1

XML [6] has become the primary standard for data ex-

Michael Benedikt

DTD-Directed Publishing with Attribute Translation Grammars

Chee Yong Chan Wenfei Fan Rajeev Rastogi

Bell Laboratories

{benedikt,cychan,wenfei,rastogi

}@research.bell-labs.com

Shihui Zheng Aoying Zhou
Fudan University

{shzheng0,ayzhou

Abstract

We present a framework for publishing relational
data in XML with respect to a fixed DTD. In data
exchange on the Web, XML views of relational
data are typically required to conform to a prede-
fined DTD. The presence of recursionina DTD as
well as non-determinism makes it challenging to
generate DTD-directed, efficient transformations.
Our framework provides a language for defining
views that are guaranteed to be DTD-conformant,
as well as middleware for evaluating these views.
It is based on a novel notion attribute transla-
tion grammargATGY. An ATG extends a DTD
by associating semantic rules via SQL queries.
Directed by the DTD, it extracts data from a re-
lational database, and constructs an XML docu-
ment. We provide algorithms for efficiently eval-
uating ATGs, along with methods for statically an-
alyzing them. This yields a systematic and effec-
tive approach to publishing data with respect to a
predefined DTD.

Introduction

}@fudan.edu.cn

extract patient information from its relational store, convert
it to an XML format , and send it to an insurance company,
with the XML data generated conformingto a DTD defined
by the insurance company.

The problem can be stated as follows: given a DIDD
and a relational schent?, define a viewr such that for any
instancel of R, o(I) is an XML document that conforms
to D. We refer to this aDTD directed publishing The
goal is to provide a DTD-directed publishing system that
captures transformations commonly found in practice.

DTD-directed publishing is rather challenging. The
presence of disjunction in a DTD leads to difficulties in
defining deterministic mappings based on the DTD, while
recursion makes for a poor match with the querying fa-
cilities of standard relational databases. Recursive DTDs
are commonly found in specifications of biomedical [5],
protein [20] and chemical data [9], e.g., DNA is specified
in terms of clone, clone has subelements gene and DNA,
while gene is in turn specified with DNA. As a simple ex-
ample, let us consider a mild variation of a fragment of
the TPC-H relational schema [24] shown in Fig. 1 (with
keys underlined). The schema, referred tolas speci-
fies parts, suppliers of those parts, and the composition of
a part from other parts. Suppose that one wants to define
an XML view that extracts information about parts with the

change on the Web. To exchange data currently residinﬁ:anq “Acme”_from the relational database. For each part
in relational databases, one needpublish it in XML, i.e. e view provides the name, suppliers and moreover, the

to transform the data into an XML format. In practice, pub- Part-hierarchy composing it: its sub-parts, the sub-parts of

lishing of relational data is always done with a predefinedin©S€ sub-parts, and so on. In addition, the XML docu-
type, typically a DTD. A community or industry agrees on Ment generated is to conform to a DT given in Fig. 2

a certain DTD, and subsequently all members of the com{€ré we omit the description of elements whose type is
munity create XML views of their relational data that con- PCDATA)' Observe thaD IS recursive : partis defme_d n
form to the DTD [3]. This is common in, e.g., B2B ap- €Ms of itself. Moreover, the structure of thedress is
plications and the health-care industry: a hospital needs tgOn-deterministic: if the supplier is “"domestic”, i.e., based
in the US, itsaddress is simply theaddr attribute of the
Permission to copy without fee all or part of this material is granted pro- Supplier relation; otherwise, i.e., if it is “foreign”, its
acvantage. the VLDB copyright notce and the e ofthe pubication ander eSS COnsists of thddr attribute and itation
ﬁsﬁ'ge gp’pear, and noti?:)é |gs given that copying is by pé)rmission of theGIVen an instance o, the goal is to generate an XML
Very Large Data Base Endowment. To copy otherwise, or to republishdocument of DTDDy. In the document, parts are nested to
requires a fee and/or special permission from the Endowment. an arbitrary level which is not known at compile time, but
Proceedings of the 28th VLDB Conference, is rather data-driven, i.e. determined by the relational data.
Hong Kong, China, 2002 This is an instance of DTD-directed publishing.

Supplier (suppkey _, name, addr, nationkey) ing data from the database using the rules, and then tagging

PartSupp (partkey, suppkey , availqty) .
Part (partkey , name, mfgr, brand, size, retail) the data_ t_o_ create XML eIeme_n_ts following _the element
MadeOf(partkeyl, partkey2) type definitions ofD. ATGs facilitate data-driven trans-

Nation (nationkey , name, regionkey) formation by using attributes to pass data (to be used, e.g.,
in grouping) as well as control down a partially-constructed
tree. If the evaluation of the ATG terminates successfully,

Figure 1: A fragment of TPC-H relational sche o)
g ¢ ", it yields an XML document that iguaranteedo conform

<IELEMENT db (part *)> to the DTD. As an example, the ATG in Fig. 3 defines the
<IELEMENT part (pname, supplier *, part *)> XML view of the TPC-H data described above (see Sec. 3).
<!IELEMENT supplier (sname, address)> ATGs are inspired by attribute grammars (see, e.g., [10]),
<IELEMENT address (addr | fornaddr)>

but have significant differences (see Sec. 7 for detailed dis-

cussion). To the best of our knowledge, they provide the

Figure 2: A predefined DT, for publishing data of?, first language that guides the user in the definition of DTD-
)) } i conformant views.

To publish relational data with a predefined DTD, we second, we establish results for static (compile-time)
need an XML view definition language that allows the analyses of ATGs. These include termination analysis of
DTD to guide view Creation, as well as an efficient imple- ATG evaluations and the expressive power of ATGs.
mentation of the language. Two of the well-known systems Thijrd, we provide efficient algorithms for evaluating
that have been developed for publishing relational data iraTGs. We introduce new techniques, based on dynamic
XML are SilkRoute [13], which is based on the view def- programming, which combine query-partitioning with the
inition language RXL (abstracted as TreeQL in [3]); and materialization of intermediate results to generate evalua-
XPERANTO [7], which extends SQL by supporting XML tion plans based on estimates of query cost and data size.
constructors to specify views. However, none of these sys- Based on these we have implemented a middleware sys-
tems takes DTDs/types into account. There have also beggm PRATA (Publishing Relational data using Attribute
several commercial systems [21, 19, 14] that specify XMLTranslation grAmmars), for DTD-directed publishing from
views by embedding SQL queries within an XML docu- re|ational data to XML. We have been conducting exper-
ment template. These can only produce mild variations of aments on data sets that include the variant of the TPC-
fixed d_ocumgnt, and thus cannot support data-driventransH database mentioned earlier. Our experimental results
formations directed by a predefined DTD, especially wheryemonstrate that our algorithms generate efficient evalua-
the DTD is recursive and/or non-deterministic. To the bestjgp plans.
of our knowledge, none of the existing systems is able 1y ganization. Section 2 reviews DTDs. Section 3 intro-
support the XML view described above. _ _ duces ATGs and provides static analyses of ATG evalua-

Another approach to coping with a predefined DTD isjon sections 4 and 5 develop efficient algorithms for eval-

by means of type checking [3]: simply define an XML 5ing ATGs. Section 6 presents experimental results. Sec-
view and then check whether the view conforms to thejon 7 addresses issues for further work.

