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Abstract—Answering queries using views has proven effective for querying relational and semistructured data. This paper investigates
this issue for graph pattern queries based on graph simulation. We propose a notion of pattern containment to characterize graph
pattern matching using graph pattern views. We show that a pattern query can be answered using a set of views if and only if it is
contained in the views. Based on this characterization, we develop efficient algorithms to answer graph pattern queries. We also study
problems for determining (minimal, minimum) containment of pattern queries. We establish their complexity (from cubic-time to
NP-complete) and provide efficient checking algorithms (approximation when the problem is intractable). In addition, when a pattern
query is not contained in the views, we study maximally contained rewriting to find approximate answers; we show that it is in
cubic-time to compute such rewriting, and present a rewriting algorithm. We experimentally verify that these methods are able to
efficiently answer pattern queries on large real-world graphs.
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1 INTRODUCTION

Answering queries using views has been extensively studied
for relational data [27], [33], XML [30], [50], [51] and
semistructured data [11], [43], [52]. Given a query Q and a set V
= {V1, . . . ,Vn} of views, the idea is to find another query A such
that A is equivalent to Q, and A only refers to views in V [27]. If
such a query A exists, then given a database D, one can compute
the answer Q(D) to Q in D by using A, which uses only the data
in the materialized views Vi(D), without accessing D. This is
particularly effective when D is “big” and/or distributed. Indeed,
views have been advocated for scale independence, to query big
data “independent of” the size of the underlying data [8], [17].
They are also useful in data integration [33], data warehousing,
semantic caching [14], and access control [16].

The need for studying this problem is even more evident
for answering graph pattern queries (a.k.a. graph pattern match-
ing) [18], [28]. Graph pattern queries have been increasingly used
in social network analysis [10], [18], among other things. Real-life
social graphs are typically large, and are often distributed. For
example, Facebook has more than 1.26 billion users with 140
billion links [46], and the data is geo-distributed to various data
centers [26]. One of the major challenges for social network
analysis is how to cope with the sheer size of real-life social graphs
when evaluating graph pattern queries. Graph pattern matching
using views provides an effective method to query such big data.

Example 1: A fraction of a recommendation network is depicted
as a graph G in Fig. 1 (a), where each node denotes a person
with name and job title (e.g., project manager (PM), database
administrator (DBA), programmer (PRG), business analyst (BA)
and software tester (ST)); and each edge indicates collabora-
tion/recommendation relation, e.g., (Bob, Dan) indicates that Dan
worked well with Bob, on a project led by Bob.

* Corresponding author.

Walt

PM

Mary

DBA

Jean

BA

(a) Recommendation network G 

Emmy

ST

Fred

DBA

Dan

PRG

(b) Views V and V(G)

PM

PRG

DBABob

PM

Pat

PRG

Bill

PRG

V1

PRG1

DBA1

PM

(c) Pattern Qs

Mat

DBA

e1

e2

V1(G)

PRG

DBA

V2

e3 e4

V2(G)

DBA2

PRG2

Bob->Mat

Walt->Mat

Bob->Dan

Walt->Bill

Se1

Se2

Fred->Pat

Mat->Pat

Mary->Bill

Dan->Fred

Pat->Mary

Pat->Mat

Bill->Mat

Se3

Se4

Fig. 1: Data graph, views and pattern queries

To build a team, one issues a pattern query Qs depicted in
Fig. 1 (c), to find a group of PM, DBA and PRG. It requires that
(1) DBA1 and PRG2 worked well under the project manager PM;
and (2) each PRG (resp. DBA) had been supervised by a DBA
(resp. PRG), represented as a collaboration cycle [31] in Qs. For
pattern matching based on graph simulation [18], [47], the answer
Qs(G) to Qs in G can be denoted as a set of pairs (e, Se) such
that for each pattern edge e in Qs, Se is a set of edges (a match set)
for e in G. For example, pattern edge (PM, PRG2) has a match
set Se = {(Bob, Dan), (Walt, Bill)}, in which each edge satisfies
the node labels and connectivity constraint of the pattern edge.

It is known that it takes O(|Qs|2 + |Qs||G| + |G|2) time to
compute Qs(G) [18], [28], where |G| (resp. |Qs|) is the size
of G (resp. Qs). For example, to identify the match set of each
pattern edge (DBAi, PRGi) (for i ∈ [1, 2]), each pair of (DBA,
PRG) in G has to be checked, and moreover, a number of join
operations have to be performed to eliminate invalid matches. This
is a daunting cost when G is big. One can do better by leveraging
a set of views. Suppose that a set of views V = {V1,V2} is
defined, materialized and cached (V(G) = {V1(G),V2(G)}), as
shown in Fig. 1 (b). As will be shown later, to compute Qs(G),
(1) we only need to visit views in V(G), without accessing the
original big graph G; and (2) Qs(G) can be efficiently computed
by “merging” views in V(G). Indeed, the views V(G) already
contains partial answers to Qs in G: for each pattern edge e in
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Qs, the matches of e (e.g., (DBA1, PRG1)) are contained either in
V1(G) or V2(G) (e.g., the matches of e3 in V2). These partial
answers can be used to construct the complete match Qs(G).
Hence, the cost of computing Qs(G) is in quadratic time in |Qs|
and |V(G)|, where V(G) is much smaller than |G|. 2

This example suggests that we conduct graph pattern matching
by capitalizing on available views. To do this, several questions
have to be settled. (1) How to decide whether a pattern query Qs

can be answered by a set V of views? (2) If so, how to efficiently
compute Qs(G) from V(G)? (3) If not, how to find approximate
answers to Qs(G) by using V(G)? (4) In both cases, which views
in V should we choose to (approximately) answer Qs?

Contributions. This paper investigates these questions for answer-
ing graph pattern queries using graph pattern views. We focus on
graph pattern matching defined in terms of graph simulation [28],
since it is commonly used in social community detection [10],
biological analysis [35], and mobile network analyses [24]. While
conventional subgraph isomorphism often fails to capture mean-
ingful matches, graph simulation fits into emerging applications
with its “many-to-many” matching semantics [10], [18], [28].
Moreover, it is more challenging since graph simulation is “re-
cursively defined” and has poor data locality [15].

(1) To characterize when graph pattern queries can be answered
using views based on graph simulation, we propose a notion of
pattern containment (Section 3). It extends the traditional notion
of query containment [6] to deal with a set of views. Given a
pattern query Qs and a set V of view definitions, we show that Qs

can be answered using V if and only if Qs is contained in V .
Based on the characterization, we provide an evaluation algo-

rithm for answering graph pattern queries using views (Section 3).
Given Qs and a set V(G) of views on a graph G, the algorithm
computes Qs(G) in O(|Qs||V(G)| + |V(G)|2) time, without ac-
cessing G at all when Qs is contained in V . It is far less costly than
O(|Qs|2 + |Qs||G|+ |G|2) for evaluating Qs directly on G [18],
[28], since G is typically much larger than V(G) in practice.

(2) To decide which views in V to use when answering Qs,
we identify three fundamental problems for pattern containment
(Section 4). Given Qs and V , (a) the containment problem is to
decide whether Qs is contained in V , (b) minimal containment is to
identify a subset of V that minimally contains Qs, and (c) minimum
containment is to find a minimum subset of V that contains Qs. We
show that the first two problems are in cubic-time, whereas the
third one is NP-complete and hard to approximate (APX-hard).

The results are also useful for query minimization. Indeed,
when V contains a single view, the containment problem becomes
the classical query containment problem [6].

These results are a nice surprise. Recall that even for relational
SPC (a.k.a. conjunctive) queries, the problem of query contain-
ment is NP-complete [6]; for XPath fragments, it is EXPTIME-
complete or even undecidable [41]. In contrast, (minimal) con-
tainment for graph pattern queries is in low PTIME, although the
queries may be “recursively defined” (as cyclic patterns).

(3) We develop efficient algorithms for checking (minimal, mini-
mum) pattern containment (Section 5). For containment and min-
imal containment, we provide cubic-time algorithms in the sizes
of query Qs and view definitions V , which are much smaller than
graph G in practice. For minimum containment, we provide an
efficient approximation algorithm with performance guarantees.

(4) When exact answers of a query Qs cannot be computed using
views V , i.e., when Qs is not contained in V , one wants to find
the maximal part of Qs that can be answered using V . We study
the problem of maximally contained rewriting (Section 6). A query
Qs
′ is a maximally contained rewriting of Qs if (a) it is a subquery

of Qs, (b) it is contained in V , and (c) Qs
′ is not a subquery of

any larger contained rewriting of Qs. We show that a maximally
contained rewriting Qs

′ of Qs w.r.t. V can be found in cubic-time,
by presenting such an algorithm. This provides us with a query-
driven approximation scheme, by treating Qs

′(G) as approximate
query answers to Qs in a big graph G. Alternatively, one can
compute exact answers Qs(G) by using Qs

′(G) and additionally,
accessing a small fraction of G, along the same lines as the scale
independence approach suggested in [17].

(5) Using real-life graphs (Amazon, YouTube, Citation and Web-
Graph), we experimentally verify the effectiveness, efficiency and
accuracy of our view-based matching method (Section 7). We find
that this method is 23.2 times faster than conventional methods
for pattern queries on WebGraph [3], a Web graph with 118.1
million nodes (web pages) and 1.02 billion edges (hyperlinks). In
addition, our matching algorithm scales well with data size and
pattern size; and our algorithms for (minimal, minimum) pattern
containment tests take 0.15 second on complex (cyclic) patterns.
We further find that our algorithm can compute maximally con-
tained rewriting Qs

′ efficiently, and that the query results of Qs
′ on

V(G) has accuracy of 0.73 (F-measure) on average on WebGraph.

The work is a first step toward understanding graph pattern
matching using views, from theory to practical methods. We
contend that the method is effective: one may pick and cache
previous query results, and efficiently answer pattern queries using
the views, without accessing large social graphs directly. If a
query Qs is not contained in a set of views, one can either
adjust the views or approximately answer Qs by making use of
a maximally contained rewriting of Qs. Better still, incremental
methods are already in place to efficiently maintain cached pattern
views (e.g., [20]). The view-based method can be readily combined
with existing distributed, compression and incremental techniques,
and yield a promising approach to querying “big” social data.

