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Path constraints are capable of expressing inclusion and inverse relationships and have proved
useful in modeling and querying semistructured data [Abiteboul and Vianu 1999; Buneman et al.
2000]. Types also constrain the structure of data and are commonly found in traditional databases.
There has also been work on imposing structure or a type system on semistructured data for, e.g.,
storing and querying semistructured data in a traditional database system [Alon et al. 2001;
Deutsch et al. 1999; Florescu and Kossmann 1999; Shanmugasundaram et al. 1999]. One wants
to know whether complexity results for reasoning about path constraints established in the un-
typed (semistructured) context could carry over to traditional databases, and vice versa. It is
therefore appropriate to understand the interaction between types and path constraints. In addi-
tion, XML [Bray et al. 1998], which may involve both an optional schema (e.g., DTDs or XML
Schema [Thompson et al. 2001]) and integrity constraints, highlights the importance of the study
of the interaction.

This paper investigates that interaction. In particular it studies constraint implication prob-
lems, which are important both in understanding the semantics of type/constraint systems and in
query optimization. It shows that path constraints interact with types in a highly intricate way.
For that purpose a number of results on path constraint implication are established in the presence
and absence of type systems. These results demonstrate that adding a type system may in some
cases simplify reasoning about path constraints and in other cases make it harder. For example,
it is shown that there is a path constraint implication problem that is decidable in PTIME in the
untyped context, but that becomes undecidable when a type system is added. On the other hand,
there is an implication problem that is undecidable in the untyped context, but becomes not only
decidable in cubic time but also �nitely axiomatizable when a type system is imposed.
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1. INTRODUCTION

Integrity constraints have recently been studied as path constraints [Abiteboul and
Vianu 1999; Buneman et al. 2000] for semistructured data. These constraints are
capable of expressing a fundamental part of the semantics of the data such as in-
clusion and inverse relationships, and are valuable and e�ective in query optimiza-
tion [Buneman et al. 1999; Deutsch et al. 1999], data integration [Florescu et al.
1996] and query translation [Lee and Chu 2000; Manolescu et al. 2001]. Semistruc-
tured data does not have a pre-imposed type system or schema, and is typically
modeled as an edge-labeled graph [Abiteboul et al. 2000]. However there has also
been a host of work on imposing structure or types on semistructured data for,
among other things, storing and querying semistructured data using traditional
database systems [Alon et al. 2001; Deutsch et al. 1999; Florescu and Kossmann
1999; Shanmugasundaram et al. 1999]. In addition, although the XML standard
(eXtensible Markup Language [Bray et al. 1998]) itself does not require any schema
or type system, a number of proposals [Davidson et al. 1999; Layman et al. 1998;
Thompson et al. 2001] have been developed that roughly correspond to data def-
inition languages. These allow one to constrain the structure of XML data by
imposing a schema on it. These and other proposals also support or advocate in-
tegrity constraints [Layman et al. 1998; Thompson et al. 2001; Buneman et al.
2001]. With these comes the need to understand the distinction between types and
integrity constraints that is commonly made in traditional database systems, and
to study their interaction.
Types and path constraints. It is worth examining types and integrity con-
straints speci�ed in a traditional database schema. As an example, consider the
following ODL [Cattell 2000] schema:

class Person class Book
( extent person) ( extent book)
f attribute string ssn; f attribute string title;
attribute string name; attribute set<Book> ref;
relationship set<Book> wrote relationship set<Person> author

inverse Book::author;g inverse Person::wrote;g

If we strike out the extent and inverse declarations, and change the relationship
assertions to type declarations such as

attribute set<Book> wrote; attribute set<Person> author;

then we are left with a standard object-oriented class/type declaration. In fact it
is a declaration that can be expressed directly in a language such as C++ with
type templates. These classes or types are an essential part of any program that
constructs or queries data. Without them the program is meaningless. Contrast
this with the situation in most XML query languages where no types are needed
(\type" errors such as mis-spelled tag names show up not as static errors but as
empty answers). In addition, this schema also de�nes integrity constraints: the
extent and inverse declarations specify the following: (a) Inclusion constraints.
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Fig. 1. Graph representation of an object-oriented database and semistructured data

For any person p, p:wrote is included in the extent book. Similarly, for any book b,
b:author is a subset of the extent person and b.ref is included in the extent book.
(b) Inverse constraints. For any person p and any book b, if p wrote b then an au-
thor of b is p, and vice versa. Although such constraints cannot be expressed in any
object-oriented system, they can be expressed in most schema de�nition languages,
and { just as the static analysis of types is important for program correctness and
eÆciency { the static analysis of such constraints is important for query optimiza-
tion [Deutsch et al. 1999; Florescu et al. 1996] and query translation [Lee and Chu
2000; Manolescu et al. 2001].
The distinction between types and integrity constraints appears to be dictated

largely by what conventional programming languages treat as types. If we represent
a database instance as a graph, then these are both constraints which restrict the
structure of the graph interpretation of the data. In other words, in the world of
semistructured data, both (traditional) types and (traditional) integrity constraints
are constraints on the data.
To cast the problem concretely, Fig. 1 (a) represents an instance of the per-

son/book database as a rooted, edge-labeled, directed graph. The database consists
of two sets (extents), and we express this by a root node r with edges emanating
from it that are labeled either person or book. These connect to nodes that respec-
tively represent person and book objects which have edges emanating from them
that respectively describe the structure of persons and books. These structures
are constrained by di�erent type constructs such as sets and records: each person
must have a single name edge and a single ssn edge connected to a string node, and
multiple wrote edges connected to book nodes. Similarly, each book must have a
unique title edge connected to a string node, zero or more ref edges connected
to book nodes and multiple author edges connected to person nodes. Contrast
this with Fig. 1 (b), which represents semistructured data that is free of any type
constraints. In particular, in Fig. 1 (b) a person may have multiple name edges,
and optional email and ssn edges.
Integrity constraints on a graph can be expressed in terms of navigation paths,

and are referred to as path constraints . For example, the inverse constraints can be
written as:

8x (book(r; x) ! 8 y (author(x; y)! wrote(y; x)));

8x (person(r; x) ! 8 y (wrote(x; y)! author(y; x))):

ACM Transactions on Computational Logic, Vol. V, No. N, May 2002.



4 � P. Buneman, W. Fan, and S. Weinstein

Here r is a constant denoting the root of a graph, variables x and y range over
vertices, and the predicates denote edge labels. A path in the graph is a sequence
of edge labels, which can be expressed as a formula �(x; y) denoting that � is a
path from x to y. For example, book � author(r; x) is a path from root r to some
node x in Fig. 1. The �rst constraint above asserts that for any book node x and
any y, if x has an author edge connected to y, then y must have a wrote edge
connected to x. Similarly, the second constraint states that for any person node x
and any y, if x has a wrote edge connected to y, then y must have an author edge
connected to x. They express an inverse relationship between wrote of person and
author of book. Along the same lines, inclusion constraints can be expressed as:

8x (book � author(r; x) ! person(r; x));

8x (person � wrote(r; x) ! book(r; x));

8x (book � ref(r; x) ! book(r; x)):

The �rst constraint states that an author of a book must be a person; similarly
for wrote of person and ref of book. Observe that these path constraints are
independent of any type system. In particular, they hold on both the object-
oriented database (Fig. 1 (a)) and the semistructured data (Fig. 1 (b)). Like types,
they also constrain the structure of the data, but in a very di�erent fashion.
When it comes to XML, the story is more interesting. Like semistructured data,

XML data does not require a type system or schema, but it may have an optional
DTD (Document Type De�nition). DTDs and other forms of speci�cations devel-
oped for XML, e.g., XML Schema [Thompson et al. 2001], XML Data [Layman
et al. 1998], SOX [Davidson et al. 1999], can also be viewed as constraints. For
example, Fig. 2 shows a schema described in XML Data, which speci�es types as
well as (limited) inclusion and inverse constraints (with the range and correlative
declarations). If we treat href attributes as references, then an XML document can
be represented as a graph (instead of a node-labeled tree as commonly assumed).
More speci�cally, it may be represented either as the structure in Fig. 1 (a) or the
one in Fig. 1 (b) depending on whether the schema is imposed on the data.
We should remark that path constraints may exist in untyped (semistructured)

and typed (structured) contexts alike. Type constraints cannot be expressed as
path constraints and vice versa.

Implication of path constraints. One of the most important technical problems
associated with path constraints is the question of implication: given that certain
path constraints � are known to hold, does it follow that some other path constraint
' is necessarily satis�ed? Implication is important in, among other things, data
integration. For example, one may want to know whether a constraint ' holds in a
mediator interface. This cannot be veri�ed directly since the mediator interface does
not contain data. One way to verify ' is to show that it is implied by constraints
that are known to hold [Florescu et al. 1996]. Other important applications of
implication include query optimization [Buneman et al. 1999; Deutsch et al. 1999]
and database design normalization [Ramakrishnan and Gehrke 2000].
The analysis of path constraint implication needs to be conducted in two di�erent

settings. In the untyped (semistructured) context, the question is to determine
whether for any edge-labeled graph free of types, if it satis�es path constraints
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<elementType id = "person"> <elementType id = "book">

<element type="#ssn"/> <element type="#title"/>

<element type="#name"/> <element type="#ref"

<element type="#wrote" occurs="ONEORMORE"/>

occurs="ONEORMORE"/> <element type="#author"

</elementType> occurs="ONEORMORE"/>

</elementType>

<elementType id = "wrote"> <elementType id = "author">

<empty/> <empty/>

<domain type="#person"/> <domain type="#book"/>

<correlative type="#author"/> <correlative type="#wrote"/>

<attribute name="href" dt="uri" <attribute name="href" dt="uri"

range="#book"/> range="#person"/>

</elementType> </elementType>

<elementType id = "ssn"> <elementType id = "title">

<string/> <string/>

</elementType> </elementType>

<elementType id = "name"> <elementType id = "ref">

<string/> <empty/>

</elementType> <domain type="#book"/>

<attribute name="href" dt="uri"

range="#book"/>

</elementType>

Fig. 2. A schema in XML Data

� then it must also satisfy path constraint '. In the typed (structured) context,
it is to determine whether for any edge-labeled graph that satis�es certain type
constraints , if it satis�es � then it also satis�es '. One wants to know whether
complexity results for reasoning about path constraints established in the untyped
context still hold in the typed context, and vice versa. This is important because
on the one hand, one may want to impose structure on semistructured data, and on
the other hand, one may want to create semistructured/XML views for traditional
databases [Baru et al. 1999]. In particular, one needs to deal with XML data both
in the untyped context (when a document does not come with a DTD or a schema)
and in the typed context (when a DTD or a schema is imposed on a document).

Contribution. From recent work [Abiteboul and Vianu 1999; Buneman et al.
2000] on path constraints we have developed a reasonable understanding { in the
context of semistructured (untyped) data { of the interesting decision problems for
such constraints. There are useful restrictions of path constraints with a decidable
implication problem. One might be tempted to think that the imposition of a
type system, which imposes some regularity on the data, would be to generate
new classes of path constraints with decidable implication problems. This may be
the case. However one of the main results of this paper is that the presence of
types may actually complicate the implication problem for path constraints: there
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are decidable path constraint problems that become undecidable in the presence of
types. Moreover the type used in the construction of this result is not particularly
\pathological". More speci�cally,

|We treat types and path constraints both as constraints on the graph repre-
sentation of data, and investigate the impact of the presence of types on path
constraint implication. The type constraints are determined by a variety of type
constructs found in traditional database systems, including records, sets, classes
and recursive data structures.

|On the one hand, we exhibit an implication problem associated with path con-
straints that is undecidable in the context of semistructured data, but that be-
comes decidable in cubic-time when a (restricted) type system is added.

|On the other hand, we give an example of a constraint implication problem that
is decidable in PTIME in the untyped context, but that becomes undecidable
when a (generic) type system is imposed.

That is, we show that that adding a type system may in some cases simplify the
analysis of path constraint implication and in other cases make it harder. There
are also practical interests in the implication problems studied.

Interaction - a logic retrospective. To understand why imposing a schema on
the data can alter the computational complexity of the path constraint implication
problem in unexpected ways, we provide intuitive background here. An implication
problem for a logical language L is determined by a collection of structures S which
interpret that language. We say that a �nite set � of L sentences S-implies an L
sentence ' just in case for every structure G 2 S, if G j= �, then G j= '. Suppose
we are given two classes of structures S 0 � S, each interpreting L. In general, the
computational complexity of the S-implication problem for L may bear no obvious
connection to the complexity of the S 0-implication problem for L. A justly famous
example of this is given by the case where L is the collection of all �rst-order
sentences with a single binary relation, and S and S 0 are the classes of all relational
structures and all �nite relational structures respectively. Then, the completeness
theorem for �rst-order logic and Church's Theorem together tell us that the S-
implication problem for L is r.e.-complete, while Trahktenbrot's Theorem tells us
that the S 0-implication problem for L is co-r.e.-complete (cf. [B�orger et al. 1997]).
Note that in this example, S 0 is not �rst order de�nable over S.
We shall study implication problems for collections of path constraints which

can be represented as proper fragments L� of �rst-order logic. Again, let S be the
collection of all structures. When we consider the S-implication problem for L�

in the context of a type constraint �, what we really mean is the S 00-implication
problem for L� where S 00 is the collection of structures in S which satisfy the
type constraint �. In Section 5, we shall give examples where the S-implication
problem for L� is undecidable, but the S 00-implication problem for L� is decidable.
This sort of situation is quite familiar. For example, the S-implication problem
for �rst-order logic is undecidable, but the S 00-implication problem for �rst-order
logic is decidable when S 00 is the collection of linear orderings (and this collection
is determined by a �rst order \constraint"). On the other hand, in Section 6, we
exhibit situations in which the S-implication problem for L� is decidable, but the
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S 00-implication problem for L� is undecidable. This possibility is perhaps a bit
less familiar, namely the possibility that by imposing a restriction on a collection
of structures we can turn a decidable implication problem into an undecidable
implication problem. Indeed, in the context where L is the collection of all �rst-
order sentences and the restriction itself is �rst order, this is clearly impossible,
since in this case, the implication problem for the restricted class is simply a special
case of the unrestricted implication problem. But in the context of the interaction
between path and type constraints, this is precisely not the case. Namely, the
type constraints we consider cannot be expressed in the path constraint languages
in question. We hope this observation will clarify the results of Section 6, which
exhibit a path constraint implication problem which is decidable with respect to
a collection of structures S, but is undecidable with respect to the collection of
structures G 2 S which satisfy a given type constraint �.

Related work. Integrity constraints for semistructured data were �rst studied as
path constraints in [Abiteboul and Vianu 1999]. A path constraint of [Abiteboul
and Vianu 1999] has the form 8 x (p(r; x) ! q(r; x)), where p; q are (regular)
path expressions and r is a constant denoting the root of a graph. While these con-
straints could specify inclusions between paths, they were not expressive enough to
capture, say, inverse constraints. Extensions were studied in [Buneman et al. 2000]
to overcome this limitation. Let us refer to the constraint language of [Buneman
et al. 2000] as Pc. In [Buneman et al. 2000], it was shown that in the context
of semistructured data, the implication and �nite implication problems for Pc are
undecidable. However, several decidable fragments of Pc were identi�ed. Each of
these fragments is capable of expressing inclusion and inverse constraints. Since
the constraint language Pc is not categorized as a quanti�er pre�x fragment of
�rst-order logic, these results concerning the implication problems for Pc are or-
thogonal to classical work on the decision problem for fragments of �rst-order logic
(cf. [B�orger et al. 1997]). This paper extends [Buneman et al. 2000] by exploring the
interaction between type systems and simple integrity constraints of Pc, whereas
[Abiteboul and Vianu 1999; Buneman et al. 2000] do not consider the question of
logical implication in the context of typed data.

