidXa1
Y Z),

(h′′
i2 : eqidXa2

, eqidY , eqidZ → eqidXa2
Y Z), and (h′′

i3 :

eqidXa3

, eqidY , eqidZ → eqidXa3
Y Z).

(b) On the site SU , H includes (hU : Y → eqidY ).

Intuitively, to check a unit update t posed on any in-
stance D of R, it suffices to ship the eqidY for t generated
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by (b) from SU to Si for each Ci ∈ C′. In total |C′| eqid’s
are shipped (see the algorithms in Section 4). Indeed,
since C′ is a cover for X and Σ encodes X , one can verify
the following: HEV’s in (a)(iii) (resp. (a)(iv)) generate all
eqidXiY

(resp. eqidXiY Z ) for each FD (XiY → Z) ∈ Σ,
and all eqid’s required for (a)(iii) and (a)(iv) are provided
by eqid shipments of (c) for tuple t. Hence H suffices to
generate all the eqid’s needed by Σ. Since |C′| ≤ K , the
number of eqid shipments via H is at most K .

Conversely, assume that there exists a set H of hash
tables such that for any FD (XiY → Z) ∈ Σ, H can find
eqidX and eqidX∪{B}, and moreover, for any D and unit
update with a tuple t, the number of eqid’s shipped for
computing eqid’s of all CFDs in Σ is at most K . Consider
the following cases. (a) If K ≥ n, the set C is a cover and
|C| = n ≤ K . (b) If K < n, let C′ consist of those Ci’s such
that eqid’s are shipped between U and Di (i ∈ [1, n]) of H
when handling the update. One can verify that |C′| ≤ K

and C′ is a cover for X , since otherwise, there must exist
an uncovered element xj in X such that eqidXjY for t

could not be generated and checked. 2

Due to the intractability, any efficient algorithm to find
an optimal plan to build HEV’s is necessarily heuristic.

A heuristic algorithm. We next provide an efficient
heuristic algorithm for building HEV’s. The idea behind
the algorithm is to start with HEV’s with the keys for
IDX’s. That is, for a CFD ϕ = (Xϕ → Yϕ, tpϕ

), we first
build an HEV for Xϕ, which is necessary for detecting
violations of ϕ. We then build HEV’s for certain sub-
sets of Xϕ, by selecting those subsets that contain as
many attributes shared by multiple CFDs as possible.
We also include base HEV’s that contain attributes that
only reside at one site, e.g., HA at site S1 in Fig. 6(a),
since HAB at S2 requires HA at S1 and local attribute
B at S2 as input, while HAB at site S2 in Fig. 6(a)) is
not. Finally, we remove redundant HEV’s while ensuring
that all violations can still be detected. It follows a
greedy approach that determines the key (set of eqid’s) of
each HEV and retains the HEV’s with the minimum eqid

shipment among the solutions explored. It terminates
when no more HEV can be removed.

The algorithm, referred to as optVer, is shown in Fig. 7.
It takes as input a database D that is vertically parti-
tioned into Di (for i ∈ [1, n]) and allows a predefined
replication scheme, a set Σ of CFDs, and a parameter k

for balancing the effectiveness and efficiency. It builds a
set H of HEV’s for Σ. The algorithm works as follows.

(1) [Initialization.] It builds a set H of HEV’s such that
for each ϕ ∈ Σ, there is an HEV with key Xϕ (lines 1-4).

(2) [Expansion.] It then expands H. For each CFD ϕ, we
add up to |Σ|+|Xϕ| HEV’s, by including the HEV’s whose
keys contain as many attributes shared by multiple CFDs

as possible (lines 5-6). For each attribute of each CFD in
Σ, we also build a base HEV (line 7), such that all existing
HEV’s can take their outputs and compute eqid’s.

(3) [Location.] We assign a site to each HEV h inH (line 8).