Related Work. This work extends [21] by including new proofs,
results and experimental study: (1) proofs for the pattern contain-
ment characterization (Section 3); (2) proofs of the fundamental
problems for pattern containment (Section 4); (3) algorithms
contain and minimum (Section 5); (4) results and proofs for max-
imally contained rewriting for graph pattern matching (Section 6),
a topic not studied in [21]; and (5) two sets of new experiments
(Section 7): one for evaluating the effectiveness of our approach
using graphs with billions of nodes and edges [3], and the other
for the efficiency and accuracy of approximate query answering
by means of maximally contained rewriting.

We categorize other related work as follows.

Query answering and rewriting. There are two view-based ap-
proaches for query processing: query rewriting and query answer-
ing [27], [33]. Given a query Q and a set V of views, (1) query
rewriting is to reformulate Q into an equivalent query Q′ in a fixed
language such that for all D, Q(D) = Q′(D), and moreover, Q′

refers only to V ; and (2) query answering is to compute Q(D) by
evaluating a query A equivalent to Q, while A refers only to V
and its extensions V(D). While the former requires that Q′ is in
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a fixed language, the latter imposes no constraint on A.
We next review previous work on these issues for relational

databases, XML data and general graphs.

(1) Relational data. Query processing using views has been exten-
sively studied for relational data (see [6], [27], [33] for surveys).
It is known that for SPC (conjunctive) queries, query answering
and rewriting using views are intractable [27], [33]. For the
containment problem, the well-known homomorphism theorem
shows that an SPC query is contained in another if and only if
there exists a homomorphism between the tableaux representing
the queries, and it is NP-complete to determine the existence of
such a homomorphism [6]. Moreover, the containment problem is
undecidable for relational algebra [6].

(2) XML. There has also been a host of work on processing XML
queries using views [39], [41], [44]. In [39], the containment of
simple XPath queries is shown coNP-complete. When disjunction,
DTDs and variables are taken into account, the problem ranges
from coNP-complete to EXPTIME-complete to undecidable for
various XPath classes [41]. In [7], containment and query rewrit-
ing of XML queries are studied under constraints expressed as a
structural summary. For tree pattern queries (a fragment of XPath),
[30] and [50] have studied maximally contained rewriting.

(3) Semistructure data. Views defined in Lorel are studied in,
e.g., [52], which are quite different from graph patterns considered
here. View-based query rewriting for regular path queries (RPQs)
is shown PSPACE-complete in [11], and an EXPTIME rewriting
algorithm is given in [43]. The containment problem is shown
undecidable for RPQs under constraints [25] and for extended
conjunctive RPQs [9].

(4) RDF. An EXPTIME query rewriting algorithm is given in [32]
for SPARQL. It is shown in [13] that query containment is in
EXPTIME for PSPARQL, which supports regular expressions.
There has also been work on evaluating SPARQL queries on RDF
based on cached query results [14].

Our work differs from the prior work in the following. (1) We
study query answering using views for graph pattern queries via
graph simulation, which are quite different from previous settings,
from complexity bounds to processing techniques. (2) We show
that the containment problem for the pattern queries is in PTIME,
in contrast to its intractable counterparts for e.g., SPC, XPath,
RPQs and SPARQL. (3) We study a more general form of query
containment between a query Qs and a set of queries, to identify
an equivalent query for Qs that is not necessarily a pattern query.
(4) The high complexity of previous methods for query answering
using views hinders their applications in the real world. In contrast,
our algorithms have performance guarantees and yield a practical
method for querying real-life social networks.

Pattern queries on big graphs. There have been a host of tech-
niques for graph pattern queries via simulation on “big” and/or
distributed graphs. We next review some of them.

(1) Distributed graph simulation [22], [23], [37]. Several algo-
rithms are in place for distributed graph simulation, by following
the synchronized message passing strategy [23] of Pregel [38],
scheduling message passing across different fragments, and by
integrating (incremental) partial evaluation, partitioned parallelism
and message passing [22]; performance guarantees on data ship-
ment and response time are provided in [22].

(2) Graph compression. To query “big” graphs, query-preserving

compression [19] and graph summarization [40] have been pro-
posed to reduce the search space by converting a big G to a smaller
graph Gc, and evaluate queries on Gc without decompression [19].

(3) Incremental view maintenance. As real-life graphs are updated
frequently, techniques for incremental graph simulation have been
developed [20] with complexity measured in the size of changes
to the input and output, independent of the size of the original big
graphs. These allow us to efficiently maintain graph pattern views.

(4) Bounded evaluation. A class of access constraints, a characteri-
zation and algorithms have been developed in [12], which allow us
to decide whether a pattern query Q can be answered by accessing
a small fraction GQ of a big graph G under the access constraints,
and if so, to compute Q(G) by accessing GQ only. The methods
work for both graph simulation and subgraph isomorphism.

This work can be naturally combined with distributed, com-
pression and incremental techniques. For example, view-based
techniques can be employed for local evaluation of graph sim-
ulation in the distributed algorithm of [22]; views can be cached
for simulation-preserving compressed graphs of [19] instead of the
original graphs G, which are only 43% of the size of G on average;
and the incremental techniques of [20] can be used to efficiently
maintain views when graphs are updated. Moreover, maximally
contained views can be combined with access constraints [12] to
compute exact query answers following [17]. Taken together, these
methods yield a promising approach to querying “big” graphs.

The techniques of this work can be readily extended to
various revisions of graph simulation such as bounded simulation
(reported in [21]), dual simulation and strong simulation [36] (see
discussion in Section 8). Due to the space constraints, we only
report our findings about graph simulation in this paper.

2 GRAPHS, PATTERNS AND VIEWS
We first review pattern queries and graph simulation. We then state
the problem of pattern matching using views.

2.1 Data Graphs and Graph Pattern Queries
Data graphs. A data graph is a directed graph G = (V, E, L),
where (1) V is a finite set of nodes; (2) E ⊆ V × V , in which
(v, v′) denotes an edge from node v to v′; and (3) L is a function
such that for each node v in V , L(v) is a set of labels from an
alphabet Σ. Intuitively, L specifies the attributes of a node, e.g.,
name, keywords, blogs and social roles [31].

Pattern queries [18]. A graph pattern query, denoted as Qs, is a
directed graph Qs = (Vp, Ep, fv), where (1) Vp and Ep are the
set of pattern nodes and the set of pattern edges, respectively; and
(2) fv is a function defined on Vp such that for each node u ∈ Vp,
fv(u) is a label in Σ. We remark that fv can be readily extended
to specify search conditions in terms of Boolean predicates [18]
(see Figure 8 for examples of search conditions).

Graph pattern matching. We say that a data graph G = (V, E, L)
matches a graph pattern query Qs = (Vp, Ep, fv) via simulation,
denoted by Qs E G, if there exists a binary relation S ⊆ Vp×V ,
refereed to as a match in G for Qs, such that

• for each pattern node u ∈ Vp, there exists a node v ∈ V
such that (u, v) ∈ S, referred to as a match of u; and

• for each pair (u, v) ∈ S, (a) fv(u) ∈ L(v); and moreover,
(b) for each pattern edge e = (u, u′) in Ep, there exists
an edge (v, v′) in E, referred to as a match of e in S, such
that (u′, v′) ∈ S, i.e., v′ is a match of u′.
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When Qs E G, there exists a unique maximum match So in
G for Qs [28]. We derive {(e, Se) | e ∈ Ep} from So, where Se

is the set of all matches of e in So, referred to as the match set
of e. Here Se is nonempty for all e ∈ Ep. We define the result
of Qs in G, denoted as Qs(G), to be the unique maximum set
{(e, Se) | e ∈ Ep} if Qs E G, and let Qs(G) = ∅ otherwise.

We define the size of query Qs, denoted by |Qs|, to be the total
number of nodes and edges in Qs; we define the size |Qs(G)| of
Qs(G) to be the total edge number of sets Se for all edges in Qs.

Example 2: Consider pattern query Qs shown in Fig. 1 (c), where
each node carries a search condition (job title), and each edge in-
dicates a collaboration relationship. When Qs is posed on the net-
work G of Fig. 1 (a), the result Qs(G) is shown in the table below:

Edge Matches

(PM, DBA1) {(Bob, Mat), (Walt, Mat)}
(PM, PRG2) {(Bob, Dan), (Walt, Bill)}

(DBA1, PRG1) {(Fred, Pat), (Mat,Pat), (Mary, Bill)}
(DBA2, PRG2)
(PRG1, DBA2) {(Dan, Fred), (Pat, Mary),
(PRG2, DBA1) (Pat, Mat), (Bill, Mat)}

More specifically, (1) both Bob and Walt match pattern node PM
as they satisfy its search condition; similarly, Fred, Mat, Mary
match DBA, and Dan, Pat, Bill match PRG; (2) pattern edge
(PM, DBA1) in Qs has two matches in G; and (3) query edges
(DBA1, PRG1) and (DBA2, PRG2) (resp. (PRG1, DBA2) and
(PRG2, DBA1)) have the same matches. 2

To simplify the discussion, we consider w.l.o.g. graph patterns
Qs that are connected, as commonly found in real life. That is,
for any nodes u and u′ in Q, there is an undirected path between
u and u′, by treating Qs as an undirected graph. One can easily
verify the following, by a straightforward induction on the number
of edges in Qs, based on the definition of graph simulation.

Lemma 1: For any connected pattern Qs and any graph G, if
Qs(G) = ∅, then Se = ∅ for all e in Qs. 2

2.2 Graph Pattern Matching Using Views
We next formulate the problem of graph pattern matching using
views. We study views V defined as a graph pattern query, and
refer to the query result V(G) in a data graph G as the view
extension for V in G or simply as a view [27].

Given a pattern query Qs and a set V = {V1, . . . ,Vn} of view
definitions, graph pattern matching using views is to find another
query A such that for all data graphs G, (1) A only refers to views
Vi ∈ V and their extensions V(G) = {V1(G), . . . ,Vn(G)} in
G, and (2) A is equivalent to Qs, i.e., A(V(G)) = Qs(G), where
A(V(G)) denotes the matching result of A over V(G)). If such a
query A exists, we say that Qs can be answered using views V .

In contrast to query rewriting using views [27], here A is not
required to be a pattern query [33]. For example, Figure 1 (b) de-
picts a set V = {V1,V2} of view definitions and their extensions
V(G) = {V1(G),V2(G)}. To answer the query Qs (Fig. 1 (c)),
we want to find a query A that computes Qs(G) by using only V
and V(G), where A is not necessarily a graph pattern.