DTD. Unfortunately this is impractical since type checking

of data-driven transformations, even for simple DTDs, is)

computationally intractable: co-NEXPTIME for extremely 2 Background: DTDs

restricted view definitions, and undecidable for realisticA Document Type Definition (DTD [6]) is typically repre-
views [3] (languages such as XQuery [8] implement onlysented as an extended context free grammar [15].
approximate type-checking). Worse still, any approach A DTDis atupleD = (Ele, P, r), whereEle is a fi-
based on type-checking does not provide any guidance omite set ofelement types- is a distinguished element type,
how to define an XML view that does typecheck. called theroot type P is a set of production rules that de-

There has also been a line of work on automated infine the element types: for eachin Ele, P(A) is a regular
ference of mappings from schema information (e.g., [2, 4expression « := S| B | € | a+a | a,a | a*, where
17]). This approach works well when the source and targe§ denotes thstring (PCDATA) type, B is a type inEle, €
schemas involved in translations are similar to each otheis the empty word, and+", “,” and “+” denote disjunc-

If the schemas are dramatically different, or if the viewtion, concatenation and the Kleene star, respectively (here
mapping depends on thapplication rather than merely we use “” instead of 4" to avoid confusion). We write
upon the schemas, this process cannot be fully automatedd — P(A) and refer to it as thproductionof A.

In this paper, we provide the first systematic method An XML document is typically modeled as a node-
for DTD-directed publishing of relational data in XML, by labeled tree. An XML treel’ conforms toa DTD D if
making three contributions. First, we introduce a novel no-its structure is constrained by as follows: (1) there is a
tion of attribute translation grammar6ATG9. An ATG is unique node irf” labeled withr, namely, theoot; (2) each
an extension of a DTD by associating attributes and semamode inT' is labeled either with an element typgeof Ele,
tic rules (SQL queries) with element types. Given a rela-called an4 elementor with S, called atext node(3) each
tional schemak and a DTDD, one can define an ATG that, A element has a list of children of elements and text nodes
given an instance aR, generates XML data by first extract- such that they are ordered and their labels are in the regu-

<IELEMENT fornaddr (addr, nation)>

lar language defined bi(A); (4) each text node carriesa e Rules: a set ofemantic rulesrule(p), is associated
string value (PCDATA) and is a leaf of the tree. with each productiop = A — « in P. For each
To simplify the discussion when it comes to defining B € Ele U Ety U {S} that occurs ina, there is a
ATGs, we do not consider attributes in this paper; but we rule that specifies how the values%® are evaluated.
allow entities (defined in the XML standard [6]) to be used This generally involves an SQL query on relations of

in DTDs. Anentity B is merely a macro (alias) of a regular R with $ A as parameters.

expressionP(B). . P . -
Taking advantage of the notion of entities, we define aWe say that is recursw_eﬁ Dis recur-swe.

DTD D in normal formto be(Ele, Ety, P, r), whereEty In an ATG we combine a DTV with database opera-

is a finite set of entities? defines element types and enti- tions by defining semantic rules in terms of SQL queties
ties such that for each in EleU Ety, P(A) has the form: Given a relational database, the evaluation of the ATG
yields a parse tree ab, in which nodes carry attributes
a = S | €| Bi,....By | Bi+...+By | B* whose values are computed by the queries on the database.
whereB, B; are inEle U Ety U {S} andn > 1. The tree is generated incrementally starting from the root
For example, the DT, given earlier can be converted downwards. The generation is data-driven: the children of
to a DTD Dy in the normal form by introducing entities a nodev are populated based on the valuesfattribute.

parts, suppliers and rewriting the production gfart as: Recall the XML view (part-hierarchy) for the TPC-H
<IELEMENT part (suppliers, pname, parts)> data described in Sec. 1. The A : Ry — Dj, depicted
<IENTITY suppliers “supplier = in Fig. 3 defines the view. la, the DTD D] is the one in
<IENTITY parts “part > normal form given in Sec. 2.
Abusing the notion of XML trees, we definevirtual We next describe more precisely the definitions of se-

XML tree of a DTD D to be an XML tree conforming to Mantic rules in an ATGr : B — D. For a production
aDTD D' which is obtained fronD by treating entitiesas P = 4 — « (with element types or entities, , ..., B,
element types. That is, we allow nodes in a virtual XML in @) and for eachB;, we have a function returning val-
tree to be labeled with entities. A virtual XML trdér of ues for the attributéB; defined from the attribut§ A of

D can be converted to an XML tréein timelinearinthe ~ A. More specifically, they are computed by a function
size of Vi, by collapsing entity nodes, i.e., merging eachf(¥1,- .-, ¥m) of one of the following forms:

entity node with its parent node until no node is labeled f

with an entity. We refer td@” as aparse tree ofD and say Wiseeesym) 5= (neeoym) | QW ym)

that itconforms taD. wherey, ...,y are members df A, which are treated as
We say that DTDsD and D’ areequivalentif for any ~ constant parameters of atomic valu@s;, . . ., y.,) Simply

XML tree T', T conforms toD iff T conforms toD’. For constructs a single tuple using the parameter valiyésan

example, the DTD®, and D, are equivalent. SQL query on relations oR, by treatingy; as a constant.

Proposition 2.1: For any DTDD there exists a DTDD' in Fgr examplg, referring top in Fig: 3, the rulg associated
the normal form such tha and D’ are equivalent. More- with productiorparts — part* definesipart with a query
Q)5 on a TPC-H database, which tre8isirts.partkey as

over,D' can be computed from in linear time. | a constant
By Proposition 2.1, in the sequel we shall only consider with these functions we definaile(p) associated with
DTDs in the normal form. each productiop = A — « in the DTD D. By Proposi-

A DTD is said to berecursiveif it has some element tion 2.1, we can assume that all DTDs are in normal form.
type that is defined in terms of itself, dlreCtly or |nd|reCt|y. ThUS, it suffices to Considwof the f0||owing cases:

)) (1) If « is Sthen$s must consist of a single member, and
3 Attribute translation grammars rule(p) is defined as

This section introduces ATGs and presents static analyses $S = F($A4),
of ATG evaluation.
wheref is a function of the form defined above.

3.1 ATGs (2) If ais By, ..., By, thenrule(p) consists of

Definition 3.1: Let D = (Ele, Ety, P,r) be a DTD andR $B1 = f1(84), ..., $B, = fu(84),

be a relational schema. Aattribute translation grammar

(ATG) o from R to D, denoted by : R — D, consists of:
e Grammar: the DTD D.

o Attribute tuples: a tuple of attribute members is asso- (8Bi, ..., $Bn) =
ciated with eacd € Ele U Ety U {S}. The tuple is caseQ.($4) of 1: fi(3A4); ...; n: fu(84),
called theattribute of A and denoted bgA. We will 1The term “attribute translation grammar” was first used to denote a

use$A.x,$A.y ... to denote the members 8fl. FOr class of attribute grammars for compiler constructions [16], which are
the root typer, $r is empty. quite different from ATGs.

wheref; is a function as defined above for each [1,n].
(3) f awis By + ...+ B, thenrule(p) is defined as:

Grammar: Dy
Attribute tuples:

$db =0

$part = (partkey, name)

$parts = (partkey)

$suppliers = (partkey)

$supplier = (name, addr, nationkey)

$address = (tag, addr, nation)

$fornaddr = (addr, nation)

$sname = $pname = $nation = Saddr = (val)

$s = (val)