Algorithm optVer
Input: D in n vertical partitions, a set Σ of CFDs, a parameter k
Output: a set minH of HEV’s.
1. H := ∅;
2. for each ϕ ∈ Σ do / ∗ ϕ : (Xϕ → Yϕ, tpϕ ) ∗ /
3. H := H∪ {an HEV for Xϕ};
4. HIDX := H; /∗ HEV’s that are necessary for IDX’s ∗/
5. for each ϕ∈Σ and φ∈Σ\{ϕ} do H := H∪{an HEV for Xϕ∩Xφ};
6. for each ϕ ∈ Σ do add up to |Xϕ| HEV’s having shared attributes;
7. Expand H with necessary base HEV’s;
8. for each h ∈ H do h.location := findLoc(h);

/∗ min and minH keep the best solution so far; H.Neqid()
returns #-eqid shipments for H; Q is the queue for BFS ∗/

9. min := H.Neqid(); minH := H; Q := {H};
10. while (Q 6= ∅) do
11. Q′ := ∅;
12. while (H = Q.pop()) do
13. if min > H.Neqid() then min := H.Neqid(); minH := H;
14. for each h ∈ H do
15. if all HEV’s in HIDX are computable by (H \ {h}) then
16. Q′.push(H \ {h});
17. Keep up to k distinct H′s with smallest H′.Neqid() in Q′;
18. Q := Q′;
19. return minH;

Fig. 7. Heuristic algorithm for minimizing eqid shipment

The site is determined by findLoc, such that (a) the local
attributes at the site cover as many attributes of h as
possible, and (b) as many other HEV’s reside at the site
as possible. This takes into account of the replication.

(4) [Finalization.] We follow a greedy approach to search-
ing an optimal solution by removing HEV’s from H
(lines 9-18). After steps (2)–(4), some tables in H may be
redundant, i.e., unnecessary for computing those tables
needed by IDX’s (HIDX). We iteratively remove HEV’s
from H until removing any more table will make some
HEV in HIDX no longer computable (lines 10-18). In the
process we record the best solution so far in minH

(line 13). More specifically, we conduct search in the
BFS fashion: each state is a set of HEV’s, Q keeps all
open states, and the algorithm only includes the top k

solutions (measured by the number of eqid shipped) in
Q in each iteration (line 17), where k is a user defined
threshold to balance the effectiveness and efficiency.
The function H.Neqid() computes the number of eqid

shipments for a given set H of HEV’s. It also determines
the order and structure of each HEV h as follows: at each
stage, it selects an HEV h′ from H whose key attributes
contain the largest number of uncovered attributes in h.
The eqid computed from h′ is to be shipped to h.

Example 8: Consider the data partition of Fig. 6(c)
described in Example 7, where I is replicated at S6.
Taking these as input, optVer builds HEV’s as follows.

(1) [Initialization.] It first builds 4 HEV’s HABC , HACD,
HAG and HAIJ , for CFDs ϕ1, ϕ2, ϕ3, and ϕ4, respectively.

(2) [Expansion.] It adds the following tables:

(a) HA, since A is shared by all CFDs, and HAC , as
attributes AC are shared by ϕ1 and ϕ2;

(b) HAI and HAJ , in which keys are subsets of Xϕ4
, and

both contain attribute A; and

(c) base HEV for the CFDs in Σe: HB , . . . , HJ , HK .
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(3) [Location.] It assigns a site for each HEV to reside at:
HABC , HACD at S3, HAG at S6, and HAIJ at S8; each base
HEV is located at the site where its attribute is located
(e.g., HA at S1 and HB at S2).

(4) [Finalization.] Assume that k = 5, it removes redun-
dant HAJ . The solution of Fig. 6(c) is then found, with
7 eqid’s shipped in total. 2

Complexity. The algorithm is in O(k|Σ|4 + n|Σ|) time.
Indeed, it takes O(k|Σ|4) time for the iterations (lines
9–18) and O(n|Σ|) time for site assignments (line 8).
More specifically, the outer while iteration is bounded
by the number of HEV’s in H (i.e., O(|Σ|2)), the inner
while iterates at most k times for each outer while
iteration, the inner for loop runs at most |Σ|2 times, and
Neqid() inside the for loop could be computed in O(1)
time using proper dynamic programming techniques.
For other steps, it is in O(|Σ|) time for lines 1-4, O(|Σ|2)
time for line 5, and in O(|Σ|2) time for lines 6-7. Note
that the number of rules |Σ| is usually small in practice,
and the algorithm only needs to be run once for given
database D, replication scheme, and CFDs Σ instead of
each time calling optVer at each update.