For a set V of view definitions, we define the size |V| of V to
be the total size of Vi’s in V , and the cardinality card(V) of V to
be the number of view definitions in V .

The notations of the paper are summarized in Table 1.
Remark. Our techniques also work on graphs and queries with
edge labels. Indeed, an edge-labeled graph can be converted to

symbols notations
Qs = (Vp, Ep, fv) graph pattern query

Qs(G) query result of Qs in G
V = (V1, . . . , Vn) a set of view definitions Vi

V(G) = (V1(G), . . . , Vn(G)) a set of view extensions Vi(G)
Qs E G simulation
Qs v V Qs is contained in V

Qs
′ ⊆ Qs Qs

′ is a subgraph of Qs

MQs
V view match from a view V to Qs

|Qs| (resp. |V|) size (total number of nodes and edges)
of Qs (resp. view definition V)

|Qs(G)| total number of edges in sets Se

for all edges e in Qs

|V| total size of view definitions in V
card(V) the number of view definitions in V

TABLE 1: A summary of notations

a node-labeled graph: for each edge e, add a “dummy” node
carrying the label of e, along with two unlabeled edges.

3 A CHARACTERIZATION

In this section, we propose a characterization of graph pattern
matching using views, i.e., a sufficient and necessary condition
for deciding whether a pattern query can be answered by using
a set of views. We also provide a quadratic-time algorithm for
answering pattern queries using views.

Pattern containment. We first introduce a notion of pattern con-
tainment, by extending the traditional notion of query containment
to a set of views. Consider a pattern query Qs = (Vp, Ep, fv)
and a set V = {V1, . . . ,Vn} of view definitions, where
Vi = (Vi, Ei, fi). We say that Qs is contained in V , denoted
by Qs v V , if there exists a mapping λ from Ep to powerset
P(

⋃
i∈[1,n] Ei), such that for all data graphs G, the match set

Se ⊆
⋃

e′∈λ(e) Se′ for all edges e ∈ Ep.
The analysis involves query Qs and view definitions V , inde-

pendent of data graphs G and view extensions V(G).

Example 3: Recall G, V and Qs given in Fig. 1. Then Qs v V .
Indeed, there exists a mapping λ from Ep of Qs to sets of edges in
V , which maps (a) edges (PM, DBA1) and (PM, PRG2) of Qs to
their counterparts in V1; (b) both (DBA1, PRG1), (DBA2, PRG2)
of Qs to e3, and (c) (PRG1, DBA2) and (PRG2, DBA1) to e4 in
V2. In any graph G, one may verify that for any edge e of Qs, its
matches are contained in the union of the match sets of the edges
in λ(e). For instance, the match set of pattern edge (DBA1, PRG1)
in G is {(Fred, Pat), (Mat, Pat), (Mary, Bill)}, which is contained
in the match set of e3 of V2 in G. 2

Pattern containment and query answering. The main result of
this section is as follows: (1) pattern containment characterizes
pattern matching using views; and (2) when Qs v V , for all
graphs G, Qs(G) can be efficiently computed by using views
V(G) only, independent of the size |G| of the underlying graph G.
In Sections 4 and 5 we will show how to decide whether Qs v V
by inspecting Qs and V only, also independent of |G|.
Theorem 2: (1) A pattern query Qs can be answered using V
if and only if Qs v V . (2) For any graph G, Qs(G) can be
computed in O(|Qs||V(G)|+ |V(G)|2) time if Qs v V . 2

This suggests an approach to answering graph pattern queries,
as follows. Given a pattern Qs and a set V of views, we first
efficiently determine whether Qs v V (by using the algorithm to
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be given in Section 5); if so, for all (possibly big) graphs G we
compute Qs(G) by using V(G) instead of G, in quadratic-time in
the size of V(G), which is much smaller than G.

Below we prove Theorem 2.

(I) We first prove the Only If condition, i.e., if Qs can be answered
using V , then Qs v V . We show this by contradiction. Assume
that Qs can be answered using V , while Qs 6v V . By the definition
of containment, there must exist some data graph Go such that for
all the possible mappings λ, there always exists at least one edge
e in Qs such that Se 6⊆ ⋃

e′∈λ(e) Se′ . Consider the following
two cases. (1) When Qs(Go) = ∅. By Lemma 1, for all e in
Qs, Se = ∅ in Go and hence it contradicts to the assumption that
Se 6⊆

⋃
e′∈λ(e) Se′ . (2) When Qs(Go) 6= ∅. If so, there must exist

at least one edge eo in Go such that eo is in Se for some edge e
in Qs, but it is not in Se′ for any e′ ∈ λ(e). That is, eo cannot
be included in Se′ for any e′ ∈ λ(e), for all possible λ. This
contradicts the assumption that Qs can be answered using only V
and V(Go), since at least the edge eo is missing from V(Go) for
some graph Go, no matter how λ is defined. Therefore, Qs can be
answered using V only if Qs v V .

(II) We next show the If condition of Theorem 2(1) with a
constructive proof: we give an algorithm to evaluate Qs using
V(G), if Qs v V . We verify Theorem 2(2) by showing that the
algorithm is in O(|Qs||V(G)| + |V(G)|2) time.

Algorithm. We next present the algorithm that evaluates Qs using
V . The algorithm, denoted as MatchJoin, is shown in Fig. 2. It
takes as input (1) a pattern query Qs and a set of view definitions
V = {Vi | i ∈ [1, n]}, (2) a mapping λ for Qs v V (we defer the
computation of λ to Section 5); and (3) view extensions V(G) =
{Vi(G) | i ∈ [1, n]}. In a nutshell, it computes Qs(G) by “merg-
ing” (joining) views Vi(G) as guided by λ. The merge process
iteratively identifies and removes those edges that are not matches
of Qs, until a fixpoint is reached and Qs(G) is correctly computed.

More specifically, MatchJoin works as follows. It starts
with empty match sets Se for each pattern edge e (lines 1-2).
MatchJoin sets Se as

⋃
e′∈λ(e) Se′ , where Se′ is extracted from

V(G) (lines 3-4), following the definition of λ(e). It then performs
a fixpoint computation to remove all invalid matches from Se

(lines 5-10). For each pattern edge ep = (u, u′) with its match
set Sep

changed, it checks whether the change propagates to the
“parents” (i.e., u′′ with edge (u′′, u)) of u. That is, it checks
whether each match e′ of e = (u′′, u) still remains to be a
match of e (lines 7-10), following the definition of simulation
(Section 2.1). More specifically, it checks whether a child u1 of
u′′ (resp. a child u2 of u) has no match as a child v1 of v′′ (resp.
a child v2 of v) in edge e′1 = (v′′, v1) (resp. e′2 = (v, v2)). If so,
e′ is no longer a match of e due to that v′′ (resp. v) is invalid
match of u′′ (resp. u), and is removed from Se (lines 8,10). In the
process, if Se becomes empty for some edge e, MatchJoin returns
∅ since Qs has no match in G. Otherwise, the process (lines 5-11)
proceeds until Qs(G) is computed and returned (line 12).

Example 4: Consider G, Qs and V shown in Fig. 3. One can
verify Qs v V by a mapping λ that maps (AI, Bio), (PM, AI) to
e1, e2 in V1, respectively; and (DB, AI), (AI, SE), (SE, DB) to e3,
e4, e5 in V2, respectively. MatchJoin then merges view matches
guided by λ, removes (AI1, SE1) from S(AI,SE), which is an
invalid match for (AI, SE) in Qs. This further leads to the removal
of (SE1, DB2) from S(SE,DB), and (DB2, AI2) from S(DB,AI). This

Input: A pattern query Qs, a set of view definitions V
and their extensions V(G), a mapping λ.

Output: The query result M as Qs(G).

1. for each edge e in Qs do Se := ∅;
2. M := {(e, Se) | e ∈ Qs};
3. for each e ∈ Qs do
4. for each e′ ∈ λ(e) do Se := Se ∪ Se′ ;
5. while there is change in Sep for an edge ep = (u, u′) in Qs do
6. for each e = (u′′, u) in Qs and e′ = (v′′, v) ∈ Se do
7. if there is e1 = (u′′, u1) but no e′1 = (v′′, v1) in Se1 then
8. Se := Se \ {e′};
9. if there is e2 = (u, u2) but no e′2 = (v, v2) in Se2 then
10. Se := Se \ {e′};
11. if Se = ∅ then return ∅;
12. return M = {(e, Se) | e ∈ Qs}, which is Qs(G);

Fig. 2: Algorithm MatchJoin

yields Qs(G) shown in the table below, as the final result.

Edge Matches Edge Matches

(PM, AI) (PM1, AI2) (AI, Bio) (AI2, Bio1)
(DB, AI) (DB1, AI2) (AI, SE) (AI2, SE2)
(SE, DB) (SE2, DB1) 2

To complete the proof of Theorem 2, we show that (1)
MatchJoin correctly evaluates Qs using V(G) if Qs v V , and
(2) MatchJoin is in O(|Qs||V(G)| + |V(G)|2) time.

Correctness. For each edge e in Qs, we denote the match set of e
in G as S∗e when MatchJoin progresses to process Qs and V(G).
For the correctness of MatchJoin, it suffices to show the following
two invariants it preserves: (1) at any time, for each edge e of Qs,
S∗e ⊆ Se; and (2) Se = S∗e when MatchJoin terminates. For if
these hold, then MatchJoin never misses any match or introduces
any invalid match when it terminates.

Proof of Invariant (1). By Qs v V , there exists a mapping λ such
that Se ⊆

⋃
e′∈λ(e) Se′ . Algorithm MatchJoin takes as input λ,

Qs, V and V(G) (Fig. 2). (1) For each edge e in Qs, it initializes
Se by merging Se′ for all e′ ∈ λ(e). Hence S∗e ⊆ Se due to
Qs v V . (2) During the while loop (lines 5-10, Fig. 2), MatchJoin
repeatedly refines Se by removing matches that are no longer valid
according to the definition of graph simulation. More specifically,
for an edge ep = (u, u′) in Qs with Sep

changed, the matches
e′ = (v′′, v) ∈ Se for all e = (u′′, u) in Qs become invalid if
(a) there is an edge e1 = (u′′, u1) in Qs but there exists no match
(v′′, v1) ∈ Se1 (lines 7-8); or (b) there is an edge e2 = (u, u2) in
Qs but there exists no match (v, v2) ∈ Se2 (lines 9-10). Note that
(i) both cases indicate that at least a match becomes invalid, and
(ii) there exist no other cases that make a match invalid, by the
definition of graph simulation. Hence MatchJoin never removes
a true match, and never misses an invalid match by checking the
two conditions. Thus, S∗e ⊆ Se during the loop (lines 5-10).