There has also been recent work on the interaction between DTDs and integrity
constraints for XML [Arenas et al. 2002; Fan and Libkin 2001], which is quite dif-
ferent from the work reported in this paper. First, the constraints studied there
are simple keys and foreign keys, which cannot express path constraints (in par-
ticular, inclusion and inverse relationships) and vice versa. Second, the type con-
straints induced by DTDs are de�ned in terms of regular expressions, which are
di�erent from the type constructs (e.g., sets, records, classes) found in traditional
database systems. Third, those papers consider XML data which is a special case
of semistructured data and is modeled as a node-labeled tree, whereas this paper
investigates general semistructured data modeled as an edge-labeled graph.

Path functional constraints have also been studied (see, e.g., [Ito and Weddell
1995; van Bommel and Weddell 1994]). These constraints are not capable of ex-
pressing inclusion and inverse constraints. Furthermore, they are studied in the
context of traditional database systems.

Description logics (see, e.g., [Calvanese et al. 2001]) reason about concept sub-
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8 � P. Buneman, W. Fan, and S. Weinstein

sumption, which can express inclusion assertions similar to path constraints. There
has been work on specifying constraints on semistructured data by means of de-
scription logics [Calvanese et al. 1998]. One of the most expressive description logics
used in the database context is ALCQIreg [Calvanese et al. 2001]. We should re-
mark here that our path constraints are not expressible in ALCQIreg .

Organization. The remainder of the paper is organized as follows. Section 2
de�nes path constraints. Section 3 presents type constraints induced by various
type constructs. Section 4 describes two implication problems for path constraints
in the untyped and typed contexts. Section 5 investigates one of the implication
problems and shows that it is undecidable in the context of semistructured data but
the undecidability result breaks down when a simple type system is added. Section 6
demonstrates that adding a type system does not necessarily \help" in constraint
implication problems. It establishes the decidability of another implication problem
in the untyped context, and shows that the problem becomes undecidable when a
generic type system is imposed. Section 7 presents some extensions of the results of
the previous sections. Finally, Section 8 summarizes the main results of the paper.

2. PATH CONSTRAINTS

In this section we formally de�ne path constraints.
A graph model. The vocabulary of the constraint language is speci�ed by a
relational signature

� = (r; E);

where r is a constant and E is a �nite set of binary relation symbols. A �-structure
(jGj; rG; EG) can be depicted as an edge-labeled, rooted, directed graph, in which
jGj is the set of vertices, rG is the root, and EG is the set of labeled edges.
Semistructured data is characterized as having no pre-imposed type system or

schema [Abiteboul et al. 2000], such as data commonly found on the World Wide
Web, in biological databases and after data integration. Semistructured data is
typically modeled as a rooted, edge-labeled, directed graph, and can be represented
as a �-structure. For example, the graph in Fig. 1 (b) can be viewed as such a
structure. As opposed to semistructured data, structured data is constrained by a
schema, such as data found for instance in relational and object-oriented databases.
In the next section we shall see that structured data can also be represented as a
�rst-order logic structure that satis�es certain type constraints.

Paths. To de�ne path constraints, we �rst present the notions of paths.
A path is a sequence of edge labels. Formally, paths are de�ned by the syntax:

� ::= � j K � �

Here � is the empty path, K 2 E, and � denotes path concatenation. A path can
be expressed as a �rst-order logic formula �(x; y) with two free variables x and y,
which denote the tail and head nodes of the path, respectively:

|�(x; y) is interpreted as x = y;

|K � �(x; y) is interpreted as 9z(K(x; z) ^ �(z; y)).
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Interaction between Path and Type Constraints � 9

For example, person � wrote � title(x; y) and book � ref � ref(x; y) are paths.
We interpret paths as follows. Let G be a structure, �(x; y) be a path formula

and a, b be nodes in jGj. We use G j= �(a; b) to denote that there is a path � from
a to b in G. We say that b is reachable from a by following � if G j= �(a; b). For
example, referring to the structure G given in Fig. 1 (a) (or (b)), there is node a
such that G j= person � wrote � title(r; a).
A path � is said to be a pre�x of %, denoted by � �p %, if there exists 
 such that

% = � � 
.
The length of path �, j�j, is de�ned as follows: j�j = 0 if � = �; j�j = 1 + j%j if �

can be written as K � %, where K 2 E. For example, jperson � wrote � titlej = 3.

Path constraints. We are now ready to de�ne path constraints.

Definition 2.1. A path constraint ' is an expression of either the forward form

8x (�(r; x)! 8 y (�(x; y)! 
(x; y)));

or the backward form

8x (�(r; x)! 8 y (�(x; y)! 
(y; x))):

Here �; �; 
 are paths, denoted by pf('); lt('); rt('), respectively, and � is called
the pre�x of '. We use Pc to denote the set of all path constraints.

A structure G satis�es ', denoted by G j= ', i�

|if ' is a forward constraint, then for any vertex x reachable from the root r
by following � and for any vertex y reachable from x by following �, y is also
reachable from x by following 
;

|if ' is a backward constraint, then for any x that is reached from r by following
� and for any y that is reached from x by following �, x is also reachable from y

by following 
.

Observe that Pc constraints are relative constraints: they are de�ned on sub-graphs
(sub-structures) that are rooted at nodes reachable by following their pre�x. In
other words, forward and backward constraints expresses inclusion and inverse re-
lationships relative to their pre�x.
A proper subclass of Pc was introduced and investigated in [Abiteboul and Vianu

1999], namely word constraints of the form

8x (�(r; x)! 
(r; x));

where � and 
 are paths. Observe that a word constraint is a forward constraint of
Pc with its pre�x being the empty path �. For example, the inclusion constraints
given in Section 1 are word constraints, whereas the inverse constraints are not. In
contrast to general Pc constraints, Pw constraints are absolute constraints that hold
on the entire graph (structure). We use Pw to denote the set of all word constraints.
For a set � of path constraints, we use G j= � to denote that for any ' 2 �,

G j= '.

Examples. In Section 1 we have seen that path constraints are capable of ex-
pressing inclusion and inverse relationships. Below we further demonstrate their
expressive power by examples.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2002.
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r

db2

local db 2 local db 3

db3

α α α

local db 1

db1

Fig. 3. Local databases in data integration

In data integration it is sometimes desirable to make one database a component
of another database, or to build a \database of databases". For example, we want
to bring together a number of person/book databases of the form depicted in Fig. 1,
each consisting of a collection of person and book records, as shown in Fig. 3. One
may want the constraints given in Section 1 to hold a component databases dbi.
These can be expressed as path constraints:

8x (�:dbi � book(r; x)! 8 y (author(x; y)! wrote(y; x)));

8x (�:dbi � person(r; x)! 8 y (wrote(x; y)! author(y; x)));

8x (�:dbi(r; x)! 8 y (book � author(x; y)! person(x; y)));

8x (�:dbi(r; x)! 8 y (person � wrote(x; y)! book(x; y)));

8x (�:dbi(r; x)! 8 y (book � ref(x; y)! book(x; y))):

We refer to these as local database constraints as they are constraints on component
databases.

Abiteboul and Vianu [1999] studied a generalization of word constraints de�ned
in terms of regular path expressions. Along the same lines, Pc constraints can
be generalized. In this paper we do not consider constraints of this general form
because, as we shall see in Sections 5 and 6, Pc constraints suÆce to explore the
interaction between types and path constraints.

3. TYPE CONSTRAINTS

In this section we present two object-oriented models and examine type constraints
induced by a variety of types constructs. In Sections 5 and 6, we shall investigate
path constraint implication in the presence of these type constraints.

3.1 Object-oriented model M+

We �rst study a generic object-oriented model, M+. Similar to the models stud-
ied in [Abiteboul et al. 1995; Abiteboul and Kanellakis 1989; Cattell 2000], M+

supports classes, records, sets and recursive structures.

Schema and instances. We describe schema and instances of M+ as follows.
Assume a countable set L of labels, and a �nite set B of atomic types (e.g., int

and string). Let C be a �nite set of classes. The set of types over C, TypesC , is

ACM Transactions on Computational Logic, Vol. V, No. N, May 2002.



Interaction between Path and Type Constraints � 11

de�ned by:

� ::= b j C j f�g j [l1 : �1; : : : ; ln : �n]

where b 2 B, C 2 C, and li 2 L. The notations f:g and [:] represent set type and
record type, respectively.
A schema � in M+ is a triple (C; �; DBtype), where C is a �nite set of classes,

� is a mapping C ! TypesC such that �(C) 62 B [ C for each class C 2 C, and
DBtype 2 TypesC n (B[C). Here we assume that every database of a schema has a
unique (persistent) entry point, and DBtype speci�es the type of the entry point.
For example, the person/book database given in Fig. 1 (a) can be speci�ed by

�0 = (C; �; DBtype) in M+, where C consists of Book and Person, � maps Book
and Person to record types:

Person 7! [name : string; ssn : string; wrote : fBookg]

Book 7! [title : string; ref : fBookg; author : fPersong]

and DBtype = [person : fPersong; book : fBookg].
A database instance of a schema (C; �; DBtype) is a triple (�; �; d), where

|� is an oid (object identity) assignment that maps each C 2 C to a �nite set of
oids, �(C), such that for all C;C 0 2 C, �(C) \ �(C 0) = ; if C 6= C 0;

|for each C 2 C, � maps each oid in �(C) to a value in [[�(C)]]� , where

[[b]]� = Db;

[[C]]� = �(C);

[[f�g]]� = fV j V � [[� ]]�g;

[[[l1 : �1; :::; ln : �n]]]� = f[l1 : v1; :::; ln : vn] j vi 2 [[�i]]� ; i 2 [1; n]g;

here Db denotes the domain of atomic type b;

|d is a value in [[DBtype]]�, which represents the (persistent) entry point into the
database instance.

We denote the set of all database instances of schema � by I(�).

Type constraints induced byM+. We next present an abstraction of databases
in M+. Structured data can be viewed as semistructured data further constrained
by a schema. Along the same lines as the abstraction of semistructured data, we
represent a structured database as a �rst-order logic structure satisfying a certain
type constraint.
We �rst de�ne the �rst-order signature determined by a schema.
Given a schema � = (C; �; DBtype), we de�ne the set of binary relation symbols ,

E(�), and the set of unary relation symbols , T (�), as follows: (1) DBtype 2 T (�)
and C � T (�); (2) for each � 2 T (�),

|if � = f� 0g (or for some C 2 C, �(C) = f� 0g), then � 0 is in T (�) and mem is in
E(�);

|if � = [l1 : �1; : : : ; ln : �n] (or for some C 2 C, �(C) = [l1 : �1; : : : ; ln : �n]), then
for each i 2 [1; n], �i is in T (�) and li is in E(�).
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12 � P. Buneman, W. Fan, and S. Weinstein

Note here we use the distinguished binary relation `mem' to denote the set mem-
bership relation.
The signature determined by a schema � is �(�) = (r; E(�); T (�)), where r

is a constant symbol (denoting the root), E(�) is the �nite set of binary relation
symbols (denoting the edge labels) and T (�) is the �nite set of unary relation
symbols (denoting the sorts or types) de�ned above.
As an example, the signature determined by the schema �0 given above is

(r; E; T ), where r is a constant, which in each instance (�; �; d) of the schema
intends to name d; E includes person, book, name, ssn, wrote, title, ref, author
and mem; and T includes Person, Book, string, fBookg, fPersong and DBtype.
We represent an instance I of a schema � as a (�nite) �(�)-structure G that

satis�es a certain type constraint. More speci�cally, given � = (C; �; DBtype)
and I = (�; �; d), there is a �(�)-structure G = (jGj; rG; EG; TG) such that
jGj, rG, EG and TG represent data entities, the entry point d, record labels and
set membership, and the types of the data entities, respectively. This structure
must satisfy the type constraint imposed by �, denoted by �(�), which speci�es
restrictions on the edges going out of vertices of di�erent types. More speci�cally,
for each � in T (�), let the �rst order logic sentence 8x (�(x) ! �� (x)) be the
constraint determined by � , then

�(�) = DBtype(r) ^
^

�2T (�)

8x (�(x) ! �� (x))

^ 8x (
_

�2T (�)

�(x) ^
^

�2T (�)

(�(x) !
^

� 02T (�)nf�g

:� 0(x))):

That is, every element of jGj has a unique type � in T (�) and it must satisfy the
constraint imposed by � . In particular, rG has DBtype. We de�ne �� as follows.
Let a be an element of jGj with type � . Then a must satisfy �� (x) de�ned by:

|If � is an atomic type b, then a has no outgoing edge. That is,

�� (x) = 8 y (
^

l2E(�)

:l(x; y)):

|If � = f� 0g, or � is a class type C and �(C) is f� 0g, then all the outgoing edges
of a are labeled with mem and they lead to elements of type � 0. That is,

�� (x) = 8 y (
^

l2E(�)nfmemg

:l(x; y)) ^ 8 y (mem(x; y)! � 0(y)):

In addition, if � = f� 0g, then for each b 2 jGj such that b also has type � , a = b

i� for any c 2 jGj, G j= mem(a; c) $ mem(b; c). In other words, two sets are
equal i� they have the same elements. That is, �� (x) also has the conjunct:

8 y ((�(y) ^ 8 z (mem(x; z)$ mem(y; z))) ! x = y):

|If � = [l1 : �1; : : : ; ln : �n], or � is a class type C and �(C) = [l1 : �1; : : : ; ln : �n],
then a has exactly n outgoing edges. These edges are labeled with l1, ..., ln,
respectively. In addition, for each i 2 [1; n], if G j= li(a; o) for some o 2 jGj, then
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Fig. 4. Graph representation of an abstract database in M+

o has type �i. That is,

�� (x) = 8 y (
^

l2E(�)nfl1;::: ;lng

:l(x; y)) ^
^

i2[1;n]

(9 ! y li(x; y) ^ 8 y (li(x; y)! �i(y))):

Moreover, if � = [l1 : �1; : : : ; ln : �n], then for each b 2 jGj having type � , a = b

i� for any i 2 [1; n] and c 2 jGj, G j= li(a; c) $ li(b; c). In other words, two
records are equal i� they have the same attributes. That is, �� (x) also has the
conjunct:

8 y ((�(y) ^
^

i2[1;n]

8 z (li(x; z)$ li(y; z))) ! x = y):

Here to simplify the description, we use the counting quanti�er 9 !, whose semantics
is as follows: structure G satis�es 9 !x (x) if and only if there exists a unique
element a of G such that G j=  (a) (see, e.g., [B�orger et al. 1997] for detailed
discussions of counting quanti�ers). It should be noted that 9 ! is de�nable in
�rst-order logic.
An abstract database of a schema � is a �nite �(�)-structure G satisfying �(�),

i.e., G j= �(�). We denote the set of all abstract databases of � by Uf (�). We
use U(�) to denote the set of all �(�)-structures satisfying �(�).
An abstract database � can also be depicted as an edge-labeled, rooted, directed

graph, which has a certain \shape" speci�ed by the type constraint �(�). For
example, a �(�0)-structure representing person/book database is depicted in Fig. 4.
Contrast this with Fig. 1 (a). These two graphs are slightly di�erent because of
the explicit treatment of the set membership relation \mem". However, there
is a straightforward transformation from the former to the latter: if we replace
person � mem with person, book � mem with book, wrote � mem with wrote and
author �mem with author in Fig. 4, then we obtain a graph representation in the
same form as the one shown in Fig. 1 (a).