Semantic rules:

db — part*

Q1: $part + select p.partkey, p.name
from Part p

where p.brand = “Acme”

part — suppliers, pname, parts

Q2: $Ssuppliers = ($part.partkey),
Q3. $pname = ($part.name),
Q4. S$parts = ($part.partkey)

parts — part*
Qs: $part < select m.partkey2, p.name
from Madeof m, Part p
where m.partkeyl = $parts.partkey and
m.partkey2 = p.partkey

suppliers — supplier*
Qe: S$supplier < select s.name, s.addr, s.nationkey
from Supplier s, PartSupp ps
where ps.partkey = $suppliers.partkey
and ps.suppkey = s.suppkey

suppplier — sname, address
Q7. $smame = $supplier.name,
Qg: S$address = select 1 as tag, null as nation,
$supplier.addr as addr
from Nation n
where ‘USA’ = n.name and
n.nationkey = $supplier.nationkey
union
select 2 as tag, n.name as nation,
$supplier.addr as addr
from Nation n
where ‘USA’ <> n.name and
n.nationkey = $supplier.nationkey

address— addr + fornaddr:
Qo: ($addr, $fornaddr) =
case S$address.tag of I*
1: (($address.addr), null)
2: (null, ($address.addr,

fornaddr — addr, nation:

Qc

$address.nation))

Q10: $addr = $fornaddr.addr

Q11: $nation = $fornaddr.nation

A—=S [* A is one of sname, nname, addr, nation */
$s = $A.val

Figure 3: Example of an ATGyy

whereQ. is a query that returns a value ib, n], and f;’s

are functions as above. That &B; is assigned with the

value of f;($A) if Q.($4) = i, and withnull otherwise.

These are to capture the semantics of the non-determinist|

production. We refer td@). as thecondition queryof the
rule.

(4) If ais B*, thenrule(p) is defined as follows:
$B <+ Q($A4),

shortly, the rule for3 in fact introduces an iteration (loop),
which implements the Kleene closure without using an
unbounded number of attributes.

Observe thatule(p) in cases (1) to (3) is built up from
assignments of the forn§B; = f($A4). Here we require
f($A) to return a single tuple. In case (4ule(p) is de-
fined with$B + Q($3A), whereQ($A) returns a set of tu-
ples. It assigns each tuple@($A) to $B, i.e.,$B ranges
over each value if)($A4). As will be explained shortly,
for each$ A tuple, the semantic rule f&B is triggered.

For example, referring to Fig. $supplier and$part are
defined with the second form (wit3;, @5, Q) While the
rest are defined with the first form.

Next we give the semantics of the AT&Sby presenting
a naive evaluation strategy. This strategy is only intended
to give a conceptual view of the meaning of the ATG: prac-
tical techniques for evaluation will be discussed at length
in Sections 4 and 5.

Given an instancd of the relational schem#, o is
evaluated following anterative semantics. The iteration
proceeds top-down: starting at the root type, evaluate se-
mantic rules associated with each element type/entity en-
countered, and create nodes following the DTD to construct
an XML tree. The iteration at each stage produces a (par-
tial) XML tree T,,. At each iteration, we consider a par-
ticular leaf noddv tagged withA associated with valug
from $A. We find the corresponding productich — «,
and trigger the rule associated with the production, substi-
tuting the valuei for the parameter$A in their functions.
The resulting functions compu$a; for eachB; in a. For
eachB;, its function generates a single tuple as the value
of $B; (or null for some$B; in the case of disjunction)
except when the production is of the foth— B?. For
each value ir$ B;, we create &; node and expand the tree
T, by appending these nodesTf as the children ofv.
More specifically, we do the following:

(1) For a productiom — S, recall that§s = f($A) is its
semantic rule. Iff returns the empty set or multiple values,
then the evaluation aborts; otherwise a text node is created
as the only child ofv with $S as its PCDATA.

(2) The semantic rules for a productigh— By, ..., By

are defined as$B; = f1($4), ..., $B, = fr(3A4). If
one of the functions; returns the empty set or multiple
values, then the evaluation aborts, while if eggheturns

a single value, then a singlB; node is created for each
i, carrying the$B; value. These nodes are treated as the
children oflv, in the order specified by the production.

(3) For a productiom™d — B; + ... + By, recall that its

semantic rule is defined with a case clause. The condition

guery in the clause is evaluated first, and based on its value,
particularB; is selected and the corresponding function

or computing$ B; is evaluated. AingleB; node is created

as the only child of the nodk, carrying the$ B; value.

(4) For a productiom — B*, recall that its semantic rule
is defined as$B < Q($A). If the query@ returns empty,
then no children are appendeditg otherwisem nodes

where @ is a query as defined above. As will be seentagged withB are created, whera: is the cardinality of

the output of@, such that eacl3 node carries a distinct Proposition 3.1: For any ATGo : R — D and for any
value from the se$ B. These nodes are the children/of database instancé of R, if o terminates without aborting

(5) Nothing needs to be done for a production- e. onI, theno(I) is an XML tree that conforms tb. O

As a final step, we eliminate nodes tagged with an entity Of course, an ATG may not terminate, or may abort. The
to construct an XML tree Conforming tD, as described in ques“on thus arises whether or not termination of an ATG

Sec. 2. We use(I) to denote the XML tree. evaluation is decidable. Thermination problem for ATGs
Observe that each step of the iteration expands the trd {0 determine, given any ATG : B — D, whether ter-

strictly following the DTD D. In particular, whenD is minates without ab_ortmg on_aII input database instances of

recursively defined, the data-driven evaluation expands th&: Closely related is theermination problem for ATGs on

tree to a level which is determined by the relational data an@" individual instancegiven an instancé of 2, whether

the semantic rules. It is easy to verify that if the evaluation? terminates without aborting on inpiit

of the ATG terminates successfully (without aborting), it Theorem 3.2:

generates an XML tree that conformsfo This yields a

systematic method of DTD-directed publishing. e The termination problem is decidable for ATGs de-

fined with unions of conjunctive queries and arbitrary
Example 3.1: Given a database instance of the schema DTDs in time exponential in the size of ATG.

Ry, the evaluation of the ATGy in Fig. 3 generates an o On an individual database instandethe termination

XML tree that conforms to DTDD;, as follows. It first problem is decidable for arbitrary ATGs in time poly-
creates the root of the tree, tagged wdlin. It then com- nomial in the size of.

putes a set of tuples of the formpdrtkey, name) us-
ing the query®;. For each tuple, a distinct node labeled
part is created, carrying the tuple as its attribfifert.
These nodes are the children of the root. For gzenth
node, itssuppliers , pname andparts children are
created by using the queriés, Q3 and@,, respectively,
and by treating members of the tuple$ipart as param-

e The termination problem becomes undecidable for
ATGs defined with arbitrary SQL queries. -
The first decidability result shows that it is possible to
determine termination for an important class of ATGs. This
can be proved by reduction to the satisfiability problem for

eters. Similarly, for eaclsuppliers node, its subtree D2t@log programs (with equality and inequality). This re-

is constructed with the querie$s to Q11; eachpname sult still holds in the presence of key constraints in the un-
node in turn has a text node as its child, which carried€rlying relational schema with the same complexity. The
$part.name as its PCDATA: and at eacharts node second decidability tells us that when the input database

the queryQs is executed with attribut®parts.partkey instance is fixed, one can effectively determine the termi-
as parameter, and itsart children are génerated as nation of the evaluation of an arbitrary ATG. This follows

long as the part identified Bparts.partkey has sub-parts, flfﬁm ft.hel iter:cajtivg dSETamiCS :given in rt]he IﬁSt sub;ect?on.
i.e., Qs($parts.partkey) does not return an empty set. | n€ final undecidability result says that the termination