Proof of Invariant (2). When algorithm MatchJoin terminates,
either (1) Se becomes empty (line 11), or (2) no invalid match can
be found. Since S∗e ⊆ Se during the entire loop (Invariant (1)),
if it is case (1), then there exists some edge e such that S∗e is
empty. That is, G does not match Qs, and MatchJoin returns
∅ correctly. Otherwise, i.e., in case (2), all invalid matches are
removed (lines 7-10), and S∗e = Se when MatchJoin terminates.

From the analysis above, the correctness of MatchJoin fol-
lows. That is, the If condition is verified.

Putting these together, we have shown Theorem 2(1).
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e4
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Se3

Se4
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SE1->DB2

SE2->DB1

Fig. 3: Answering pattern queries using views

Complexity. To complete the proof of Theorem 2(2), we pro-
vide a detailed worst-case time complexity analysis for algo-
rithm MatchJoin as follows.

(1) MatchJoin spends O(|Qs|) time to initialize an empty set
M (lines 1-2). It next merges matches in V(G) via the mapping
λ (lines 3-4). Note that the size of λ(e) is bounded by ΣV∈V |V|.
The merge process hence takes in total O(|Qs||V(G)|) time.

(2) MatchJoin next iteratively removes invalid matches by con-
ducting a fixpoint computation (lines 5-11). Given a match (v′′, v)
in V(G), MatchJoin verifies its validity, i.e., whether it carries
over to Qs(G) in the current iteration, in O(|V(G)|) time; this
is because at most Σe1=(u′′,u1)∈Ep

Se1 + Σe2=(u,u2)∈Ep
Se2

matches have to be inspected, which is bounded by O(|V(G)|).
To speed up the validity checking, MatchJoin employs an index
structure I as a hash-table, which keeps track of a set of key-
value pair. Each key is a pair of nodes (u, v), where u is in Qs

and v can match u. Each value corresponding to the key (u, v)
is a set of pattern edges and their match set (e = (u, u2), Se).
The index dynamically maintains the key-value pairs: (1) for each
node v, if there exists an edge e emitting from u with Se = ∅, then
I(u, v) is set as ∅, and (2) given a match (v, v2) of e = (u, u2),
if I(u, v) or I(u2, v2) is already empty, no further checking is
needed, and (v, v2) can be removed from Se. Following this, it
takes MatchJoin constant time (rather than linear time) to check
the validity of a match (lines 7,9).

Observe that when a match is removed from V(G), it will
never be put back, i.e., V(G) is monotonically decreasing. Thus
each match in V(G) is processed at most once. Note that if an
edge e in G appears in different match set Se, each is considered
as a distinct edge match. In addition, the index I can be initialized
in O(|Qs||V(G)|) time. As a result, the while loop (line 5) and for
loop (line 6) together are bounded by O(|V(G)|2) time. Putting
these together, MatchJoin is in O(|Qs||V(G)|+ |V(G)|2) time.

These complete the proof of Theorem 2.

Remark. It takes O(|Qs|2 + |Qs||G| + |G|2) time to evaluate
Qs(G) directly on G by graph simulation [18]. In contrast,
MatchJoin is in O(|Qs||V(G)| + |V(G)|2) time, without
accessing G. In practice V(G) is much smaller than G. Indeed,
for WebGraph in our experiments (Section 7), only 2 to 7 views
are needed to answer Qs, and the overall size of V(G) is no more
than 11% of the size of the entire WebGraph.

Optimization. MatchJoin may visit each Se multiple times. To
reduce unnecessary visits, below we introduce an optimization
strategy for MatchJoin. The strategy evaluates Qs by using ranks
in Qs as follows. Given a pattern Qs, the strongly connected
component graph GSCC of Qs is obtained by collapsing each
strongly connected component SCC of Qs into a single node s(u).
The rank r(u) of each node u in Qs is computed as follows: (a)

r(u) = 0 if s(u) is a leaf in GSCC, where u is in the SCC s(u);
and (b) r(u) = max{(1 + r(u′′)) | (s(u), s(u′′)) ∈ ESCC}
otherwise. Here ESCC is the edge set of the GSCC of Qs. The rank
r(e) of an edge e = (u′′, u) in Qs is set to be r(u).

Bottom-up strategy. We revise MatchJoin by processing edges e
in Qs following an ascending order of their ranks (lines 5-11). One
may verify that this “bottom-up” strategy guarantees the following
for the number of visits.

Lemma 3: For all edges e = (u′′, u) where u′′ and u do not
reach non-singleton SCC in Qs, MatchJoin visits its match set Se

at most once using the bottom-up strategy. 2

Indeed, assume that algorithm MatchJoin visits an edge e =
(u′′, u) at least twice. Then either MatchJoin does not follow a
bottom-up strategy in the rank order, or at least u or u′′ reaches a
non-singleton SCC in Qs. In particular, when Qs is a DAG pattern
(i.e., acyclic), MatchJoin visits each match set at most once, and
the total visits are bounded by the number of the edges in Qs.
As will be verified in Section 7, MatchJoin with optimization
strategy runs 1.66 times faster on WebGraph than its counterpart
without optimization over cyclic patterns.

4 PATTERN CONTAINMENT PROBLEMS

In the next two sections, we study how to determine whether
Qs v V . Our main conclusion is that there are efficient algorithms
for these, with their costs as a function of |Qs| and |V|, which
are typically small in practice, and are independent of data graphs
and materialized views.

We start with three problems in connection with pattern
containment, and establish their complexity. In the next section,
we will develop effective algorithms for checking Qs v V , and
computing mapping λ from Qs to V .

Pattern containment problem. The pattern containment problem
is to determine, given a pattern query Qs and a set V of view
definitions, whether Qs v V . The need for studying this problem
is evident: Theorem 2 tells us that Qs can be answered by using
views of V if and only if Qs v V .

The result below tells us that Qs v V can be efficiently
decided (see Table 1 for |Qs|, |V|, card(V)). We will prove the
result in Section 5, by providing a checking algorithm.

Theorem 4: Given a pattern query Qs and a set V of view
definitions, it is in O(card(V)|Qs|2 + |V|2 + |Qs||V|) time to
decide whether Qs v V and if so, to compute an associated
mapping λ from Qs to V . 2

A special case of pattern containment is the classical query
containment problem [6]. Given two pattern queries Qs1 and Qs2,
the latter is to decide whether Qs1 v Qs2, i.e., whether for
all graphs G, Qs1(G) is contained in Qs2(G). Indeed, when V
contains only a single view definition Qs2, pattern containment
becomes query containment. From this and Theorem 4 the result
below immediately follows.

Corollary 5: The query containment problem for graph pattern
queries is in quadratic time. 2

Like for relational queries (see, e.g., [6]), query containment
is important in minimizing and optimizing pattern queries. Corol-
lary 5 shows that the analysis for graph patterns Qs1 and Qs2

is in O(|Qs1|2 + |Qs2|2 + |Qs1||Qs2|) time, as opposed to the
intractability of its counterpart for relational conjunctive queries.
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Minimal containment problem. As shown in Section 3, the
complexity of pattern matching using views is dominated by
|V(G)|. This suggests that we reduce the number of views used for
answering Qs. Indeed, the less views are used, the smaller |V(G)|
is. This gives rise to the minimal containment problem. Given Qs

and V , it is to find a minimal subset V ′ of V that contains Qs. That
is, (1) Qs v V ′, and (2) for any proper subset V ′′ of V ′, Qs 6v V ′′.

The good news is that the minimal containment problem
does not make our lives harder. We will prove the next result
in Section 5 by developing a cubic-time algorithm.

Theorem 6: Given Qs and V , it is in O(card(V)|Qs|2 + |V|2 +
|Qs||V|) time to find a minimal subset V ′ of V containing Qs and
a mapping λ from Qs to V ′ if Qs v V . 2

Minimum containment problem. One may also want to find
a minimum subset V ′ of V that contains Qs. The minimum
containment problem, denoted by MMCP, is to find a subset V ′
of V such that (1) Qs v V ′, and (2) for any subset V ′′ of V , if
Qs v V ′′, then card(V ′) ≤ card(V ′′).

As will be seen shortly (Examples 6 and 7) and verified by
our experimental study, MMCP analysis often finds smaller V ′
than views found by algorithm minimal.

MMCP is, however, nontrivial: its decision problem is NP-
complete and MMCP is APX-hard. Here APX is the class of
problems that allow PTIME algorithms with approximation ratio
bounded by a constant (see [49] for APX). Nonetheless, we
show that MMCP is approximable within O(log |Ep|) in low
polynomial time, where |Ep| is the number of edges of Qs. That
is, there exists an efficient algorithm that identifies a subset V ′
of V with performance guarantees whenever Qs v V such that
Qs v V ′ and |card(V ′)| ≤ log(|Ep|)|card(VOPT)|, where VOPT

is a minimum subset of V that contains Qs.

Theorem 7: The minimum containment problem is
(1) NP-complete (its decision problem) and APX-
hard, but (2) it is approximable within O(log |Ep|) in
O(card(V)|Qs|2 + |V|2 + |Qs||V|+(|Qs| ·card(V))3/2) time. 2

Proof. We first show Theorem 7(1). We defer the proof of
Theorem 7(2) to Section 5, where an approximation algorithm
is provided as a constructive proof.

(I) We first show that MMCP is NP-complete. The decision
problem of MMCP is to decide, given an integer k, whether there
exists a subset V ′ of V such that Qs v V ′ and card(V ′) ≤ k. It is
in NP since there exists an algorithm that guesses and checks V ′ in
PTIME (Theorem 4). We next show the NP-hardness by reduction
from the NP-complete set cover problem (SCP) (cf. [42]).

Given a set X , a collection U of its subsets and an integer
B, SCP is to decide whether there exists a B-element subset U ′
of U that covers X , i.e.,

⋃
U∈U ′ = X . Given such an instance

of SCP, we construct an instance of MMCP as follows: (a) for
each xi ∈ X , we create a unique edge exi

with two distinct
nodes uxi

and vxi
; (b) we define a pattern query Qs as a graph

consisting of all edges exi
defined in (a); (c) for each subset Uj

∈ U and xi ∈ Uj , we define a corresponding view definition Vj

that consists of all edges exi
from Uj ; and (d) we set k = B.