Path constraints revisited. Next, we re�ne the de�nitions of paths and path
constraints in the context of M+, and justify the abstraction of databases given
above with respect to path constraint satis�ability.
Given the signature (r; E(�); T (�)) determined by a schema �, one could de�ne
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14 � P. Buneman, W. Fan, and S. Weinstein

paths and path constraints using binary predicates in E(�) in the same way as in
Section 2. These de�nitions, however, are somewhat too coarse in the context of
the object-oriented model. Because of the type constraint �(�), some paths are
not meaningful in structures of U(�). That is, there exists path �(x; y) de�ned in
this way such that for all G 2 U(�) and all a; b 2 jGj, G 6j= �(a; b). Such paths
are said to be unde�ned over �. A path constraint containing unde�ned paths
is satis�ed by either all the structures in U(�) or by none of them. We are not
interested in such constraints.
We use Paths(�) to denote the set of paths over �. Intuitively, � 2 Paths(�)

i� there is G 2 U(�) such that G j= 9x �(r; x). We de�ne Pc constraints over a
schema � in terms of paths in Paths(�). Formally, these notions are de�ned as
follows.
Let an M+ schema � be (C; �; DBtype). The set of paths over schema �,

Paths(�), and the type of path � in Paths(�), type(�), are de�ned inductively as
follows: (1) the empty path � is in Paths(�) and type(�) = DBtype; (2) for any
� 2 Paths(�), where type(�) = � ,

|if � = f� 0g or for some C 2 C, � = C and �(C) = f� 0g, then � �mem is a path
in Paths(�) and type(� �mem) = � 0;

|if � = [l1 : �1; : : : ; ln : �n] or there exists a class C in C such that � = C and
�(C) = [l1 : �1; : : : ; ln : �n], then for each i 2 [1; n], � � li is in Paths(�) and
type(� � li) = �i.

A Pc constraint ' over schema � is an expression of either the forward form

8x (�(r; x)! 8 y (�(x; y)! 
(x; y)));

or the backward form

8x (�(r; x)! 8 y (�(x; y)! 
(y; x)));

such that (1) if ' is of the forward form, then � � � 2 Paths(�), � � 
 2 Paths(�)
and moreover, type(� � �) = type(� � 
); (2) if ' is of the backward form, then
� 2 Paths(�), � � � � 
 2 Paths(�) and moreover, type(�) = type(� � � � 
). In
particular, a word constraint over � is of the form 8x (�(r; x) ! 
(r; x)), where �
and 
 are in Paths(�) such that type(�) = type(
). We denote the set of all Pc and
word constraints over � by Pc(�) and Pw(�), respectively. When � is understood
from the context, we write Pc(�) and Pw(�) simply as Pc and Pw, respectively.
Observe that these syntactic restrictions can be checked in quadratic time in the

sizes of path constraint and schema. These restrictions ensure that path constraints
make sense in structures of U(�). Without the restriction � � � � 
 2 Paths(�) on
a backward constraint, for example, the constraint is either always true or always
false in all structures of U(�), depending on whether � � � 2 Paths(�) or not.
For example, the following are Pc constraints over the schema �0 given earlier:

8x (person �mem � wrote �mem(r; x)! book �mem(r; x));

8x (book �mem � author �mem(r; x)! person �mem(r; x));

8x (person �mem(r; x)! 8 y (wrote �mem(x; y)! author �mem(y; x)));

8x (book �mem(r; x)! 8 y (author �mem(x; y)! wrote �mem(y; x))):
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Note that these constraints are presented here in a slightly di�erent way from
Section 1 because of the explicit treatment of the set membership relation.
In an instance (�; �; d) of �0, these constraints are interpreted as:

8x (9 p (p 2 d:person ^ x 2 p:wrote)! x 2 d:book);

8x (9 b (b 2 d:book ^ x 2 b:author)! x 2 d:person);

8x (x 2 d:person! 8 y (y 2 x:wrote ! x 2 y:author));

8x (x 2 d:book ! 8 y (y 2 x:author ! x 2 y:wrote)):

Here v:l is the projection of record v on attribute l, and v 2 s means that v is an
element of set s.
As illustrated by the example above, path constraints over a schema � can be

naturally interpreted in database instances of �. Likewise, the notion \I j= '" can
also be de�ned for an instance I of � and a constraint ' of Pc(�).
The lemma below justi�es the abstraction of structured databases de�ned above.

It reveals the agreement between databases and their abstraction with respect to
path constraints.

Lemma 3.1. Let � be a schema in M+. For each I 2 I(�), there is G 2 Uf (�)
such that

(y) for any ' 2 Pc(�), I j= ' i� G j= ':

Similarly, for each G 2 Uf (�), there is I 2 I(�) such that (y) holds.

Proof: Let � = (C; �; DBtype).
(1) Given I 2 I(�), we construct G 2 Uf (�) such that for each ' 2 Pc(�), I j= '

i� G j= '.
Let I = (�; �; d). We de�ne V to be the smallest set such that d 2 V and for

every v 2 V , (a) if v is a set (or v is an object and �(v) is a set), then every element
of v (or �(v)) is in V ; (b) if v is a record (or v is an object and �(v) is a record),
then every attribute of v (or �(v)) is in V .
For any v 2 V , let o(v) be a distinct node. Let G = (jGj; rG; EG; TG), where

(a) jGj = fo(v) j v 2 V g; (b) rG = o(d); (c) for each o(v) 2 jGj and � 2 T (�),
G j= �G(o(v)) i� v is of type � , where �G denotes the unary relation in G named
by � ; and (d) for all o(v); o(v0) 2 jGj,

|for each l 2 L \ E(�), G j= l(o(v); o(v0)) i� v0 = v:l (or v0 = �(v):l if v is an
object);

|G j= mem(o(v); o(v0)) i� v0 2 v (or v0 2 �(v) if v is an object).

It is straightforward to verify by reductio that G 2 Uf (�) and for each ' 2 Pc(�),
G j= ' i� I j= '.

(2) Given G = (jGj; rG; EG; TG) in Uf (�), we de�ne I = (�; �; d) in I(�) such
that for every ' 2 Pc(�), I j= ' i� G j= '. To simplify the discussion, we assume
that for every base type b, its domain Db is in�nite. By this assumption, there
exists an injective mapping gb : bG ! Db, where b

G is the unary relation in G

denoting the sort b.
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16 � P. Buneman, W. Fan, and S. Weinstein

For any C 2 C, let �(C) = CG, where CG is the unary relation in G denoting

the class C. We then de�ne a mapping f : jGj !
[

�2T (�)

[[� ]]� that instantiates

the objects as follows: For each o 2 jGj, (a) if o 2 CG for some C 2 C, then let
f(o) = o; (b) if o 2 bG for some base type b, then let f(o) = g(o); (c) if o 2 �G

and � = [l1 : �1; : : : ; ln : �n], then let f(o) = [l1 : f(o1); : : : ; ln : f(on)], where for
each i 2 [1; n], oi 2 jGj and G j= li(o; oi); (d) if o 2 �G and � = f� 0g, then let
f(o) = ff(o0) j o0 2 jGj; G j= mem(o; o0)g. Note that f is well-de�ned since G is
�nite and G j= �(�). Now let d = f(rG) and for each C 2 C and o 2 �(C),

|if �(C) = [l1 : �1; : : : ; ln : �n], then let �(o) = [l1 : f(o1); : : : ; ln : f(on)], where
for i 2 [1; n], oi 2 jGj and G j= li(o; oi).

|if �(C) = f�g, then let �(o) = ff(o0) j o0 2 jGj; G j= mem(o; o0)g.

Again, this is well-de�ned. Moreover, it is easy to verify that I 2 I(�), and G j= '

i� I j= '. 2

From Lemma 3.1 follows immediately the corollary below.

Corollary 3.2. Let � be any schema in M+ and �[ f'g be any �nite subset
of Pc(�). Then there is I 2 I(�) such that I j=

V
� ^ :' if and only if there is

G 2 Uf (�) such that G j=
V
� ^ :'.

3.2 Object-oriented model M

We also consider a restriction M of M+. The model M supports classes, records
and recursive structures. However, it does not allow sets. In addition, a record in
M consists of values of atomic types and oids only. More speci�cally, let C be some
�nite set of classes. The set of types over C in M is de�ned by:

t ::= b j C

� ::= t j [l1 : t1; : : : ; ln : tn]

where b 2 B, C 2 C, and li 2 L.
Schema and instances in M are de�ned in the same way as in M+. So are the

notions of E(�), T (�), �(�), �(�), Uf (�), U(�), and Pc(�) for a schema � in
M. It is easy to verify that Lemma 3.1 also holds in the context of M. Databases
ofM are comparable to feature structures [Rounds 1997], which have proven useful
in representing linguistic data.

4. IMPLICATION PROBLEMS FOR PATH CONSTRAINTS

In this section we describe two implication problems associated with path con-
straints, which will be investigated in the rest of the paper.

4.1 Implication of Pc constraints

We �rst present implication and �nite implication of Pc constraints. Let � [ f'g
be a �nite set of Pc constraints.
In the untyped (semistructured) context, we use � j= ' to denote that � implies

', i.e., for any �-structure G, if G j= � then G j= '. We use � j=f ' to denote that
� �nitely implies '. That is, for any �nite �-structure G, if G j= � then G j= '.
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The (unrestricted) implication problem for Pc in the untyped context is the prob-
lem to determine, given any �nite set � and ' of Pc constraints, whether � j= ' or
not. Similarly, the �nite implication problem for Pc to determine whether � j=f '.
For example, let �0 denote the Pc constraints given in Section 1 and '0 be

8x (book � ref � ref(r; x)! book(r; x)):

The question whether every (�nite) model of �0 also satis�es '0 is an instance
of the (�nite) implication problem for Pc. It is easy to verify that �0 j= '0 and
�0 j=f '0 indeed hold.
In the typed context, path constraint implication is restricted by a schema. More

speci�cally, let � be a schema in M+ (or M). We use � j=� ' to denote that �
implies ' over �. That is, for every G 2 U(�), if G j= � then G j= '. Similarly,
we use � j=(f;�) ' to denote that � �nitely implies ' over �. That is, for every
G 2 Uf (�), if G j= � then G j= '.
In the context of M+ (resp. M), the unrestricted (�nite) implication problem

for Pc is the problem of determining, given any �nite set � and ' of Pc constraints
and any schema � in M+ (resp. M), whether � j=� ' (� j=(f;�) ').
As mentioned in Section 1, Pc constraint implication is important in, among

other things, query optimization and data integration.

4.2 Implication of local database constraints

As observed in Section 2, local database constraints are useful in data integration.
When represented in a global database, constraints on a local database are usually
augmented with a common pre�x which is a path from the root of the global
database to the component database. For example, referring to Fig. 3, inclusion
constraints on local database 1 have the form:

8x (� � db1(r; x)! 8 y (book � author(x; y)! person(x; y)));

8x (� � db1(r; x)! 8 y (person � wrote(x; y)! book(x; y)));

8x (� � db1(r; x)! 8 y (book � ref(x; y)! book(x; y))):

One might be interested in implication of inclusion constraints on a particular local
database, e.g., whether the constraints above imply the following constraint on
database 1:

8x (� � db1(r; x)! 8 y (book � ref � ref(x; y)! book(x; y))):

Furthermore, one wants to know whether the implication would be a�ected if con-
straints on other local databases are present, such as inverse constraints on local
database 2:

8x (� � db2 � book(r; x)! 8 y (author(x; y)! wrote(y; x)));

8x (� � db2 � person(r; x)! 8 y (wrote(x; y)! author(y; x))):

To formalize this implication problem, we use the following notations.

Definition 4.1. A set �K of Pc constraints is said to be bounded by a path �
and a label K if each ' in �K has the form

8x (� �K(r; x)! 8 y (�(x; y)! 
(x; y)));
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where � 6= � and K 6�p � (i.e., K is not a pre�x of �). A set �r of Pc constraints
is said to be excluded by � and K if for each � 2 �r, pf(�) = � � �0 for some path
�0 and K 6�p �

0; in particular, when �0 = �, � does not contain any label except K.
Here pf(�) denotes the pre�x of �, as described in De�nition 2.1.

Intuitively, �K consists of local inclusion constraints on a local database con-
nected to the root by � � K, and �r includes constraints that are not de�ned on
that particular local database. A special case is �0 = �, when the constraint is not
de�ned on any local database. To simplify our proofs (to avoid dealing with various
labels in our constructions), in this case we restrict � to be either � or a path of K
labels.
In the untyped context, the unrestricted (�nite) implication problem for local

inclusion constraints is to determine, given any �nite sets �K , �r and ' of Pc
constraints, whether �K [�r j= ' (�K [�r j=f '), where �K [f'g is bounded by
a path � and a label K, and �r is excluded by � and K. Similarly, the unrestricted
(�nite) implication problem for local inclusion constraints is de�ned in the context
of M+ (resp. M).

4.3 A road map

We shall use the (�nite) implication problems described above to demonstrate the
interaction between path and type constraints. More speci�cally, in the next sec-
tion we shall study implication and �nite implication of Pc constraints: we show
that these problems are undecidable in the context of semistructured data (The-
orem 5.1), and that they become decidable in the context of the data model M
(Theorem 5.2). In fact we show the undecidability result also holds for a small frag-
ment of Pc, denoted by Pw(�) (Lemma 5.3). These tell us that the presence of a
type system in some cases may simplify the analysis of path constraint implication.
In Section 6 we shall investigate implication and �nite implication of local inclu-
sion constraints: we show that although these problems are decidable in PTIME in
the untyped setting (Theorem 6.1), they become undecidable in the context of the
model M+ (Theorem 6.2). These demonstrate that in other cases adding a type
system may make the implication analysis more intriguing.
To give a complete picture of path constraint implication in di�erent settings,

in Section 7 we establish the undecidability of the (�nite) implication problems for
the fragment Pw(�) in the context ofM

+ (Theorem 7.1). Furthermore, we study a
restriction of the model M+, denoted by M�, which only allows �nite sets instead
of general (possibly in�nite) sets. Although we show that this slightly di�erent
semantics does not change the undecidability of the (�nite) implication problems for
Pc, Pw(�) and for local inclusion constraints (Theorem 7.2), it makes unrestricted
implication and �nite implication of these constraints equivalent (Lemma 7.3). We
also compare unrestricted implication and �nite implication in other settings (see
Corollaries 5.7, 7.4, 7.5 and 7.6).

5. SIMPLIFICATION OF PATH CONSTRAINT IMPLICATION WITH TYPES

This section shows that an undecidability result on path constraint implication
established for semistructured data collapses when a type of M is imposed on the
data. The main results of the section are the following:

ACM Transactions on Computational Logic, Vol. V, No. N, May 2002.



Interaction between Path and Type Constraints � 19

Theorem 5.1. In the context of semistructured data, the implication and �nite
implication problems for Pc are undecidable.

Theorem 5.2. In the context of the object-oriented model M, the implication
and �nite implication problems for Pc are decidable in cubic-time and are �nitely
axiomatizable.

These theorems show that in some cases, adding a type system may simplify
reasoning about path constraints.
We prove Theorems 5.1 and 5.2 in Sections 5.1 and 5.2, respectively.

5.1 Undecidability on untyped data

Theorem 5.1 was �rst shown in [Buneman et al. 2000]. Here we strengthen the
result by identifying an undecidable fragment of Pc. This \small" fragment of Pc is
a mild generalization of Pw, the class of word constraints introduced by Abiteboul
and Vianu [1999] and described in Section 2.
We present the fragment as follows. Recall E, the �nite set of binary relation

symbols (edge labels) in the signature � de�ned in Section 2. Let K be a binary
relation symbol in E. For each  2 Pw, where  = 8x (�(r; x) ! 
(r; x)), let
Æ( ; K) = 8x (K(r; x)! 8 y (�(x; y)! 
(x; y))). The fragment is de�ned by

Pw(K) = Pw [ fÆ( ; K) j  2 Pwg:

That is, Pw(K) consists of Pw constraints and extensions of Pw constraints with a
common pre�x K.
In the context of semistructured data, the (�nite) implication problem for Pw(K)

is the problem to determine, given any �nite set � and ' of Pw(K) constraints,
whether � j= ' (� j=f '). The lemma below establishes the undecidability of these
problems, from which Theorem 5.1 follows immediately.

Lemma 5.3. In the context of semistructured data, both the implication and �nite
implication problems for Pw(K) are undecidable.

Contrast this with [Abiteboul and Vianu 1999], which shows that the implication
and �nite implication problems for Pw are decidable in PTIME. Lemma 5.3 tells
us that the problems become undecidable when Pw is generalized in such a mild
way. We thank an anonymous referee for observing a similarity between Pw(K)
constraint implication and subsumption in a description logic extended with a role-
value-map construct: in particular, the subsumption problem was proved undecid-
able by reduction from the word problem for groups [Schmidt-Schau� 1989].
We prove Lemma 5.3 by reduction from the word problem for (�nite) monoids.