Thus the XML tree generated has an unbounded heigHifoPlem is beyond reach for ATGs defined with general
determined by the relational data. Observe that the non= QL. gueries. This can t_)e established by reduction fram
deterministic choice address is handled by, which €duivalence of SQL queries.

is specified with a condition query.: “$address.addr " ExpressivenessATGs are at least as powerful as the view
that returns eitheil or 2. Also note that the evaluation definition languages of the existing publishing systems,
aborts if the query)s does not return a single tuple; but namely RXL [13] (TreeQL [3]) in SilkRoute and the lan-
this will not happen as)s is executed with a particu- guage of XPERANTO [7]. That is, for any XML view de-
lar parameter:$supplier.addr (treated as a constant) finable in RXL (TreeQL) or XPERANTO, it can also be ex-
and$supplier.nationkey (a key of theNation rela- pressed as an ATG (with some simple nonrecursive DTD).
tion). As the last step, nodes tagged véitippliers and Moreover, there are ATGs that are not definable in RXL
parts (entities) are eliminated by merging these nodegTreeQL) and XPERANTO, e.g., recursive ATGs.

with their parents. m|

Example 3.1 demonstrates the following: (1) ATGs are4 Overview of ATG evaluation

capable of expressing recursive XML views. (2) They canjp, thjs section, we provide an overview of an efficient al-
also handle non-deterministic DTDs, namely, DTDs de-gorithm for evaluating ATGs. As observed by [12], it
fined with disjunction. (3) ATGs capture group-by by pass-js advantageous to extract all the relevant relational data
ing attributes as parameters, e.g.(Jp for part andQs first and then construct the final XML document at a later
for supplier , without introducing explicit constructs. stage. Thus XML view evaluation consists of (1juple-
generation phas@ which relational queries are generated
3.2 Static analyses and executgd to produpe autput relatilon— a relational
representation of the view; and (2Jagging phasgwhere
Correctness and termination of ATGs. The definition of the output relation is post-processed to produce the result
ATGs easily ensures the basic correctness result: XML tree. In systems such as [12, 22] a set of SQL queries

i g
Q L)

db
part

@ J) p: & /l\
part Q3 db

w suppliers priame parts suppliers pname parts |

Q Q)+ t t t part

- P, T

suppliers pname parts subplier supplier SUTPHE(S pn‘ame pani\
Q v

Q |« Q Q m su;‘Jpha PL part part
e e My
sname suppliers pname parts suppliers pname parts

supplier sname pname par pname pans P, | | |
SVAN s P2 / \@
pat part
sname address @ i I
PN suppliers pname parts gspfiers pname ts
Q T Q Q4 X R
- S supplier supplier
adr fornaddr | | P4 PS
Q Q pname parts pname part sname sname
ho /\ s ‘ ‘
addr nation s1 2

@da (b) T" and its partition (c) another partition of” (d) XML Document

>

==

Figure 4: Example of ATG grap@, its partially unfolded ATG tred’, and the result XML document.

can be produced at compile-time that suffice to computd-ig. 4(b) illustrates a partial ATG trég (for the ATG graph
the output relation. In contrast, it may not be feasiblein Fig. 4(a)) wherpart is expanded twice. (For simplicity
to statically generate queries for recursive ATGs (DTDs).we omit theaddress subtree undesupplier).

For ATGs we thus require dterative tuple-generation ap- Evaluating the ATG tree formed at a stage of the iter-
proach atrun-time SQL queries are generated on-the-fly toation, i.e., executing the SQL queries and computing at-
construct the output relation incrementally; as the |terat|ortr,butes assouated with the tree, will give a portion of the
proceeds, intermediate results required for later computagutput relation. Our evaluation strategy, then, is to itera-
tion need to be maintained. To Optlmlze the evaluation pr0t|Ve|y unfold the graph into an ATG tree and create SQL
cess we devise techniques for selecting certain |ntermed|atgjenes that append tuples to the output relation. This itera-
results tomaterializein temporary tables, while simultane- tjon continues until no leaves of the tree can contribute new

ouslyunfoldingthe recursive rules in the ATG. tuples to the output relation, i.e., the entire relation has been
)) generated. For example, we unfold and evaluate the ATG
4.1 Generation of SQL queries graphG of ¢, until nopart encountered has sub-parts.

We illustrate the key ideas underlying our evaluation algo- We next consider how to generate, given a (partial) ATG
rithm using the ATGoq given in Fig. 3, which is an XML treeT', SQL queries that return output relation tuples. A
view of the TPC-H data (schem&,). To do so we repre- tuple contains information that can uniquely identify the
sentoy as a multi-grapld depicted in Fig. 4(a), referred to position and content of a node in the output XML tree,
as theATG graphof o, which can be easily derived from namely, a coding of a root-to-leaf path, and string values
the DTD Dy, of 09. The ATG graph essentially contains a for text contents of nodes on the path. This can be done in
node for each element type/entity For each production several ways by varying the sets of SQL queries to be gen-
rule A — «, there are labeled edges framto every in- erated. Similar to the approach adopted by SilkRoute [12],
stance of element type/entify in «. If « = B*, thenthe we generate queries by first partitionifignto a set of dis-
edge has a#” as a label indicating that zero or mofe¢ joint subtrees referred to @& membersand then produc-
elements can be immediately nested within/arlement. ing for each P-membé? a single SQL query) p such that
Each edge is also labeled with the SQL query for computthe composition of) p's along a path computes the portion
ing the values of the attribu®B of B (defined using 4). of the output relation corresponding to that path. For ex-
Finally, if «is a disjunction, then thd node is labeled with ample, the ATG tred" in Fig. 4(b) is partitioned into five
the condition query in the case clause (its outgoing edgeB-membersP; to Ps (the last three P-members rooted at
are indicated by dashed lines to distinguish from the casaddress andsuppliers are not shown). The que§;
of a concatenation). Note that, as shown in Fig. 4(a), theyenerated for; is given in Fig. 5, which computes one
ATG graph for recursive DTDs contains cycles. portion of the output relatidh In general, the querg) p

The ATG graph is useful for generating the ATG tree, for a P-membelP can be expressed as an outer union of
which is essentially the template for the result XML tree. subqueries corresponding to certain paths in the subtree;
In the absence of recursion, the ATG tree is constructeduch a query is calledsorted outer union quetiyn [22]. In
by starting with the root node and moving downwards; atparticular,S; in Fig. 5 is an outer union of two subqueries
each node encountered it creates distinct children of théor the paths from the root teupplier and the second
corresponding node in the ATG graph. For ATG graphspart in P;. The subqueries can be easily derived by com-
with cycles, this process would not terminate; as a result,
when building an ATG tree in the presence of recursion, 274 ayoid cluttering the queries, we have omitted certain auxiliary at-
we only expand nodes to a bounded depth. For instanceijbutes (that are used for sorting the output) from the select clauses.