The construction is obviously in PTIME. We next verify that
there exists U ′ with size no more than B if and only if there exists
V ′ of size no more than k that contains Qs.

(1) Assume that there exists a subset U ′ of U that covers X with

size less than B. Let V ′ be the set of view definitions Vj corre-
sponding to Uj ∈ U ′. One can verify that Qs v V ′, since there ex-
ists a mapping λ that maps Ep of Qs to powerset P(

⋃
Vj∈V′ Ej),

such that for any data graph G, Se ⊆
⋃

e′∈λ(e) Se′ for all edges
e ∈ Ep. Moreover, card(V ′) = |U ′| ≤ B = k.

(2) Conversely, if there exists V ′ ⊆ V that contains Qs with
no more than k view definitions, it is easy to see that the
corresponding set U ′ is a set cover with at most B elements.

As SCP is known to be NP-complete, so is MMCP.

(II) A problem is APX-hard if every APX problem can be
reduced to it by PTIME approximation preserving reductions
(AFP-reduction [49]). An AFP-reduction from a (minimization)
problem Π1 to another Π2 is characterized by a function pair
(f , g), where (a) for any instance I1 of Π1, I2 = f(I1) is an
instance of Π2 such that opt2(I2) ≤ opt1(I1), where function
opt1() (resp. opt2()) measures the quality of an optimal solution
to I1 (resp. I2), and (b) for any solution s2 of I2, s1 = g(I1, s2)
is a solution of I1 such that obj1(I1, s1) ≤ obj2(I2, s2), where
function obj1() (resp. obj2()) measures the quality of a solution to
I1 (resp. I2). If a problem Π1 is APX-hard, then Π2 is APX-hard
if there is an AFP-reduction from Π1 to Π2.

The APX-hardness of MMCP is verified by AFP-reduction
from the minimum set cover (also denoted as SCP), the optimiza-
tion version of SCP, which is known to be APX-hard (cf. [49]).

(1) We first define a function f . Given an instance I1 of the SCP
as its input, f outputs an instance I2 of the MMCP following
the same transformation in (I). Here opt2(I2) ≤ opt1(I1), where
opt1() (resp. opt2()) denotes the size of the minimum set cover
(resp. the minimum view definition set) that covers X (resp. Qs).
It is easy to see that function f is in PTIME.

(2) We then construct function g. Given a feasible solution V ′
for the instance I2, g outputs a corresponding U ′ following
the construction given in (1) above. Here obj1() (resp. obj2())
measures the cardinality of the solution U ′ to I1 (resp. V ′ to I2).
Note that g is trivially in PTIME.

We now show that (f, g) is an AFP-reduction from the SCP
to MMCP. It suffices to show that (a) opt

2
(I2) ≤ opt1(I1),

and that (b) obj1(I1, s1) ≤ obj2(I2, s2). Indeed, the construction
guarantees an one-to-one mapping from the elements in a set
cover for I1 to the view definitions in a view definition set for
I2. Thus, opt2(I2) = opt1(I1), and obj1(I1, s1) = obj2(I2, s2).
Hence, (f, g) is indeed an AFP-reduction. It is known that SCP
is APX-hard (cf. [49]); hence MMCP is also APX-hard. 2

5 DETERMINING PATTERN CONTAINMENT

In this section, we prove Theorems 4, 6 and 7(2) by providing
effective (approximation) algorithms for checking pattern con-
tainment, minimal containment and minimum containment in
Sections 5.1, 5.2 and 5.3, respectively.

5.1 Pattern Containment
We start with a proof of Theorem 4, i.e., whether Qs v V
can be decided in O(card(V)|Qs|2 + |V|2 + |Qs||V|) time. To
do this, we first propose a sufficient and necessary condition to
characterize pattern containment. We then develop a cubic-time
algorithm based on the characterization.

Sufficient and necessary condition. To characterize pattern con-
tainment, we introduce a notion of view matches.
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Consider a pattern query Qs and a set V of view definitions.
For each V ∈ V , let V(Qs) = {(eV, SeV

) | eV ∈ V}, by
treating Qs as a data graph. Obviously, if V E Qs, then SeV

is the nonempty match set of eV for each edge eV of V (see
Section 2.1). We define the view match from V to Qs, denoted by
MQs

V , to be the union of SeV
for all eV in V.

The result below shows that view matches yield a characteri-
zation of pattern containment.

Proposition 8: For view definitions V and pattern Qs with edge
set Ep, Qs v V if and only if Ep =

⋃
V∈V MQs

V . 2

Proof. (I) We first prove the If condition. Assume that Ep =⋃
V∈V MQs

V , i.e., the union of all the view matches from V
“covers” Ep. We show that Qs v V by constructing a mapping λ
from Ep to the edges in V , such that for all data graphs G and all
edges e in Qs, Se ⊆

⋃
e′∈λ(e) Se′ .

We construct a mapping λ as a “reversed” view matching
relation: for each edge ep of Qs, λ(ep) is a set of edges e′ from
the view definitions in V , such that for each edge e′ of a view
definition V ∈ V , if e′ ∈ λ(ep), then ep is a match of e′ in the
view match MQs

V of V in Qs.

We next show that λ ensures Qs v V . For any data graph
G, (i) if Qs(G) = ∅, then Qs v V by definition; (ii) otherwise,
for each pattern edge ep of Qs, there exists at least one edge e
as a match of ep in G via simulation. Moreover, for any edge e′

(of view V) in λ(ep), ep is in turn a match of e′ via simulation.
One can verify that any match e of ep in G is also a match of
e′ ∈ λ(ep) in V. To see this, note that (a) e is a match of ep; as
a result, for any edge e′p adjacent to ep, there exists an edge e′′

adjacent to e such that e′′ is a match of e′p, by the semantics of
simulation (Section 2); and (b) ep is a match of e′; hence similar
to the argument for (a), for any edge e′a adjacent to e′ in a view
definition V, one can see that there exists an edge e′p adjacent to
ep such that e′p is a match of e′a, by the semantics of graph pattern
matching via graph simulation. From (a) and (b) it follows that e
is a match of e′ in the view extension. Hence, given any match e
of ep from Qs in G, there exists an edge e′ in λ(ep) from a view
definition V, such that e is also a match of e′ in view extension
V(G). That it, λ guarantees that Qs v V , by definition.

(II) For the Only If condition, assume by contradiction that
Qs v V but Ep 6= ⋃

V∈V MQs

V . To simplify the discussion,
assume w.l.o.g. that each node in Qs has a distinct label. Then
when taking Qs as a data graph G, it can be verified that (i) Qs(G)
is {(ep, Sep

= {ep}) | ep ∈ Ep}; and (ii) there exists a mapping
λ from each edge ep of Qs to an edge ei in some view of V , such
that {ep} ⊆ Sei

. This is ensured by the definition of Qs v V . On
the other hand, (i)

⋃
V∈V MQs

V ⊆ Ep, since all the edges in view
matches are from Ep; and (ii) Ep 6=

⋃
V∈V MQs

V (by assumption).
Hence Ep 6= ⋃

V∈V MG
V , i.e., there exists eo ∈ Ep such that

eo /∈ MG
V for all V ∈ V . Thus, Qs 6v V since {eo} * Sei

for all
ei of V ∈ V . Hence the contradiction.

This completes the proof of Proposition 8. 2

Algorithm. Following Proposition 8, we present an algorithm,
denoted as contain and shown in Fig. 4, to check whether Qs

v V . Given a pattern query Qs and a set V of view definitions,
it returns a boolean value ans that is true if and only if Qs v V .
The algorithm first initializes an empty edge set E to record view
matches from V (line 1) to Qs. It then checks the condition of
Proposition 8 as follows. (1) Compute view match MQs

V for each

Input: A pattern query Qs, and a set of view definitions V .
Output: A boolean value ans that is true if and only if Qs v V .

1. E := ∅;
2. for each view definition V ∈ V do
3. compute MQs

V ; E := E ∪MQs
V ;

4. if E = Ep then ans := true;
5. else ans := false;
6. return ans;

Fig. 4: Algorithm contain

V in V , by invoking the simulation evaluation algorithm in [18].
(2) Extend E with MQs

V , since MQs

V is a subset of Ep (lines 2-3).
After all view matches are merged, contain then checks whether
E = Ep. It returns true if so, and false otherwise (lines 4-6).

Proof of Theorem 4. Algorithm contain provides a constructive
proof for Theorem 4. To complete the proof, it remains to verify
its correctness and complexity.

Correctness. It suffices to show that contain correctly checks the
sufficient and necessary condition given in Proposition 8, i.e.,
whether the union of all the view matches from V “covers” Ep.
Indeed, (1) contain correctly computes the view match for each
view definition in V , by using an algorithm to compute graph
simulation relation [18]; and (2) when contain halts, it determines
whether Qs v V by checking if the union of the view matches
covers Ep, following Proposition 8. The correctness of contain
then follows from the proof for Proposition 8.

Complexity. Algorithm contain iteratively computes view match
MQs

Vi
for each view definition Vi = (Vi, Ei, fi). It takes

O((|Vp| + |Vi|)(|Ep| + |Ei|)) time for a single iteration [18],
[28]. The for loop repeats card(V) times; hence it takes
contain ΣVi∈V((|Vp| + |Vi|)(|Ep| + |Ei|)) time in total,
which equals card(V)|Vp||Ep|+ ΣVi∈V(|Vp||Ei|+ |Ep||Vi|) +
ΣVi∈V(|Vi||Ei|) time. Since |Vp| (resp. |Ep|) is bounded by
|Qs|, it can be verified that (1) card(V)|Vp||Ep| is bounded by
O(card(V)|Qs|2); (2) ΣVi∈V(|Vp||Ei| + |Ep||Vi|) is bounded
by O(|Qs||V|) since ΣVi∈V(|Ei| + |Vi|) = |V|; and (3)
ΣVi∈V(|Vi||Ei|) is bounded by ΣVi∈V(|Vi|2), which is fur-
ther bounded by O(|V|2). Thus, algorithm contain is in
O(card(V)|Qs|2 + |V|2 + |Qs||V|) time.