Before we give the reduction, we �rst review the word problem for (�nite) monoids.

The word problem for (�nite) monoids. A monoid is a triple (M; Æ; 1), where
M is a nonempty set, Æ is an associative binary relation on M , and 1 is an element
of M that is the identity for Æ. That is, for any a 2M , 1 Æa = a = a Æ 1. A monoid
(M; Æ; 1) is said to be �nite if M is �nite.
Let � be a �nite alphabet. The free monoid generated by � is (��; �; �), where

�� is the set of all �nite strings with letters in �, `�' is the concatenation operator
on strings, and � is the empty string.
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An equation (over �) is a pair (�; �) of strings in ��. Let � = f(�i; �i) j i 2 [1; n]g
be a �nite set of equations, and � = (�; �) be a test equation. Then � j= � (� j=f �)
i� for every (�nite) monoid (M; Æ; 1) and every homomorphism h : �� ! M , if
h(�i) = h(�i) for each i 2 [1; n], then h(�) = h(�).
The word problem for (�nite) monoids is to determine, given � and �, whether

� j= � (� j=f �).
The following result is well-known (cf. [Abiteboul et al. 1995]).

Lemma 5.4. The word problem for monoids and the word problem for �nite
monoids are undecidable.

Reduction from the word problem. We reduce the word problem for (�nite)
monoids to the (�nite) implication problem for Pw(K). Let �0 be a �nite alphabet
and �0 be a �nite set of equations (over �0). Assume

�0 = flj j j 2 [1;m]g; �0 = f(�i; �i) j �i; �i 2 ��0; i 2 [1; n]g;

and a �rst-order logic signature �0 = (r; �0 [ fKg), where K 62 �0, r is a constant
symbol, and �0[fKg is a set of binary relation symbols. Note here that each letter
in �0 is a binary relation symbol in �0. Thus every � 2 ��0 can be represented as a
path formula, also denoted by �. In addition, we use `�' to denote the concatenation
operator for both paths and strings.
We encode �0 in terms of � � Pw(K), which consists of the following:

8x (�(r; x)! K(r; x));

for every j 2 [1;m],

8x (K � lj(r; x)! K(r; x));

and for each (�i; �i) 2 �0,

8x (K(r; x)! 8 y (�i(x; y)! �i(x; y))); 8x (K(r; x)! 8 y (�i(x; y)! �i(x; y))):

Let (�; �) be a test equation over �0. We encode (�; �) with a pair of constraints
in Pw:

'(�;�) = 8x (�(r; x)! �(r; x)); '(�;�) = 8x (�(r; x)! �(r; x)):

The lemma below shows that the encoding above is indeed a reduction from the
word problem for (�nite) monoids. From this and Lemma 5.4 follows Lemma 5.3.

Lemma 5.5. In the context of semistructured data, for all �; � 2 ��0,

�0 j= (�; �) i� � j= '(�;�) ^ '(�;�); �0 j=f (�; �) i� � j=f '(�;�) ^ '(�;�):

Proof: We prove the lemma for �nite implication only. The proof for implication
is similar.
(if ) Suppose �0 6j=f (�; �). We show � 6j=f 8x (�(r; x)! �(r; x)) by constructing
a �nite �0-structure G such that G j= � but G 6j= 8x (�(r; x) ! �(r; x)). Speci�-
cally, by �0 6j=f (�; �), there exist a �nite monoid (M; Æ; 1) and a homomorphism
h : ��0 ! M such that for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�). We
are to construct G based on M and h such that strings �; � are coded with paths
preserving their relationship.
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Fig. 5. The structure G in the proof of Lemma 5.5

To do this, we �rst de�ne some notations. Based on M and h, we de�ne an
equivalence relation � on ��0 as follows:

� � % i� h(�) = h(%):

For every � 2 ��0, let b� be the equivalence class of � with respect to �. Let
C�0

= fb� j � 2 ��0g.
Using these notations, we construct a structure G = (jGj; rG; EG) as shown in

Fig. 5, as follows. (1) For each b� 2 C�0
, let o(b�) be a distinct node. Then we de�ne

jGj = fo(b�) j b� 2 C�0
g. (2) rG = o(b�). (3) The binary relations are populated as

follows: For each b� 2 C�0
, let G j= K(o(b�); o(b�)). In addition, for each j 2 [1;m],

let G j= lj(o(b�); o(d� � lj)).
By the construction of G, it is easy to see that for every � 2 ��0 and j 2 [1;m],

o(d� � lj) is the unique node such that G j= lj(o(b�); o(d� � lj)). This is because h is
a homomorphism, and as a result, if �1 � �2, then h(�1 � lj) = h(�1) Æ h(lj) =
h(�2) Æ h(lj) = h(�2 � lj).
Using this property of G, it is also easy to verify the following claims.

Claim 1: G is �nite.
To prove this, it suÆces to show that C�0

is �nite. Speci�cally, consider function
f : C�0

! M de�ned by f : b� 7! h(�). Clearly, f is well-de�ned, total and
injective. Thus because M is �nite, so is C�0

.
Claim 2: G j= �.
Observe that G j= 8x (�(r; x) ! K(r; x)) and G j= 8x (K � lj(r; x) ! K(r; x))

for each j 2 [1;m] are immediate from the construction of G. To see that
for each (�i; �i) 2 �0, G j= 8 x (K(r; x) ! 8 y (�i(x; y) ! �i(x; y))) and
G j= 8 x (K(r; x) ! 8 y (�i(x; y) ! �i(x; y))), observe the following. First, by as-
sumption, �i � �i for any i 2 [1; n]. In addition, for every � 2 ��0, h(���i) = h(���i)

because h is a homomorphism. Therefore, � � �i � � � �i. That is,[� � �i =[� � �i.
Second, by the construction of G, for any o 2 jGj, o = o(b�) for some � 2 ��0.
Moreover, for each % 2 ��0, it can be shown by a straightforward induction on
j%j that there is a unique o0 2 jGj such that G j= %(o(b�); o0) and o0 = o(d� � %).
Thus for each o(b�) such that G j= K(o(b�); o(b�)), o([� � �i) is the unique node in jGj
such that G j= �i(o(b�); o([� � �i)). Similarly, we have G j= �i(o(b�); o([� � �i)). By

o([� � �i) = o([� � �i), we have G j= �i(o(b�); o([� � �i)). Therefore, for each i 2 [1; n],
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G j= 8x (K(r; x) ! 8 y (�i(x; y) ! �i(x; y))). Similarly, it can be shown that
G j= 8x (K(r; x)! 8 y (�i(x; y)! �i(x; y))). Therefore, G j= �.
Claim 3: G 6j= 8x (�(r; x)! �(r; x)).

As in Claim 2, we can show G j= �(o(b�); o(b�)) and G j= �(o(b�); o(b�)). In

addition, o(b�) is the unique node in jGj such that G j= �(o(b�); o(b�)). By as-

sumption, we have � 6� �. Thus b� 6= b� and o(b�) 6= o(b�): From this follows
G j= �(o(b�); o(b�)) ^ :�(o(b�); o(b�)). That is, G 6j= 8x (�(r; x)! �(r; x)).

(only if ) Suppose � 6j=f 8x (�(r; x) ! �(r; x)) ^ 8x (�(r; x) ! �(r; x)). We
show �0 6j=f (�; �) by de�ning a �nite monoid (M; Æ; 1) and a homomorphism
h : ��0 ! M such that for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�). More
speci�cally, by assumption, there exists a �nite �0-structure G such that G j= �
but G 6j= '(�;�)^'(�;�). We de�ne the monoid and homomorphism such that paths
�; � in G are coded with strings preserving the same relationship.
To do this, we de�ne another equivalence relation on ��0. Without loss of gener-

ality, assume that there is o 2 jGj such that G j= �(rG; o) ^ :�(rG; o). Based on
G, we de�ne an equivalence relation � on ��0:

� � % i� G j= 8x(K(r; x)! 8 y (�(x; y)! %(x; y)))

^ 8x (K(r; x)! 8 y (%(x; y)! �(x; y))):

Then by G j= �, for any i 2 [1; n], �i � �i. By G j= 8x (�(r; x) ! K(r; x)),
we have G j= K(rG; rG). In addition, by G j= �(rG; o) ^ :�(rG; o), we have
G 6j= 8x (K(r; x) ! 8 y (�(x; y) ! �(x; y))). Therefore, � 6� �. For every � 2 ��0,
let [�] denote the equivalence class of � with respect to �. Then clearly, for any
i 2 [1; n], [�i] = [�i], but [�] 6= [�].
Using the notion of �, we de�ne M = f[�] j � 2 ��0g. We have the following

about M .
Claim 4: M is �nite.
To show this, we de�ne S� = f(a; b) j a; b 2 jGj; G j= K(rG; a) ^ �(a; b)g for

every � 2 ��0. In addition, let SG = fS� j � 2 ��0g. Since S� � jGj � jGj and jGj is
�nite, SG is �nite. Moreover, it is easy to verify:
Fact: For all �; % 2 ��0, � � % i� S� = S%.
To show the fact, �rst assume � � %. Then for each (a; b) 2 S�, by the de�nition

of S�, we have G j= K(rG; a) ^ �(a; b). By the de�nition of � and the assumption
that � � %, we have G j= K(rG; a)^%(a; b). Hence (a; b) 2 S%. Therefore, S� � S%.
Similarly, it can be shown that S% � S�. Hence S� = S%. Conversely, assume that
S� = S%. Suppose, for reductio, that � 6� %. Without loss of generality, assume
that G 6j= 8x(K(r; x) ! 8 y (�(x; y) ! %(x; y))). Then there exist a; b 2 jGj such
that G j= K(rG; a)^ �(a; b)^:%(a; b). That is, (a; b) 2 S� but (a; b) 62 S%. Hence
S� 6= S%. This contradicts the assumption. Therefore, the fact holds.
Next, consider function g : M ! SG de�ned by g : [�] 7! S�. Using the fact

above, it is easy to see that g is well-de�ned, total and injective. Therefore, because
SG is �nite, so is M .

We next de�ne a binary operation Æ onM by [�] Æ [%] = [� � %]. It is easy to verify
the following claims.
Claim 5: Æ is well-de�ned.
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To prove this, for all �1; �2; %1; %2 2 ��0 such that �1 � �2 and %1 � %2, we show
�1 � %1 � �2 � %2. Consider all o; o1 2 jGj such that G j= K(rG; o) ^ �1 � %1(o; o1).
Clearly, there is o0 2 jGj such that G j= �1(o; o

0) ^ %1(o0; o1). By �1 � �2, we have
G j= �2(o; o

0). By G j= 8x (K � lj(r; x) ! K(r; x)) and G j= K(rG; o) ^ �1(o; o0),
we have G j= K(rG; o0). Thus by %1 � %2, we also have G j= %2(o

0; o1). Hence
G j= �2 �%2(o; o1). Therefore, G j= 8x (K(r; x)! 8 y (�1 �%1(x; y)! �2 �%2(x; y))).
Similarly, we can show G j= 8x (K(r; x) ! 8 y (�2 � %2(x; y) ! �1 � %1(x; y))).
Therefore, �1 � %1 � �2 � %2.
Claim 6: Æ is associative.
This is because for all [�]; [%]; [�] 2 M , ([�] Æ [%]) Æ [�] = [� � %] Æ [�] = [� � % � �] =

[�] Æ ([% � �]) = [�] Æ ([%] Æ [�]).
Claim 7: [�] is the identity for Æ.
This is because for any [�] 2M , [�] Æ [�] = [�] = [�] Æ [�].
By these claims, (M; Æ; [�]) is a �nite monoid.
Finally, we de�ne h : ��0 ! M by h : � 7! [�]. Clearly, h is a homomorphism

since h(� � %) = [� � %] = [�] Æ [%] = h(�) Æ h(%). In addition, for any i 2 [1; n], by
[�i] = [�i], h(�i) = h(�i). Moreover, by [�] 6= [�], we have h(�) 6= h(�). Therefore,
�0 6j=f (�; �).
This completes the proof of Lemma 5.5. 2

5.2 The collapse of the undecidability in M

We next show that in the context of the object-oriented model M, the undecid-
ability result established above no longer holds. Indeed, in the context of M the
complement of the (unrestricted) implication problem for Pc has the small model
property. Speci�cally, for any schema � in M, and any �nite set � and ' of Pc
constraints, if there exists a structure in U(�) satisfying 	 =

V
� ^ :', then 	

has a �nite model in Uf (�), the size of which may be e�ectively computed from �
and 	. This is because the de�nition of an M schema � bounds the out-degree
of vertices (in the graph view) of a structure in U(�) by the size of �, and the
de�nition of Pc constraints allows us to inspect only vertices of a bounded distance
(linear in the size of the constraints) from the root when checking these constraints.
As an immediate result, if 	 has a model in U(�) then it has a \small" model in
Uf (�), which is at most exponentially large in the size of � and 	; this shows that
the complement of the (unrestricted) implication problem for Pc in the context of
M is in NEXPTIME.
Theorem 5.2 tells us that one can do much better than NEXPTIME: in the

context of M, path constraint implication is not only decidable in cubic-time, but
is also �nitely axiomatizable. We prove Theorem 5.2 by �rst presenting a �nite
axiomatization for implication and �nite implication of Pc constraints, and then
providing a cubic-time algorithm for testing path constraint implication.

A �nite axiomatization Let Ir be the set consisting of the following inference
rules:

|Re
exivity:

8x (�(r; x) ! �(r; x))
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|Transitivity:

8x (�(r; x) ! �(r; x)) 8x (�(r; x) ! 
(r; x))
8x (�(r; x) ! 
(r; x))

|Right-congruence:

8x (�(r; x) ! �(r; x))
8x (� � 
(r; x)! � � 
(r; x))

|Commutativity:

8x (�(r; x) ! �(r; x))
8x (�(r; x) ! �(r; x))

|Forward-to-word:
8x (�(r; x) ! 8y (�(x; y)! 
(x; y)))

8x (� � �(r; x) ! � � 
(r; x))

|Word-to-forward:
8x (� � �(r; x) ! � � 
(r; x))

8x (�(r; x) ! 8y (�(x; y)! 
(x; y)))

|Backward-to-word:
8x (�(r; x) ! 8y (�(x; y)! 
(y; x)))

8x (�(r; x) ! � � � � 
(r; x))

|Word-to-backward:
8x (�(r; x) ! � � � � 
(r; x))

8x (�(r; x) ! 8y (�(x; y)! 
(y; x)))

Let � be a schema in M and � [ f'g be a �nite set of Pc(�) constraints. We use
� `Ir ' to denote that ' is provable from � using Ir.
The lemma below shows that Ir is indeed a �nite axiomatization of path con-

straints.

Lemma 5.6. Let � be any schema in M. For every �nite set � and ' of Pc(�)
constraints,

� j=� ' i� � `Ir '; � j=(f;�) ' i� � `Ir ':

As an immediate result, we have the following:

Corollary 5.7. Over any schema � in M, the unrestricted implication and
�nite implication problems for Pc(�) coincide and are decidable.

To see this, consider any �nite set � and ' of Pc(�) constraints. If � j=� ',
then obviously � j=(f;�) '. Conversely, if � j=(f;�) ', then � `Ir '. By the
soundness of Ir for unrestricted implication, we have � j=� '. Thus these two
problems coincide. Since U(�) is de�nable in �rst-order logic, the equivalence of
these problems leads to the decidability of both problems.
The collapse of the undecidability is due to the following lemma, which can be

proved by a simple induction on the length of � and by using �(�). On untyped
data the lemma does not hold in general.

Lemma 5.8. Let � be an arbitrary schema in M and G 2 U(�). Then for every
� in Paths(�), there is a unique o 2 jGj such that G j= �(rG; o).
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Lemma 5.8 shows, among other things, that the Commutativity rule in Ir is
sound. Because of this lemma, the following lemmas hold in the context of M,
which establish the soundness of Forward-to-word, Word-to-forward, Backward-to-
word, Word-to-backward in Ir.