6 ALGORITHMS FOR HORIZONTAL PARTITIONS

When it comes to horizontal partitions, there also exist
incremental detection algorithms that are optimal.

Proposition 8: There exists an algorithm that incrementally
detects CFD violations in horizontal partitions with commu-
nication and computational costs in O(|∆D| + |∆V|). 2

Taken together, Propositions 6 and 8 verify Theorem 5.
Along the same lines as its vertical counterpart, we

first identify when data shipment can be avoided. We
then give an optimal algorithm for horizontal partitions.
Consider a database D = (D1, . . . , Dn) that is horizon-

tally partitioned, where Di resides at site Si for i ∈ [1, n].

Local checking. For horizontal partitions, CFDs that can
be validated locally include the following.

(1) Constant CFDs. Such a CFD can be violated by a single
tuple, and does not incur global violations. Hence no
data shipment is needed for validating constant CFDs.

(2) Variable CFDs. Notably, a horizontal fragment Di is
defined as σFi

(D) (Section 2). We use XFi
to denote all

attributes in Fi. To validate a variable CFD φ = (X →
B, tp), one does not have to ship data to or from Si when

(a) XFi
⊆ X ; indeed, for any tuple t ∈ Di and t′ 6∈ Di,

(t, t′) do not violate φ since t[XFi
] 6= t′[XFi

]; or

(b) Fi ∧ Fφ evaluates to false [10], where Fφ is a con-
junction of atoms A = ‘a’ imposed by tp, for A ∈ X .
Indeed, no tuples in Di could possibly match tp[X ].

Algorithms. We first consider a single CFD and a single
update. We then extend the algorithm to multiple CFDs

and batch updates. At each site, we also maintain the
indices (only for local tuples) for equivalence classes and
set() similar to the ones introduced in Section 4.

Single update for one CFD. Given a CFD φ = (X →
B, tp) and a tuple t to be inserted into (resp. deleted
from) Di, the algorithm is to identify the changes
∆V+(φ, D) (resp. ∆V−(φ, D)) to V(ϕ, D), outlined below.

Insertions. The algorithm handles insertions as follows.

(1) Site Si checks local violations. It deals with two cases:

(a) There exist no local violations, i.e., there is no t′ ∈ Di

such that (t, t′) 6|= φ. Then there are again two cases:

(i) when [t]X∪{B} 6= ∅: ∆V+
i = {t} if |set(t[X ])|> 1, and

∆V+
i =∅ otherwise; indeed, if t′∈[t]X∪{B} is a known

violation, so is t; or neither is a violation; and

(ii) when [t]X∪{B}=∅: we need to send t to other sites
to check global violations, i.e., to find out whether
there exists a tuple t′6∈Di such that (t, t′) 6|= φ. We set
∆V+

i ={t} if such t′ exists, and ∆V+
i =∅ otherwise.

(b) Local violations exist, i.e., there exists t′ ∈ Di such
that (t, t′) 6|= φ. We consider the following two cases:

(i) when [t]X∪{B} 6= ∅: then ∆V+
i = {t}, since any tuple

that violates φ with t is a known violation; and

(ii) when [t]X∪{B} = ∅: then there must exist a tuple
t′ ∈ Di such that (t, t′) 6|= φ. If t′ ∈ Vi, we have
∆V+

i = {t}; otherwise ∆V+
i = {t} ∪ [t′]X∪{B} since

each tuple in [t′]X∪{B} violates φ with t. In both
cases, we need to check global violations by send-
ing t to all the other sites, which check violations
incurred by inserting tuple t.

(2) Upon receiving t from Si, each site Sj (j 6= i) checks
its local violations in parallel, as described in step 1(a).

The global changes ∆V+ is the union of changed
violations from all the sites, i.e., ∆V+ =

⋃
k∈[1,n]∆V+

k .

Deletions. When a tuple t is deleted from Di at Site Si,
the algorithm does the following at Si and other sites.

(1) At site Si. It first identifies [t]X∪{B} and set(t[X ]) at Si

for CFD ϕ. If t does not violate φ, then t is simply deleted
from Di, since deletions do not introduce new violations.
When t violates φ, there are two cases to consider.