From these and Proposition 8, Theorem 4 follows. 2

Example 5: Consider pattern query Qs and a set of view
definitions V = {Vi | i ∈ [1, 7]} in Fig. 6. The view matches
MQs

Vi
of Vi for i ∈ [1, 7] are shown in the table below.

Vi MQs
Vi

Vi MQs
Vi

V1 {(C, D)} V2 {(B, E)}
V3 {(A, B), (A, C)} V4 {(B, D), (C, D)}
V5 {(B, D), (B, E)} V6 {(A, B), (A, C), (C, D)}
V7 {(A, B), (A, C), (B, D)}

Given Qs and V , contain returns true since
⋃

Vi∈V MQs

Vi
is

the edge set of Qs. One can verify that Qs v V . 2

Remarks. (1) Algorithm contain can be easily adapted to return
a mapping λ that specifies pattern containment (Section 3), to
serve as input for algorithm MatchJoin. This can be done by
following the construction given in the proof of Proposition 8. (2)
In contrast to regular path queries and relational queries, pattern
containment checking is in PTIME.

Approach. Using algorithms contain and MatchJoin (Fig. 2), we
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Input: A pattern query Qs, and a set of view definitions V .
Output: A subset V ′ of V that minimally contains Qs.

1. set V ′ := ∅; S := ∅; E := ∅; index M := ∅;
2. for each view definition Vi ∈ V do
3. compute MQs

Vi
;

4. if MQs
Vi
\ E 6= ∅ then

5. V ′ := V ′ ∪ {Vi}; S := S ∪ {MQs
Vi
}; E := E ∪MQs

Vi
;

6. for each e ∈ MQs
Vi

do M(e) := M(e) ∪ {Vi};
7. if E = Ep then break ;
8. if E 6= Ep then return ∅;
9. for each MQs

Vj
∈ S do

10. if there is no e ∈ MQs
Vj

such that M(e) \ {Vj} = ∅ then
11. V ′ := V ′ \ {Vj}; update M;
12. return V ′;

Fig. 5: Algorithm minimal

answer pattern queries using views as follows. Given a pattern Qs

and a set V of views, we first determine whether Qs v V by using
algorithm contain; if so, for all graphs G, we compute Qs(G) by
using algorithm MatchJoin. If Qs 6v V , we compute approximate
answers to Qs, as will be discussed in Section 6. All these are in
time determined by |Qs|, |V| and |V(G)|, not by the size |G|.

5.2 Minimal Containment Problem

We now prove Theorem 6 by presenting an algorithm that, given
Qs and V , finds a minimal subset V ′ of V containing Qs in
O(card(V)|Qs|2 + |V|2 + |Qs||V|) time if Qs v V .

Algorithm. The algorithm, denoted as minimal, is shown in
Fig. 5. Given a pattern query Qs and a set V of view definitions, it
returns either a nonempty subset V ′ of V that minimally contains
Qs, or ∅ to indicate that Qs 6v V .

Algorithm minimal initializes (1) an empty set V ′ for selected
views, (2) an empty set S for view matches of V ′, and (3) an
empty set E for edges in view matches. It also maintains an index
M that maps each edge e in Qs to a set of views (line 1). Similar
to algorithm contain, minimal first computes MQs

Vi
for all Vi ∈ V

(lines 2-7). In contrast to contain that simply merges the view
matches, it extends S with a new view match MQs

Vi
only if MQs

Vi

contains a new edge not in E, and updates M accordingly (lines 4-
7). The for loop stops as soon as E = Ep (line 7), as Qs is already
contained in V ′. If E 6= Ep after the loop, it returns ∅ (line 8),
since Qs is not contained is V (Proposition 8). The algorithm then
eliminates redundant views (lines 9-11), by checking whether the
removal of Vj causes M(e) = ∅ for some e ∈ MQs

Vj
(line 10). If

no such e exists, it removes Vj from V ′ (line 11). After all view
matches are checked, minimal returns V ′ (line 12).

Proof of Theorem 6. To complete the proof of Theorem 6, we
next provide a detailed correctness and complexity analysis of
algorithm minimal (Fig. 5).

Correctness. Given a pattern Qs and a set V of view definitions,
minimal either returns an empty set indicating Qs 6v V , or a subset
V ′ of V . We show the correctness of minimal by proving that
(1) minimal always terminates, (2) it only removes “redundant”
view definitions V′ from V ′, ensuring Qs v V \ {V′} if Qs v V ,
and (3) when it terminates, no redundant view definition is in V ′.
(1) Algorithm minimal repeats the for loop (lines 2-7, Fig. 5)
at most card(V) times, and in each iteration it computes view

B

E

A

B C

B C

D

B

D E

A

B

C

D

A

B

C

D

C

D

A

B

C

DE

V1 V2 V3 V4 V5 V6 V7Qs

Fig. 6: Containment for pattern queries

matches and adds a view definition Vi to a result set V ′. It then per-
forms the redundant checking (lines 9-11) to remove all redundant
view definitions, if there exists any. As V ′ is a finite set, and its
size is monotonically decreasing, the algorithm always terminates.

(2) We show that minimal only removes “redundant” view def-
initions. (a) Each time it computes the view match for a view
definition Vi (line 3), and it adds Vi to V ′ only if the correspond-
ing match set of Vi can cover edges in Qs that have not been
covered yet (line 4). Hence when the for loop terminates, one can
verify that either the union of the view matches from V ′ covers Ep

(line 7), which indicates that V ′ contains Qs, or Qs 6v V (line 8),
following Proposition 8. (b) A view definition Vj is removed
from V ′ only when there already exist other view definitions in
V ′ “covering” every pattern edge e ∈ MQs

Vj
(lines 10-11). Thus,

minimal only removes redundant view definitions.

(3) When algorithm minimal terminates with Qs v V , for any
view definition V in V ′, there exists at least an edge e that can
only be introduced by V to cover Ep. By Proposition 8, this
indicates that Qs 6v V \ {V} for any V ∈ V . Thus minimal
returns a minimal set that contains Qs.

Complexity. Similar to the complexity analysis of contain given
above, algorithm minimal takes in total O(card(V) |Qs|2 + |V|2
+ |Qs||V|) time to compute all the view matches (line 3, Fig. 5).
For each view match, the construction time for the index structure
M (line 6) takes in total O(card(V)|Qs|) time (the outer loop is
conducted at most card(V) times). The process for eliminating
redundant view definitions (lines 9-11) takes O(card(V)|Qs|)
time. Hence, it is in total O(card(V)|Qs|2 + |V|2 + |Qs||V|) time
to find a minimal subset V ′ of V that contains Qs.

The analysis above completes the proof of Theorem 6. 2

Example 6: Consider Qs and V given in Fig. 6. After MQs

Vi

(i ∈ [1, 4]) are computed, algorithm minimal finds that E
already equals Ep, and breaks the loop, where M is initialized
to be {((A,B) : {V3}), ((A,C) : {V3}), ((B,D) : {V4}),
((C, D) : {V1,V4}), ((B,E) : {V2})}. As the removal of V1

does not make any M(e) empty, minimal removes V1 and returns
V ′ = {V2,V3,V4} as a minimal subset of V . 2

5.3 Minimum Containment Problem

We next prove Theorem 7 (2), i.e., MMCP is approximable
within O(log |Ep|) in O(card(V)|Qs|2 + |V|2 + |Qs||V| +
(|Qs| · card(V))3/2) time. We give such an algorithm following
the greedy strategy of the approximation of [49] for the set cover
problem. The algorithm of [49] achieves an approximation ratio
O(log n), for an n-element set.

Algorithm. The algorithm is denoted as minimum and shown
in Fig. 7. Given a pattern Qs and a set V of views, minimum
identifies a subset V ′ of V such that (1) Qs v V ′ if Qs v V
and (2) card(V ′) ≤ log(|Ep|) · card(VOPT), where VOPT is a
minimum subset of V that contains Qs. That is, the approximation
ratio of minimum is O(log |Ep|), where |Ep| is typically small.
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Input: A pattern query Qs and a set of view definitions V .
Output: A minimum subset V ′ of V that contains Qs.

1. set V ′ := ∅, S := ∅; Ec := ∅;
2. for each view definition Vi ∈ V do
3. compute MQs

Vi
; S := S ∪ {MQs

Vi
} if MQs

Vi
is nonempty;

4. while S 6= ∅ do
5. find Vi with the largest α(Vi); S := S \ {MQs

Vi
};

6. if MQs
Vi
\ Ec 6= ∅ then

7. Ec := Ec ∪MQs
Vi

; V ′ := V ′ ∪ {Vi};
8. if Ec = Ep then return V ′;
9. return ∅;

Fig. 7: Algorithm minimum

The algorithm iteratively finds the “top” view whose view
match can cover most edges in Qs that are not yet covered. To
do this, we define a metric α(V) for a view V, where

α(V) =
|MQs

V \ Ec|
|Ep| .

Here Ec is the set of edges in Ep that have been covered
by selected view matches, and α(V ) indicates the amount of
uncovered edges that MQs

V covers. We select V with the largest
α in each iteration, and maintain α accordingly.

Similar to minimal, algorithm minimum computes the view
match MQs

Vi
for each Vi ∈ V , and collects them in a set S (lines

2-3). It then does the following. (1) It selects view Vi with the
largest α, and removes MQs

Vi
from S (line 5). (2) It merges Ec

with MQs

Vi
if MQs

Vi
contains some edges that are not in Ec, and

extends V ′ with Vi (lines 6-7). During the loop, if Ec equals Ep,
the set V ′ is returned (line 8). Otherwise, minimum returns ∅,
indicating that Qs 6v V (line 9).

Proof of Theorem 7 (2). We next provide correctness and
complexity analyses of algorithm minimum (Fig. 7).