Lemma 5.9. For any schema � in the model M, any forward Pc(�) constraint
' = 8x (�(r; x) ! 8 y (�(x; y) ! 
(x; y))), a word constraint  of the form
8x (� � �(r; x)! � � 
(r; x)) in Pc(�), and for any G 2 U(�), G j= ' i� G j=  .

Proof: If G j= : , then there is b 2 jGj such that G j= � � �(rG; b) ^ :� � 
(rG; b).
Thus there exists a 2 jGj such that G j= �(rG; a) ^ �(a; b). In addition, we have
G j= :
(a; b) since otherwise G j= � �
(rG; b). Hence there are a; b 2 jGj such that
G j= �(rG; a) ^ �(a; b) ^ :
(a; b). Thus G j= :'.
Conversely, if G j= :', then there must exist two nodes a; b 2 jGj such that

G j= �(rG; a) ^ �(a; b) ^ :
(a; b). By Lemma 5.8, a is the unique node such that
G j= �(rG; a). Thus G j= � � �(rG; b) ^ :� � 
(rG; b). That is, G j= : . 2

Lemma 5.10. Let � be a schema in M, a backward constraint ' of Pc(�) be
8x (�(r; x)! 8 y (�(x; y)! 
(y; x))), and  = 8x (�(r; x)! � � � � 
(r; x)) be a
word constraint in Pc(�). Then for any G 2 U(�), G j= ' i� G j=  .

Proof: If G j= : , then there is a 2 jGj such that G j= �(rG; a)^:� � � � 
(rG; a).
By Lemma 5.8, there exists b 2 jGj such that G j= �(rG; a) ^ �(a; b). Clearly,
G j= :
(b; a) since otherwise we would have had G j= � � � � 
(rG; a). Hence there
are a; b 2 jGj such that G j= �(rG; a) ^ �(a; b) ^ :
(b; a). Thus G j= :'.
Conversely, if G j= :', then there must exist two nodes a; b 2 jGj such that

G j= �(rG; a) ^ �(a; b) ^ :
(b; a). By Lemma 5.8, a is the unique node such that
G j= �(rG; a), and b is the unique node such that G j= �(a; b). Therefore, we have
G j= :� � � � 
(rG; a) since otherwise G j= 
(b; a). Thus G j= : . 2

Using these lemmas, we show Lemma 5.6 as follows.

Proof Lemma 5.6: Soundness of Ir can be veri�ed by induction on the lengths of
Ir-proofs. For the proof of completeness, it suÆces to show the following:
Claim 1: Let k with k � maxf jpf( )j+ jlt( )j+ jrt( )j j  2 �[f'gg be a natural
number, where pf( ), lt( ) and rt( ) are described in De�nition 2.1. Then there
exists G 2 U(�) such that G j= � and for any path � with j�j � k � jpf(') � lt(')j,
(1) if G j= 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(x; y))), then

� `Ir 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(x; y)));

(2) if G j= 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(y; x))), then

� `Ir 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(y; x))):

For if Claim 1 holds and � j=� ', then by G j= � we have G j= '. Thus again
by Claim 1, � `Ir '.
We next show Claim 1. Let � = (C; �; DBtype). We de�ne the structure

G described in Claim 1 in two steps: we �rst de�ne the k-neighborhood of G,
denoted by Gk, and then construct G from Gk. Here the k-neighborhood of G is
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the substructure Gk of G with its universe

jGkj = fo j o 2 jGj; G j= �(rG; o) for some � 2 Paths(�) with j�j � kg:

We construct Gk by means of paths in U(�). To do so, we de�ne the following:

|Pathsk(�) = f� j � 2 Paths(�); j�j � kg.

|An equivalence relation � on Pathsk(�): � � � i� � `Ir 8x (�(r; x)! �(r; x)).
It should be noted that by Commutativity in Ir, � `Ir 8x (�(r; x) ! �(r; x))
i� � `Ir 8x (�(r; x)! �(r; x)).

|We use b� to denote the equivalence class of � with respect to �, and de�ne
A = fb� j � 2 Pathsk(�)g.

|type(b�) = type(�), where type(�) is the type of path � determined by �. This
is well-de�ned since if � � � then by the de�nition of Pw(�) they have the same
type.

Using these notions, we de�ne Gk = (jGkj; rGk ; EGk ; TGk) as follows: (1) for
each b� 2 A, let o(b�) be a distinct node and let jGkj = fo(b�) j b� 2 Ag; (2) let
rGk = o(b�); (3) for each � 2 T (�), let �Gk = fo(b�) j b� 2 A; type(b�) = �g; (4)
for each o(b�), if type(b�) = [l1 : �1; : : : ; ln : �n] (or type(b�) is some class C 2 C
and �(C) = [l1 : �1; : : : ; ln : �n]) and there is � 2 b� with j�j < k, then for each

i 2 [1; n], let Gk j= li(o(b�); o(d� � li)). Note that this is well-de�ned by Transitivity
and Right-congruence in Ir.
Based on Gk, we de�ne the structure G such that G satis�es the type constraint

determined by �, among other things, as follows. For each � 2 T (�), let o(�) be
a distinct node. Let G = (jGj; rG; EG; TG), where jGj = jGk j [ fo(�) j � 2 T (�)g;
rG = rGk ; for each � 2 T (�), �G = �Gk [ fo(�)g; and for each l 2 E(�), if
Gk j= l(o; o0) then G j= l(o; o0). Moreover,

|for each o(b�) 2 jGkj, if type(b�) = [l1 : �1; : : : ; ln : �n] (or type(b�) is some class
C 2 C and �(C) = [l1 : �1; : : : ; ln : �n]) and for some i 2 [1; n], o(b�) does not
have any outgoing edge labeled with li, then let G j= li(o(b�); o(�i));

|for each type � 2 T (�), if � is a record [l1 : �1; : : : ; ln : �n] (or � is some
class C 2 C and �(C) = [l1 : �1; : : : ; ln : �n]), then for each i 2 [1; n], let
G j= li(o(�); o(�i)).

We now show that G is indeed the structure described in Claim 1.
1. G 2 Uf (�). It is easy to verify that jGj is �nite and G j= �(�), where �(�) is
the type constraint determined by �.
2. G j= �. We �rst show the following claim.
Claim 2: For every � 2 Pathsk(�), G j= �(rG; o(b�)).
As a result of Claim 2 and Lemma 5.8, o(b�) is the unique node in G such that

G j= �(rG; o(b�)).
We show Claim 2 by induction on j�j.
Base case: � = �. Recall that rG = o(b�). Obviously, G j= �(rG; o(b�)).
Inductive step: Assume Claim 2 for �. We next show that Claim 2 also holds for

� � l, where � � l 2 Pathsk(�). By induction hypothesis, G j= �(rG; o(b�)). Since
� � l 2 Pathsk(�), j� � lj � k. Hence j�j < k. By � 2 b� and the de�nition of G,
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we have G j= �(rG; o(b�)) ^ l(o(b�); o(d� � l)). That is, G j= � � l(rG; o(d� � l)). Hence
Claim 2 holds.

Using Claim 2, we show G j= �. Suppose, for reductio, that there is  2 �
such that G j= : . Consider the following cases. If  is a forward constraint
8x (�(r; x) ! 8 y (�(x; y) ! 
(x; y))), then there must be a; b 2 jGj such that
G j= �(rG; a) ^ �(a; b) ^ :
(a; b). Thus by Lemma 5.8 and Claim 2, we have

a = o(b�) and b = o(d� � �). By Forward-to-word in Ir, we have � � � � � � 
.

Therefore, again by Claim 2 and Lemma 5.8, we have G j= � � 
(rG; o(d� � �))
and G j= 
(o(b�); o(d� � �)). This contradicts the assumption. If  is a backward
constraint 8x (�(r; x) ! 8 y (�(x; y) ! 
(y; x))), then there are a; b 2 jGj such
that G j= �(rG; a)^�(a; b)^:
(b; a). Again by Lemma 5.8 and Claim 2, we have

a = o(b�) and b = o(d� � �). By Backward-to-word in Ir, we have � � � � � � 
.
Therefore, again by Claim 2 and Lemma 5.8, we have G j= � � � � 
(rG; o(b�)) and
thus G j= 
(o(d� � �); o(b�)). This again contradicts the assumption. Thus G j=  .
Hence G j= �.

3. G has the property described by Claim 1. To show this, let � be a path such
that j�j � k � jpf(') � lt(')j.
First, suppose G j= 8 x (pf(')(r; x) ! 8 y (lt(')(x; y) ! �(x; y))), then

by Lemma 5.9, G j= 8 x (pf(') � lt(')(r; x) ! pf(') � �(r; x)). By Claim

2 and Lemma 5.8, we have G j= pf(') � �(rG; o( \pf(') � lt('))) and moreover,
pf(') � lt(') � pf(') � �. Thus by the de�nition of � and Commutativity in Ir,
we have � `Ir 8x (pf(')(r; x) � lt(')(r; x) ! pf(') � �(r; x)). By Word-to-forward
in Ir, we have � `Ir 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(x; y))).

Now suppose G j= 8x (pf(')(r; x) ! 8 y (lt(')(x; y) ! �(y; x))), then by
Lemma 5.10, we have G j= 8x (pf(')(r; x) ! pf(') � lt(') � �(r; x)). By Claim

2 and Lemma 5.8, we have G j= pf(') � lt(') � �(rG; o([pf('))), and moreover,
pf(') � pf(') � lt(') � �. Thus by the de�nition of � and the Commutativity rule in
Ir, we have � `Ir 8x (pf(')(r; x) ! pf(') � lt(') � �(r; x)). By Word-to-backward
in Ir, we have � `Ir 8x (pf(')(r; x)! 8 y (lt(')(x; y)! �(y; x))).

This completes the proof of Claim 1, and therefore, the proof of Lemma 5.6. 2

An algorithm. Next, we present an algorithm for testing path constraint impli-
cation in the context of M. Let � be a schema in M. This algorithm takes as
input a �nite set � of Pc(�) constraints and paths �; � such that � �� in Paths(�).
It computes a structure G having the following properties: G j= � and there are
a; b 2 jGj such that G j= �(rG; a) ^ �(a; b). In addition, for any path 
,

G j= 
(a; b) i� � `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(x; y)));

G j= 
(b; a) i� � `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(y; x))):

By Lemma 5.6, this algorithm can be used for testing both implication and �nite
implication of Pc(�) constraints in the context of M.

The algorithm needs the following notations. Let � be a schema in M, � be
a �nite set of Pc(�) constraints and paths �; � such that � � � 2 Paths(�). We
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Algorithm 5.1:

Input: a �nite sub � of Pc(�) constraints and paths �; � such that � � � 2 Paths(�)
Output: the structure G described in Section 5.2

1. E� := the set of edge labels appearing in either � � � or some path in constraints of �;

2. Rules := �;

3. G := (jGj; rG; EG
�
), where

� jGj = fo(�) j � 2 CloP ts(�; � � �); o(�) is a distinct nodeg,
� rG = o(�),
� EG

�
is populated in such a way that G j= l(o(�); o(%)) i� % = � � l;

4. for each  2 � do

(1) if  = 8x (�(r; x)! 8 y (%(x; y)! �(x; y))) then
(i) Rules := Rules n f8x (�(r; x)! 8 y (%(x; y)! �(x; y)))g;
(ii) merge(o��%; o���),

where o��%; o��� 2 jGj such that G j= � � %(rG; o��%) ^ � � �(rG; o���);
(2) if  = 8x (�(r; x)! 8 y (%(x; y)! �(y; x))) then

(i) Rules := Rules n f8x (�(r; x)! 8 y (%(x; y)! �(y; x)))g;
(ii) merge(o�; o��%��),

where o�; o��%�� 2 jGj such that G j= �(rG; o�) ^ � � % � �(rG; o��%��);

5. output G.

procedure merge(a; b)

1. for each o 2 jGj do
if there is l 2 EG

� such that G j= l(o; b) then

(1) delete from EG
� the edge labeled l from o to b;

(2) add to EG
� an edge labeled l from o to a;

2. for each l 2 E� do

if there are oa; ob 2 jGj such that G j= l(b; ob) ^ l(a; oa) and oa 6= ob then

(1) delete from EG
� the edge labeled l from b to ob;

(2) add to EG
� an edge labeled l from a to ob;

(3) merge(oa; ob);
3. jGj := jGj n fbg;

Fig. 6. An algorithm for testing path constraint implication in M

de�ne

Pts(�; � � �) = f� � �g

[ fpf( ) � lt( ); pf( ) � rt( ) j  2 �;  is forwardg

[ fpf( ) � lt( ) � rt( ) j  2 �;  is backwardg;

CloP ts(�; � � �) = f� j % 2 Pts(�; � � �); � �p %g:

Here � �p % denotes that � is a pre�x of %, as described in Section 2.
Using these notions, we give Algorithm 5.1 in Fig. 6. The following should be

noted about the algorithm.
Remark 1: Algorithm 5.1 is independent of any particular schema. Although it is
required that input constraints and path are de�ned over some schema in M, no
particular information about the schema is used by the algorithm. As a result, this
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algorithm can be used in the context of any schema in M.
Remark 2: Although structure G computed by the algorithm may not be in
U(�), G can be naturally extended to a structure H 2 Uf (�) as follows: H =
(jH j; rH ; EH ; TH), where jH j = jGj [ fo(�) j � 2 T (�); o(�) is a distinct nodeg;
the root rH is the same as rG; for each type � 2 T (�), we populate �H to be
fo(�)g [ fo j o 2 jGj; � 2 Paths(�); type(�) = �; G j= �(rG; o)g; and for each
l 2 E(�), if G j= l(o; o0), then H j= l(o; o0). Moreover,

|for any o 2 jGj, if there is � 2 Paths(�) such that G j= �(rG; o) and type(�) =
[l1 : �1; : : : ; ln : �n] (or type(�) is a class C 2 C and �(C) = [l1 : �1; : : : ; ln : �n]),
then let H j= li(o; o(�i)) for any i 2 [1; n] such that o does not have an outgoing
edge labeled li;

|for each � = [l1 : �1; : : : ; ln : �n] in T (�) (and for each class � in C with �(�) =
[l1 : �1; : : : ; ln : �n]) let H j= li(o(�); o(�i)) for each i 2 [1; n].

It is easy to verify that H 2 U(�) as long as � � Pc(�) and � � � 2 Paths(�).
In addition, H is �nite and thus H 2 Uf (�). We refer to the structure H de�ned
above as the extension of G with respect to �.
Remark 3: The rationale behind the procedure merge is Commutativity, Transi-
tivity and Right-congruence in Ir. The rationale behind step 4 (1) (i) and 4 (2)
(i) of Algorithm 5.1 is Lemma 5.8. Let � be a schema in M and G 2 U(�). For
any path � 2 Paths(�), there exists a unique o 2 jGj such that G j= �(rG; o). As
a result, every constraint in � can be applied at most once by the algorithm. It is
because of this property that Algorithm 5.1 has low complexity.
Next, we analyze the complexity of the algorithm. Let nE be the cardinality of

E�, nC the cardinality of CloP ts(�; � ��), nG the size of jGj, n the length of � and
� ��, and n� the cardinality of �. Note the following. (1) nE � n, nC � n, nG � n

and n� � n. (2) Step 4 is executed n� times. (3) Testing whether G j= �(rG; o�)
in step 4 can be done in at most O(nG j�j) time. Therefore, it can be done in O(n2)
time. (4) The procedure merge is executed at most nG times. Each step takes
O(nE nG) time. Hence the total cost of executing merge is O(n

2
G nE), i.e., O(n

3).
Therefore, Algorithm 5.1 runs in O(n3) time.
The lemma below shows that Algorithm 5.1 is correct.