(a) If after t is deleted, tuples that agree with t on both
X and B remain, then all violations except t remain.

(b) Otherwise, the entire entry for t will be removed.
There are again two cases to consider:

(i) There are two items in set(t[X ]), t and t′. It broad-
casts t′ to the sites that have violations with t or
t′. We record the sites that still have violations.
It removes all violations w.r.t. t and t′ if no sites
have tuples that violate t′, and otherwise only t is
removed from violations.

(ii) Tuple t is the only entry at site Si. It removes t as
a violation, and broadcasts t to the other sites that
previously have violations with t.

The local index is maintained and ∆V−
i is then returned.

(2) At site Sj . Upon receiving t from Si, each site Sj

(j 6= i) checks whether previous violations maintained
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Algorithm incHor
Input: ∆D, D in n horizontal partitions, Σ, and V(Σ, D).
Output: ∆V.
1. merge local updates in ∆Di having the same tuple ids;
2. ∆V− := ∅; ∆V+ := ∅;
3. for each φ ∈ Σ do
4. if φ is a constant CFD then /* φ = (X → B, tp) */
5. for each t ∈ ∆Di (i ∈ [1, n]) and t violates φ do

6. if t ∈ ∆D−
i then ∆V− := ∆V− ∪ {t};

7. elseif t ∈ ∆D+

i then ∆V+ := ∆V+ ∪ {t};
8. elseif φ can be locally checked at Si then

9. derive ∆V+

i
and ∆V−

i
at Si with indices (Section 6);

10. ∆V− := ∆V− ∪ ∆V−
i
; ∆V+ := ∆V+ ∪ ∆V+

i
11. else /* a variable CFD that cannot be locally checked */

12. derive ∆V+

i and ∆V−
i (i ∈ [1, n]);

13. ∆V− :=∆V− ∪ ∆V−
i and ∆V+ :=∆V+ ∪ ∆V+

i (i ∈ [1, n]);
14. return ∆V = ∆V− ∪ ∆V+;

Fig. 8. Batch updates for horizontal partitions

at Sj could be removed. Note that Sj will send two
different messages: either (a) t′ from Si ((1)(b)(i) above):
this means that t′ remains at Si; or (b) t from Si ((1)(b)(ii)
above): this means that t is removed from Si.

The global changes ∆V− is the union of ∆V−
k (k =

[1, n]), from all individual sites.

Example 9: Consider D0 (without t6) given in Fig. 2 and
φ1 of Fig. 1. When tuple t6 is inserted, the algorithm
finds that (t6, t5) 6|= φ1 at site S3 (step (1)(a)), i.e., no
local violations. However, since t5 is a known violation
(Fig. 1), so is t6 (step (1)(a)(i)). Hence, ∆V+ = {t6}. 2

Batch updates and multiple CFDs. We now present an
algorithm for batch updates and multiple CFDs on
horizontal partitions, denoted as incHor and shown in
Fig. 8. Given batch updates ∆D, a horizontal partition
(D1, · · · , Dn) of a database D, a set Σ of CFDs, and (old)
violations V(Σ, D) of Σ in D, the algorithm finds and
outputs the changes ∆V to violations V(Σ, D).
The algorithm first removes the local updates that

cancel each other (line 1), and initializes the changes
(line 2). It then detects the changes to violations for
multiple CFDs in parallel (lines 3-13). It deals with three
cases as follows. (1) Constant CFDs (lines 4-7). It checks
at each site that whether a deletion removes a violation
(line 6) or an insertion adds a violation (line 7). (2)
Locally checked variable CFDs (lines 8-10). The changes to
violations can be detected using the same indices as used
in Section 4, in constant time (lines 9-10). (3) General
variable CFDs (lines 11-13). The changes to violations are
identified (lines 12-13), and then returned (line 14).

Complexity. For communication cost, one can see that
each tuple in ∆D is sent to other sites at most once.
Hence at most O(|∆D| n) messages are sent, where n

is the number of fragments and is fixed, as remarked
earlier. Thus the cost is in O(|∆D|). The computation
cost is in O(|Σ|(|∆D| + |∆V|)) time, where |Σ| is a fixed
parameter. That is, it is in O(|∆D| + |∆V|). Indeed, by
leveraging hash tables, the process at each site takes
constant time, and the hash tables can be maintained
incrementally in the same process, also in constant time.