Correctness. Observe that minimum finds a nonempty V ′ with
Qs v V ′ if and only if Qs v V (Proposition 8). Its approximation
ratio is verified by an approximation-preserving reduction from
MMCP to the set cover problem [42], by treating each MQs

Vi
in

S as a subset of Ep. Algorithm minimum extends the algorithm
of [49] (with approximation ratio log(n) for n-element set) to
query containment, and preserves approximation ratio log |Ep|.
Complexity. Algorithm minimum computes view matches in
O(card(V)|Qs|2 + |V|2 + |Qs||V|) time (lines 1-3). The while
loop is executed min{|Ep|, card(V)} ≤ (|Qs| · card(V))1/2

times. To see this, let’s consider following two cases. (1) When
|Ep| ≤ card(V), the running time of while loop is obviously
at most |Ep|, since each time we only need to pick a Vi

whose view match “covers” at least one distinct edge of Ep.
(2) When card(V) ≤ |Ep|, one only needs to check each
Vi ∈ V , then the loop runs at most card(V) times. Hence
the while loop is bounded by min{|Ep|, card(V)}, which is
further bounded by (|Qs| · card(V))1/2 [29]. Each iteration
takes O(|Ep| · card(V)) time to find a view with the largest
α, which is at most O(|Qs| · card(V)). Thus, minimum is in
O(card(V)|Qs|2 + |V|2 + |Qs||V| + (|Qs| · card(V))3/2) time,
where |Qs| and card(V) are often smaller than the size |V|.

This completes the proof of Theorem 7 (2). 2

Example 7: Given Qs and V = {V1, . . . ,V7} of Figure 6,
algorithm minimum selects views based on their α values. More

specifically, in the loop it first chooses V6, as its view match MQs

V6
= {(A,B), (A,C), (C, D)} makes α(V6) = 0.6, the largest one.
Then V6 is followed by V5, since α(V5) = 0.4 is the largest one
in that iteration. After V5 and V6 are picked, algorithm minimum
finds that Ec = Ep, and thus V ′ = {V5,V6} is returned as a
minimum subset that contains Qs. 2

In our approach to answering pattern queries using views
described in Section 5.1, we can use minimal or minimum
instead of contain to check whether Qs v V .

6 MAXIMALLY CONTAINED REWRITING

When a pattern query Qs is not contained in a set V of views, we
want to identify a maximal part Qs

′ of Qs that can be answered
by using V , referred to as a maximally contained rewriting of Qs

using V . As will be seen shortly, given a graph G, Qs
′ helps us

approximately answer Qs in G, or compute exact answers Qs(G)
by additionally accessing a small fraction of the data in G.

Maximally contained rewriting. A pattern query Qs
′ is a

subquery of Qs, denoted as Qs
′ ⊆ Qs, if it is an edge induced

subgraph of Qs, i.e., Qs
′ is a subgraph of Qs consisting of a

subset of edges of Qs, together with their endpoints as the set of
nodes. Query Qs

′ is called a contained rewriting of Qs using a set
V of view definitions if

• Qs
′ ⊆ Qs, i.e., Qs

′ is a subquery of Qs, and
• Qs

′ v V , i.e., Qs
′ can be answered using V .

Such a rewriting Qs
′ is a maximally contained rewriting of

Qs using V if there exists no contained rewriting Qs
′′ such that

Qs
′ ⊂ Qs

′′, i.e., there exists no larger contained rewriting Qs
′′

with more edges than Qs
′.

Query-driven approximation scheme. When Qs is not contained
in V , we can still efficiently answer Qs in a (possibly big) graph
G following two approaches. (1) One may first identify a maxi-
mally contained rewriting Qs

′ of Qs using V , and then compute
Qs
′(G) as approximate answers to Qs, by simply invoking the

algorithm MatchJoin. (2) Alternatively, one may compute exact
answers Qs(G) by using Qs

′(G) and by accessing a small fraction
GQs of G, such that Qs(G) = Qs

′(G) ∪ f(GQs). Here f(GQs)
first locates the matches of Qs

′(G) in the original graph G and
then verifies the matches for Qs by visiting neighborhood of
those matches, a small number of nodes and edges in G that
constitute GQs ; this is the approach suggested by [17], referred
to as scale-independent query answering using views there. Due
to the space constraint, we focus on approximate answers Qs

′(G)
in this paper. That is, when limited views are available, we can still
approximately answer pattern queries in big graphs by relaxing Qs

to maximally contained rewriting Qs
′, using those views.

Accuracy. Given a graph G, we measure the quality of the
approximate answers Qs

′(G) versus the true matches in the exact
answers Qs(G) by following the F-measure [4]:

Acc = 2 · (recall · precision)/(recall + precision),

where recall = #true matches found
#true matches , and precision =

#true matches found
#matches . Here #matches is the number of all

(edge) matches found by Qs
′(G) using views, #true matches is

the number of all matches in Qs(G); and #true matches found
is the number of all the true matches in both Qs

′(G) and Qs(G).
Intuitively, a high precision means that many matches in

Qs
′(G) are true matches, and a high recall means Qs

′(G) contains
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most of the true matches in Qs(G). The larger Acc that can be
induced by Qs

′, the better. If Qs
′ is equivalent to Qs, i.e., Qs

′(G)
= Qs(G) for all G, Acc takes the maximum value 1.0. Observe
that for any edge e in Qs, if e is covered by Qs

′, then for any G,
the match set Se of e in Qs(G) is a subset of the match set S′e of
e in Qs

′(G); that is, Qs
′(G) finds all candidate matches of e in G.

Example 8: Recall pattern Qs and view definitions V1–V7 from
Fig. 6. Let V ′ = {V1,V3,V4,V6,V7}. Then Qs is not contained
in V ′. Nonetheless, a maximally contained rewriting of Qs

′ ex-
ists, consisting of four edges {(A,B), (A,C), (C, D), (B,D)}.
Given a graph G, Qs

′(G) finds matches of these edges, which
make a superset of the corresponding edge matches in Qs(G).
Using Qs

′(G), one may further verify whether the matches of
Qs
′(G) make true matches in Qs(G) by inspecting their neigh-

boring nodes and edges. One may also treat Qs
′ as a “relaxation”

of Qs by dropping the condition imposed by edge (B,E), and
take Qs

′(G) as approximate answers to Qs in G. 2

Computing maximally contained rewriting. It is known that
finding maximally contained rewriting is intractable for SPC
queries [45]. In contrast, maximally contained rewriting can be
efficiently found for graph pattern queries.

Theorem 9: Given a pattern Qs and a set V of view definitions, it
is in O(card(V)|Qs|2 + |V|2 + |Qs||V|) time to find a maximally
contained rewriting of Qs using V . 2

We next prove Theorem 9 by providing an algorithm that
computes a maximally contained rewriting for Qs using V .

Algorithm. Given a pattern query Qs and a set V of view defi-
nitions, the algorithm, denoted as maximal (not shown) finds a
maximally contained rewriting of Qs using V as follows. Similar
to algorithm contain, maximal maintains a set E of all nonempty
view matches, initially empty. For each view definition V ∈ V ,
it iteratively computes view match MQs

V and merges it with E,
until every view is visited. The difference from contain is that
instead of checking whether E covers all edges in Qs as in contain,
maximal simply generates an induced subgraph of Qs with edge
set E, and returns it as the maximally contained rewriting Qs

′.

Example 9: Given Qs of Fig. 6 and V ′ from Example 8,
maximal finds a maximally contained rewriting Qs

′ of Qs by
computing the union of view matches E from each view in
V ′ to Qs. One may verify that as E includes a set of edges
{(A,B), (A,C), (C, D), (B,D)}; hence Qs

′, which is a sub-
graph of Qs induced by E, is returned. 2

Proof of Theorem 9. Below we prove Theorem 9 by giving a
detailed correctness and complexity analysis of maximal.

Correctness. It suffices to show that when algorithm maximal
terminates, Qs

′ is (1) a contained rewriting, and (2) a maximal
contained rewriting. Obviously maximal always terminates since
it visits each view in a finite set V once.

(1) When algorithm maximal terminates, Qs
′ consists of only

the edges of view matches from each view to Qs. Following
Proposition 8, Qs

′, as a graph pattern query, is contained by V ,
i.e., Qs

′ v V . Moreover, maximal preserves the invariant that at
any time, Qs

′ contains only the edges from Qs. Hence Qs
′ ⊆ Qs.

This shows that Qs
′ is a contained rewriting of Qs. Note that this

also holds when Qs
′ is empty.
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(2) We next show that Qs
′ is maximal, i.e., there is no contained

rewriting Qs
′′ of Qs using V such that Qs

′ ⊂ Qs
′′. Assume that

such a contained rewriting Qs
′′ exists. Then there must exist a

view definition V such that MQs

V is in the edge set of Qs
′′ but it

is not in Qs
′. This cannot happen since algorithm maximal visits

each view in V including V, and hence Qs
′ includes MQs

V when
algorithm maximal visits V.

Complexity. Algorithm maximal is the same as algorithm
contain except the last step for constructing Qs

′. It takes
O(card(V) |Qs|2 + |V|2 + |Qs||V|) time to compute all the view
matches and merge those nonempty matches. The construction of
Qs
′ with edge set E takes at most O(|Qs|) time. Hence, it is in

total O(card(V)|Qs|2 + |V|2 + |Qs||V|) time to compute Qs
′,

having the same complexity as contain.
This completes the proof of Theorem 9.

Remark. Note that a mapping from the edges of Qs
′ to views can

be readily induced by maximal, to be used as λ in MatchJoin for
answering query using views.

7 EXPERIMENTAL EVALUATION

Using real-life data, we conducted four sets of experiments to
evaluate (1) the efficiency and scalability of algorithm MatchJoin
for graph pattern matching using views; (2) the effectiveness of
optimization techniques for MatchJoin; (3) the efficiency and
effectiveness of (minimal, minimum) containment checking; and
(4) the efficiency, accuracy and scalability of our query-driven
approximation scheme, using maximally contained rewriting.

Experimental setting.
(1) Real-life graphs. We used four real-life graphs: (a)
Amazon [1], a product co-purchasing network with 548K
nodes and 1.78M edges. Each node has attributes such as
title, group and sales-rank, and an edge from product x to y
indicates that people who buy x also buy y. (b) Citation [2], a
DAG (directed acyclic graph) with 1.4M nodes and 3M edges, in
which nodes represent papers with attributes such as title, authors,
year and venue, and edges denote citations. (c) YouTube [5], a
recommendation network with 1.6M nodes and 4.5M edges. Each
node is a video with attributes such as category, age and rate, and
each edge from x to y indicates that y is in the related list of x. (d)
WebGraph [3], a web graph including 118.1M nodes and 1.02B
edges, where each node represents a web page with id and domain.

(2) Pattern and view generator. We implemented a generator for
graph pattern queries, controlled by three parameters: the number
|Vp| of pattern nodes, the number |Ep| of pattern edges, and label
fv from an alphabet Σ of labels taken from corresponding real-life
graphs. We use (|Vp|, |Ep|) to denote the size of a pattern query.