Lemma 5.11. Let � be a schema inM. Given a �nite set � of Pc(�) constraints
and paths �; � such that � � � 2 Paths(�), Algorithm 5.1 computes a structure
G having the following property: G j= �, and there exist a; b 2 jGj such that
G j= �(rG; a) ^ �(a; b). Moreover, for any path 
,

G j= 
(a; b) i� � `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(x; y)));

G j= 
(b; a) i� � `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(y; x))):

Proof: (if ) Step 4 of Algorithm 5.1 ensures G j= � by Lemma 5.8. Step 3 ensures
that there are a; b 2 jGj such that G j= �(rG; a) ^ �(a; b). Let H denote the
extension of G with respect to �. Then it is easy to verify H j= �(rG; a) ^ �(a; b)
and H j= �. Thus if � `Ir 8x (�(r; x) ! 8 y (�(x; y) ! 
(x; y))), then by
Lemma 5.6, H j= 
(a; b). From the de�nition of H follows G j= 
(a; b). Similarly,
if � `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(y; x))), then G j= 
(b; a).
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(only if ) Conversely, by an induction on the number of steps in the construction
of G by the algorithm, we can show that for all paths � and %, if there exists node
o 2 jGj such that G j= �(rG; o) ^ %(rG; o), then � `Ir 8x (�(r; x) ! %(r; x)).
Indeed, each step of the construction in fact corresponds to applications of some
rules in Ir. For example, step 4 (1) corresponds to an application of Forward-to-
word, step 4 (2) corresponds to an application of Backward-to-word, and merge

corresponds to applications of Transitivity, Right-congruence and Commutativity
in Ir. As a result, if G j= 
(a; b), then by Word-to-forward in Ir, it can be veri�ed
that � `Ir 8x (�(r; x) ! 8 y (�(x; y) ! 
(x; y))). Similarly, if G j= 
(b; a), then
� `Ir 8x (�(r; x)! 8 y (�(x; y)! 
(y; x))) by Word-to-backward. 2

From Lemmas 5.11 and 5.6, Theorem 5.2 follows immediately.

6. COMPLICATION OF PATH CONSTRAINT IMPLICATION WITH TYPES

In light of Theorems 5.1 and 5.2, one might be tempted to think that adding
structure will simplify reasoning about path constraints. However, this is not always
the case. This section shows that a decidability result developed for untyped data
breaks down when a type of M+ is imposed on the data.

Theorem 6.1. In the context of semistructured data, the implication and �nite
implication problems for local inclusion constraints are decidable in PTIME.

Theorem 6.2. In the context of the object-oriented data modelM+, the implica-
tion and �nite implication problems for local inclusion constraints are undecidable.

These theorems demonstrate that adding a type system may also make the anal-
ysis of path constraint implication more diÆcult. This may seem counter-intuitive
since at �rst glance, a type constraint appears to assert that the data has a regular
structure and therefore, simpli�es reasoning about path constraints. This appear-
ance can be dispelled by noticing that the type constraint places restrictions on the
structures considered in the implication problems in a di�erent way to path con-
straints. More speci�cally, let � [ f'g be a �nite set of local inclusion constraints
of Pc. In the untyped context, we may be able to �nd in PTIME a structure G such
that G j=

V
� ^ :'. However, when a schema � is imposed on the data, we may

have G 62 U(�). That is, G is excluded from the set of structures considered in
implication problems because of the type constraint �(�) determined by �. Worse
still, �(�) may constrain the structure of the data in such a peculiar way that it
is undecidable whether there is H 2 U(�) such that H j=

V
� ^ :'.

We show Theorems 6.1 and 6.2 in Sections 6.1 and 6.2, respectively.

6.1 Decidability on untyped data

We �rst show Theorem 6.1. The idea of the proof is by reduction to word constraint
implication. The following has been shown in [Abiteboul and Vianu 1999].

Lemma 6.3 [Abiteboul and Vianu 1999]. In the context of semistructured data,
the implication and �nite implication problems for Pw are decidable in PTIME.

Recall De�nition 4.1: the (�nite) implication problem for local inclusion con-
straints is to determine, given any �nite sets �K , �r and ' of Pc constraints,
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whether �K [ �r j= ' (�K [ �r j=f '), where �K [ f'g consists of constraints
bounded by a path � and a label K, and �r is excluded by � and K. This means
that for each � 2 �K [ f'g, � is a forward constraint and the pre�x of �, pf(�), is
� �K. Moreover, for each  2 �r, pf( ) is of the form � � �0, where �0 is a path
such that K 6�p �

0, i.e., K is not a pre�x of �0. In particular, when �0 = �, rt(�) is
a path of zero or more K labels. Let � = �K [ �r.
To reduce this problem to the (�nite) implication problem for word constraints,

we �rst de�ne a function f that is used in the construction of the reduction. Let �
be a path and ' be a Pc constraint. Then f('; �) is de�ned to be the Pc constraint

| 8x (� � �(r; x) ! 8 y (�(x; y) ! 
(x; y))), if ' is a forward constraint
8x (�(r; x)! 8 y (�(x; y)! 
(x; y)));

| 8x (� � �(r; x) ! 8 y (�(x; y) ! 
(y; x))), if ' is a backward constraint
8x (�(r; x)! 8 y (�(x; y)! 
(y; x))).

Using the function f , we de�ne the reduction in two steps. First, we de�ne a
function g1 such that for every � 2 � [ f'g, � = f(g1(�); �). That is, g1 removes
� from the pre�x of �. Let

'1 = g1('); �1
K = fg1(�) j � 2 �Kg; �1

r = fg1( ) j  2 �rg:

Second, we de�ne another function g2 such that � = f(g2(�); K) for all constraint
� 2 �1

K [ f'1g. That is, g2 further removes K from the pre�x of �. Now let

'2 = g2('
1); �2

K = fg2(�) j � 2 �1
Kg:

Clearly, �2
K � Pw and '2 2 Pw . The functions g1 and g2 establish a reduction:

Lemma 6.4. In the context of semistructured data,

� j= ' i� �1
K [ �1

r j= '1 i� �2
K j= '2;

� j=f ' i� �1
K [ �1

r j=f '
1 i� �2

K j=f '
2:

This lemma suÆces to show Theorem 6.1. For if it holds, then the (�nite) impli-
cation problem for local inclusion constraints is reduced to the (�nite) implication
problem for Pw. Note that given � and ', � and K can be determined in linear-
time. In addition, the functions g1 and g2 are computable in linear-time. Therefore,
the PTIME decidability of the (�nite) implication problem for local inclusion con-
straints follows from Lemma 6.3.

Proof Lemma 6.4: We show the lemma for �nite implication only. The proof for
implication is similar and simpler. The proof consists of two parts.
(part I: ) We �rst show that � j=f ' i� �1

K [ �1
r j=f '

1. It suÆces to prove that
for each path � and each �nite set � and ' of Pc constraints,

V
�^:' has a �nite

model i�
^
�2�

f(�; �) ^ :f('; �) has a �nite model. To simplify the discussion,

assume that all the constraints in � [ f'g are of the forward form. The proof for
the general case is similar.

(if ) Suppose that
^
�2�

f(�; �) ^ :f('; �) has a �nite model G = (jGj; rG; EG).

Then we construct a �nite model of
V
� ^ :'. That is, we construct a �nite �-

structure H such that H j=
V
�^:'. Here � is the signature de�ned in Section 2.
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α

( a ) ( b )

K

rH

G

K

rG

G

rG

rH

Fig. 7. The structure H in the proof of Lemma 6.4

Recall the notations pf, lt and rt from De�nition 2.1. Since G j= :f('; �), there
exist a; b; c 2 jGj such that G j= �(rG; a) ^ pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c).
We de�ne H to be the same as G except that its root is a. More speci�cally,
H = (jGj; a; EG).

It is easy to verify the following.

(1) H is �nite. This is because jGj is �nite and jH j = jGj.
(2) H j= :'. Since b 2 jH j and c 2 jH j, from the de�nition of H follows that
H j= pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c). That is, H j= :'.
(3) H j= �. We show this by reductio.

Suppose that there exists � 2 � such thatH j= :�. Then there must be d; e 2 jH j
such that H j= pf(�)(a; d) ^ lt(�)(d; e) ^ :rt(�)(d; e). Then by the de�nition of H ,
it must be the case that G j= �(rG; a)^pf(�)(a; d)^ lt(�)(d; e)^:rt(�)(d; e). That
is, G j= :f(�; �). This contradicts the assumption that G j= ff(�; �) j � 2 �g.

(only if ) Suppose that
V
� ^ :' has a �nite model G = (jGj; rG; EG). Then

we show that
^
�2�

f(�; �) ^:f('; �) also has a �nite model H = (jH j; rH ; EH) as

shown in Fig. 7 (a), which extends G with a new root rH and a path � from rH

to G. Speci�cally, let L� = f� j � is a path, � �p �; � 6= �g. where � �p � denotes
that � is a pre�x of �. For each � 2 L�, let c� be a distinguished node not in jGj.
Let jH j = jGj [ fc� j � 2 L�g, rH = c�, and for all a; b 2 jH j and each l 2 E, let
H j= l(a; b) i� one of the following conditions is satis�ed: either (1) there exists
� 2 L� such that a = c� and b = c��l and � � l 2 L�; or (2) there exists � 2 L� such
that � = � � l and a = c� and b = rG; or (3) a; b 2 jGj and G j= l(a; b).

It is easy to verify the following.

(1) H is �nite. This is because both jGj and L� are �nite.

(2) H j= :f('; �). To show this, we �rst observe the following simple facts, which
are immediate from the construction of H .

Fact 1: rG is the unique node in jH j such that H j= �(c�; r
G). In addition, for all

�; % 2 L� and l 2 E, H j= l(c�; c%) i� % = � � l.
Fact 2: For each � 2 L�, l 2 E, (i) for each a 2 jGjnfrGg,H j= :l(c�; a)^:l(a; c�);
(ii) if � 6= � � l, then H j= :l(c�; rG) ^ :l(rG; c�); and �nally, (iii) if � = � � l, then
H j= l(c�; r

G) ^ :l(rG; c�).
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Using these facts, we show H j= :f('; �). By G j= :', there must be nodes
b; c 2 jGj such that G j= pf(')(rG; b)^ lt(')(b; c)^:rt(')(b; c). From Facts 1 and
2 above follows that H j= �(c�; r

G)^pf(')(rG; b)^ lt(')(b; c)^:rt(')(b; c). That
is, H j= :f('; �).

(3) H j= ff(�; �) j � 2 �g. We prove this by reductio.

Suppose that there exists � 2 � such that H j= :f(�; �). Then there exist
a; b; c 2 jH j such that H j= �(c�; a) ^ pf(�)(a; b) ^ lt(�)(b; c) ^ :rt(�)(b; c). By
Fact 1, a = rG. By Fact 2, b; c 2 jGj, and moreover, by the construction of H , we
have G j= pf(�)(a; b)^ lt(�)(b; c)^:rt(�)(b; c). That is, G j= :�. This contradicts
the assumption that G j= �.

(part II ) We next show that �1
K [ �1

r j=f '
1 i� �2

K j=f '
2.

The argument of Part I suÆces to show that if �2
K j=f '

2 then �1
K j=f '

1 and
thus �1

K [ �1
r j=f '

1.

Conversely, suppose that
V
�2
K ^ :'2 has a �nite model G = (jGj; rG; EG).

Then we construct from G a �nite model H of
V
�1
K ^

V
�1
r ^ :'1. Let

H = (jH j; rH ; EH ), which is a mild extension of G as shown in Fig. 7 (b). More
speci�cally, jH j = jGj [ frHg with rH 62 jGj, and EH is EG augmented with two
edges labeled K, by letting H j= K(rH ; rG) ^K(rH ; rH ). In other words, EH =
EG [ fK(rH ; rG); K(rH ; rH )g. Clearly, H is �nite since G is �nite. Below we
show that H is a model of

V
�1
K ^
V
�1
r ^ :'

1.

(1) H j= �1
r. For each � 2 �1

r , since �r is excluded by � and K, K is not a pre�x
of pf(�). Consider the following cases. If pf(�) 6= �, then by the construction of H ,
there are no o; o0 2 jH j such that H j= pf(�)(rH ; o) ^ lt(�)(o; o0). Hence H j= �.
If pf(�) = �, then by the de�nition of constraints excluded by � and K, � is of the
form 8x (�(r; x)! Kn(r; x)), where Kn denotes a path of length n (possibly zero),
consisting of K labels. Clearly, H j= � since (rH ; rH ) 2 KH . Thus H j= �1

r.

(2) H j= �1
K . Suppose, for reductio, that there is � 2 �1

K such that H j= :�.
Since �K is bounded by � and K, by the de�nition of bounded constraints given
in Section 4, � must be of the form 8x (K(r; x)! 8 y (�(x; y)! 
(x; y))), where
K 6�p � and � 6= �. Thus by the de�nition of H , if H j= :�, then there exists
node o 2 jGj such that H j= K(rH ; rG) ^ �(rG; o) ^ :
(rG; o). Thus we have
G j= �(rG; o) ^ :
(rG; o). That is, G j= :g2(�). This contradicts the assumption
that G is a model of

V
�2
K ^ :'2. Therefore, H j= �. Hence H j= �1

K .

(3) H j= :'1. Observe that by the de�nition of implication of local inclusion
constraints, ' is bounded by � and K. As a result, '1 must be of the form
8x (K(r; x) ! 8 y (�(x; y) ! 
(x; y))), where K 6�p � and � 6= �. Therefore, '2

is of the form 8x (�(r; x)! 
(r; x)). By G j= :'2, there is o 2 jGj such that G j=
�(rG; o)^:
(rG; o). By the de�nition ofH , H j= K(rH ; rG)^�(rG; o)^:
(rG; o).
That is, H j= :'1.

This completes the proof of Lemma 6.4. 2

It is worth mentioning the following.

(1) This proof is not applicable in the context of M or M+. For any schema � in
these models, the structure H shown in Fig. 7 (b) is not in U(�), because of the
type constraint �(�).
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Fig. 8. The structure G in the proof of Lemma 6.5

(2) Theorem 6.1 does not con
ict with the proof of Theorem 5.1. Recall �1, �2,
'(�;�) and '(�;�) de�ned in Section 5.1. The implication �1 [�2 j= '(�;�) ^'(�;�)
is not an instance of the implication problem for local inclusion constraints.

6.2 The breakdown of the decidability in M+

Next, we show that the decidability result established above breaks down in the
context of M+. More speci�cally, we prove Theorem 6.2 by reduction from the
word problem for (�nite) monoids.
Recall the alphabet �0 and the equations �0 given in Section 5.1. Using �0,

we de�ne a schema �1 = (C; �; DBtype) in M+ such that C = fC;Cs; Clg, � is
de�ned by:

C 7! [l1 : C; : : : ; lm : C]; Cs 7! fCg; Cl 7! [a : C; b : Cs; K : Cl];

where a; b; l;K 62 �0, and DBtype = [l : Cl]. Note here that each letter in �0 is a
record label of C, and thus is in E(�1). Hence every � 2 ��0 can be represented as
a path formula, also denoted �.
We encode �0 in terms of a �nite set �, which consists of the following constraints

of Pc:

(1) 8x (l �K(r; x)! 8 y (a(x; y)! b �mem(x; y)));

(2) for each j 2 [1;m], 8x (l �K(r; x)! 8 y (b �mem � lj(x; y)! b �mem(x; y)));

(3) for each (�i; �i) 2 �0, 8x (l � b �mem(r; x)! 8 y (�i(x; y)! �i(x; y)));

(4) 8x (l(r; x)! 8 y (�(x; y)! K(x; y))).