Optimization using MD5. A tuple may be large. To
reduce its shipping cost, a natural idea is to encode
the whole tuple, and then send the coding of the tuple
instead of the tuple. MD5 (Message-Digest algorithm
5 [1]) is a widely used cryptographic hash function with
a 128-bit hash value. We use MD5 in our implementation
to further reduce the communication cost, by sending a
128-bit MD5 code instead of an entire tuple.

7 EXPERIMENTAL STUDY

We present an experimental study of our incremental
algorithms for vertical and horizontal partitions, evalu-
ating elapsed time and data shipment. We focus on their
scalability by varying four parameters: (1) |D|: the size
of the base relation; (2) |∆D|: the size of updates; (3) |Σ|:
the number of CFDs; and (4) n: the number of partitions.
We also evaluated the effectiveness of our optimization
techniques for building indices in vertical partitions.

Experimental setting. We used the following datasets.

(1) Datasets. (a) TPCH: we joined all tables to build one
table. The data ranges from 2 million tuples (i.e., 2M)
to 10 million tuples (i.e., 10M). Notably, the size of 10M
tuples is 10GB. (b) DBLP: we extracted a 320MB relation
from its XML data. It scales from 100K to 500K tuples.

(2) CFDs were designed manually. We first designed
functional dependencies (FDs), and then produced CFDs

by adding patterns (i.e., conditions) to the FDs. For TPCH:
the number |Σ| of CFDs ranges from 25 to 125, with
increment of 25 by default. For DBLP: |Σ| scales from
8 to 40, with increment of 8 by default.

(3) Updates. Batch updates contain 80% insertions and
20% deletions, since insertions happen more often than
deletions in practice. The size of updates is up to 10M
tuples (about 10GB) for TPCH and up to 320MB for DBLP.

(4) Partitions. Its fragment number is 10 by default.

Implementation. We denote by incVer (resp. incHor) our
incremental algorithms for batch updates and multi-
ple CFDs in vertical (resp. horizontal) partitions. We
also designed batch algorithms for detecting errors in
vertical (resp. horizontal) partitions, denoted by batVer

(resp. batHor), following [10]. The batch algorithms work
in three steps: (1) for each CFD it copies to a coordinator
site a small number of relevant attributes (resp. tuples)
for vertical (resp. horizontal) partitions; (2) the violations
of each CFD φ are checked locally at the coordinator site
for φ; and (3) the violations of all CFDs are checked in
parallel. All algorithms were written in Python. We ran
our experiments on Amazon EC2 High-Memory Extra
Large instances (zone: us-east-1c).
In the following, we shall pay more attention to TPCH,

more interesting for its larger size than DBLP.

Experimental results for vertical partitions. We first
present our experimental results of detecting violations
in data that is vertically partitioned and distributed.
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(c) TPCH, vertical, |∆D|
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(f) TPCH, horizontal, |D|
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(g) TPCH, horizontal, |∆D|
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(h) TPCH, horizontal, |∆D|
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Fig. 9. Experimental results for TPCH and DBLP data

Exp-1: Impact of |D|. Fixing |∆D| = 6M, |Σ| = 50 and
n = 10, we varied the size of D (i.e., |D|) from 2M
to 10M tuples (10GB) for TPCH. Figure 9(a) shows the
elapsed time in seconds when varying |D|. The result
tells us that incVer outperforms batVer by two orders
of magnitude. It also shows that the elapsed time of
incVer is insensitive to |D|. In contrast, the elapsed time
of batVer increases much faster when |D| is increased.
This result further verifies Proposition 6: the incremental
algorithm is bounded by the size of the changes in the
input and output, and it is independent of D.