Part MadeOf

Si: partkey | nhame | brand partkeyl | partkey2

select p.partkey as partkey, X.suppkey as suppkey, pl Pl | Acme pl p2
X.sname as sname, p.pname as pname, p2 P2 Bar pl p3
null as partkey2, null as pname2 p3 P3 Foo p2 p4

from Part p left outer join p4 P4 Bar p2 pS
((select ps.partkey as partkey, pS PS5 Foo

s.suppkey as suppkey, s.sname as sname

from PartSupplier ps, Supplier s PartSupp Supplier

where ps.suppkey = s.suppkey) as X) partkey | suppkey suppkey | name

on p.partkey = X.partkey pl sl sl S1
where p.brand = “Acme” p4 sl s2 S2
union p4 s2

select p.partkey as partkey, null as suppkey,
null as sname, null as pname

X.partkey2 as partkey2, X.pname2 as pname2 Figure 7: A database instance of the schdtga
from Part p left outer join
((select m.partkeyl as partkeyl, Output forS]
m.partkey2 as partkey2, p2.pname as pname2 partkey | suppkey | sname| pname
from MadeOf m, Part p2 pl sl S1 P1
where m.partkey2 = p2.partkey) as X) pl s2 S2 P1
on p.partkey = X.partkeyl Output forS),
where p.brand = “Acme” partkeyl | partkey2 | pname
order by partkey, suppkey, partkey2 pl p2 P2
pl p3 P3
Figure 5: SQL querys; for P-membef”; of T"in Fig. 4(b). Output forS}
partkeyl | partkey2 | partkey3 | pname3
pl p2 p4 P4
Si: Equivalent to the first subquery of S1 (Fig.5) pl P2 PS5 P5
without null attributes partkey2 and pname
; . ; i roQl
So: select p.partkey, p2.partkey2, p2.pname Figure 8: Output relations of queri&s, S5, S5.
from Part p, MadeOf m, Part p2
where p.brand = “Acme” these queries on an instance (Fig. 7) of the sch&nas
and m.partkeyl = p.partkey depicted in Fig. 8 (we show only the relevant relations and
and m.partkey2 = p2.partkey attributes ofR,). Observe that the tuples computed$y

order by p.partkey, p2.partke "
Y P-pariey, pe.parey andsS) have smaller arities than those producedbyand

I . . N
S3: select p.partkey, m.partkey2, m2.partkey?, thus contain fewer null values. It should be mentioned that

2.pname L
from P‘;rtpp, Part p2, MadeOf m, MadeOf m2 large partitions do not always outperform small ones. We
where p.brand = “Acme” will revisit this issue in Sec. 5, where we present heuristics
and p.partkey = m.partkeyl for finding a good partition.

and m.partkey2 = m2.partkeyl

and m2.partkey2 = p2.partkey To correctly combine the results of various queries for

order by p.partkey, m.partkey2, m2.partkey2 the generation of the output XML document, the query for
.] _ L o _ each P-member also needs to include the necessary key
Figure 6: SQL queries faPy, P, P; of Fig. 4(c). attributes along the path from the root of the ATG graph

. o) to the root of the P-member. For example, quétyin
posing the SQL queries in the ATG tfehe first subquery Fig 6 includes two additional key attributesagtkeyl
is generated by “composing” the querig3,, Q2, @s, Qs, andpartkey2) corresponding to the top tweart nodes
(7}, and the second one by composi{t@, @4, @5, @s}. along the path frondb to the bottonpart node inT.
The left-outer-join inS; ensures that tuples are generated once all the generated queries have been executed, the
for parts with no suppliers_and zero sub-_parts. The sorting)utput XML document (shown partially in Fig. 4(d)) is
in Sy is to facilitate an efficient generation of the output generated by joining the output relations for partitions and
XML data (to be explained shortly). tagging the resulting tuples based on their key values. This
Note that the tuples computed By are relatively large can be done via a simple sequential scan of each output re-
(in terms of arity, i.e., the number of attributes) and thusjation outside of the relational database engine, following a

may include many null values. Alternatively, one could re-top-down approach similar to the conceptual evaluation in
duce the arity of the output tuples by choosing a differentsection 3.1.

partition that produces more subtrees of smaller sizes. To
illustrate this, consider another partition shown in Fig. 4(c)4.2 Unfolding and materialization

which includes six P-members (subtrees, of which only the hi . N hni
first three are shown). Here we further partitiéh of In this subsection, we present two optimization techniques

Fig. 4(b) into P! and P,. The queries generated fa¥, fﬁr evalqating ATGs th?]t d_istinguish oufr fr:amework from'
P} and P} are given in Fig. 6. The results generated by!N€ xisting systems. The importance of the proposed opti-
mization is highlighted when ATGs are recursively defined.

3By the syntax of ATGs one can show that any function in a semantic Ve shquld_point out that although linear r.ecurSive query
rule can be written as an SQL query. evaluation is supported by some commercial DBMSs, the

S"3: select t.partkey, t.partkey2, m.partkey2,

p.pname (a) Mapping table forS, (b) Compressed output fc#]
from Part p, MadeOf m, Temp t partkeyl | partkey2 | CKey CKey | partkey3 | pname3
where t.partkey2 = m.partkeyl pl p2 1 1 p4 P4
and m.partkey2 = p.partkey pl p3 2 1 p5 P5

order by t.partkey, t.partkey2, m.partkey2

. . . . Figure 10: Use of mapping tables to compress large keys.
Figure 9: Rewriting ofS} using materialized result. g pping P 9 y

Tuple Generation

availability of this capability is not adequate to handle the

forms of recursion that can arise in recursive DTDs. o | o] T e
The first technique, unfolding, is to address a natural

question: How deep should we expand each leaf node in otoned

a partial ATG tree? Clearly, it is not practical to fully un- **** Masigizaion

fold a (cyclic) ATG graph since we do not know the final soL !

structure of the fully unfolded ATG tree in advance. To ﬁhﬁ%M

overcome this, we propose a simple solution of unfolding

and partitioning in iterations as follows. Suppose tHas
the partially expanded ATG tree at the start of an iteration. Figure 11: System architecture.
For each node i, the SQL queries executed during the
previous iterations generate a set of values in the output rékeys so as to improve both storage and processing effi-
lation. We shall refer to those nodesBfwith which some ciency. For example, Fig. 10(a) shows a mapping table that
nonsull tuples are associated asn-emptynodes. Our maps the composite key &, to a single auxiliary key at-
unfolding scheme expands each non-emptydeiafT' up tribute C Key; this is used to compress the output¥if as
to a maximum depth of; thus, the depth of the subtrég illustrated in Fig. 10(b), by replacing the prefix of its com-
rooted aty does not exceedl whered is a parameter. Each posite key with the compressed key. The effect of key com-
such subtred’, (that results from expanding a non-empty pression becomes more evident for long paths, e.g., a sin-
leafv) is then partitioned, and SQL queries for the partitiongle key forpartkey:, ..., partkey, whenn is large. Note
are executed to generate values for nodég,in that the mapping table can be computed as part of the ma-
Note that there is a tradeoff involved in the number ofterialized query for avoiding redundant join computations.
levelsd to unfold a non-empty node. The advantages ofThe compressed keys are chosen to have the same order as
unfolding nodev by a large number of levels are that the the composite keys (e.g., by using a simple counter). This
partitioning ofT’, can be optimized better dueTg’s larger ensures that the inverse mapping from compressed keys to
size. However, a danger with excessive unfolding is thatomposite keys can be carried out in a single scan of the
many nodes irf, may end up being empty, thus causing mapping tables when relations for partitions are joined.
unnecessary computation. Thus, paramétaust be cho-
sen Wi_th care to generate a goo_d plan. Further_experimergr_g System architecture
tation is needed to obtain guidelines for the choicéd.of
The second technique, query materialization, is to overWe are now ready to give an overview of the architecture of
come two performance deficiencies. First, as illustrated byur DTD-directed publishing system PRATA. As depicted
queriesS} andS; in Fig. 6, there are often common subex- in Fig. 11, it takes an ATG grapt¥ (for o : R — D)
pressions shared by the generated queries due to the negdd a database instanf®f R as inputs and generates an
to include additional key attributes for sorting the query re-XML document that conforms t®. It consists of a tuple
sults. One obvious optimization is to materialize the resultgeneration phase (indicated by the large outer box) produc-
of S} so thatS} can be rewritten to reference the material- ing output relations, followed by the tuple tagging phase to
ized results. However, the materialized resultsgbicon- generate the XML document from the output relations.
tain many attributes irrelevant t8,. It is more efficient to The tuple generation phase consists of an iterative se-
materialize only a subset of the resultsS§f For our exam- quence of four steps. The first step partially unfolds the
ple, if we materialize the projection on the first two output ATG graph to an ATG tred’, as described earlier. To opti-

attributes ofS}, in a temporary relatiofemp(partkey, mize the evaluation df’ the second step then determines a
partkey2) , thenSj can be rewritten as the queS) partitioning of 7" as well as a set of intermediate queries
shown in Fig. 9 to save one join computation. to be materialized (see Sec. 5). The third step takes as