We generated a set of 12 view definitions for each real-
life dataset. (a) For Amazon, we generated 12 frequent patterns
following [34], where each view extension contains on average
5K nodes and edges. The views take 14.4% of the space of the
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(a) Varying |Qs| (Amazon)
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(b) Varying |Qs| (Citation)
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(c) Varying |Qs| (Youtube)
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(d) Varying |Qs| (Webgraph)

 0.1

 1

 10

 100

 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
im

e(
m

in
ut

e)

Match
MatchJoinmnl
MatchJoinmin

(e) Varying |G| (Webgraph)
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(f) Varying |Qs| (Citation)
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(g) Varying |Qs| (WebGraph)
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Fig. 9: Performance evaluation

Amazon dataset. (b) For Citation, we designed 12 views to search
for papers and authors in computer science. The view extensions
account for 12% of the Citation graph. (c) We generated 12 views,
shown in Fig. 8, to find videos on Youtube, where each node is
associated with a Boolean condition, specified by e.g., age (A),
length (L), category (C), rate (R) and visits (V ). Each view
extension has about 700 nodes and edges, accounting for 4% of
Youtube. (d) On WebGraph, we designed 12 views to search Web
pages, where the view extensions account for 11% of WebGraph.

(3) Implementation. We implemented the following algorithms, all
in Java: (1) contain, minimum and minimal for checking pattern
containment; (2) maximal for finding the maximally contained
rewriting; (3) Match, MatchJoinmin and MatchJoinmnl for com-
puting matches of patterns in a graph, where Match is the match-
ing algorithm without using views [18], [28]; and MatchJoinmin

(resp. MatchJoinmnl) revises MatchJoin by using a minimum
(resp. minimal) set of views; (4) an algorithm MatchJoinmax

for approximately answering pattern queries, which invokes
MatchJoin to evaluate maximally contained rewriting using views
(Section 6); and (5) a version of MatchJoinmin without using the
ranking optimization (Section 3), denoted by MatchJoinnopt.

All the experiments were run on a machine with 2.0GHz
Intel Xeon E5-2650 (8-core) CPU and 32GB memory, running
windows server 2008 (64bit). Each experiment was run 5 times
and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Query answering using views. We first evaluated the
performance of algorithms MatchJoinmin and MatchJoinmnl,
compared to Match [18], [28]. Using real-life data, we studied
the efficiency (resp. scalability) of MatchJoinmin, MatchJoinmnl

and Match, by varying |Qs| (resp. |G|).
Efficiency. Figures 9(a), 9(b), 9(c) and 9(d) show the results on

Amazon, Citation, YouTube and WebGraph, respectively, where
the x-axis represents pattern size (|Vp|, |Ep|). The results tell us
the following. (1) MatchJoinmin and MatchJoinmnl substantially
outperform Match: they are on average 8.1 and 5.2 times faster
than Match over all real-life graphs, respectively. (2) While all the
algorithms spend more time on larger patterns, MatchJoinmin and
MatchJoinmnl are less sensitive to patterns than Match, as they
reuse previous computation cached in the views. (3) The larger the
graphs are, the more substantial improvement of MatchJoinmin

and MatchJoinmnl is over Match. For example, MatchJoinmin

(resp. MatchJoinmnl) is 23.2 (resp. 13.3) times faster than Match
on WebGraph, and 2.7 (resp. 2.3) times faster on smaller Amazon.

Scalability. Using WebGraph, we evaluated the scalability of
MatchJoinmin, MatchJoinmnl and Match. Fixing |Qs| = (4, 6),
we varied |G| by using scale factors from 0.1 (i.e., 0.1 times of
original graph size) to 1.0. The results are reported in Fig. 9(e),
from which we can see the following. (1) MatchJoinmin scales
best with |G|, and is 1.73 times faster than MatchJoinmnl.
This verifies that evaluating pattern queries by using less views
significantly reduces computation time. The results are consistent
with the observation of Figures 9(a), 9(b), 9(c) and 9(d).

Exp-2: Optimization techniques. Varying the size of DAG (resp.
cyclic) patterns, we evaluated the effectiveness of the optimization
strategy given in Section 3, by comparing the performance of
MatchJoinmin and MatchJoinnopt on Citation (resp. WebGraph).
As shown in Figures 9(f) and 9(g), (1) MatchJoinmin is
more efficient than MatchJoinnopt for all the patterns. For
example, MatchJoinmin is 1.46 (resp. 1.66) times faster than
MatchJoinnopt for DAG (resp. cyclic) patterns on average. (2)
The improvement becomes more substantial when |Qs| gets larger.
This is because for larger patterns, the bottom-up strategy used in
MatchJoinmin can eliminate redundant matches more quickly. (3)
The optimization strategy works even better on denser big graphs,
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Fig. 10: Performance evaluation

since more invalid matches can be removed by the strategy. This
explains why MatchJoinmin works better on WebGraph than on
Citation, since WebGraph is denser than Citation.

Exp-3: Query containment. We evaluated the efficiency of
pattern containment checking w.r.t. query complexity.

Efficiency. We generated a set of patterns with size ranging
from (4, 8) to (9, 18), and node label from the alphabet Σ of
WebGraph. Using the same set of views V as in Fig. 9(d), we
evaluated the efficiency of contain, minimal and minimum. As
shown in Fig. 9(h), (1) all three algorithms are efficient, e.g., it
only takes contain 0.1s to decide whether a pattern with size
(9, 18) is contained in V ; (2) they all take more time over larger
patterns, as expected; and (3) contain accounts for about 68.6%
(resp. 59.4%) of the time of minimal (resp. minimum) on average.

Algorithm minimum vs minimal. To measure the effectiveness of
minimum and minimal, we define and investigate two ratios:
R1 = |Tmin|/|Tmnl| as the ratio of the time used by minimum to
that of minimal; and R2 = |Minimum|/|Minimal| for the ratio of
the size of subsets of views found by minimum to that of minimal.
Using the same view definitions and patterns as in Fig. 9(h), we
varied the size of patterns from (6,6) to (9, 18). As shown in
Fig. 9(i), (1) minimum is efficient on all patterns, e.g., it takes
about 0.15s over patterns with size (9, 18); (2) minimum is ef-
fective: while minimum takes up to 122% of the time of minimal
(R1), it finds substantially smaller sets of views, only about 60%-
66% of the size of those found by minimal, as indicated by R2.
Both algorithms take more time over larger patterns, as expected.

Exp-4: Approximate answers. We evaluated the efficiency,
scalability and accuracy of MatchJoinmax, by using maximally
contained rewriting (Section 6) and real-life graphs.

Efficiency. Using the same sets of views as in Figures 9(c)
and 9(d), we generated two sets of patterns, where none of them
is contained in the corresponding view set. Varying |Qs|, we
evaluated the efficiency of MatchJoinmax and find the following.
(1) maximal is efficient. For example, it takes less than 50ms to
find a maximally contained rewriting for a pattern with 8 nodes
and 16 edges (not shown). (2) As shown in Figures 9(j) and
10(a), MatchJoinmax substantially outperforms Match in running
time: it is on average 24.8 (resp. 4.2) times faster than Match on
WebGraph (resp. Youtube). (3) The running time of MatchJoinmax

is much less sensitive to |Qs| compared to Match.

Accuracy. We report the accuracy (F-measure, Section 6) of
MatchJoinmax in Figures 9(k) and 10(b) on WebGraph and
Youtube, respectively. We found the following. (1) MatchJoinmax

finds approximate answers with high accuracy. The Acc is 0.73
(resp. 0.65) on WebGraph (resp. Youtube) on average. (2) The
accuracy of MatchJoinmax is not sensitive to the pattern size;
instead, it is determined by how much a maximally contained
rewriting “covers” the pattern query. For example, we found (not

shown) that the accuracy of MatchJoinmax is on average 0.63
when the rewriting “missed” two edges in the pattern query, and
it increases to 0.82 when only one query edge is missed.

Scalability. We evaluated the scalability of MatchJoinmax and
Match, in the same setting as in Fig. 9(e). As shown in Fig. 9(l),
(1) MatchJoinmax scales better with |Qs| than Match; and (2)
MatchJoinmax takes only 4.4% of the time of Match when the
scale factor is 0.1, and the saving is more significant for larger |G|.
Summary. From the experimental results we find the following.
(1) Answering pattern queries using views is effective in querying
large graphs. For example, by using views, pattern matching via
graph simulation is 23.2 times faster than computing matches
directly on WebGraph. (2) Our view-based matching algorithms
scale well with the query and data size. Moreover, they are much
less sensitive to the size of data graphs. (3) It is efficient to
determine whether a pattern query can be answered using views. In
particular, our approximation algorithm for minimum containment
effectively reduces redundant views. (4) Our optimization strategy
further makes the view-based matching up to 1.66 times faster.
(5) When patterns are not contained by views, our query-driven
approximation scheme evaluates the queries efficiently with rea-
sonable accuracy. For example, MatchJoinmax is 24.8 times faster
than Match, with accuracy 0.73 over large Web graph.

8 CONCLUSION

We have studied graph simulation using views, from theory to
algorithms. We have proposed a notion of pattern containment
to characterize what pattern queries can be answered using
views, and provided such an efficient matching algorithm. We
have also identified three fundamental problems for pattern
containment, established their complexity, and developed
effective (approximation) algorithms. When a pattern query is
not contained in available views, we have developed efficient
algorithms for computing maximally contained rewriting using
views to get approximate answers. Our experimental results have
verified the efficiency and effectiveness of our techniques. These
results extend the study of query answering using views from
relational and XML queries to graph pattern queries.

Our techniques can be readily extended to variants of graph
simulation. Take strong simulation [36] as example, MatchJoin
only needs to check (lines 7-11), for each pattern edge (u′, u)
and its match (v′, v) in S, whether for each pattern edge (u′′, u′),
there is a match (v′′, v′), with time complexity unchanged.

The study of graph pattern matching using views is still in its
infancy. One issue is to decide what views to cache such that a
set of frequently used pattern queries can be answered by using
the views. Techniques such as adaptive and incremental query
expansion [48] may apply. Another issue concerns view-based
pattern matching via subgraph isomorphism. The third topic is to
find a subset V ′ of V such that V ′(G) is minimum for all graphs
G. Finally, to find a practical method to query “big” social data,
one needs to combine techniques such as view-based, distributed,
incremental, and compression methods.
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