We encode a test equation (�; �) over �0 by the constraint

'(�;�) = 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))):

Observe that � can be partitioned into �K and �r, where �K consists of the
constraints de�ned in (1) and (2) and �r consists of those speci�ed in (3) and (4).
Note that �K [ f'(�;�)g is bounded by l and K whereas �r is excluded by l and
K.
A structure G satisfying � and �(�1) is depicted in Fig. 8.
The lemma below shows that the encoding is indeed a reduction from the word

problem for (�nite) monoids to the (�nite) implication problem for local inclusion
constraints. From this and Lemma 5.4 follows immediately Theorem 6.2.
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Lemma 6.5. In the context of M+, for all � and � in ��0,

�0 j= (�; �) i� � j=�1
'(�;�); �0 j=f (�; �) i� � j=(f;�1) '(�;�):

To prove this lemma, �rst observe the following. These lemmas hold because of
the type constraint �(�1). In the context of semistructured data, however, they
no longer hold in general.

Lemma 6.6. For each G 2 U(�1), G has the following properties.

(1 ) There is a unique node o 2 jGj such that G j= l(rG; o). This node is denoted
by ol.

(2 ) There exists a unique node oK 2 jGj such that G j= l �K(rG; oK). In addition,
oK = ol if G j= 8x (l(r; x)! 8 y (�(x; y)! K(x; y))).

(3 ) For every � 2 ��0, the following statements hold.
(a) There is a unique o 2 jGj such that G j= a � �(ol; o). This node is denoted

by o�.
(b) For every o 2 jGj, if G j= CG(o) then there is a unique o0 2 jGj such that

G j= �(o; o0).

Proof: This is immediate from the type constraint �(�1). 2

Lemma 6.7. For any G 2 U(�1) and �; � 2 ��0, if G j= 8x (l � b �mem(r; x) !
8 y (�(x; y) ! �(x; y))) then G j= 8 x (l � b �mem(r; x) ! 8 y (�(x; y) ! �(x; y))).
Similarly, if G j= 8 x (l � K(r; x) ! 8 y (a � �(x; y) ! a � �(x; y))) then it must
follow that G j= 8 x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))).

Proof: We show that if G j= 8x (l � b � mem(r; x) ! 8 y (�(x; y) ! �(x; y))) then
G j= 8 x (l � b � mem(r; x) ! 8 y (�(x; y) ! �(x; y))). The proof for the other
statement is similar.
By Lemma 6.6 and �(�1), for each o 2 jGj such that G j= l�b�mem(rG; o), there is

a unique node o1 2 jGj such that G j= �(o; o1). Similarly, there is a unique o2 2 jGj
such that G j= �(o; o2). If G j= 8x (l � b �mem(r; x)! 8 y (�(x; y) ! �(x; y))), then
o1 = o2. Thus G j= 8x (l � b �mem(r; x)! 8 y (�(x; y)! �(x; y))). 2

Lemma 6.8. For any structure G 2 U(�1), if G j= � then it must follow that for
any � 2 ��0, G j= l � b �mem(rG; o�), where o� is the unique node in jGj such that
G j= l � a � �(rG; o�), as speci�ed in Lemma 6.6. In addition, for every o; o0 2 jGj
such that G j= l � b �mem(rG; o0) ^ �(o0; o), G j= l � b �mem(rG; o).

This can be veri�ed by a straightforward induction on j�j.

Lemma 6.9. For any structure G 2 U(�1) and any �; � 2 ��0, if G j= � and
G j= 8x (l � b �mem(r; x) ! 8 y (�(x; y) ! �(x; y))), then it must be the case that
G j= 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))).

Proof: By Lemma 6.6 and �(�1), if G j= � then there are unique nodes o; o0 2 jGj
such that G j= l � K(rG; o) and G j= a(o; o0). Denote these nodes by ol and oa,
respectively. Again by Lemma 6.6, there is a unique node o� 2 jGj such that
G j= a � �(ol; o�), and there is a unique node o� 2 jGj such that G j= a � �(ol; o�).
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Thus G j= a(ol; oa)^�(oa; o�)^�(oa; o�). By Lemma 6.8, G j= l �b �mem(rG; oa).
As a result, if G j= 8x (l � b �mem(r; x) ! 8 y (�(x; y) ! �(x; y))), then we must
have o� = o� . Hence G j= 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))). 2

Now we are ready to prove Lemma 6.5.

Proof Lemma 6.5: We show the lemma for �nite implication. The proof for
implication is similar.

(if ) Suppose �0 6j=f (�; �). We construct a structure G 2 Uf (�1) such that
G j= � but G 6j= '(�;�).

By �0 6j=f (�; �), there exist a �nite monoid (M; Æ; 1) and a homomorphism
h : ��0 ! M such that for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�). Using
M and h, we de�ne an equivalence relation � in the same way as in the proof
of Lemma 5.5. In addition, for each � 2 ��0, let b� be de�ned as in the proof of
Lemma 5.5. Similarly, we de�ne C�0

.

Using C�0
, we de�ne G = (jGj; rG; EG; TG) as shown in Fig. 8, as follows. (1)

For each � 2 ��0, let o(b�) be a distinct node. In addition, let or; ol and ob be
distinct nodes. Then we de�ne the universe jGj = for; ob; olg [ fo(b�) j b� 2 C�0

g.
(2) rG = or. (3) The unary relations C

G, Cs
G and DBtypeG are de�ned as follows:

CG = fo(b�) j b� 2 C�0
g, Cs

G = fobg, Cl
G = folg and DBtypeG = forg. (4)

The binary relations are populated as follows: let G j= l(or; ol), G j= K(ol; ol),
G j= a(ol; o(b�)), G j= b(ol; ob), and for each b� 2 C�0

, let G j= mem(ob; o(b�)). In

addition, for each j 2 [1;m], let G j= lj(o(b�); o(d� � lj)). It should be noted that

since ol 2 Cl
G, it is valid to have G j= K(ol; ol). Moreover, since �(Cl) is a record

type, there is no o 2 jGj such that o 6= ol and G j= K(ol; ol) ^K(ol; o).

By the de�nition of G, it is easy to verify the following claims.

Claim 1: G 2 Uf (�1).

Obviously G j= �(�1). As in the proof of Lemma 5.5, it can be shown that G is
�nite. Thus G 2 Uf (�1).

Claim 2: G j= �.

From the construction of G immediately follows G j= �K . To show G j= �r,
observe the following. First, by assumption, for every i 2 [1; n], �i � �i. In
addition, for every � 2 ��0, h(���i) = h(���i). This is because h is a homomorphism.

Therefore, � � �i � � � �i. That is,[� � �i =[� � �i. Second, by the construction of G,
for any o 2 jGj, if G j= l � b �mem(or; o), then o = o(b�) for some � 2 ��0. Moreover,
by Lemma 6.6, for each % 2 ��0, there is a unique o

0 2 jGj such that G j= %(o(b�); o0).
By a straightforward induction on j%j, it can be shown that o0 = o(d� � %). Therefore,
for each o(b�) such that G j= l � b �mem(or; o(b�)), o([� � �i) is the unique node in jGj
such that G j= �i(o(b�); o([� � �i)). Similarly, we have G j= �i(o(b�); o([� � �i)). By

o([� � �i) = o([� � �i), we have G j= �i(o(b�); o([� � �i)). Therefore, for each i 2 [1; n],
G j= 8x (l � b � mem(r; x) ! 8 y (�i(x; y) ! �i(x; y))). Moreover, again from the
construction of G follows G j= 8x (l(r; x) ! 8 y (�(x; y) ! K(x; y))). That is,
G j= �r.

Claim 3: G 6j= 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))).

As in Claim 2, we can show G j= l �K(or; ol) ^ a � �(ol; o(b�)) ^ a � �(ol; o(b�)).
In addition, o(b�) is the unique node in jGj such that G j= a � �(ol; o(b�)). By
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assumption, we have � 6� �. Thus b� 6= b�. That is, o(b�) 6= o(b�). Therefore,
we have G j= a � �(ol; o(b�)) ^ :a � �(ol; o(b�)). As an immediate result, we have
G 6j= 8x (l �K(r; x)! 8 y (a � �(x; y)! a � �(x; y))).

(only if ) Suppose that there is G 2 Uf (�1) such that G j= � but G 6j= '(�;�). We
show that there exist a �nite monoid (M; Æ; 1) and a homomorphism h : ��0 !M

such that for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�).
To do this, we de�ne another equivalence relation on ��0 as follows:

� � % i� G j= 8x (l � b �mem(r; x)! 8 y (�(x; y)! %(x; y))):

By Lemma 6.7, it can be easily veri�ed that � is indeed an equivalence relation.
In addition, for any i 2 [1; n], �i � �i, but � 6� �. More speci�cally, by G j= �r

and Lemma 6.7, for any i 2 [1; n], we have �i � �i. In addition, by G 6j= '(�;�),
Lemma 6.7 and Lemma 6.9, G 6j= 8x (l � b �mem(r; x) ! 8 y (�(x; y) ! �(x; y))).
Therefore, � 6� �. For every � 2 ��0, let [�] be the equivalence class of � with respect
to �. Then clearly, for any i 2 [1; n], [�i] = [�i]. But [�] 6= [�].
Using the notion of �, we de�ne M = f[�] j � 2 ��0g. We verify the following

claim.
Claim 4: M is �nite.
To show this, let S� = f(x; y) j x; y 2 jGj; G j= l � b �mem(rG; x); G j= �(x; y)g

for every � 2 ��0: In addition, let SG = fS� j � 2 ��0g. By Lemma 6.6, S� is
a �nite function from jGj to jGj. Since jGj is �nite, there are �nitely many such
functions. Therefore, SG is �nite. Moreover, it is easy to verify that for all �; % 2 ��0,
� � % i� S� = S%. Consider a function g : M ! SG de�ned by g : [�] 7! S�.
Clearly, g is well-de�ned, total and injective. Therefore, because SG is �nite, M is
also �nite.
Next, we de�ne a binary operation Æ onM by [�]Æ [%] = [� �%]. It is easy to verify

the following.
Claim 5: Æ is well-de�ned.
For all �1; �2; %1; %2 2 ��0 such that �1 � �2 and %1 � %2, we show �1 �%1 � �2 �%2.

By Lemmas 6.6 and 6.8, for every o 2 jGj such that G j= l � b �mem(rG; o), there
exists a unique o1 2 jGj such that G j= �1 � %1(o; o1). In addition, there is a unique
o0 2 jGj such that G j= �1(o; o

0) ^ %1(o0; o1). By �1 � �2, we have G j= �2(o; o
0).

By Lemma 6.8 and G j= l �b �mem(rG; o)^�1(o; o0), we have G j= l �b �mem(rG; o0).
Thus by %1 � %2, we also have G j= %2(o

0; o1). Hence G j= �2 �%2(o; o1). Therefore,
G j= 8x (l �b�mem(r; x)! 8 y (�1 �%1(x; y)! �2 �%2(x; y))). That is, �1 �%1 � �2 �%2.
Claim 6: Æ is associative, and [�] is the identity for Æ. The proof is the same as the
one found in the proof of Lemma 5.5.
By these claims, (M; Æ; [�]) is a �nite monoid. We de�ne h : ��0 ! M by

h : � 7! [�]. As in the proof of Lemma 5.5, we can show that h is a homomorphism,
and moreover, for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�). Therefore,
�0 6j=f (�; �).
This completes the proof of Lemma 6.5. 2

7. EXTENSIONS

Other interesting results can be established by generalizing the proofs of the previ-
ous sections. In this section we present three of these extensions. First, we investi-
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gate the (�nite) implication problem for a mild generalization of word constraints in
the context of M+. Second, we revisit the (�nite) implication problems associated
with Pc constraints in a mild variant of the object-oriented modelM+, denoted by
M�. Like M+, M� also supports records, classes and recursive structures. How-
ever, it supports �nite sets instead of sets. Finally, we provide a complete picture
of unrestricted implication versus �nite implication for path constraints in di�erent
settings.

7.1 More on path constraint implication in the context of M+

Observe that Lemma 5.3 in fact establishes the undecidability of the (�nite) im-
plication problem for a mild generalization of the class Pw of word constraints
in the untyped context. The fragment, denoted by Pw(�), is de�ned to be
Pw [ fÆ( ; �) j  2 Pwg, where � is a nonempty path, and Æ is a function that
given � and any word constraint  = 8x (�(r; x)! 
(r; x)), de�nes

Æ( ; �) = 8x (�(r; x)! 8 y (�(x; y)! 
(x; y))):

In other words, Pw(�) consists of word constraints and word constraints extended
with a common pre�x �.
Given Theorem 5.2, one might wonder whether the undecidability result of

Lemma 5.3 breaks down in the context of M+. Below we show that it is not
the case.

Theorem 7.1. In the context of M+, the implication and �nite implication
problems for Pw(�) and therefore, for Pc, are undecidable.

Proof: We give a reduction from the word problem for (�nite) monoids to this
problem. Recall the alphabet �0 and functions �0 given in Section 5.1. Using �0,
we de�ne an M+ schema �0 = (C; �; DBtype), where C = fC;Csg, � is de�ned
by:

C 7! [l1 : C; : : : ; lm : C]; Cs 7! fCg;

and DBtype = [a : C; b : Cs], where a; b 62 �0.
We encode �0 in terms of a �nite set � consisting of the following Pc constraints

(1) 8x (a(r; x)! b �mem(r; x)),

(2) for each j 2 [1;m], 8x (b �mem � lj(r; x)! b �mem(r; x)),

(3) for each (�i; �i) 2 �0, 8x (b �mem(r; x)! 8 y (�i(x; y)! �i(x; y))).

We encode a test equation (�; �) with '(�;�) = 8x(a � �(r; x) ! a � �(r; x)).
Obviously, constraints of � and '(�;�) are in Pw(b �mem). A structure that satis�es
�(�0) and � is shown in Fig. 9.
We reduce the word problem for monoids and the word problem for �nite monoids

to the problem of determining whether � j=�0
'(�;�) and � j=(f;�0) '(�;�), re-

spectively. The rest of the proof is similar to that of Theorem 6.2. 2

7.2 Path constraint implication revisited in an object-oriented model M�

We next investigate path constraint implication in the context of another object-
oriented model, denoted by M�. Schemata and database instances in M� are
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Fig. 9. A structure used in the proof of Theorem 7.1

de�ned in the same way as in M+, except the semantics of sets. More speci�cally,
in a database instance (�; �; d), the domain of a set f�g is de�ned to be

[[f�g]]� = fV j V � [[� ]]� ; V is �niteg;

where � is an oid assignment, � maps oids to values, and d is the entry point into
the database instance. Contrast this with the database instances de�ned in Sec-
tion 3.1 for the model M+. We may describe the di�erence between M+ and M�

as follows. First, M+ and M� support exactly the same collection of schemata
� and, indeed, provide exactly the same collection of �nite database instances for
each such schema, since over �nite databases, the distinction between �nite and
arbitrary subsets of the values of a given type lapses. The di�erence between M+

and M� arises when we consider the M+ versus the M� interpretation of the
schema � over arbitrary structures. For the M+ interpretation of � over arbi-
trary structures we have chosen the collection U(�), the set of all �(�)-structures
satisfying the �rst-order condition �(�) (type constraint, see Section 3.1). In anal-
ogy, as the M� interpretation of � over arbitrary structures, we specify U�(�) to
be the sub-collection of U(�) which contains exactly those �(�)-structures all of
whose elements have \�nite mem out-degree", i.e., for any node of a set type in
such a structure, there are �nitely many mem edges going out of the node. In
contrast to U(�), a simple application of the Compactness Theorem for �rst-order
logic [Enderton 1972] shows that U�(�) is not the collection of models of any set of
�rst-order sentences. Now, on the basis of the �rst-order de�nability of U(�), we
could conclude immediately from the Completeness Theorem for �rst-order logic
that the unrestricted implication problem for path constraints inM+ is recursively
enumerable. It follows at once, that if the unrestricted implication and �nite im-
plication problems in M+ for a given collection of path constraints are equivalent,
then both problems are decidable, since the latter problem is patently co-r.e. In
the case of M�, no such conclusion can be drawn immediately, since we are not in
a position to conclude, without further argument, that the unrestricted implication
problem for a given collection of path constraints in M� is recursively enumerable.
It can be shown that the results developed for M+ also hold for M�:

Theorem 7.2. In the context ofM�, the implication and �nite implication prob-
lems for Pw(�), for Pc, and for local inclusion constraints are all undecidable.