Exp-2: Impact of |∆D|. Fixing |Σ| = 50, n = 10 and |D|
= 10M, we varied the size of ∆D from 2M to 10M tuples
for TPCH. We also varied |∆D| from 100K to 500K tuples
for DBLP while fixing |D| = 500K, |Σ| = 16 and n = 10.
Figure 9(b) (resp. Figure 9(k)) shows the elapsed time

in seconds when varying |∆D| for TPCH (resp. DBLP).
Both figures show that the elapsed time of incVer in-
creases almost linearly with |∆D|, e.g., 11 seconds when
|∆D| = 2M and 79 seconds when |∆D| = 10M as shown
in Fig. 9(b). In addition, batVer is slower than incVer by
two orders of magnitude, consistent with Fig. 9(a).
In addition, Figure 9(c) shows the size of data shipped

(in GB) when varying |∆D| for TPCH. Note that incVer

only sends 320MBwhen |∆D| = 2M (i.e., 2GB) and 1.6GB
when |∆D| = 10M (i.e., 10GB). This is because with
HEVs, we only ship eqid’s instead of the entire tuples.
In contrast, the size of data shipped for batVer is up
to 17.6GB when |∆D| = 10M. This further verifies our
observation from Figure 9(b).
These experimental results tell us that our incremental

methods are bounded by |∆D| + |∆V|, independent of

the size of D, in contrast to batch algorithms that detect
violations starting from scratch, which depends on |D|.

Exp-3: Impact of |Σ|. Fixing n=10, |D|=10M and |∆D|=
6M for TPCH, we varied |Σ| from 25 to 125. Fixing n=10,
|D|=500K and |∆D|=300K for DBLP, we varied |Σ| from
8 to 40. Figure 9(d) (resp. Figure 9(l)) shows the elapsed
time when varying |Σ| from 25 to 125 for TPCH (resp.
from 8 to 40 for DBLP). Both figures show that incVer

achieves almost linear scalability when varying |Σ|, e.g.,
35 seconds when |Σ|=25 and 72 seconds when |Σ|=125
in Fig. 9(d). When multiple CFDs are detected, multiple
sites work in parallel to improve the efficiency. Moreover,
batVer runs far slower than incVer, as expected.
The results demonstrate that incVer scale well with |Σ|,

and it can handle a large number of CFDs. We remark
that in practice, Σ is typically predefined and fixed.

Exp-4: Impact of n. In this set of experiments, we varied
the number of partitions from 2 to 10, and varied |D|
and |∆D| in the same scale correspondingly. That is, we
varied both |D| and |∆D| from 2M to 10M for TPCH. We
study the scaleup performance defined as follows:

scaleup =
small system elapsed time on small problem
large system elapsed time on large problem

Scaleup is said to be linear if it is 1, the ideal case.
Figure 9(e) shows the scaleup performance when vary-

ing n, |D| and |∆D| at the same time, where x-axis
represents n and y-axis the scaleup value. The line for
linear is the ideal case. For example, we computed the
scaleup when n = 4 as follows: using the elapsed time
when n = 2 and |D| = |∆D| = 2M to divide the elapsed
time when n = 4 and |D| = |∆D| = 4M tuples (i.e.,
4GB in size), which is 0.96; similarly for all the other
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Dataset without optimization with optimization
#-eqid shipments #-eqid shipments

TPCH 122 55
DBLP 61 17

Fig. 10. Number of eqid’s shipped for vertical partitions

points. This figure shows that incVer achieves nearly
linear scaleup, which clearly outperforms batVer that
shows bad scaleup performance.
These results indicate that incVer scales well with

partitions, when base data and updates are large.

Optimization for vertical partitions. We next evaluate
the effectiveness of our optimization strategy (Section 5).

Exp-5. Figure 10 shows the number of eqid’s shipped for
vertically partitioned TPCH (D = 10M, |Σ| = 50, and n =
10) and DBLP (D = 500K, |Σ| = 16, and n = 10), with
or without using the optimization methods presented in
Section 5. As remarked earlier, for each tuple insertion
or deletion, the amount of eqid’s shipped is independent
of |D|. The table tells us that for both datasets, the
optimization technique significantly reduces the number
of eqid’s to be shipped: it saves 67 eqid’s (55.5%) for TPCH

and 44 eqid’s (72.1%) for DBLP per update.

Experimental results for horizontal partitions for TPCH.
We next present results on horizontally partitioned data.