Second, as indicated earlier, the number of additionainput the partition ofl" and the materialization plan, and

key attributes to be included in the output result for a sub-generates a set of SQL queries to evaldateThe fourth

tree increases with the “depth” of that subtree. Clearlystep executes the generated queries to produce the materi-
this can result in very large composite keys, particularlyalized results and output relations. The system iteratively
for recursive DTDs. Thus, in addition to using query ma-repeats the execution of these steps until the termination
terialization to avoid redundant computations of commoncondition is met, as described earlier. Finally, the tuple tag-
subexpressions, we can also materialize additiomgb- ging phase uses the output relations, the mapping tables
ping tablesto map large keys to more concise auxiliary for compressed keys and the DTD associated with the ATG

graph to generate the XML document; during this phases;|, while the SQL query for the materialized node labeled
additional checks are performed to see if the transformapart in P; is S2. Further, letdb_cost(()) anddb_card(Q)
tion needs to be aborted (we omit the discussion of thesdenote, respectively, the cost for evaluating a qugnd
latter checks and the SQL query generation algorithm du¢he cardinality of the query result fap returned by the

to space constraints). DBMS optimizer. (Most commercial DBMSs provide sup-
port for such statistics). Also, lelum_attr(Q) denote the
5 Plan generation number of attributes in the result Q). Thus, the total size

])))) of the result of a query) is num_attr(Q) - db_card(Q).
As described in the previous section, the evaluation of arsjnce the estimated total cost of executing quegy, in-
ATG graph is carried out in iterations: in each iteration, o|yes running it at the DBMS and then retrieving the result

non-empty leaf nodes of partially expanded ATG tre@" yjes (possibly over a network), we model the overall cost
are expanded further to a certain depth. Further, for eaciinout materialization as (similar to [12]):

newly-expanded subtree, an evaluation plan is generated
and executed to produce the output tuples for the subtree.tot_cost(Qp,) = w1 -dbcost(Qp,) +
In this section we answer a central question for ATG graph wy - num.attr(Qp,,) - db_card(@p,,)

evaluation in each iteration: How should we generate ampove,w, andw. are weight parameters used to vary the
optimal plan to evaluate each expanded subtree? trade-off between the cost of query evaluation and the cost

The goal of plan generation is, given a subtree, to COMyf transferring the query result from the database server to
pute a partition for the subtree and a set of nodes to materine client.

alize in the subtree such that the cost of executing the SQL \yie next compute, for a materialized nodeand a de-
queries corresponding to the partition (using the materialgcandant P-membe®,, of v, the cost of executing) p.
ized tables) is minimum. Further, as in [12], we would hen(p, is rewritten in terms of the materialized table for
like our plan generation algorithm to be loosely coupled,, e denote this cost byot_cost(Qp, /v). Note that the
with the underlying relational DBMS, only relying on it penefit of materializing for P-memberP, is then given by

for coarse statistics like the cost of executing a query, th%t_cost(Q p,) — tot_cost(Qp, /v). As before, we model
guery execution plan and the size of the query result. v ¥

Clearly, a smaller partition (i.e., fewer P-members) en- tot_cost(Qp, /v) = w1 -db_cost(Qp, /v) +
ables the DBMS optimizer to generate better plans for the wy - num.attr(Qp, /v) - db_card(Qp, /v)

queries corresponding to the partition. However, as we sawhe functions in the second term can be estimated fairly ac-
before, with fewer P-members, the size of each query recurately. Specificallydb_card(Qp, /v) = db_card(Qp,)
sult increases due to the large number of null values for atand num_attr(Qp, /v) is essentiallynum_attr(Qp,) + 1
tributes (due to the outer union operation). Thus, our partiyinus the number of ancestor nodes of node the ATG
tioning algorithm must balance the benefit of sharing querytree 7. We subtract the number of intermediate nodes be-
computation due to a smaller partition with the larger resultyyeen the root and (and add 1) since in the materialized
sizes of a smaller partition. Similarly trade-offs need to beigpje forv, all keys for nodes that are ancestors:agh 7'
kept in mind when deciding which subtree nodes to mateyre replaced with a single auxiliary attribute CKey (due to
rialize. While materializing intermediate results at a nodekey compression). Thus, to estimate_cost(Qp, /v), we
can reduce the cost of executing queries for descendant %hly need to get good estimates . cost (Q p, /v). How-
members$, there is an overhead with temporary tables (e.9-ever, estimatingib_cost(Q p, /v) accurately is somewnhat
writing the materialized result to disk) that prevents us fromgjtficult since our plan generation algorithm is responsible
materializing too many nodes. In this section, we present gq determining the nodes ifi, to materialize, and thus
greedy heuristic that balances the above trade-offs to comygne of the nodes iff, are materialized when our algo-
pute a good partition along with the optimal nodes to materithm is invoked. A crude approximation that we found
rialize for evaluating P-members in this partition. Note thatyg \work quite well in our experiments is to simply model
our plan generation algorithm differs from that of the eXiSt'db_cost(pr /v) asdb_cost(Q p,) — db_cost(Q,). This is
ing systems, where materialization of intermediate result$,ecause in some respect, is actually a subquery @ p,
is not considered. (sinceP, is a descendant af, Qp, is obtained as a re-

Before we present the algorithm, we formulate the pre~t of query composition witi),). A problem with this
cise optimization problem and develop the necessary notgypproximation, however, is that the query plandhr may
tion. LetT denote the partial ATG tree, be the node just ot match the one for the subquedy, in Qp, . To fix this
expanded and’, denote the subtree rooted atthat we proplem, we add hints t@) p, so that the execution plan
want to partition. C_:onS|de_r a partitidh of T,.. Let P, de- (specially, join order) for querg), is forced on the DBMS
note a P-member i that is rooted at the node. We de- query optimizer when it generates a plan s, (current
note byQp, the SQL query fo”,,, and denote by),, the pBMSs provide hooks for specifying hints for preferring
SQL query for materializing node. For example, refer- certain join orders, e.g., the ORDER keyword in Oracle).
ring to Figs. 4(c) and 6, the SQL query for P-membBeis This yields a fairly good estimate db_cost(Qp, /v).