The proofs of some of these results, however, are quite di�erent from the anal-
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ogous proofs for M+ for the reason mentioned above. More speci�cally, with the
same proofs of Theorems 6.2 and 7.1 we can establish the undecidability of the
�nite implication problem for local inclusion constraints and the �nite implication
problem for Pw(�) in the context of M�. However, for unrestricted implication
problems the technique no longer applies because M� does not allow in�nite sets.
To establish the undecidability of the unrestricted implication problems, it suÆces
to show the lemma below, that is, in M�, the �nite implication problem and the
unrestricted implication problem for any Pc constraints coincide. From the observa-
tion above, we can see that the equivalence of the unrestricted implication problem
and the �nite implication problem for path constraints in M� does not lead to the
decidability of these problems. From this and the proofs of Theorems 6.2 and 7.1
immediately follows Theorem 7.2. It is worth mentioning that the lemma does not
hold in the context of M+.

Lemma 7.3. For any schema �0 inM�, any �nite set � and ' of Pc constraints
over �0, if

V
�^:' has a model in U�(�0), then it has a model in U�

f (�0), where
U�(�0) (resp. U�

f (�0)) is the set of all (resp. �nite) �(�0)-structures that satisfy
the type constraint �(�0) determined by �0.

Proof: Given a model G of
V
�^ :' in U�(�0), we construct a �nite structure G

0

such that G0 2 U�
f (�0) and G

0 j=
V
� ^ :'.

Recall the notion of k-neighborhood de�ned in the proof of Lemma 5.6. Also
recall the notations pf('), lt(') and rt(') from De�nition 2.1. Let

k = maxfjpf( )j+ jlt( )j+ jrt( )j j  2 � [ f'gg + 1;

and let Gk be the k-neighborhood of G. We construct G0 as follows. For each
� 2 T (�0), let o(�) be a distinct node, and let G0 = (jG0j; rG

0

; EG0

; TG0

), where
the universe jG0j = jGk j [ fo(�) j � 2 T (�0)g; the root rG

0

= rGk ; for each type
� 2 T (�0), �

G0

= (�G\jGkj)[fo(�)g; and the edge relation EG0

is EGk augmented
with the following:

|for each o 2 �G\jGkj, if � = [l1 : �1; : : : ln : �n] (or for some class A in D0, � = A

and �(A) = [l1 : �1; : : : ; ln : �n]), then for any i 2 [1; n] and any o0 2 jGkj such
that Gk 6j= li(o; o

0), let G0 j= li(o; o(�i));

|for each type � 2 T (�0), if � = [l1 : �1; : : : ; ln : �n] (or for some class A in
D0, � = A and �(A) = [l1 : �1; : : : ; ln : �n]), then G

0 j= li(o(�); o(�i)) for each
i 2 [1; n].

We now show that G0 is indeed the structure desired.
(1) G0 2 U�

f (�0). Since G 2 U�(�0), each node in jGj has �nitely many outgoing
edges. Hence by the de�nition of Gk, jGkj is �nite. In addition, T (�0) is �nite.
Therefore, by the construction of G0, jG0j is �nite. In addition, it can be easily
veri�ed that G0 j= �(�0).

(2) G0 j=
V
� ^ :'. The following can be easily veri�ed by reductio:

Claim: For any �(�0)-structure G
00, if Gk is the k-neighborhood of G00, then

G00 j=
V
� ^ :' i� Gk j=

V
� ^ :'.

By the claim, it suÆces to show that Gk is also the k-neighborhood of G0. To
do this, assume for reductio that there exists o(�) 2 jG0j and � 2 Paths(�0)

ACM Transactions on Computational Logic, Vol. V, No. N, May 2002.



Interaction between Path and Type Constraints � 41

such that j�j � k and G0 j= �(r; o(�)). Observe that o(�) 62 jGkj. Without
loss of generality, assume that � has the shortest length among all such paths.
Then by the construction of G0, there is o 2 jGkj such that (i) � = �0 � l and
G0 j= �0(rG

0

; o) ^ l(o; o(�)); (ii) there is � 2 T (�0) such that � = [l : �; :::] (or
for some class A, � = A and �(A) = [l : �; :::]), o 2 �G, and for any o00 2 jGk j,
Gk 6j= l(o; o00); and (iii) Gk j= �0(rG

0

; o). Note that for each � 2 T (�0), o(�)
does not have any outgoing edge to any node of jGk j. By G 2 U�(�0), there is
o0 2 jGj such that G j= l(o; o0). By the argument above, o0 62 jGk j. Hence by the
de�nition of k-neighborhood, there is no path � 2 Paths(�0) such that j�j < k

and G j= �(r; o) ^ l(o; o0). Therefore, �0 must have a length of at least k. That is,
j�j > k. This contradicts the assumption. Hence Gk is indeed the k-neighborhood
of G0. Thus by the claim, G0 j=

V
� ^ :'.

Therefore, G0 is indeed the structure desired. This proves Lemma 7.3. 2

7.3 Finite vs. unrestricted implications

Given Lemma 7.3, one may wonder whether unrestricted implication and �nite
implication are equivalent or not for path constraints in other settings. Corollary 5.7
has shown that in the context of M, these problems coincide for Pc (thus also for
Pw(�) and local inclusion constraints). The corollary below tells us that it is also
the case for local inclusion constraints in the untyped setting.

Corollary 7.4. In the context of semistructured data, the unrestricted impli-
cation and �nite implication problems for local inclusion constraints coincide.

Proof: By Lemma 6.4, given any �nite set � and ' of local inclusion constraints,
there exist a �nite set �0 and � of word constraints such that � j= ' i� �0 j= �, and
� j=f ' i� �0 j=f �. It is known that unrestricted implication and �nite implication
for word constraints are equivalent in the untyped context [Abiteboul and Vianu
1999]: �0 j= � i� �0 j=f �. It follows at once that the same is true for local inclusion
constraints. Indeed, clearly if � j= ' then � j=f '. Conversely, if � j=f ', then
�0 j=f � and thus �0 j= �. This yields � j= '. 2

For Pw(�) and Pc, however, these problems are not equivalent in the untyped
setting.

Corollary 7.5. In the context of semistructured data, unrestricted implication
and �nite implication of Pw(�) (and thus Pc) constraints di�er from each other.

Proof: By the Completeness Theorem for �rst-order logic, the unrestricted impli-
cation problem is recursively enumerable, while the �nite implication problem is
easily seen to be co-r.e. Therefore, the equivalence of these problems would imply
the decidability of each, contradicting Lemma 5.3. 2

Below we provide a concrete example to witness Corollary 7.5: we give a set �
and ' of Pw(�) constraints such that � j=f ' but � 6j= '.
Let � consist of the following:

(1) 8x (�(r; x)! K(r; x)),

(2) 8x (K � S(r; x)! K(r; x)),
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(3) 8x (K(r; x)! 8 y (�(x; y)! S � S�(x; y))),

(4) 8x (K(r; x)! 8 y (S � S�(x; y)! �(x; y))),

(5) 8x (K(r; x)! 8 y (S� � S(x; y)! �(x; y))).

Let ' be 8x (�(r; x)! S� � S(r; x)). Observe that these constraints are in Pw(K):
' and constraints (1) and (2) are word constraints, whereas constraints (3), (4)
and (5) are word constraints extended with a common pre�x K. Intuitively, these
constraints encode natural numbers: the root r for 0, S for the successor function,
and S� for the predecessor function. Indeed, in a structure satisfying �, constraints
(1), (2) and (3) assert that every node has a successor and S� is the inverse of S,
and constraints (3), (4) and (5) ensure that S is an injective function. The negation
of ' asserts that the root (0) does not have a predecessor.
To show � j=f ' but � 6j= ', it suÆces to prove that 	 =

V
�^ :' has a model

but it does not have a �nite model, i.e., 	 is satis�able but not �nitely satis�able.
That is, the complement of the unrestricted implication problem for Pw(�) does
not have the �nite model property. Indeed, 	 has an in�nite model as depicted in
Fig. 10 (a). We next show that it does not have a �nite model. Assume for reductio
that it has a �nite model G. Then it is easy to verify that G must have a cycle
consisting of S edges, which is reachable from the root by following (zero or more)
S edges. Thus the cycle must have one of the following two cases: either the root
r is on the cycle (and thus it has an incoming S edge), or there exists a node x
on the cycle having two incoming S edges, one on the cycle and the other on the
path from the root to the cycle. However, the root r cannot be on the cycle: if
there exists a node x such that G j= S(x; r), then by �, G j= S�(r; x) and thus
G j= S� � S(r; r). This violates :'. Furthermore, if there is a node x on the cycle
such that it has two incoming S edges, i.e., there exist distinct nodes y; z such
that G j= S(y; x) ^ S(z; x), then by �, we have G j= S�(x; y) ^ S�(x; z). Thus
G j= S � S�(y; z), which violates constraint (4). This contradicts the assumption
that G is a model of 	.

In contrast to Lemma 7.3, below we show that a slight change to the semantics
of sets makes unrestricted and �nite implications di�erent problems.

Corollary 7.6. In the context of the object-oriented data model M+, the un-
restricted implication and �nite implication problems for local inclusion constraints
(resp. for Pw(�) and for Pc) do not coincide.

Proof: Since any schema in M+ can be characterized with a �rst-order logic sen-
tence (type constraint), the argument of Corollary 7.5 also applies here: Theo-
rems 7.1 and 6.2 imply that unrestricted and �nite implications are not equivalent
in the context of M+ for Pw(�) (thus Pc) constraints and for local inclusion con-
straints. 2

Below we give a concrete example to witness Corollary 7.6 for local inclusion
constraints. Examples for Pw(�) (thus Pc) constraints can be constructed similarly.
We use a schema in M+ similar to the one constructed in the proof of Theo-

rem 6.2: � = (C; �; DBtype), where DBtype = [l : Cl], C = fC;Cs; Clg, and � is
de�ned by C 7! [S : C; S� : C], Cs 7! fCg, Cl 7! [a : C; b : Cs; K : Cl]. Let � be
the set consisting of:
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Fig. 10. Structures used in the proofs of Corollaries 7.5 and 7.6

(1) 8x (l(r; x)! 8 y (�(x; y)! K(x; y))),

(2) 8x (l �K(r; x)! 8 y (a(x; y)! b �mem(x; y)));

(3) 8x (l �K(r; x)! 8 y (b �mem � S(x; y)! b �mem(x; y)));

(4) 8x (l �K(r; x)! 8 y (a(x; y)! a � S�(x; y))),

(5) 8x (l � b �mem(r; x)! 8 y (S � S�(x; y)! �(x; y))),

Let ' be 8x (l �K(r; x) ! 8 y (a(x; y) ! a � S(x; y))). Observe that � and ' can
be partitioned into �K and �r, where �r consists of constraints (1) and (5), and
�K consists of all the others. Note that �K is bounded by l and K whereas �r is
excluded by l and K.
As in the proof of Theorem 6.2, it is easy to show the following for an instance

of � satisfying �. (1) There exist a unique Cs object and multiple C objects,
each connected to the Cs object by a mem edge. In particular, there is a unique
C object reachable from the root by following l � K � a, denoted by 0. The Cs
object is reachable from the root by following l � b. (2) By the de�nition of class C,
each C object has a unique S (successor) edge and a unique S� (predecessor) edge
emanating from it; thus S and S� can be viewed as total functions on C objects.
(3) By � constraints, S� is the inverse of S except at 0. (4) The negation of '
asserts that the successor of 0 is not 0 itself, and constraint (4) says that the S�

edge from 0 goes back to 0.
We show that 	 =

V
� ^ :' is satis�able but is not �nitely satis�able, i.e.,

� j=f ' but � 6j= '. Indeed, Fig. 10 (b) gives an in�nite model of 	. Assume
for reductio that 	 has a �nite model G. Now, the same argument as given in the
example witnessing Corollary 7.5 shows that G has a cycle consisting of S edges,
which is reachable from the node 0 by following (zero or more) S edges. Again we
must have one of the following two cases: either the node 0 is on the cycle (and
thus it has an incoming S edge), or there exists a C object x on the cycle having
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two incoming S edges, one on the cycle and the other on the path from the node 0
to the cycle. However, there cannot be a node x on the cycle having two distinct
C objects y and z such that G j= S(y; x) ^ S(z; x). This is because x has a unique
S� outgoing edge and thus we cannot have both G j= S�(x; y) and G j= S�(x; z).
Thus either G 6j= S � S�(y; y) or G 6j= S � S�(z; z), which violates constraint (5).
Furthermore, the node 0 cannot be on the cycle either: if there exists a node x such
that G j= S(x; 0), then by constraint (4), we have G j= S � S�(x; 0), which violates
either :' (when x = 0) or constraint (5) (when x 6= 0). Thus G cannot be a �nite
model of 	.

Observe that the structure in Fig. 10 (b) is not a model of 	 in the context of
M�, because its Cs object has an in�nite set as its value, which is not allowed by
M�.

8. CONCLUSION

We have investigated the interaction between two forms of constraints that are
important in specifying the semantics of data, namely, type constraints and path
constraints. We have demonstrated that adding a type system may in some cases
simplify the analysis of path constraint implication, and in other cases make it
harder. More speci�cally, we have studied how Pc constraints introduced in [Bune-
man et al. 2000] interact with two type systems. One of the type systems,M+, is an
object-oriented model similar to those studied in [Abiteboul et al. 1995; Abiteboul
and Kanellakis 1989; Cattell 2000]. It supports classes, records, sets and recursive
types. The other, M, is a restriction of M+. On the one hand, we have shown
that the unrestricted implication and �nite implication problems for Pc are unde-
cidable in the context of semistructured data, but they become not only decidable
in cubic-time but also �nitely axiomatizable when a type of M is added. On the
other hand, we have also shown that the unrestricted implication and �nite impli-
cation problems for local inclusion constraints, which constitute a fragment of Pc,
are decidable in PTIME in the untyped context. However, when a type of M+

is imposed, these problems become undecidable. We establish some extensions of
these results both for di�erent constraints and for a di�erent model. In particular,
we show the undecidability of the foregoing (�nite) implication problems in the
context of an object-oriented model M�, a variant of M+ that supports �nite sets
instead of (unrestricted) sets. In addition, we establish the undecidability of (�nite)
implication in the contexts ofM+ andM�; and in the untyped setting, for Pw(�),
a mild generalization of the word constraints for which the PTIME decidability was
established by Abiteboul and Vianu [1999] for semistructured data. We have also
determined for all the implication problems we study, whether or not their �nite
and unrestricted versions coincide. The main results of the paper are summarized
in Table I, which provides a complete picture for the complexity and comparison
of unrestricted implication and �nite implication of path constraints in di�erent
settings, along with references to the theorems where the results were proved.
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discussions. We are grateful to the referees for valuable suggestions.
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�nite/unrestricted �nite/unrestricted �nite/unrestricted
implication: implication: implication:

Pw(�) constraints local inclusion constraints Pc constraints

semistructured undecidable decidable (PTIME) undecidable
data model Lemma 5.3 Theorem 6.1 Theorem 5.1

�nite vs. restricted di�er coincide di�er
implications Corollary 7.5 Corollary 7.4 Corollary 7.5

object-oriented decidable, O(n3) decidable, O(n3) decidable, O(n3)
modelM Theorem 5.2 Theorem 5.2 Theorem 5.2

�nite vs. restricted coincide coincide coincide
implications Corollary 5.7 Corollary 5.7 Corollary 5.7

object-oriented undecidable undecidable undecidable
modelM+ Theorem 7.1 Theorem 6.2 Theorem 7.1

�nite vs. restricted di�er di�er di�er
implications Corollary 7.6 Corollary 7.6 Corollary 7.6

object-oriented undecidable undecidable undecidable
modelM� Theorem 7.2 Theorem 7.2 Theorem 7.2

�nite vs. restricted coincide coincide coincide
implications Lemma 7.3 Lemma 7.3 Lemma 7.3

Table I. The main results of the paper
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