Exp-6: Impact of |D|. We adopted the same setting as
Exp-1. Figure 9(f) shows the elapsed time when varying
|D|. Besides telling us that incHor outperforms batHor,
the results also show that incHor is independent of D:
when varying |D| from 2M to 10M tuples, the time only
changes slightly. This verifies Proposition 8: incremental
violation detection in horizontal partitions depends only
on |∆D| and |∆V|, and is independent of D.

Exp-7: Impact of |∆D|. We used the same setting as
Exp-2. Figure 9(g) shows the elapsed time when varying
|∆D| for TPCH. The results show that incHor increases
almost linearly with the size of ∆D, e.g., 19 seconds
when |∆D| = 2M and 93 seconds when |∆D| = 10M .
Figure 9(h) shows the size of data shipment for both
methods. The results verify that our incremental detec-
tion algorithm for horizontal partitions is bounded by
|∆D|, similar to its vertical counterpart (see Exp-2).

Exp-8: Impact of |Σ|. We adopted the same setting as
Exp-3. Figure 9(i) shows the elapsed time when varying
|Σ| from 25 to 125. It tells us that incHor is almost linear in
|Σ|, e.g., 43 seconds when |Σ| = 25 and 61 seconds when
|Σ| = 125. The results verify that incHor scales well with
|Σ|, as its vertical counterpart (see Exp-3).

Exp-9: Impact of n. Figure 9(j) shows the scaleup per-
formance of incHor when varying n, |D| and |∆D| in
the same scale, where x-axis represents the number n

of fragments and y-axis the scaleup values. From the
results we can see that incHor has nearly ideal scaleup, as
its vertical counterpart. This verifies that our algorithms
can work well on massive data, updates, and partitions.

Exp-10. Algorithms incVer and incHor substantially out-
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Fig. 11. Experimental results for refined batch algorithms

perform existing batch algorithms. To favor the batch
approach, we improved the batch algorithms, denoted
by ibatVer and ibatHor for vertical and horizontal par-
titions, respectively, by using our incremental insertion
algorithms and indices. We evaluated the performance
of incVer and incHor vs. ibatVer and ibatHor starting with
∅, and inserting and deleting tuples until it reaches D.
Figure 11(a) (resp. Figure 11(b)) shows the result for

vertical (resp. horizontal) partition when |D| = 6M, |Σ| =
50 and n = 10, while varying |∆D| from 2M to 10M
with 40% deletions and 60% insertions. The performance
of batVer and batHor is not shown, since they are two
orders of magnitude slower. The results tell us that in
both vertical and horizontal partitions, the incremental
algorithms do better than the revised batch algorithms
until updates ∆D get rather large, e.g., |∆D| = 8M for
vertical partitions and 7.6M for horizontal partitions.

Summary. From the experimental results we find the
following. (1) Our incremental algorithms scale well with
|D|, |∆D| and |Σ| for both vertical partitions (Exp-1
to Exp-4) and horizontal partitions (Exp-6 to Exp-9).
(2) The incremental algorithms outperform their batch
counterparts by two orders of magnitude, for reason-
ably large updates. But when updates are very large,
batch algorithms do better, as expected (Exp-10). (3)
The optimization techniques of Section 5 substantially
reduce data shipment for vertical partitions (Exp-5). We
contend that these incremental methods are promising in
detecting inconsistencies in large-scale distributed data,
for both vertically and horizontally partitioned data.

8 CONCLUSION

We have studied incremental CFD violation detection
for distributed data, from complexity to algorithms. We
have shown that the problem is NP-complete but is
bounded. We have also developed optimal incremental
violation detection algorithms for data partitioned ver-
tically or horizontally, as well as optimization methods.
Our experimental results have verified that these yield a
promising solution to catching errors in distributed data.
There is naturally much more to be done. First, we

are currently experimenting with real-life datasets from
different applications, to find out when incremental de-
tection is most effective. Second, we also intend to extend
our algorithms to data that is partitioned both vertically
and horizontally. Third, we plan to develop MapReduce
algorithms for incremental violation detection. Fourth,
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we are to extend our approach to support constraints
defined in terms of similarity predicates (e.g., matching
dependencies for recordmatching) beyond equality com-
parison, for which hash-based indices may not work and
more robust indexing techniques need to be explored.
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