4A P-member rooted at a nodeis a descendant P-memberwoiff w We next turn our attention to the cost of materializing
is a descendant node of the query for a node. The attributes for the materialized

table ofv essentially consist of: (1) a single auxiliary key Procedure PARTITION(Ty, v, u)
ibute CKey that is a proxy for all the distinct combina- begin
attribu y proxy 1. P:={{z}:2€Ty}

tions of key values for nodes in the path fromtheroatio 2. benefit:= 1
T, and (2) the attributes in theelect clause forQ, that 3. while benefit >0
are referenced in the queries relatingp its descendants. ‘5" benefit := 0

. [cost, mSet] := MATERIALIZE (v,u, Ty, P)
Letm, denote the closest ancestor node tfiat has been g for each pair of P-memberg), Q' € P connected by an edge i,

materialized. Then, we can model the cost of materializing. Pi=(P-{Q,QHhu{QuQ}
the intermediate table farusingm, as: 8. [cost’, mSet] := MATERIALIZE (v,u, Ty, P')
9. if (benefit < cost - cost’)
10. benefit := cost - cost’
mat_cost(v/my,) = tot_cost(Qy/my) + 11. pp = (Q,Q")
ws - num_attr(Q,) - db_card(Qy) 12. if benefit > 0
13. Q = pp[1] U pp[2]

14. P =P — {pp[l], pp[2
where the first term is the cost of evaluatiQg using the 15 P.=PU {{gi[- pel2]}

materialized result,,, and the second term (weighted with 16. [C, M] := MATERIALIZE (v,u, Ty, P)
another parameters) models the cost of writing to disk (at 17- return [P, M]
the DBMS) the materialized table after key compression.

We are now in a position to define the cost of evaluating
SQL queries for a partition df, when certain nodes if,
?re_ rlr)atznallgeg\./l EorTa partléldfh oftirf]m andta fset olf rr;g— min{S, capig(v) MCOStly, w].cost,
erialized nodes\ in T,,, we define the cost of evaluating mat_cost(v/w) + ¥, ¢ chita(v) MCost[y, v]-cost }
T, as: if v is not the root of a P-memberP, € P

min{tot_cost(Qp, /w)+
Eyech“d(v) mCost[y, w].cost,

Figure 12: Partitioning algorithm

cost(Ty, P, M) = Z tot_cost(Q p,, /mw)+ Z mat_cost(y/my) mCost[v, w].cost =

Py€eP yEM tot_cost(Q p, /v) + mat_cost(v/w)+
aotiva i " yechild(v) MCost(y, v].cost}
Our objective is to compute a partitighof T, and a set of otherwise

nodesM to materialize ifl, such thatost(7,, P, M) is _)
minimum. Unfortunately, this problem can be shownto be In the two equations above, the two terms in each
NP-hard (reduction from Set Partition). min{.} expression correspond to the two cases in which
In the following, we present a greedy heuristic, Proce-" IS n_ot materialized (in which _casestays_the clos_es_t ma-
dure RRTITION, that, givenT,, attempts to find a parti- tgnah;ed ancestor for each chydf v) orv is matepa_hzed
tion P of T, and a set of nodes1 to materialize such that (in which casev becomes the new closest materialized an-

cost(T, P, M) is small. The heuristic (Fig. 12) starts with CeStor for each chilg). Note that for the case whenis
each node of, as a separate P-member, and in each iteral"at€rialized using), an additional cost ahat_cost(v/w)
tion of the while loop in Step 3, merges a pair of neigh-'S added to the sum of the costs for all childmen Fur-

boring P-members irP such that the cost of evaluating ther, if” is the root node for a P-_memng € P (second
the resulting P-members (after merging) is minimum. of.equatlon), then we also need to include the cost of evaluat-

course, for a partition, the cost of evaluation depends o gtE—n:emberPZ, tOth-COS.t(QPtZ /w)t ar.'dl.tOtaCOStéQPzt/”). |
the set of nodes materializedT,. Thus, in each iteration, _ord € two ctasels wi e”“fhﬂo m?_ erlatl_zel %n dmatlherla— "
we would like to merge the pair of P-members such thaﬂ,Ze , respectively (since this costis notincluded in the costs

for the resulting partitiorP, if the optimal set of nodes in for v's chlldren). Com_parlng the costs in the two cases,
T, are materialized, then the cost of evaluatifgs min- it is possible to determine whether or not to materialize
inicnum In order to détermine this optimal s&t of nodes Procedure MTERIALIZE uses the above equation to recur-

to materialize for a partitioP so thatcost(T,, P, M) is SVely computenCost[-]. mCost andmCost[-]. mSet, and

minimized, ProcedureARTITION invokes Procedure k- returns these to Proceduraf ITION.

. Our evaluation procedure will thus proceed by itera-
TERIALIZE (explained below). Note that Procedurer? . . ;
TITION terminates once the cost fat cannot be further UVely unfolding the ATG graph and calling ProcedureP

reduced by merging the P-members in it TITION for each non-empty leaf (using7, and the near-
We now describe the kev ideas u.nderl in Proce-eSt previously materialized ancestoas arguments). The

dure MATERIALIZE (given in Fiy 13). Su osgfo?a ar worst-case time complexities of ProceduresmRIALIZE

tition P and a node?in T mcgibst[v. w] Fr)npSet denotgs and RARTITION areO(n”) andO(n), respectively, where

the optimal set of nodes to materialize in the subffge n is the number of nodes if,.
rooted at node, wherem, = w. Also, with the nodes in .
mCost[v, w].mSet materialized, lemCost[v, w].cost be 6 Experiments

the cost of evaluating the P-membersfinthat are (com- In this section, we present experimental results on the per-
pletely) contained withirff,. Let child(v) denote the chil- formance of our ATG evaluation algorithms. One of the
dren of nodev. Then, it is possible to computaCost][.] novel aspects that distinguishes our ATG-based XML pub-
for v in terms ofmCost[.] for its children. lishing approach from previous work (e.g., [12]) is the ma-

10

procedure MATERIALIZE (z,y, T, P)
begin

. if mCost[z, y].computed = true 4

‘Withqut‘MateriaIi‘zation g ‘ ‘ o
. return [mcost[x, y].cost, mcost[z, y]. mSet] 35 1 With Materialization -
. costl:=0
. mSetl:=0

1

2

3

4 30
5. cost2 := mat_cost(z/y)

6

7

8

9

25 t a
. mSet2 = {z}

. for eachchild w of nodex in treeT’
[cost, mSet] := MATERIALIZE (w,y, T, P)

. costl := costl + cost
10. mSetl := mSetl U mSet 10 b
11. [cost, mSet] ;= MATERIALIZE (w,z, T, P) | KT
12. cost2 := cost2 + cost 5t g '
13. mSet2 := mSet2 U mSet P ‘ ‘ ‘
14. if x is the root of a P-member, sd; € P 4 6 8 10 12 14 16 18
15. costl :=costl + tot_cost(Qp. /y) Tree Depth, d
16. cost2 :=cost2 + tot_cost(Qp, /x)
17. if (costl < cost2)
18. mCost[z, y].cost := costl
19. mCost[z,y].mSet := mSetl
20. else
21, mCost[z, y].cost := cost2 % " Without Materialization &1
22. mCost[z, y].mSet := mSet2 With Materialization -
23. mCost[z, y].computed := true 30 -
24. return [mcost[z, y].cost, mcost[z, y].mSet]
end

20

15 -

Execution Time (sec)

(a)wl =100, ws = 1, w3z = 10

25
Figure 13: Procedure MERIALIZE 20 | ol

15

cution Time (sec)

terialization of queries for intermediate nodes of an ATG
tree. As described in Sec. 4.2, such materialization hasg o | e
the potential to improve overall system performance, since e
queries for descendant partitions of a node can be rewritten I . :
in terms of the materialized table for the node. Thus, the = o%——-
computation (e.g., joins) performed in materializing the ta-

ble for a node is shared among the node’s descendants.

The results of our experiments presented in this section (b) w1 = 100, w2 = 100, w3 = 100
support the above thesis, and demonstrate that judiciously
materializing a few selected internal nodes of the ATG tree)] o
can indeed significantly reduce evaluation time. This is Figure 14: Benefits of Materialization.
most noticeable for ATG trees that are deep, which is fre- o _ o
quently the case with recursive ATGs. Thus, we expect thaonsisting of a simple embedded SQL program, submitting
existing XML publishing systems like SilkRoute [12] (that gueries to a database server (via a JDBC interface) on a
partition theviewtree®, but do not materialize intermediate 1-4GH z Pentium IV machine witf256)/ B of main mem-
results) can benefit from incorporating materialization. ~ OfY running Windows2000°.

In our experiments, we used a variant of the TPC-H rela- Fig. 14 depicts the impact of materialization as a func-
tional schema presented earlier in Fig. 1. Except for the tation of the tree deptl for two different weight configura-
bleMadeOf, the rest of the tables are generated with TPC'stions. For each depth valug we first created a ATG tree
dbgen utility using a scale factor di.1, where the cardi- With d levels by unfolding the ATG grapfl — 4)/2 times
nalities of thePart , Supplier , andPartSupp tables andthen evaluated the ATG tree both with and without ma-
are20K, 1K, and80K, respectively. ThéladeOf table, terialization to compare the benefits of materialization. The
which has a cardinality of abo®0 K, is generated ran- €valuation time measures both the time to materialize inter-
domly such that each part has at most four sub-parts an@tediate results (for the case with materialization) as well as
the maximum he|ght of each part hierarchy is at most 1othe time to execute the queries. The results in the figure in-
We measured the query execution time to generate the ouflicate that materialization can speed up the evaluation by
put relations for the portion of the ATG shown in Fig. 3 @ factor of up to almost.5. Furthermore, as we expected,
that involves only elementpart , supplier , pname the benefit of materialization generally increases as the tree
andsname. Thus, the ATG graph is essentially identical depth increases: the materialized nodes in a larger ATG
to the one shown in Fig. 4(a) withoaddress and its tree can benefit more P-members (i.e., the precomputed re-
subelements. sults are reused more often) thus resulting in more signifi-

10 12 14 16 18
Tree Depth, d

5The view tree is similar to our ATG tree, except that it is not dynami- ®Due to licensing restrictions, we are not permitted to identify the com-
cally expanded in [12]. mercial product used.

11

of our plan generation algorithms to the various parameReferences

ters (e.g., weightsvy, w2, w3). As indicated by Fig. 14

the benefits of our evaluation algorithms are rather robust

to the changes of these parameters.

7 Conclusion

In this paper we have proposed a formalism, ATGs, for
publishing relational data in XML with respect to a prede-
fined DTD, and we have given efficient algorithms for eval- [4]
uating ATGs. The middleware we have developed, PRATA,
is to our knowledge the first system guaranteeing DTD- [5]

[1] S. Abiteboul, S. Cluet, and T. Milo. Querying and updating

the file. InVLDB, 1993.
S. Abiteboul, S. Cluet, and T. Milo. Correspondence and
translation for heterogeneous data.l@DT, 1997.

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Type-
checking XML views of relational databases. Mmoc. of
Logic in Computer Science (LICR001.

C. Beeri and T. Milo. Schemas for integration and transla-
tion of structured and semi-structured datal@DT, 1999.

BIOML. http://www.bioml.com/BIOML.

conformance. Our experimental results indicate that the[6] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible

optimization techniques introduced for PRATA are not only
effective in speeding ATG evaluation, but are also useful in [7]

the context of existing publishing systems.

There are key differences between ATGs and traditional
attribute grammars (AGs, see, e.g., [10]). A traditional AG [g]
is defined with a context free grammar (without Kleene
star) and more complicated attributes (synthesized and in-
herited). It takes a string as an input, parses the string with[g]
the grammar, and computes attributes. In contrast, it i1 0]
not possible to “parse” a relational database with a DTD;
thus an ATG extracts relevant data from the database viﬁl]
queries, and then constructs a parse tree of the DTD us-
ing the data. There have also been applications of AGs t 2
databases, e.g., for constructing query automata [18] an
for querying text files [1]. These are mild variations of tra-

ditional AGs and are quite different from ATGs.

It is straightforward to extend our framework to han-

dle DTD-directed transformations from Object-Oriented

databases to XML, and XML-to-XML transformations.

There are extensions that are more involved, and which
are the subject of ongoing work. One involves support-
ing the synthesized attributes found in traditional attribute
grammars. The extra expressive power of this extensioft®!
needs to be examined, as well as its impact on ATG eval-

uation. We are also studying the extension of this tech{17]

nigue from DTDs to XML Schema [23]. A specification

(schema) in XML Schema typically consists of a type and a
set of integrity constraints. In this context, schema-directed!8]
mapping is to define an XML view of relational data such
that the XML documents generated both conform to the
type and satisfy the constraints. Unfortunately, it is im-[1
possible even to decide whether or not a schema is consis-
tent [11], i.e., there is any document satisfying it, due to 20
Si
XML Schema. We are working on identifying practical re- [21]
strictions on XML Schema for effective schema-directed
publishing. Another topic is to explore the evaluation

of XML queries (e.g. XQuery [8]) against ATG-defined [22]
views. Finally, we are also studying methods for capturing

the interaction between integrity constraints and type

information-preserving transformations via ATGs.

ACKNOWLEDGMENT: We thank Mary Ferahdez for

answering several inquiries regarding SilkRoute. Wenfej
Fan is on leave from Temple University and is supported in24l

part by NSF Career Award 11S-0093168.

12

Markup Language (XML) 1.0. W3C, 1998.

M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasun-
daram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Publishing object-relational data as XML. WebDB 2000.

D. Chamberlin et al. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, June 2001.
http://www.w3.0rg/TR/xquery

CML. http://www.xml-cml.org

P. Deransart and M. Jourdan (eds). Attribute Grammars and
their Applications.LNCS 461 1990.

W. Fan and L. Libkin. On XML integrity constraints in the
presence of DTDs. IRODS 2001.

M. F. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middleware queries. BIGMOD, 2001.

M. F. Fernandez, W. Tan, and D. Suciu. SilkRoute: Trading
between relations and XML. IWWW 2000.

Intelligent Systems Research. XML from databases:
ODBC2XML.
http://www.intsysr.com/odbc2xml.htm .

P. Kilpelainen and D. Wood. SGML and exceptions. In
PODB, 1996.

P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed
translationsJCS$9(3):279-307, 1974.

R. J. Miller, M. A. Herrdndez, L. M. Haas, L.-L. Yan,
C.T. H. Ho, R. Fagin, and L. Popa. The Clio project: Man-
aging heterogeneitysIGMOD Recorgd30(1):78-83, 2001.

F. Neven and J. V. den Bussche. Extensions of at-
tribute grammars for structured document queri@aCM,
49(1):56-100, 2002.

Oracle. Using XML in Oracle internet applications.
http://technet.oracle.com/tech/xml/
info/htdocs/otnwp/about xml.htm .

ProML. http://cartan.gmd.de/promiweb.

M. Rys. Bringing the internet to your database: Using
SQLServer 2000 and XML to build loosely-coupled sys-
tems. InICDE, 2001.

J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey,
B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documen¥.DB Jour-

nal, 10(2-3):133-154, 2001.

H. Thompson et al. XML Schema. W3C Recommendation,
May 2001. http://www.w3.0org/XML/Schema

Transaction Processing Performance Council.
Benchmark http://www.tpc.org

TPC-H

